Color Transformations

Colors on the computer are defined by three components: red, green, and blue. Each of these colors is a real number between 0 and 1 inclusive. A value of 1 indicates complete saturation of that color; zero indicates none of that color.

```
> restart; with(linalg):
Warning, the protected names norm and trace have been redefined and
unprotected
```

Black is defined as $(0,0,0)$ - there is no color at all. White is defined as $(1,1,1)$ - remember that light is made up of all colors.

```
> red := 0; green := 0; blue := 0;
    plot(sin(x), x=-1..1, thickness=10, color=COLOR(RGB, red,
    green, blue));
\[
\begin{aligned}
\text { red } & :=0 \\
\text { green } & :=0 \\
\text { blue } & :=0
\end{aligned}
\]
```


Red is defined as $(1,0,0)$ (similarly green is $(0,1,0)$ and blue is $(0,0,1)$)
$>$ red $:=1 ;$ green $:=0 ;$ blue $:=0$;
plot(sin(x), x=-1..1, thickness=10, color=COLOR(RGB, red, green, blue));

$$
\begin{aligned}
\text { red } & :=1 \\
\text { green } & :=0 \\
\text { blue } & :=0
\end{aligned}
$$

Combinations can be defined as well; yellow is red and green combined $(1,1,0)$
> red $:=1$; green $:=1$; blue $:=0$; plot(sin(x), $x=-1 . .1$, thickness=10, color=COLOR(RGB, red, green, blue));

$$
\begin{aligned}
\text { red } & :=1 \\
\text { green } & :=1 \\
\text { blue } & :=0
\end{aligned}
$$

We can put the colors into a matrix and transform them appropriately.
> C := vector([red, green, blue, 1]);

$$
C:=[1,1,0,1]
$$

L is the Luminence vector - if we convert the color to black and white, this will tell us how bright the color is. The values $0.3086,0.6094$, and 0.0820 are mostly made up.

```
> L := matrix([[0.3086, 0.3086, 0.3086, 0], [0.6094,
    0.6094,0.6094, 0], [0.0820, 0.0820, 0.0820, 0], [0, 0, 0,
    1]]);
\[
L:=\left[\begin{array}{cccc}
.3086 & .3086 & .3086 & 0 \\
.6094 & .6094 & .6094 & 0 \\
.0820 & .0820 & .0820 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\]
```

We can see that since the luminence is 0.9180 , the color (yellow from the previous example) is very bright
> evalm(C\&*L);
[.9180, . $9180, .9180,1]$
Let's try purple
> red := 1/4; green $:=0 ;$ blue := 1/2; plot(sin(x), x=-1..1, thickness=10, color=COLOR(RGB, red, green, blue));

$$
\text { red }:=\frac{1}{4}
$$

$$
\begin{aligned}
\text { green } & :=0 \\
\text { blue } & :=\frac{1}{2}
\end{aligned}
$$

As expected, purple is rather dark (low luminence)
> C := vector([red, green, blue, 1]); evalm(C\&*L);

$$
C:=\left[\frac{1}{4}, 0, \frac{1}{2}, 1\right]
$$

[.1181500000, .1181500000, .11815000000, 1]
[This will be an ongoing session...

