
Math 210 Jerry L. Kazdan

Vectors — and an Application to Least Squares

This brief review of vectors assumes you have seen the basic properties of vectors
previously.

We can write a point inRn as X = (x1, . . . ,xn). This point is often called avector. Fre-
quently it is useful to think of it as an arrow pointing from the origin to the point. Thus,
in the planeR

2 , X = (1,−2) can be thought of as an arrow from the origin to the point
(1,−2).

Algebraic Properties

Alg-1. ADDITION : If Y = (y1, . . . ,yn), thenX +Y = (x1+y1, . . . ,xn+yn).

Example: In R
4 , (1,2,−2,0)+(−1,2,3,4) = (0,4,1,4).

Alg-2. MULTIPLICATION BY A CONSTANT: cX = (cx1, . . . ,cxn).

Example: In R
4 , if X = (1,2,−2,0), then−3X = (−3,−6,6,0).

Alg-3. DISTRIBUTIVE PROPERTY: c(X +Y) = cX+ cY. This is obvious if one writes it
out using components. For instance, inR

2 :

c(X +Y) = c(x1+y1,x2+y2) = (cx1+cy1,cx2+cy2) = (cx1,cx2)+(cy1,cy2) = cX+cY.

Length and Inner Product

NIP-1. ‖X‖ :=
√

x2
1 + · · ·+x2

n is thedistancefrom X to the origin. We will also refer to

‖X‖ as thelengthor normof X . Similarly ‖X−Y‖ is thedistance between X and Y.
Note that‖X‖ = 0 if and only if X = 0, and also that for any constantc we have‖CB‖ =
|c|‖X‖. Thus,‖−2X‖ = ‖2X‖= 2‖X‖.

LIP-2. The inner productof vectorsX andY in R
n is, by definition,

〈X, Y〉 := x1y1 +x2y2 + · · ·+xnyn. (1)

This is also called thedot productand writtenX ·Y . The inner product of two vectors is a
number,notanother vector. In particular, we have the vital identity‖X‖2 = 〈X, X〉 relating
the inner product and norm. For added clarity, it is sometimes useful to write the inner
product inR

n as〈X, Y〉Rn .

Example: In R
4, if X = (1,2,−2,0) and Y = (−1,2,3,4), then 〈X, Y〉 = (1)(−1) +

(2)(2)+(−2)(3)+(0)(4) = −3.

HIP-3. ALGEBRAIC PROPERTIES OF THE INNER PRODUCT. The following are obvious
from the above definition of〈X, Y〉:

i). 〈X, X〉 ≥ 0, with 〈X, X〉 = 0 if (and only if) X = 0,
ii). 〈X +Y, W〉 = 〈X, W〉+ 〈Y, W〉,
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iii). 〈cX, Y〉 = c〈X, Y〉,
iv). 〈Y, X〉 = 〈X, Y〉.

These four properties can be viewed as theaxiomsfor an inner product of real vectors.

REMARK : If one works with vectorsZ := (z1, z2, . . . ,zn) , havingcomplex numbers zj as elements,
then the definition of the inner product must be modified since, for a complex numberz := x+ iy
we have|z|2 = x2 +y2 = zz, wherez := x− iy is thecomplex conjugateof z. Using this we define
theHermitian inner productby

〈W, Z〉 := w1z1 +w2z2 + · · ·+wnzn. (2)

(note: many people put the complex conjugate on the first term, w j , instead of thezj ). The pur-
pose is to insure that the fundamental property‖Z‖2 = 〈Z, Z〉 ≥ 0 still holds. Note, however, that
the symmetry property〈Y, X〉 = 〈X, Y〉 is now replacedby 〈Z, W〉 = 〈W, Z〉, and hence, as the
following proof shows,〈W, cZ〉 = c̄〈W, Z〉 :
PROOF: 〈W, cZ〉 = 〈cZ, W〉 = 〈cZ, W〉 = c〈Z, W〉 = c〈W, Z〉) .
For complex vectors or matrices onealwaysuses a Hermitian inner prodect.

IP-4. GEOMETRIC INTERPRETATION: The definition (1) of the inner product is easy to
compute. However, it is not at all obvious that the inner product is useful – until one
interprets it geometrically:

〈X, Y〉 = ‖X‖‖Y‖cosθ, (3)

whereθ is the angle betweenX andY . Since cos(−θ) =
cosθ, the sense in which we measure the angle does not
matter.

