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Properties of Tournaments Among
Well-Matched Players

Carolyn Eschenbach, Frank Hall, Rohan Hemasinha, Stephen
Kirkland, Zhongshan Li, Bryan Shader, Jeffrey Stuart,
and James Weaver

Dedicated to the memories of John Maybee and Norman Pullman.

1. TOURNAMENTS. In an rn-player round robin tournament, each player plays
one match against each of the other n — 1 players. The win-loss outcomes of these
matches can be conveniently recorded in a tournament matrix A = [a;;] as follows:
First label the players in any order as 1,2,..., n. For each pair i and j, set a;; = 1
if player i defeats player j, and set a;; = 0 otherwise. If i # j, then exactly one of
a;; and a;; is nonzero; when i =j, a; = 0.

What properties of the matrix A are related to the strengths of the players?
The simplest measure of strength is the number of matches that the player wins,
and the row sums of A count the number of matches won by each player. We are
interested in understanding tournaments among players who are well matched in
the sense that each player wins about half of the matches played.

If the number of players is odd, many properties of A4 are very well understood.
If the number of players is even, however, the properties of 4 are far less well
understood. Indeed, there are many easily stated questions that lead to hard, open
problems. Some of these problems are the focus of this paper.

We let I denote the identity matrix, we let J denote the square matrix all of
whose entries are ones, and we let e denote the column vector whose entries are

all ones. A matrix 4 whose entries are zeros and ones is a tournament matrix
exactly when

A+AT=J—1. (1)
Thus
01 1 0
o 0 o 1
A=10 1 0 1 (22)
10 0 0

is the matrix for a tournament in which the first player defeats the second and
third players, the second player defeats the fourth player, and so on.

Tournament matrices have been studied extensively; see [1]-[3], [5]-[7], [8]-[10],
and [12]-[27]. Many properties of tournament matrices are immediate from (1).
For example, if A is a tournament matrix, then so are A’, every principal
submatrix of 4, and PAPT for all permutation matrices P.

How many different n-player tournaments are there? For each Sair of players,

there are two choices for the match winner, and since there are ('2’ distinct pairs

of players, it follows that there are 2(%) different n X n tournament matrices. A
particular round robin tournament can, however, be represented by many different

December 2000] PROPERTIES OF TOURNAMENTS 881



tournament matrices. Since the construction of a tournament matrix requires

ordering the players, listing the players in a different order can produce a different
(but permutation similar) matrix. Thus

B= (2b)

[N ==

1
0
0
1

o= OO

0
1
0
0

and (2a) are tournament matrices for the same round robin tournament; reorder
the players in (2a), listing them in the order 2,4, 1, 3.

How many truly different n-player round robin tournaments are there and what
do they look like? That is, how many permutation similarity classes of tournament
matrices are there, and is there a way to find a representative from each class?
There is a closed form formula for the number of classes ([8], [22]); but for n > 8,
there is neither a list of canonical representatives nor a known efficient algorithm
for building such a list. For n < 8, Table 1 summarizes results from [25]; regular
and almost regular tournament matrices are defined in Section 4. David Gregory
has produced MATLAB m-files that generate a canonical representative for each
isomorphism class of n X n tournament matrices for n < 8, and for each isomor-
phism class of 9 X 9 regular tournament matrices. Gregory’s m-files as well as a
variety of other m-files for building tournament matrices and computing their
properties can be found on-line [28].

TABLE 1 The number of classes of nonisomorphic tournament matrices and the
number of classes that are either regular (R) or almost regular (AR).

1 n(n—-1)
n % 2 ? Classes R /AR Classes
2 1 2 1 1
3 3 8 2 1
4 6 64 4 1
5 10 210 = 1024 12 1
6 15 25 = K 56 5
7 21 22 = 21M 456 3
8 28 228 =268 M 6830 85

2. RANKING THE PLAYERS. How do the players compare? The most natural
answer is to compare the number of games won by each player. Let 4 be a
tournament matrix. Since a;; = 1 exactly when player i beats player j, it follows
that the number of games won by player i is just the sum of the entries in the i
row of A. Since s = Ae is the vector of row sums, it is called the score vector for
A. We say that player i is stronger than player j if s; > s;. Score-vector-based ranking
has been investigated in [5] and [19].

