Solution to Problem Set 6, Problem 8

First we have to find which set of coordinates best fits in a line. Through simple trial-and-error, we find that plotting the coords in logr-logT will make the best line.
> PLOT (TITLE ("log r versus log T"), AXESSTYLE (DEFAULT), SYMBOL (CIRCLE), POINTS ([1.778,1.954],[2.041,2.352],[2.176,2.562], [2.362,2.839], [2. 892,3.636],[3.155,4.031],[3.458,4.486]));
$\log r$ versus $\log T$

> with (linalg):
To find the bestfit line, we put the following sums into a matrix and solve the matrix
$>\operatorname{Sum}(r)=1.778+2.041+2.176+2.362+2.892+3.155+3.458$;
$>\operatorname{Sum}(T)=1.954+2.352+2.562+2.839+3.636+4.031+4.486$;
$>\operatorname{Sum}\left(r^{\wedge} 2\right)=$
$1.778^{\wedge} 2+2.041^{\wedge} 2+2.176^{\wedge} 2+2.362^{\wedge} 2+2.892^{\wedge} 2+3.155^{\wedge} 2+3.458^{\wedge} 2$;
$>\operatorname{Sum}(r * T)=1.778 * 1.954+2.041 * 2.352+2.176 * 2.562+2.362 * 2.839+2.892 *$ 3.636+ 3.155* 4.031+3.458* 4.486;

$$
\begin{gathered}
\sum r=17.862 \\
\sum T=21.860 \\
\sum r^{2}=47.916438 \\
\sum r T=59.300979
\end{gathered}
$$

> AV-B=matrix([[7, 17.862],[17.862,47.916]])*matrix([[a],[b]]) matrix([[21.860], [59.301]]);