X

0

Y

θ

To prove (3), we can restrict our attention to the two dimensional plane containingX and
Y . Thus, we need consider only vectors inR

2 . Assume we are not in the trivial case where
X or Y are zero. Letα andβ be the angles thatX = (x1,x2) andY = (y1,y2) make with
the horizontal axis, soθ = β−α. Then

x1 = ‖X‖cosα and x2 = ‖Y‖sinα.

Similarly, y1 = ‖Y‖cosβ andy2 = ‖Y‖sinβ . Therefore

〈X, Y〉 =x1y1+x2y2 = ‖X‖‖Y‖(cosαcosβ+sinαsinβ)

=‖X‖‖Y‖cos(β−α) = ‖X‖‖Y‖cosθ.

This is what we wanted. Alternatively, the equivalence of (1) and (3) can be seen as just a
restatement of the law of cosines from trigonometry.

IP-5. GEOMETRIC CONSEQUENCE: X andY are perpendicular if and only if〈X, Y〉 = 0,
since this means the angleθ between them is 90 degrees so cosθ = 0. We often use the
word orthogonalas a synonym forperpendicular.

2



Example: The vectorsX = (1,2,4) and (0,−2,1) are orthogonal, since〈X, Y〉 = 0−4+
4 = 0.
Example: The straight line−x+3y = 0 through the origin
can be written as〈N, X〉= 0, whereN = (−1,3) andX =
(x,y) is a point on the line. Thus we can interpret this line
as being the points perpendicular to the vectorN . The line
−x+3y= 7 is parallel to the line−x+3y= 0, except that it
does not pass through the origin. This same vectorN is perpendicular to it. IfX0 is a point
on the line〈N, X〉= c, so〈N, X0〉= c, then we can rewrite its equation as〈N, X−X0〉= 0,
showing analytically thatN is perpendicular toX−X0.

N

<N,X> = 0

0

Many formulas involving‖X‖ are simplest if one rewrites them immediately in terms of
the inner product. The following example uses this approach.

Example: [PYTHAGOREAN THEOREM] If X and Y are orthogonal vectors, then the
Pythagorean law holds:

‖X +Y‖2 = ‖X‖2+‖Y‖2.

SinceX andY are orthogonal, then〈X, Y〉 = 〈Y, X〉 = 0, so, as asserted

‖X +Y‖2 =〈X +Y, X +Y〉

=〈X, X〉+ 〈X,Y〉+ 〈Y, X〉+ 〈Y, Y〉

=‖X‖2+‖Y‖2.

since if a vectorZ is orthogonal to all other vectors, in particular, it is orthogonal to itself.
Thus‖Z‖2 = 〈Z, Z〉 = 0 soZ = 0.
REMARK: Observe that the zero vector is orthogonal to all vectors. It is theonly such
vector since if〈Z, V〉 = 0 for all vectorsV , thenZ = 0. To prove this, since we can pick
any vector forV , this is true in particular ifV = Z. But then‖Z‖2 = 〈Z, Z〉 = 0 so the
only possibility isZ = 0.

IP-6. MATRICES AND THE INNER PRODUCT: If A is a k×n matrix (k rows, n columns
so A : R

n → R
k), we want to compute〈AX, Y〉

Rk for vectorsX ∈ R
n andY ∈ R

k in order
to introduce the concept of theadjoint of a matrix.
Let e1 = (1,0,0, . . . ,0), . . . , en = (0,0, . . . ,0,1), be the usual standard basis vectors inR

n

andε1 = (1,0,0, . . . ,0),. . . ,εk := (0, . . . ,0,1) be the usual basis vectors inRk . Recall that
in matrix notation, we usually think of vectors ascolumn vectors. If A= (ai j ) , it is easy to
see thatAe1 is the first column ofA, Ae2 the second column ofAand so on. For instance

Ae2 =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
ak1 ak2 . . . akn





















0
1
...
0











=











a12

a22
...

ak2











. (4)
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In words, the image ofe2 is the second column ofA, just as asserted.
Using this observation it is clear that〈Ae2, ε1〉Rk = a12. Similarly,

〈Aei , ε j〉Rk = a ji . (5)

We use this to define theadjointof the matrixA, written A∗ . It is defined by requiring that

〈AX, Y〉 = 〈X, A∗Y〉 or, more formally, 〈AX, Y〉
Rk = 〈X, A∗Y〉Rn. (6)

for all vectorsX ∈ R
n andY ∈ R

k .
The formula (6) looks abstract but is easy to use – although atthis stage it is not at all
evident that it is useful. For the moment, writeB = A∗ , so (6) says〈AX, Y〉 = 〈X, BY〉.
Say the elements ofB are bi j . We would like to compute thebi j ’s in terms of the known
elementsai j of A. From (4) applied toB, we know thatBε1 is the first column ofB. Thus
〈e2, Bε1〉 = b21. But the definition we have〈X, BY〉 = 〈X, Y〉 so

b21 = 〈e2, Bε1〉 = 〈Ae2, ε1〉 = a12.