Let U, denote the unique strictly upper triangular » X n tournament matrix.
That is, U, is the matrix for a tournament in which the i player beats the j"
player whenever i < j. The score vector for U, is (n — 1,n — 2,...,2,1,0)". Every
player has a distinct score; and thus the score vector unambiguously ranks the
players. The only tournament matrices for which every player has a distinct score
are those that are permutation similar to U,.

What can be said about ranking players in a tournament when two or more
players have the same score? This is a more difficult question to answer. Before
pursuing this question, we need further terminology.
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A square matrix M is called irreducible if either M is a 1 X 1 matrix or else no
permutation matrix P exists such that PMPT is block upper triangular with two or
more square, diagonal blocks. Since spectral properties of matrices are preserved
under permutation similarity, and since the diagonal blocks of a block triangular
matrix determine its spectrum, it is natural to focus our attention on irreducible
tournament matrices.

Suppose that A4 is an n X n tournament matrix, and that there are a positive
integer k and a permutation matrix P such that

T, T
r_ |1 12
e[ T,

where T, is k X k, and T,, is (n — k) X (n — k). Since A is a tournament matrix,
so are PAPT, T,,, and T,; and T}, is the k X (n — k) all ones matrix. The first k
scores of PAPT must be at least n — k, and the last (n — k) scores must be at
most n — k — 1. Thus the first k£ players all have higher scores than the last n — k
players, and each of the first k players beats all of the last n — k players.

Consequently, if we want to understand how to rank players reasonably in this
tournament, it suffices to focus on ranking the players within the two groups
corresponding to the two diagonal blocks of PAPT. If either of these blocks is itself
not irreducible, then we can repeat the process of finding a permutation similarity
that transforms that diagonal block into a block triangular matrix. Thus, under-
standing how to rank players in a general tournament reduces to understanding
how to rank players in a tournament with an irreducible tournament matrix.

The spectral radius of a real, square matrix M, denoted p = p(M), is the
maximum of the absolute values of the eigenvalues of M. A square matrix M is
called a primitive matrix if all of the entries of M are nonnegative and some
positive integer power of M has all entries positive. One of the most famous

results in combinatorial matrix theory is the Perron-Frobenius Theorem; see [11,
Theorems 8.4.4 and 8.5.2].

Theorem 1. (Perron-Frobenius). Let M be an irreducible matrix with all entries
nonnegative. Then p(M) is a simple eigenvalue for M, and there is an entrywise
positive eigenvector v for p. Further, any nonnegative eigenvector for M is a multiple of
v. Finally, if M is also primitive, every eigenvalue A of M other than p satisfies |A| < p.

We call the entrywise positive eigenvector v with euclidean norm |[jvll, = 1,
whose existence and uniqueness are guaranteed by the Perron-Frobenius Theo-
rem, the Perron vector for M. Next, we examine the role that the Perron vector plays
in ranking the players.

For a tournament matrix A, the product a;;a;, is nonzero exactly when player i
defeats player j and player j defeats player k. This suggests that player i is
stronger than player j, and that player i is even stronger compared to player k.
Similarly, a nonzero product of the form a;a; - a,, suggests that player i is
much stronger than player m. Unfortunately, for each player i in an irreducible
tournament, there is always some nonzero product of the form a;a; - a,,;
which accordingly suggests that player i is much stronger than player i! Nonethe-
less, the products of entries from A can still play a role in ranking the players.

Suppose we measure the strength of player i by computing the sum of the
scores of the players that player i beats: X, ; yeq ;5; - After all, a strong player
should beat players who have, in turn, beaten lots of other players. Since i beats j
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exactly when a;; = 1, our new strength measure is just L7 ja;s; =
iila;Xi_qay] = Xi_ X7 ,a;a;, which is just the sum of all of the entries in
the i"* row of A% That is, 4% is the vector whose i'" entry is the sum of the
scores of all of the players defeated by player i.

