




• Rudolf Schlesinger: If you are innocent, you 
want to be tried in Europe; if you are guilty, 
you want to be tried in the United States. 



Topics 

• Proof ‘in the field’: arrest and probable 
cause.  Scott v. Harris. 

• Plea bargaining and torture. 
• Trial by mathematics? 
• Jury trial; origins and purposes of the jury; 

eyewitness testimony; detection of 
truthfulness.  



• History: Origins of the idea of ‘beyond a 
reasonable doubt’. 

• Comparison: How other countries do it.  Is 
there a problem with the common law 
method? 



Proof: from Cantor to Gödel 
 

• Homework assignment (due in class next 
Thursday, Oct. 18): 
– Write out a clear exposition of the following 

argument, filling in the gaps as indicated. 



Cantor and Dedekind 



Stage 1 

• November 29, 1873.  Cantor writes to 
Dedekind with a puzzle that he can’t answer: 
Is it possible to correlate the positive real 
numbers one-to-one with the positive 
integers?  You might (he says) think the 
answer is obviously no, because the reals form 
a continuum. But so do the rationals, and it is 
easy to see that they can be enumerated. 



Enumeration of the Rationals 

• We have seen the proof (please write out a 
sketch): zig-zag through the (positive) lattice 
points of the plane. 



Dedekind’s Answer 
(by December 2) 

• He can’t answer the question; however: the 
question has no practical interest; so it does 
not deserve much effort. 
 

• Cantor agrees – but still, it would be ‘nice’ to 
have a proof that the reals cannot be 
enumerated, since that would give a new 
proof of the existence of transcendental 
numbers. 



Stage 2 

• 7 December, 1873: Cantor proves that the 
reals cannot be enumerated; a simplified 
proof follows on 9 December.  Dedekind 
congratulates him, and also sends a simplified 
proof (which crosses in the mail).  Cantor’s 
proof is submitted for publication later that 
month. 



The Diagonal Argument 
[NOT Cantor’s original proof] 

 
 
 
 



• Homework (extra credit): Write out Cantor’s 
original proof. 

(You will need the following fact about the reals: 
Every bounded infinite sequence of real 
numbers has a limit point.) 
Cantor’s argument: Assume we have an 
enumeration (a1, a2, …) of the reals in (0,1). 
Then in any given sub-interval (α, β) there exists 
a real number η not in the enumeration. 



Sketch of Cantor’s Proof 

• Let α’ and β’ be the first two numbers in the 
enumeration to appear in (α, β); without loss of 
generality, let α’ < β’.  Let α’’ and β’’ be the next 
two numbers in the enumeration to appear in (α’, 
β’); repeat.  If the process terminates, we are left 
with an entire interval in which no number in the 
enumeration appears, and we are done.  If the 
process does not terminate, we have a bounded 
increasing sequence (α’, α’’, α’’’, …) and a 
bounded decreasing sequence (…, β’’’, β’’, β’).  
Now consider the limit points, and complete the 
proof. 



Stage 3: What to make of this? 

• C’s proof gives us two kinds of infinites – some 
are as ‘big’ as the integers; others [give examples] 
are as ‘big’ as the reals. 

• Question 1: Is there anything in between? 
– Conjecture: No. (“Continuum hypothesis” – Hilbert’s 

first problem, and extremely hard.)  
• Question 2: Is there anything bigger than the 

reals?   
– Conjecture: there are more points in the real plane 

than on the real line. 



• Cantor thinks about this question for nearly 
four years until he writes again to Dedekind 
(20 June, 1877). 

• He produces essentially the argument we saw 
in class.  To the point (x,y) where  

 x = .abcde… 
 y = .pqrst… 
correlate the point z: 
 z = .apbqcrdset … 



• Dedekind’s reply: the proof contains a gap, 
since the decimal representation of the reals 
is not unique.  (We saw this in class:  

 .3500000… = .349999999…). 
Homework (easy): show by an example why 
Dedekind is correct, i.e. that Cantor’s correlation 
is not one-to-one. 
Homework (a bit harder): repair Cantor’s 
argument. 



• Cantor is quite perplexed by his discovery. ‘Je 
le vois, mais je ne le crois pas.’  

• Cantor’s proofs are highly complicated.  For 
example (extra-credit homework): try to show 
that the cardinality of (0,1) = the cardinality of 
[0,1) (i.e. that there exists a bijection between 
the two sets).   

[NB: by definition, two sets have the same 
cardinality if there is a bijection – i.e. a map that 
is one-to-one and onto – between them.] 



Stage 4. 

• Problem:  Is it possible to get sets that are ‘larger’ 
than the cardinality of the real numbers?  (So far 
we have not managed to do so: Cantor was 
stuck.) 

• Can we generalize the diagonal argument?  What 
about Cantor’s proof using converging 
sequences? It is not obvious how: neither proof 
suggests a way forward. 