In the same way,bi j = a ji for all i = 1,2, . . .n, j = 1,2, . . .k. In other words, the first row
of B = A∗ is simply the first column ofA, etc. Thus we interchange the rows and columns
of A to getA∗ . For this reasonA∗ is often called thetransposeof A and writtenAT .

EXAMPLE

if A :=

(

a11 a12 a13

a21 a22 a23

)

, then A∗ = AT =





a11 a21

a12 a22

a13 a23



 . (7)

A square matrixA is calledself adjointor symmetricif A = A∗ . It is calledskew-adjoint
or anti-symmetricif A = −A∗ . An obvious property is thatA∗∗ = (A∗)∗ = A.
As an example, let’s obtain the property(AB)∗ = B∗A∗ . We begin using the definition (6)
applied toAB:

〈(AB)∗X, Y〉 = 〈X, (AB)Y〉. (8)

But (AB)Y = A(BY) so

〈X, (AB)Y〉 = 〈X, A(BY)〉 = 〈A∗X, BY〉 = 〈B∗(A∗X), Y〉 = 〈(B∗A∗)X, Y〉. (9)

Comparing (8) and (9) we find that(AB)∗ = B∗A∗ .

One consequence is thatA∗A is a symmetric matrix, even ifA is not a square matrix, be-
cause(A∗A)∗ = A∗A∗∗ = A∗A. In particularA∗A is a square matrix. SimilarlyAA∗ is a sym-
metric matrix. For many applications it is useful to notice that 〈A∗AX, X〉 = 〈AX, AX〉 =
‖AX‖2 ≥ 0 for all X .
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REMARK: If, as is usual, we think of a vectorX :=







x1
...

xn






as a column vector, then we

can treat it as a 1×n matrix and observe the inner product〈X, Y〉 = XTY , which is often
useful. Also〈X, AY〉 = XTAY so computing inner products is now under the umbrella of
matrix multiplication. This observation is quite valuablein computations.

Derivatives of Vectors

D-1. If X(t) = (x1(t), . . . ,xn(t)) describes a curve inRn, then itsderivativeis

X′(t) =
dX(t)

dt
= (x′1(t), . . . ,x

′
n(t)).

One can think of this as thevelocity vector. It is tangent to the curve.

Example: If X(t)= (2cost,2sint), then this curve is a circle of radius 2, traversed counter-
clockwise. Its velocity isX′(t) = (−2sint,2cost) and itsspeed‖X′(t)‖= 2. For instance,
X′(0) = (0,2) is the tangent vector atX(0) = (2,0). The curveY(t) = (2cos3t,2sin3t)
also describes the motion of a particle around a circle of radius 2, but in this case the speed
is ‖Y′(t)‖= 6

D-2. DERIVATIVE OF THE INNER PRODUCT: If X(t) andY(t) are two curves, then

d
dt
〈X(t),Y(t)〉= 〈

dX(t)
dt

, Y(t)〉+ 〈X(t),
dY(t)

dt
〉. (10)

or, more briefly,〈X, Y〉′ = 〈X′, Y〉+ 〈X, Y′〉.
To prove this one simply uses the rule for the derivative of a product of functions. Thus

d
dt
〈X(t),Y(t)〉=

d
dt

(x1y1 +x2y2+ · · ·)

= (x′1y1 +x1y′1)+(x′2y2+x2y′2)+ · · ·

= (x′1y1 +x′2y2+ · · ·)+(x1y′1+x2y′2 + · · ·)

= 〈X′, Y〉+ 〈X, Y′〉.

Example:
d
dt
‖X(t)‖2 =

d
dt
〈X(t), X(t)〉= 2〈X(t), X′(t)〉. (11)

As a special case, if a particle moves at a constant distancec from the origin,‖X(t)‖= c,
then 0= dc2/dt = d‖X(t)‖2/dt = 2〈X(t), X′(t)〉. In particular, if a particle moves on a
circle or a sphere, then the position vectorX(t) is always perpendicular to the velocity
X′(t). This also shows that the tangent to a circle,X′(t), is perpendicular to the radius
vector,X(t).
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Orthogonal Projections

Proj-1. ORTHOGONAL PROJECTION ONTO A LINE: Let X andY be given vectors. We
would like to writeY in the formY = cX+V , whereV is perpendicular toX . Then the
vectorcX is theorthogonal projection of Y in the line determined by the vectorX .