If we think of the score vector Ae, whose entries are the respective numbers of
defeated players, as providing a first measure of relative strength, and if we think
of the vector 4%, whose entries are the respective sums of scores of defeated
players, as providing a second measure of relative strength, then it is natural to
think of the vector 4%, whose entries are the respective sums of the sums of the
scores of defeated players, as providing a third measure of strength. Similarly, we
can think of the vectors A*e, A%, or even A¥e for some arbitrary positive integer
k, as providing additional measures of relative strength. As k increases, A‘e
becomes more sensitive to the relationships among sequences of players, and thus
should give a better guide to ranking the players. Since we are interested in
measuring the relative strength of the players, and since the entries of A*e grow
quite large as k increases, we can scale the vector A*e to control the magnitudes
of its entries.

Let A be an irreducible tournament matrix. For each positive integer k, let
I, = ||A*ell,. Then the sequence of nonnegative vectors [ 'Ade, [; 'A%,
I3'A%, ..., I 'A%, ... converges to the Perron vector v for A. Why? This is just
the power method, a well-known iterative technique for finding an eigenvector for
the eigenvalue of largest magnitude for a matrix M provided that that eigenvalue
is unique [11, pp. 62, 523]. Thus the relative sizes of the entries of the Perron
. vector v for a tournament matrix provide another means for ranking the players in
a tournament. This is essentially the approach taken by Kendall [14] and Wei [27],
and this relative strength ranking is sometimes called the Kendall-Wei ranking.
Ideally, we would hope that for an irreducible tournament matrix 4, if s; > s; then
v; > v;. However, this is not generally true! An infinite family of counterexamples
can be found in [5]. In Section 4, we discuss a class of tournament matrices for
which the ranking induced by v is consistent with the ranking based on scores.

If we want to examine tournaments between players who are well matched using
the Kendall-Wei ranking, then we want to focus on irreducible tournament
matrices for which the entries of v are close to one another. One way to measure
how close together the entries are is to compute

var(v) = L (s —)" = L (F +07) -2 L vy

i<j i<j i<j
n
=(n-1D) Y v-2Yuy=(n—-)o"v- Yuy
h=1 i<j i#]
=(n—- 10" —0"(J -1
Applying (1) yields
VT(J=Dv=0"(A4+A")v=0"(Av) + (Av) v
=T (pv) + (pv) v =2p0"0.
Finally, v"v = 1, so var(v) =n — 1 — 2p.
Since var(v) = 0, for an irreducible tournament matrix it follows that p <
(n — 1)/2; that as p increases to (n — 1)/2, var(v) decreases to zero; and that

p = (n —1)/2 exactly when v is a multiple of e. Thus the tournaments whose
players are most well-matched based on the Kendall-Wei ranking are those for
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which Ae = (n — 1)e/2. Since the score vector Ae has integer entries, this
can happen only when » is odd. What happens when n is even is the subject of
Section 4.

A parallel development can be made for the column sums of A and the left
Perron vector w of A, which satisfies wZ4 = pw” with w entrywise positive. This
leads to an analogous relationship between increasing p and decreasing var(w),
with p maximized when » is odd and w is a multiple of e. Since column sums
count the number of losses, the entries of w are a measure of the relative
weaknesses of the players. '

Various other ranking schemes have been proposed. For example, Ramanu-
jacharyula [24] ranked players using the ratios of relative strength to relative
weakness. For a bibliography of other schemes, consult [22].

Motivated in part by the role that p plays, we next discuss the spectral
properties of tournament matrices.

