Matrix Manipulation Worksheet

Start by loading the linalg (linear algebra) package to run matrix formula (don't worry about the warning message.)

```
> restart;
    with(linalg):
Warning, the protected names norm and trace have been redefined and
unprotected
```

Create our matrix with which we will manipulate our image. In this example, let's double the height of the image and flip it across the y-axis. For this, $(1,0)$ will move to $(-1,0)$ and $(0,1)$ will move to $(0,2)$. Therefore, the matrix is as below.
> A:=matrix([[-1,0],[0,2]]);

$$
A:=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]
$$

Let's set up a list of lists, which can be plotted in Maple. Remember, this is an object of the type listlist, or a list of smaller lists (in this case, we have lists with two elements, the coordinates).

```
> f1 := [[0,0], [0,5], [3,5], [3,4], [1,4], [1,3],
    [2,3], [2,2], [1,2], [1,0], [0,0]];
    fl := [[0, 0], [0, 5], [3, 5], [3, 4], [1, 4], [1, 3], [2, 3], [2, 2], [1, 2], [1, 0], [0, 0]]
```

Here's how you plot a list of lists. The style=LINE draws lines between subsequent points. We duplicated the first point at the end so that the last line is drawn.

```
> plot(f1, style=LINE, color=blue, thickness=2, view=[-10..10,
    -10..10], scaling=constrained);
```


Now the tricky part. In order to manipulate each point, we need to conver the listlist to an
array (basically a large matrix). After we evalulate the matrix multiplication (evalm(...)) then we convert the result back into a listlist. This is the way I discovered; I hope for the sake of Maple usability that there's an easier way. For now, just use this.
> f2:=convert (evalm(convert(f1, array) \&* A), listlist);
$f 2:=[[0,0],[0,10],[-3,10],[-3,8],[-1,8],[-1,6],[-2,6],[-2,4],[-1,4],[-1,0],[0,0]]$...and plotting the resulting set of points gives is what we desired in the first place--the image stretched vertically by a factor of two and flipped across the y-axis.
> plot(f2, style=LINE, color=red, thickness=3, view=[-10..10, -10..10], scaling=constrained);

If we so desired, we could plot both at the same time! We simply set it up as so: $>\operatorname{plot}(\{f 1, f 2\}, \operatorname{color}=[b l u e, r e d]$, thickness=[1,3], view=[-10..10, -10..10], scaling=constrained);

Other examples:

Stretch matrix by two in horizontal direction and shrink by two in vertical direction
$>$ A3 : = matrix ([[2,0], [0,1/2]]);
f3: =convert (evalm(convert(f1, array) \&* A3), listlist): plot(\{f1,f3\}, style=LINE, color=[blue,red], thickness=[1,3], view=[-10..10, -10..10], scaling=constrained);

$$
A 3:=\left[\begin{array}{cc}
2 & 0 \\
0 & \frac{1}{2}
\end{array}\right]
$$

Skew image - send $(1,0)$ to $(1,1)$ and $(0,1)$ to $(0,1)$
> A4 := matrix([[1,1],[0,1]]);
f4 := convert(evalm(convert(f1, array) \&* A4), listlist): plot(\{f1,f4\}, style=LINE, color=[blue,red], thickness=[1,3], view=[-10..10, -10..10], scaling=constrained);

$$
A 4:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Rotate Image counter-clockwise 90 degrees - send $(1,0)$ to $(0,1)$ and $(0,1)$ to $(-1,0)$
> A5 := matrix([[0,1], [-1,0]]);
f5 := convert(evalm(convert(f1, array) \&* A5), listlist): plot(\{f1,f5\}, style=LINE, color=[blue,red], thickness=[1,3], view=[-10..10, -10..10], scaling=constrained);

$$
A 5:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Brian Abram
University of Pennsylvania