How can we find the constantc and the vectorV ? We use the only fact we know: thatV is
supposed to be perpendicular toX . Thus we take the inner
product ofY = cX+V with X and conclude that〈X, Y〉 =
c〈X, X〉, that is

c =
〈X, Y〉
‖X‖2 .

X

0

Y

V

cX
θ

Now that we knowc, we can simply defineV by the obvious formulaV = Y−cX.
At first this may seem circular. To convince your self that this works, letX = (1,1), and
Y = (2,3). Then computec andV and draw a sketch showingX, Y, cX, andV .
SincecX ⊥V , we can use the Pythagorean Theorem to conclude that

‖Y‖2 = c2‖X‖2+‖V‖2 ≥ c2‖X‖2.

From this, using the explicit value ofc found above we conclude that

‖Y‖2 ≥

(

〈X, Y〉
‖X‖2

)2

‖X‖2.

and obtain theSchwarz inequality

|〈X, Y〉| ≤ ‖X‖‖Y‖. (12)

Notice that this was done without trigonometry. It used onlythe properties of the inner
product.

Proj-2. ORTHOGONAL PROJECTION INTO A SUBSPACE. If a linear space has an inner
product andS is a subspace of it, we can discuss the orthogonal projectionof a vector into
that subspace. Given a vectorY , if we can write

Y = U +V,

whereU is in S andV is perpendicular toS, then we callU the projection ofY into S and
V the projection ofY perpendicular toS. The notationU = PSY, V = P⊥

S Y is frequently
used for this projectionU .
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X

Y

U=P Y
V

S

O

S

By the Pythagorean theorem

‖Y‖2 = ‖U‖2+‖V‖2, (U = PSY, V = P⊥
S Y).

It is easy to show thatthe projection PSY is closer to Y than any other point in S. In other
words,

‖Y−PSY‖ ≤ ‖Y−X‖ for all X in S.

To see this, given anyX ∈ S write Y−X = (Y−PSY)+(PSY−X) and observe thatY−
PSY is perpendicular toS while PSY and X , and hencePSY−X are in S. Thus by the
Pythagorean Theorem

‖Y−X‖2 = ‖Y−PSY‖
2+‖PSY−X‖2 ≥ ‖Y−PSY‖

2.

This is what we asserted.

Problems on Vectors

1. a) For which values of the constanta andb are the vectorsU = (1+a,−2b,4) and
V = (2,1,−1) perpendicular?

b) For which values of the constanta, andb is the above vectorU , perpendicular to
bothV and the vectorW = (1,1,0)?

2. Let X = (3,4,0) andY = (1,−,1).

a) Write the vectorY in the formY = cX+V , whereV is orthogonal toX . Thus,
you need to find the constantc and the vectorV .

b) Compute‖X‖, ‖Y‖, and‖V‖ and verify the Pythagorean relation

‖Y‖2 = ‖cX‖2+‖V‖2.
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3. [CONVERSE OF THEPYTHAGOREAN THEOREM] If X andY are real vectors with the
property that the Pythagorean law holds:‖X‖2+‖Y‖2 = ‖X +Y‖2 , thenX andY are
orthogonal.

4. If a vectorX is written asX = aU + bV , whereU and V are non-zero orthogonal
vectors, show thata = 〈X, U〉/‖U‖2 andb = 〈X, V〉/‖V‖2 .

5. The origin and the vectorsX , Y , andX +Y define a parallelogram whose diagonals
have lengthX +Y andX−Y . Prove theparallelogram law

‖X +Y‖2+‖X−Y‖2 = 2‖X‖2+2‖Y‖2;

This states that in a parallelogram, the sum of the squares ofthe lengths of the diagonals
equals the sum of the squares of the four sides.

6. a) Find the distance from the point(2, −1) to the straight line 3x−4y = 0.

b) Find the distance from the straight line 3x−4y = 10 to the origin.

c) Find the distance from the straight lineax+by= c to the origin.

d) Find the distance between the parallel linesax+by= c andax+by= γ.

e) Find the distance from the planeax+by+cz= d to the origin.