• Maybe we should ask instead: How are the reals 
related to the integers? 



• Theorem: the positive reals in (0,1) can be 
correlated one-to-one with the subsets (finite 
and infinite) of the positive integers. 
– [Fact: Any real number can be represented as an 

infinite binary decimal, .0010111001…, and every 
such binary decimal determines a real.] 

• Homework: Show that every binary decimal 
determines a subset of the positive integers, 
and vice versa.  (You can ignore the ‘Dedekind 
objection’ about unique representation.) 



Stage 5. 

• If the reals are all the subsets of the integers, 
and if the reals have greater cardinality than 
the integers, then can we generalize that fact? 

 
– Some notational jargon:  

• If X is a set, then P(X) (the ‘power set’) is the set of all 
subsets of X. 

• {x| f(x)} is notation for: ‘the set of all x satisfying f(x)’ 



Cantor’s Theorem 

• Conjecture: For any set X, it is never possible to 
establish a bijection φ between the elements of X 
and the elements of P(X). 

• Sketch of Proof. (Extremely important: Write out 
the details, and make sure you understand the 
argument!) 
– Experiment first with finite sets; you will quickly 

persuade yourself that the conjecture is correct.  The 
difficulty is to prove it for arbitrary, infinite sets.  Try to 
solve this yourself before looking at the hint at the 
end of these slides. 



Stage 6.  Two Big Problems. 

• Cantor’s Theorem gives us an infinite hierarchy of 
ever-larger infinite numbers.  Does this even 
make sense?  (Many mathematicians thought not 
– especially Kronecker, and also Poincaré.) 

• How can we be sure that Cantor’s theory is not 
self-contradictory? 

• Russell’s Paradox (which he got from Cantor’s 
Theorem): Consider the set of all sets that do not 
belong to themselves. 



Bertrand Russell 



Gottlob Frege 

 



David Hilbert 
(1862-1943) 





Hilbert’s Idea (“Proof Theory”) 

• Two (related) problems: 
– How do we defend Cantor’s theory of the infinite, 

and show that it is free of contradiction? 
– How, in general, do we show that a mathematical 

proof contains no ‘gaps’? 



• Hilbert’s Insight: Cantor talks about ‘infinite 
sets’ and ‘infinite numbers’ – but the words he 
uses are finite objects.  So (inspired by 
Hilbert’s work on axioms of geometry): 

• Can we fully specify the language of infinite 
set-theory, write down its axioms and a set of 
(syntactic!) inference rules, and then, by 
studying this formal calculus, show: 
 



– That it suffices for higher mathematics 
(‘completeness’); and, 

– That one can never derive the formula, 1=0 (i.e. 
that the formal system is syntactically consistent)? 

• NB: the derivations in the system are purely 
mechanical, syntactic, a matter of 
manipulating symbols – we are not interested 
in their ‘meaning.’ 



1920s and Proof Theory 

• Controversy with Brouwer, Weyl; the 
‘Grundlagenstreit’ 

• Early successes in showing consistency of various 
simple sub-systems; by 1925 a proof of the 
consistency of analysis appears in reach.  Main 
researchers: 
– David Hilbert 
– Paul Bernays 
– Wilhelm Ackermann 
– John von Neumann 



Kurt Gödel 

• 1931 – First Incompleteness Theorem. 
• Suppose you have a syntactic machine M that 

is capable of answering truthfully any question 
of mathematics (i.e. consistency and 
completeness are satisfied). 

• This machine is itself a mathematical object, 
and can be given a mathematical description. 



Gödel’s Idea: 

• Ask the machine M to prove the following 
theorem: 
– ‘Machine M will never be able to prove this 

sentence.’ 
• Now we have a dilemma.  If M proves the 

sentence, then M has proved a falsehood (and 
we lose consistency).  But if M cannot prove 
the sentence, then the sentence is true (and 
we lose completeness). 



Two Consequences: 
1.  Early Computation 

• Hilbert’s Program (at least as originally 
formulated) cannot be carried through. 

• Subtler forms of consistency proof (e.g. in the 
work of Gentzen) are still possible. 

• There remains Hilbert’s question about 
decidability (the Entscheidungsproblem): 
Given a set of axioms, can we decide whether 
a given formula is derivable? 



Alan Turing and J. von Neumann 

  



2. What about Proof? 

• Two concepts of proof? 
– ‘gapless,’ fully-formalized proofs, executable by a 

digital computer; 
– ‘informal’ proofs and arguments, as given by 

mathematicians. 
 

• What is the relationship between them? 
 

 
 



Hint on Cantor’s Theorem 

Suppose we have such a φ.  Then consider the set Y 
= {x| x is not a member of φ(x)}.  Because φ is a 
bijection, for some z in X, we have Y = φ(z).  Now 
ask: Is z a member of Y? QED. 
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