3. SPECTRAL PROPERTIES OF TOURNAMENT MATRICES. The following
theorem summarizes the eigenproperties of tournament matrices, and is based on
results from [1], [7], [20], and [21], and on the Perron-Frobenius Theorem:

Theorem 2. Let A be an n X n tournament matrix. Let a and B be eigenvalues for
A. Then:

1. —1/2 < Re(a) <(n - 1)/2;

2. If Re(a) = —1/2, then the algebraic multiplicity and geometric multiplicity of
a are equal,;

3. If Re(a) > —1/2, then the geometric multiplicity of « is one;

4. If Re(a) = —1/2, and if B # «, then every eigenvector for a is orthogonal to
every (generalized) eigenvector for B.

5. The cyclic subspace spanned by {e, Ae, A%e, ..., A"~ 'e} is the span of the set of
(generalized) eigenvectors for A corresponding to eigenvalues with real part
greater than —1/2.

6. A has a nonnegative eigenvalue that is greater than or equal to the modulus of
every other eigenvalue, and A has a nonnegative eigenvector for that eigenvalue.

The cyclic subspace spanned by {e, Ae, A%, ..., A" e} is called the walk space
of A and is denoted by W,. It follows from properties (2) and (4) that (W,)* is the
span of the eigenvectors with real part equal to —1/2. It follows from property (3)
that if a tournament matrix has a repeated eigenvalue with real part greater than
—1/2, then the tournament matrix cannot be diagonalizable. It follows from
properties (2) and (3) that isospectral tournament matrices (i.e., those with the
same characteristic polynomial) must be similar since they must have the same
Jordan block structure. Property (6) can be deduced from Theorem 1.

Among all n X n tournament matrices, the tournament matrices with the
smallest spectral radius and the longest Jordan chain are those that are permuta-
tion similar to the strictly upper triangular tournament matrix U,. For U,, the
spectral radius is zero, and the Jordan chain for zero has length n.

In [16], Kirkland proves the following result about irreducible tournament
matrices with smallest spectral radius:

Theorem 3. Among all n X n irreducible tournament matrices with n > 3, the tour-
nament matrices with the smallest spectral radius are those that are permutation similar
to the tournament matrix obtained from U, by settingu; ;. = 0 andu;,, ; = 1 for all
jwithl <j<n-1
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The score vector for the n X n irreducible, spectral radius minimizer is [n —
2,n—2,n—3,...,2,1,11, and the Perron vector v, which gives the Kendall-Wei
relative strengths, satisfies v, > v, > v; > v, > -+ > v,_4 > U,

We return to the question of spectral radius maximizers in subsequent sections.

4. REGULAR AND ALMOST REGULAR TOURNAMENT MATRICES. We now
return to tournaments between well-matched players. We are interested in tourna-
ments in which all of the players have scores as close to equal as possible. When n
is odd, there exist tournaments for which all players have the same score:
(n — 1)/2. These tournaments and their corresponding tournament matrices are
called regular. When n is even, (n — 1) /2 is not an integer, so the closest we can
get to all players having the same score is for half of the players to have score
[(n — 1)/2] = (n — 2)/2 and half to have score [(n — 1)/2] = n/2. Such tourna-
ments and their corresponding tournament matrices are called almost regular.
Since players can be ordered arbitrarily, we can assume that almost regular
tournament matrices always have their first n/2 row sums equal to |[(n — 1)/2].
The matrices 4 and B given in Section 1 are almost regular. Kirkland has shown
[19] that for almost regular tournament matrices, the Kendall-Wei ranking, the
relative weakness ranking, and the Ramanujacharyula ratio ranking are all consis-
tent with the score ranking. That is, if s, = n/2 and s; = (n — 2)/2, then v; > v,
w; <w;, and v;/w; > v;/W;.

The last column of Table 1 gives the number of distinct nonisomorphic
regular /almost regular tournament matrices for n < 8. It is known that when
n =9, there are exactly 15 distinct nonisomorphic classes of regular tournament
matrices [28]. There are far fewer nonisomorphic regular tournament matrices for
n =9 than there are nonisomorphic almost regular tournament matrices for
n = 8. This reflects the fact that there is more symmetry in regular tournament
matrices than in almost regular tournament matrices. A natural, open question is:
For a general n, how many isomorphism classes of regular or almost regular
tournament matrices are there, and how does one produce efficiently a list of class
representatives?