7. The equation of a straight line inR3 can be written asX(t) = X0+ tV , −∞ < t < ∞,
whereX0 is a point on the line andV is a vector along the line (in a physical setting,
V might be thevelocityvector).

a) Find the distance from this line to the origin.

b) If Y(s) = Y0+sW, −∞ < s< ∞, is another straight line, find the distance between
these straight lines.

8. Let P1 , P2 , . . . , Pk be points inR
n . For X ∈ R

n let

Q(X) := ‖X−P1‖
2+‖X−P2‖

2+ · · ·‖X−Pk‖
2.

Determine the pointX that minimizesQ(X).

9. a) If X andY are real vectors, show that

〈X, Y〉 =
1
4

(

‖X +Y‖2−‖X−Y‖2) .

This formula is the simplest way to recover properties of theinner product from
the norm.
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b) As an application, show that if a square matrixR has the property that it preserves
length, so‖RX‖ = ‖X‖ for every vectorX , then it preserves the inner product,
that is,〈RX, RY〉 = 〈X, Y〉 for all vectorsX andY .

10. If one uses the complex inner product (2), show that the elementsA∗ are the transpose
conjugate,A∗ = (aℓk), of the elements ofA = (akℓ).

11. a) If a certain matrixC satisfies〈X, CY〉 = 0 for all vectorsX and Y , show that
C = 0.

b) If the matricesA andB satisfy〈X, AY〉 = 〈X, BY〉 for all vectorsX andY , show
that A = B.

12. a) Give an example of a 3×3 anti-symmetric matrix.

b) If A is any anti-symmetric matrix, show that〈X, AX〉 = 0 for all vectorsX .

13. SayX(t) is a solution of the differential equation
dX
dt

= AX, where A is an anti-

symmetricmatrix. Show that‖X(t)‖= constant.

Application to the Method of Least Squares
THE PROBLEM. Say you have done an experiment and obtained the data points(−1,1),
(0,−1), (1,−1), and(2,3). Based on some other evidence you believe this data should fit
a curve of the formy = a+bx2 . If you substitute your data(x j ,y j) into this equation you
find

a+b(−1)2 = 1

a+b(0)2 = −1 (13)

a+b(1)2 = −1

a+b(2)2 = 3

This system of equations isover determinedsince there are more equations (four) than
unknowns (two:a and b). As is the case with almost all overdetermined systems, it is
unlikely they can be solved exactly.
We rewrite these equations in the matrix formAV = W , where

A =









1 1
1 0
1 1
1 4









, V =

(

a
b

)

, and W =









1
−1
−1

3
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We refer toA as thedata matrixandW as theobservation vector.

Instead of the probably hopeless task of solvingAV = W , we instead seek a vectorV that
minimizes the error (actually, the square of the error).

Q(V) := ‖AV−W‖2.

If we are fortunate and find an exact solution ofAV = W , so much the better since then
Q(V) = 0. We will find this error minimizing solution in two different ways, one using
calculus, another using projections.

Summary. The general problem we are facing is:

Given: A data matrixA and an observation vectorW ,

To find: The “best solution” ofAV = W . For us, “best” means minimizing the error
Q(V) = ‖AV−W‖2 .

SOLUTION USING CALCULUS. One approach is to use calculus to find the minimum by
taking the first derivative and setting it to zero. We will do this here only using calculus
of one variable (so we won’t use partial derivatives, although using these gives an entirely
equivalent approach).

SayV (this is what we want to compute) gives the minimum, soQ(X) ≥ Q(V) for all X .
We pick an arbitrary vectorZ and use the special family of vectorsX(t) = V + tZ. Let

f (t) := Q(X(t)) = ‖AX(t)−W‖2.

Since Q(X(t)) ≥ Q(V) = Q(X(0)) we know that f (t) ≥ f (0) so f has its minimum at
t = 0. Thus f ′(0) = 0. We compute this. From (11)

f ′(t) = 2〈AX(t)−W, AX′(t)〉= 2〈AX(t)−W, AZ〉.

In particular,
0 = f ′(0) = 2〈AV−W, AZ〉.

We use (6) to rewrite this as〈A∗(AV−W), Z〉 = 0 (historically, this was one of the first
places where the adjoint of a matrix was used). But now sinceZ can beanyvector, by the
REMARK at the end of propertyIp-5 above, we see that the desiredV must satisfy

A∗(AV−W) = 0,

that is,
A∗AV = A∗W . (14)

These are the desired equations to computeV . As observed above, the matrixA∗A is
always a square matrix. The fundamental equation (14) is called thenormal equation.
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Example: We apply this idea to (13). Since

A∗ =

(

1 1 1 1
1 0 1 4

)

,

then

A∗A =

(

4 6
6 18

)

and A∗W =

(

2
12

)

.

