Exercise: Rotations in \mathbb{R}^{3}

Let $\mathbf{n} \in \mathbb{R}^{3}$ be a unit vector. The point of this problem is to outline the following:
Find a formula for the rotation of \mathbb{R}^{3} through an angle θ with the direction \mathbf{n} as axis of rotation. Before reading further, try finding it on your own.
a) (Example) Find a matrix that rotates \mathbb{R}^{3} through the angle θ using the vector $(1,0,0)$ as the axis of rotation.
b) If $\mathbf{x} \in \mathbb{R}^{3}$ is any vector, show that $\mathbf{u}:=\mathbf{x}-(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}$ is the projection of \mathbf{x} is the projection of \mathbf{x} into the plane perpendicular to \mathbf{n}. [Here $(\mathbf{x} \cdot \mathbf{n})$ is the usual dot product.]
c) Show that the vector

$$
\mathbf{w}:=\mathbf{u} \times \mathbf{n}=(\mathbf{x}-(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}) \times \mathbf{n}=\mathbf{x} \times \mathbf{n}
$$

is perpendicular to both \mathbf{n} and \mathbf{u}, and that \mathbf{w} has the same length as \mathbf{u}. Thus \mathbf{n}, \mathbf{u}, and \mathbf{w} are orthogonal with \mathbf{u}, and \mathbf{w} in the plane perpendicular to the axis of rotation \mathbf{n}. [Here, $\mathbf{u} \times \mathbf{n}$ is the standard cross product of vectors in \mathbb{R}^{3}.]
d) Show that the map

$$
R: \mathbf{x} \mapsto(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}+\cos \theta \mathbf{u}+\sin \theta \mathbf{w}
$$

rotates \mathbf{x} through an angle θ with \mathbf{n} as axis of rotation. [Note: one needs more information to be able to distinguish between θ and $-\theta$].
e) Show that one can rewrite the previous formula as

$$
\begin{aligned}
R \mathbf{x} & =(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}+\cos \theta(\mathbf{x}-(\mathbf{x} \cdot \mathbf{n}) \mathbf{n})+\sin \theta(\mathbf{x} \times \mathbf{n}) \\
& =\cos \theta \mathbf{x}+(1-\cos \theta)(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}+\sin \theta(\mathbf{x} \times \mathbf{n}) .
\end{aligned}
$$

f) If \mathbf{n} and \mathbf{x} are the column vectors $\mathbf{n}=(a, b, c), \mathbf{x}=(x, y, z)$, and \mathbf{n}^{T} is the transpose, show that as matrices

$$
(\mathbf{x} \cdot \mathbf{n}) \mathbf{n}=\mathbf{n}\left(\mathbf{n}^{T} \mathbf{x}\right)=\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { and } \mathbf{x} \times \mathbf{n}=\left(\begin{array}{ccc}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

Thus, deduce our final formula:

$$
R=(\cos \theta) I+(1-\cos \theta)\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right)+(\sin \theta)\left(\begin{array}{ccc}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right)
$$

g) Find the matrix that rotates \mathbb{R}^{3} through an angle of θ using as axis the line through the origin and the point $(1,1,1)$.