We finish this section by noting that regular and almost regular tournament
matrices have some nice properties.

Theorem 4. Regular and almost regular tournament matrices are both irreducible and
nonsingular for n > 2. Regular and almost regular tournament matrices are primitive
for n > 3. The spectral radius of an n X n regular tournament matrix is (n — 1)/2
and every other eigenvalue has real part —1/2. For n > 2, the spectral radius of an
n X n almost regular tournament matrix exceeds (n — 2) /2 and every other eigenvalue
has negative real part. When n = 2, the unique (up to permutation similarity) tourna-
ment matrix is the strictly upper triangular matrix U,. When n = 3, the unique (up to
permutation similarity) irreducible tournament matrix is

0 1 0
0 0 1}
1 0 0

Proof: 1t is easy to see that when n = 2, the unique (up to permutation similarity)
tournament matrix is U,. It is easily checked that the only 3 X 3 irreducible
tournament matrices are the permutation matrices corresponding to 3-cycles, all of
which are regular and permutation similar. In [23], Moon and Pullman prove that
for n > 3, irreducible tournament matrices are primitive.
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Suppose that the n X n tournament matrix A is either regular or almost
regular. To prove irreducibility for » > 2, assume to the contrary that there exist a
permutation matrix P and positive integers p and g with p + g = r such that
PAPT is a block upper triangular, tournament matrix:

M T
T _ pXq
PAP* = [0 N ]

qXxp

Since A is either regular or almost regular, every row sum of PAPT is in the
closed interval [(n — 2)/2,n/2]. If g = 1, then the last row of PAP” has row sum
zero. Since n > 2, this contradicts the lower bound on the row sums. So assume
g=>2. Since M is a p X p tournament matrix, M must contain a total of
p(p — 1)/2 ones. Then some row of M must contain at least (p — 1)/2 ones.
The corresponding row of PAPT then has row sum at least (p — 1)/2 + q =
(p+q9/2+ (g —1/2>n/2, which contradicts the upper bound on the row
sums. Thus A must be irreducible.

Let A be either regular or almost regular with n > 2. Let p be the spectral
radius of A. Since A is irreducible, it follows from Theorem 1 applied to A"
that A has a strictly positive row eigenvector w for p. Since w is strictly positive,
and since all row sums of A are at least (n — 2)/2 and at least one row sum
exceeds (n — 2)/2, it follows that pwTe = w'(A4e) > wl'((n — 2)/2)e. Thus p >
(n—=2)/2.

Let Aj, 2 <j < n, be the remaining eigenvalues of 4. By Theorem 2, Re()) >
—1/2 for each j. Since the trace of A4 is the sum of the eigenvalues of A4, and
since every diagonal entry of A is zero, it follows that

0 = trace( A) = p + i Re(A) = p + Re(X) + (n—2)(—1/2) (2)

for each k with 2 < k < n. Since p > (n — 2)/2, (2) yields 0 > Re(A;). Thus A4
must be nonsingular. Further, when A is regular, using p=(n —1)/2 in (2)
together with Re(A,) > —1/2yields Re(A,) = —1/2. |

5. SPECTRAL PROPERTIES OF REGULAR TOURNAMENT MATRICES. The

following theorem summarizes the key spectral properties of regular tournament
matrices.

Theorem 5. Let A be an n X n tournament matrix. The following are equivalent:

A is regular.

Ae = \e for some complex A;

Ae = (n — De/2;

Al = JA;

A is normal (AAT = ATA);

J = p(A) for some polynomial p(x);
A is unitarily diagonalizable.

N R W e

Proof: 1 < 6 may be found in [4]. 2 < 3 follows from the fact that A4 is a matrix of
zeros and ones and that e is an all ones vector. Note that 447 = A(J — I — A)
and A4 = (J — I — A)A. Thus AAT = A”A if and only if AJ = JA, that is, if and
only if A is regular [6]. 5 < 7 is a basic fact [11, Theorem 2.5.4]. n
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The next result, which follows from the analysis of var(v) in Section 2, was
proved by Brauer and Gentry [1].

