```
> restart:
> with(linalg): Digits:=3:
Warning, new definition for norm
Warning, new definition for trace
```

Set up the matrix A as the number of wins each team has over another (every pair of teams played ten times against each other).
$>\mathrm{A}:=$ matrix $([[0,4,5,2,4,7],[6,0,4,1,7,6],[5,6,0,9,5,5]$,

$$
[8,9,1,0,7,8],[6,3,5,3,0,8],[3,4,5,2,2,0]]) ;
$$

$$
A:=\left[\begin{array}{llllll}
0 & 4 & 5 & 2 & 4 & 7 \\
6 & 0 & 4 & 1 & 7 & 6 \\
5 & 6 & 0 & 9 & 5 & 5 \\
8 & 9 & 1 & 0 & 7 & 8 \\
6 & 3 & 5 & 3 & 0 & 8 \\
3 & 4 & 5 & 2 & 2 & 0
\end{array}\right]
$$

Set up the vector V, which is the total number of wins for each team. From this first vector we can say that the ranking of teams is $\langle 4,3,5,2,1,6\rangle$.
$>\mathrm{V}:=\mathrm{vector}([22,24,30,33,25,16])$;

$$
V:=[22,24,30,33,25,16]
$$

This will multiply the matrix A and the vector V, normalize the vector, and set the new vector equal to V. This loop will run ten times to get a long-term distribution (of course, for more exact terms we can run the loop 100, 1000, or an infinite number of times).

```
> for i from 1 to 10 do
    evalf(normalize(evalm(A&*%)))
    od;
```

 [.352, .374, .508, .487, .391, .287]
 [.361, .382, .492, .492, .400, .288]
 [.356, .380, .494, .494, .397, .284]
 [.357, .379, .496, .492, .396, .285]
 [.357, .379, .496, .492, .397, .285]
 [.357, .379, .496, .492, .397, .285]
 [.357, .379, .496, .492, .397, .285]
 [.357, .379, .496, .492, .397, .285]
 [.357, .379, .496, .492, .397, .285]
 [.357, .379, .496, .492, .397, .285]
 From the results we can see that, when normalized, the order of the teams is $\langle\mathbf{3 , 4 , 5 , 2 , 1 , 6 >}$. This is contrary to first belief that the teams were ranked on total wins. Team 3, although they were second in total wins, played a much harder schedule than team 4.