The normal equationsA∗AV = A∗W are then

4a+ 6b =2

6a+18b =12.

Their solution isa=−1, b= 1. Thus the desired curvey= a+bx2 that best fits your data
points isy = −1+x2 .

SOLUTION USING PROJECTIONS. As above, given a matrixA and a vectorW we wantV
that minimizes the error:

Q(V) = ‖AV−W‖2.

Thus, we want to pickV so that the vectorU := AV is as close as possible toW . Notice
thatU must be in the image ofA. From the discussion of projections (seeProj-2 above),
we want to letU be the orthogonal projection ofW into the image ofA.

How can we compute this? Notice thatAV−W will then be perpendicular to the image
of A. In other words,AV−W will be perpendicular to all vectors of the formAZ for any
vectorZ. Thus by (6) above

0 = 〈AZ, AV−W〉 = 〈Z, A∗(AV−W)〉.

But now since the right side holds forall vectorsZ we can apply the REMARK at the end
of Ip-5 above to conclude that

A∗AV = A∗W. (15)

These again are thenormal equations for V and are what we sought. Of course they are
identical to those obtained above using calculus. Althoughthis may seem abstract, it is
easy to compute this explicitly.

Example: Here is a standard example using the normal equations. Say we are givenn
experimental data points(x1, y1), (x2, y2), . . . ,(xn, yn) and want to find the straight line
y = a+ bx that fits this data best. How should be proceed? Ideally we want to pick the
coefficientsa andb so that

a+bx1 = y1

a+bx2 = y3

· · ·

a+bxn = yn.
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These aren equations for the two unknownsa, b. If n > 2 it is unlikely that we can solve
them exactly. We write the above equations in matrix notation asAV = Y , that is,

AV =









1 x1

1 x2

· · · · · ·
1 xn









(

a
b

)

=









y1

y2

··
yn









= Y.

Next we want the normal equationsA∗AV = A∗Y . Now

A∗A =

(

1 1 · · · 1
x1 x2 · · · xn

)









1 x1

1 x2

· · · · · ·
1 xn









=

(

n ∑x j

∑x j ∑x2
j

)

.

The computation ofA∗Y is equally straightforward so the normal equations are two equa-
tions in two unknowns:

(

n ∑x j

∑x j ∑x2
j

)(

a
b

)

=

(

∑y j

∑x jy j

)

. (16)

These can be solved using high school algebra. The solution is:

y−y = m(x−x), (17)

where

x =
1
n ∑

1≤ j≤n

x j , y =
1
n ∑

1≤ j≤n

y j , and m=
∑(x j −x)(y j −y)

∑(x j −x)2 .

Notice that the straight line (17) passes through(x,y). The equations (16) are particularly
simple to solve ifx = 0 andy = 0. The general case is reduced to this special case by the
natural substitution ˆx j = x j −x, ŷ j = y j −y. I used this to get (17).

In these and related computations it is useful to introduce the data as vectors:

x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn)

and, in occasionally confusing notation, identify the averagex with the vectorx= (x, . . . ,x)
havingn equal componentsx. We also use the “data inner product” and “data norm”

≪x,y≫= x1y1+x2y2 + . . .xnyn x 2 =≪x,x≫ .

In statistics,≪ x− x,y− y≫ is called thecovariance of x and yand write Cov(x,y).
Using this notation the slope of the above line ism=≪x−x,y−y≫/ x−x 2 . Of special
importance is thecorrelation coefficient

r(x,y) =
≪x−x,y−y≫

x−x y−y
.
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This measures how closely the data points(x j , y j) fit the straight line. The Schwarz in-
equality asserts that|r(x,y)| ≤ 1. If r(x,y) = +1 the data lies along a straight line with
positive slope, while ifr(x,y) = −1 the data lies along a straight line with negative slope.
If r(x,y) = 0 the data forms a cloud and does not really seem to lie along any straight line.
See most statistics books for a more adequate discussion along with useful examples.

Identical methods can be used to find, for instance, the cubicpolynomial y = a+ bx+
cx2+dx3 that best fits some data, or the planez= a+bx+cy that best fits given data. The
technique of least squares is widely used in all area where one has experimental data. The
key feature is that the equations belinear in the unknown coefficientsa, b, etc. However,
even if the equations are not linear in the unknown coefficients a, b, etc., frequently one
can find an equivalent problem to which the techniques apply.The following example
illustrates this.