Theorem 6. Among all n X n tournament matrices with n odd, the tournament
matrices with maximum spectral radius are precisely the regular tournament matrices,
and all of these tournament matrices have spectral radius (n — 1) /2.

6. SPECTRAL PROPERTIES OF ALMOST REGULAR TOURNAMENT MATRI-
CES. Because of the analogous roles played by regular and almost regular tourna-
ment matrices, one would expect that the results of Section 5 would have natural
analogs. Here, we start to discover that almost regular tournament matrices are
much harder to work with than regular tournament matrices. The key differences
are that if A is almost regular, then e is not an eigenvector for 4, and that J and
A do not commute. In contrast to the situation for regular tournament matrices,
there are almost regular tournament matrices for which every eigenvalue has real
part greater than —1/2, e.g., the Brualdi-Li matrices B,, introduced in Section 7.
Further, almost regular tournament matrices are never unitarily diagonalizable,
and it is not known if they are always diagonalizable. The relationship between
almost regularity and the maximization of the spectral radius is quite complicated.
In light of these difficulties, we examine a restricted class of almost regular
tournament matrices that contains the matrices B,,.

Let A be any n X n tournament matrix. From A, we construct the 2n X 2n
almost regular tournament matrix

A AT
M, = .
4 [AT+I A]

Since A + AT =J, — I, it is clear that the first n rows of M, have row sum
n — 1, and that the last n rows of M, have row sum n.

How are the eigenstructures of 4 and M, related? For any tournament matrix
A, we know that the eigenvectors for eigenvalues with real part equal to —1/2
span (W,)* . The following result from [9] constructs (W,, )+ from (W,)* .

Theorem 7. Let A be an n X n tournament matrix. Then:

1. dim(W,, ) = 2dim(W);
2. dim(WMA)l = 2dim(W)* ;
3. wis an eigenvector of M, corresponding to an eigenvalue y with Re(y) = —1/2

if and only if
L[ v
V= u|

where u is an eigenvector of A corresponding to the eigenvalue A with Re(A) =
—1/2. When this is the case, y = A + V — AX.

Thus the diagonalizability of M, is determined in some sense by how the
vectors in W, give rise to vectors in W, . In one special case [9], we have

Theorem 8. Let A be a regular tournament matrix. Then M, is diagonalizable, and if
A has k distinct eigenvalues then M, has 2k distinct eigenvalues.

It is not known if M, is diagonalizable for every tournament matrix A.
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7. BRUALDI-LI TOURNAMENT MATRICES. In this section we focus on tourna-
ment matrices M, where A = U,; these are the Brualdi-Li matrices, and are
denoted B,,. The matrix (2b) is evidently B,. The Brualdi-Li matrices have been
the subject of much study: see [3], [9], [10], [17], and [18].

First, we give a simple test that determines if a given almost regular tournament
matrix is permutation similar to a Brualdi-Li matrix.

Theorem 9. Let A be an almost regular, 2n X 2n tournament matrix. Let s denote
the score vector of A. Let A denote the index set for the rows with row sum n — 1. Let
T' denote the index set for the rows with row sum n. The tournament matrix A is
permutation similar to B,, exactly when

sisy, =stsp = 2('31) + ('21)

Proof: Note that T = {1,2,...,2n} \ A. Then A[A, A] and A[T, T'], the principal
submatrices of A indexed by the sets A and T, respectively, must be tournament
matrices. Since rows with indices in A all have row sum n — 1 and since the rows
with indices in T' all have row sum 7, any permutation similarity between A and
B,, must carry the rows indexed by A to rows of B,, with row sum n — 1. Now A4
is itself permutation similar to

