```
> restart;
```

Here's the equation f; let's find the derivative, set it to zero, and see the best k in terms of p.
$>\mathrm{f}:=\left((1-\mathrm{p})^{\wedge} \mathrm{k}+\left(1-(1-\mathrm{p})^{\wedge} \mathrm{k}\right) *(\mathrm{k}+1)\right)^{*}(\mathrm{n} / \mathrm{k})$; $f:=\frac{\left((1-p)^{k}+\left(1-(1-p)^{k}\right)(k+1)\right) n}{k}$
> df := diff(f,k);
$d f:=\frac{\left((1-p)^{k} \ln (1-p)-(1-p)^{k} \ln (1-p)(k+1)+1-(1-p)^{k}\right) n}{k}$
$-\frac{\left((1-p)^{k}+\left(1-(1-p)^{k}\right)(k+1)\right) n}{k^{2}}$
$>\mathrm{k}=\operatorname{solve}(\mathrm{df}=0, \mathrm{k})$;

$$
k=\left(2 \frac{\text { LambertW }\left(\frac{1}{2} \sqrt{-\ln (1-p)}\right)}{\ln (1-p)}, 2 \frac{\text { LambertW }\left(-\frac{1}{2} \sqrt{-\ln (1-p)}\right)}{\ln (1-p)}\right)
$$

This is the exact answer to what k should be. If anyone in the class knows how to use the Lambert \mathbf{W} equation, he/she shouldn't be in this class. Instead, we need to find a simplification to this problem. Through the binomial theorem we know that (1-n)^r for small enough n is approximately ($1-\mathrm{nr}$). We can use this in our equation.
$>g:=((1-p * k)+(1-(1-p * k)) *(k+1)) * n / k$;

$$
g:=\frac{(1-p k+p k(k+1)) n}{k}
$$

> $\mathrm{g}:=\operatorname{simplify}(\mathrm{g})$;

$$
g:=\frac{\left(1+p k^{2}\right) n}{k}
$$

> dg := diff(g,k);

$$
d g:=2 p n-\frac{\left(1+p k^{2}\right) n}{k^{2}}
$$

This looks like a more reasonable answer. We'll take the positive root in this case, which is 1 / sqrt(p).
> $k=$ solve (dg=0,k);

$$
k=\left(\frac{1}{\sqrt{p}},-\frac{1}{\sqrt{p}}\right)
$$

Let's check our answers by plugging in values for p, n, and k . Notice how functions f and g give us almost exactly the same answer (which is the expected number of tests performed at this drug percentage, total number of people, and size of group.
> $\mathrm{p}:=0.01$; $\mathrm{n}:=10000$; $\mathrm{k}:=1 /$ sqrt (p);

$$
\begin{gathered}
p:=.01 \\
n:=10000 \\
k:=10.00000000
\end{gathered}
$$

```
> evalf(f);
    > evalf(g);
    2000.000000
[ >
1956.179250
2000.000000
[ >
```