Example: Say we are givenn experimental data points(x1, y1), (x2, y2), . . . , (xn, yn) and
seek an exponential curvey = aebx that best fits this data. Ideally we want to pick the
coefficientsa andb so that

aebx1 = y1

aebx2 = y2

· · ·

aebxn = yn.

These aren equations for the two unknownsa, b. However, they are nonlinear inb so the
method of least squares does not directly apply. To get around this we take the (natural)
logarithm of each of these equations and obtain

α+bx1 = lny1

α+bx2 = lny2

· · ·

α+bxn = lnyn,

where α = lna. These modified equations arelinear in the unknownsα and b, so we
can apply the method of least squares. After we knowα, we can recovera simply from
a = eα .

REMARK. Say one wants to fit data to the related curvey = aebx+ c. I don’t know any
way to do this using least squares, where one eventually solves a linear system of equations
(the normal equations). For this problem it seems that one must solve anonlinearsystem
of equations, which is much more difficult.

Example: This is similar to the previous example. Say we are givenn experimental data

points (x1, y1), (x2, y2), . . . , (xn, yn) and seek a curve of the formy =
ax

1+bx2 that best

13



fits this data. Ideally we want to pick the coefficientsa andb so that

ax1

1+bx2
1

= y1

ax2

1+bx2
2

= y2

· · ·
axn

1+bx2
n

= yn.

These aren equations for the two unknownsa, b. However, they are nonlinear inb so the
method of least squares does not apply directly. To get around this we rewrite the curve
as y(1+ bx2) = ax, that is, ax− bx2y = y. This equation is nowlinear in the unknown
coefficientsa andb. We want to pick these to solve the equations

ax1−bx2
1y1 = y1

ax2−bx2
2y2 = y2

· · · · · ·

ax2−bx2
nyn = yn.

with the least error. These are linear equations of the formAV = W , where the data matrix
is

A =









x1 −x2
1y1

x2 −x2
2y2

· · · · · ·
xn −x2

nyb









so we solve the normal equationsA∗AV = A∗W as before.

Problems Using Least Squares

1. Use the Method of Least Squares to find the straight liney = ax+b that best fits the
following data given by the following four points(x j ,y j), j = 1, . . . ,4:

(−2,4), (−1,3), (0,1), (2,0).

Ideally, you’d like to pick the coefficientsa andb so that the four equationsaxj +b =
y j , j = 1, . . . ,4 are all satisfied. Since this probably can’t be done, one uses least
squares to find the best possiblea andb.

2. Find a curve of the formy = a+bx+cx2 that best fits the following data

14



x -2 -1 0 1 2 3 4

y 4 1.1 -0.5 1.0 4.3 8.1 17.5

3. Find a plane of the formz= ax+by+c that best fits the following data

x 0 1 0 1 0

y 0 1 1 0 -1

z 1.1 2 -0.1 3 2.2

4. The water level in the North Sea is mainly determined by theso-called M2 tide, whose
period is about 12 hours. The heightH(t) thus roughly has the form

H(t) = c+asin(2πt/12)+bcos(2πt/12),

where timet is measured in hours (note sin(2πt/12 and cos(2πt/12) are periodic with
period 12 hours). Say one has the following measurements:

t (hours) 0 2 4 6 8 10

H(t) (meters) 1.0 1.6 1.4 0.6 0.2 0.8

Use the method of least squares with these measurements to find the constantsa, b,
andc in H(t) for this data.

5. a). Some experimental data(xi , yi) is believed to fit a curve of the form

y =
1+x

a+bx2 ,

where the parametersa and b are to be determined from the data. The method of
least squares does not apply directly to this since the parametersa andb do not appear
linearly. Show how to find a modified equation to which the method of least squares
does apply.

b). Repeat part a) for the curvey =
1

a+bx
.

c). Repeat part a) for the curvey =
x

a+bx
.
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d). Repeat part a) for the curvey = axb .

e). Repeat part a) for thelogistic curve y=
L

1+ea−bx . Here the constantL is assumed

to be known.[If b > 0, theny converges toL as x increases. Thus the value ofL can often
be estimated simply by eye-balling a plot of the data for large x.]

f). Repeat part a) for the curvey = 1−e−axb
.

g) Repeat part a) for the curvey =
a+mx
b+x

assuming the constantm is known. [One

might find m from the data sincey tends tom for x large.]

h). Repeat part a) for the curvey =
a

1+bsinx

6. The comet Tentax, discovered only in 1968, moves within the solar system. The fol-
lowing are observations of its position(r,θ) in a polar coordinate system with center
at the sun:

r 2.70 2.00 1.61 1.20 1.02

θ 48 67 83 108 126

(hereθ is an angle measured in degrees).