A[A,A] A[A,T]
LﬂnA] AWJ1}

By the first corollary on page 9 of [22], if B is an n X n tournament matrix with
score vector s, then sks, < 2 ’;) + ('; , with equality exactly when B is permuta-

tion similar to U,. Given the hypotheses on s, and sy, it follows that A[A, A] and
A[T, T'] are both permutation similar to U,. Thus A must be permutation similar to

u
J-Cc' U

n

for some (0, 1)-matrix C. Now by [10, Lemma 3.18], any almost regular tournament

matrix of this form must in fact have C = U/, and hence 4 must be permutation
similar to B,,,. |

In previous sections, we asked about the diagonalizability of almost regular
tournament matrices in general, and of almost regular tournament matrices of type
M, in particular. Here, we focus on a single almost regular matrix, and ask the
open question: Is B,, diagonalizable? Computational evidence suggests that the
answer is yes; this has been checked using MATLAB for n < 25. Since the walk
space of U, is n-dimensional, the walk space of B,, must be 2n-dimensional by
Theorem 7.

We close with two results and a conjecture that give further reasons why the
Brualdi-Li matrices are worthy of study. These are closely related to Theorem 6,
which states that regular tournament matrices are spectral radius maximizers. The
first theorem is restricted to tournament matrices of type M,. The second theorem
is an analog to Theorem 6, and motivates our interest in almost regular tourna-
ment matrices. These theorems indicate that almost regular tournament matrices
are central to determining which tournaments have players that are the most
evenly matched in the sense of minimizing the variation in the Kendall-Wei
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ranking vector. The conjecture, known as the Brualdi-Li Conjecture [3], claims that
among all tournaments with an even number of players, the tournament corre-
sponding to the Brualdi-Li matrix has the most well-matched players in the sense
of minimizing the variation in their Kendall-Wei ranks.

Theorem 10. [9] Among all 2n X 2n tournament matrices of the type M,, the

tournament matrices with maximum spectral radius are all permutation similar to the
Brualdi-Li matrix B,,,.

Theorem 11. [18] Among all 2n X 2n tournament matrices for n sufficiently large,
the tournament matrices with maximum spectral radius are almost regular.

Conjecture 12. [13] Among all 2n X 2n tournament matrices, the tournament matri-
ces that maximize the spectral radius are permutation similar to B,,,.
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ACROSS DOWN
1 French dieresis 1 Larceny
6 “The racer’s edge” 2 Musical show
9 Invitee of 44 down 3 Correct
14 Macho action figure 4 Cleopatra's Antony
15 Raven author 5 at all (Beatles song)
16 World Turns (soap opera) 6 Cylinders of thread
17 Start of the theorem 7 1,000 kilograms
20 Second part of the theorem 8 Radical animal rights grp.
21 Edward for short 9 Armored glove
22 Cay 10 Customary
23 TAMU airport symb. 11 FGH path?
24 Abbreviated quantities 12 Avoid
25 loves you (Beatles song) 13 Thomas Hardy's Pure Woman
26 In the groove 18 exp(it) variant
29 Halt 19 Chiggers cause them
32 Sugar-free drink 24 “No way!”
34 Prefix with derivative 25 Perch
35 Square and figure-eight 26 Gangster
37 Xmas 27 Concept
38 Props for Tiger Woods 28 Conceal
40 Sir's counterpart 29 Pen
41 Female sheep 30 Poetic enough
42 Palindromic Nigerian state 31 Fields medalist Selberg
43 Ocean vessel 32 Windows predecessor
45 Opposite of 34 across 33 , crackle, and pop
46 City of David 35 Signature with no sharps or flats
47 AIDS virus 36 New combining form
50 Third part of the theorem 39 Twister
55 End of the theorem 40 Stately dances
56 Colored steel by heating 43 Actor Poitier
57 Mimic 44 Entertainer of 9 across
58 Adolescents 45 Bag musician
59 Subway 46 Shoot from hiding
60 Napoleon's bravest general 47 Float
61 Shopping binge 48 Pointless
49 French waltz
50 Guided missile
51 Decorative painting
52 Indecent material
53 MATLAB's inverse tangent
54 Type of school for 58 across
Contributed by Harold Boas, Texas A & M University
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