Conditional Probability

Notation: $P(A \mid B)$ means the probability that A is true assuming that B is true.
Two identities:

$$
P(A \cap B)=P(A \mid B) P(B) \quad P(B \cap A)=P(B \mid A) P(A)
$$

Since $A \cap B=B \cap A$,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \quad[\text { Bayes }]
$$

Dart Board The dart board is the unit disk, $D=\left\{x^{2}+y^{2} \leq 1\right\}$. Suppose you know the dart landed in the upper half, $y>0$. What is the probability thar it landed within a distance of $1 / 2$ from the origin?

Let $E=\{(x, y) \in D: y>0\}$ and $F=\left\{(x, y) \in D: x^{2}+y^{2}<(1 / 2)^{2}\right\}$. Then

$$
\begin{aligned}
P(F \mid E) & =\frac{P(F \cap E)}{P(E)}=\frac{(1 / \pi)(1 / 2)(\pi / 4)}{(1 / \pi)(\pi / 2)} \\
& =1 / 4
\end{aligned}
$$

Note that the size of $F \cap E$ is $1 / 4$ the size of E.
Cancer test. Say you test positive. What is the likelihood you have cancer?

$$
P(C \mid+)=\frac{P(+\mid C) P(C)}{P(+)}=\frac{P(+\mid C) P(C)}{P(+\mid C) P(C)+P(+\mid-C) P(-C)}
$$

Remark:

$P(+\mid-C) P(-C)$ is the probability of False Positives
$P(-\mid C) P(C)$ is the probability of False Negatives
We look at an example with real data.