By Kepler’s first law the comet should move in a plane orbit whose shape is either an
ellipse, hyperbola, or parabola (this assumes the gravitational influence of the planets
is neglected). Thus the polar coordinates(r,θ) satisfy

r =
p

1−ecosθ

where p and the eccentricitye are parameters describing the orbit. Use the data to es-
timate p ande by the method of least squares. Hint: Make some (simple) preliminary
manipulation so the parametersp ande appearlinearly; then apply the method of least
squares.

7. Plotting graphsThis problem concerns the straight line in the plane that passes through
the two points(4,0) and (0,2) (draw a sketch). This will be useful for the next prob-
lem.

a) If the horizontal axis isx and the vertical axisy, what is the equation fory as a
function of x?
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b) If the horizontal axis is logx and the vertical axisy, what is the equation fory as
a function ofx?

c) If the horizontal axis isx and the vertical axis logy, what is the equation fory as
a function ofx?

d) If the horizontal axis is logx and the vertical axis logy, what is the equation fory
as a function ofx?

8. For each of the seven closest planets, Kepler, using data from Bruno, knew the distance
r from the planet to the sun (in million km)and the timeT it takes to orbit the sun (the
length in earth days of a year on that planet).

Mercury Venus Earth Mars Jupiter Saturn Uranus

r 60 110 150 230 780 1430 2870

T 90 225 365 690 4330 10750 30650

Kepler sought a formula relatingr and T . It took him a long time; he did not have
logarithms. Guided by the idea of using graphs as in the previous problem, you can do
this fairly easily.

Make four experimental graphs of this data (as in the previous problem just above). The
goal is to hope one of these four curves looks roughly like a straight line. If it does,
then use least squares to find the “best” straight line – and then the desired formula for
the relation betweenr andT .

[Since the data is only approximate and since we anticipate a“simple” answer, you
may find it appropriate to use your numerical results to lead you to a simpler formula.]

9. Let A : R
n → R

k be a linear map. IfA is not one-to-one, but the equationAx= y has
some solution, then it has many. Is there a “best” possible answer? What can one say?
Think about this before reading the next paragraph.

If there is some solution ofAx= y, show there is exactly one solutionx1 of the form
x1 = A∗w for somew, so AA∗w = y. Moreover of all the solutionsx of Ax= y, show
that x1 is closest to the origin (in the Euclidean distance). [REMARK: This situation is
related to the case where whereA is not onto, so there may not be a solution — but the
method of least squares gives an “best” approximation to a solution.]

10. LetP1 , P2 ,. . . , Pk be k points (think of them asdata) in R
3 and letS be the plane

S :=
{

X ∈ R
3 : 〈X, N〉 = c

}

,
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whereN 6= 0 is a unit vector normal to the plane andc is a real constant.

This problem outlines how to find the plane thatbest approximates the data pointsin
the sense that it minimizes the function

Q(N,c) :=
k

∑
j=1

distance(Pj ,S)
2.

Determining this plane means findingN andc.

a) Show that for a given pointP, then

distance(P,S) = |〈P−X, N〉| = |〈P, N〉−c| ,

whereX is any point inS

b) First do the special case where the center of massP := 1
k ∑k

j=1Pj is at the origin, so
P = 0. Show that for anyP, then〈P, N〉2 = 〈N, PP∗N〉. Here viewP as a column
vector soPP∗ is a 3×3 matrix.

Use this to observe that the desired planeS is determined by lettingN be an
eigenvector of the matrix

A :=
k

∑
j=1

PjP
T
j

corresponding to it’s lowest eigenvalue. What isc in this case?

c) Reduce the general case to the previous case by lettingVj = Pj −P.

d) Find the equation of the lineax+by= c that, in the above sense, best fits the data
points(−1,3), (0,1), (1,−1), (2,−3).

e) Let Pj := (p j1, . . . , p j3), j = 1, . . . ,k be the coordinates of thej th data point and
Zℓ := (p1ℓ, . . . , pkℓ), ℓ = 1, . . . ,3 be the vector ofℓth coordinates. Ifai j is the i j
element ofA, show thatai j = 〈Zi , Z j〉. Note that this exhibitsA as aGram matrix
.

f) Generalize to whereP1 , P2 ,. . . , Pk arek points inR
n.
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