SENSITIVITY OF THE EIGENVECTOR

The question often arises, how sensitive the priorities given by the eigenvector components are to slight changes in the judgment values. Clearly, it is desirable that the priorities do not fluctuate widely with small changes in judgment. There are essentially three ways to test this sensitivity: (1) by finding a mathematical estimate of the fluctuation; (2) by deriving answers based on a large number of computer runs appropriately designed to test the sensitivity; (3) by a combination of the two, particularly when it is not possible to carry out the full demonstration analytically.

We have already pointed out, in the case of consistency, that (max is equal to the trace of the matrix which consists of unit entries. In this case one would expect the eigenvector corresponding to the perturbed matrix to undergo an overall change by an amount inversely proportional to the size of the matrix.

In general, the eigenvalues of a matrix lie between its largest and smallest row sums. Changing the value of an entry in the matrix changes the corresponding row sum and has a tendency to change (max by an equal amount. However, since a change in the eigenvector should also be influenced by the size of the matrix, we expect that the larger the matrix, the smaller the change in each component.

We begin the analytical treatment of this question by considering a matrix A with the characteristic equation. (See Wilkinson, 1965.)

det (A – (I) = (n + a1 (n --1 + … + an = 0
Now, let A + (B be the matrix obtained by introducing a small perturbation in A. The corresponding characteristic equation is

del (A+ (B – (I) = (n + a1 (()(n--1 + … + an (() = 0

where ak (() is a polynomial in ( of degree (n – k), such that ak (() ( an as ( ( 0.

Let (1 be the maximum simple eigenvalue corresponding to the characteristic equation of A. Wilkinson (1965) proved that for small (, there exists an eigenvalue of 

A + (B which can be expressed as the sum of a convergent power series, i.e.,

(1 (() = (1 + k1(2 + …

Let w1 denote the eigenvector of A corresponding to (1 and let w1(() be the eigenvector of A + (( corresponding to (1((). The elements of w1(() are polynomials in (1(() and (, and, since the power series for (1(() is convergent for small (, each element of w1(() can be represented as a convergent power series in (. We may write

w1(() = w1 + (z1 + (2z2 + …

If the matrix A has linear elementary divisors, then there exist complete sets of right and left eigenvectors w1, w2, …, wn and v1, v2, …, vn, respectively, such that
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Note that wj and vj are the jth eigenvectors (right and left), and not the jth components of the vectors.

The vectors zi can be expressed in terms of the wj as
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which, when substituted in the formula for w1((), gives
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where the tij are obtained by dividing the sij by the coefficient of w1.

The first order perturbations of the eigenvalues are given by the coefficient k1 of (1(().

We now derive the expression for the first order perturbations of the corre​sponding eigenvectors.

Normalizing the vectors wj and vj by using the euclidean metric we have
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We know that

(A+(B)w1(() = (1(() w1(()

If we substitute the expressions for (1(() and w1(() obtained above and use Aw1 = (1w1, we have
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Multiplying across by 
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 and simplifying, we obtain
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where, as noted above, k1 is the first order perturbation of  (1 and
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where [B] is the sum of the elements of B.

Thus for sufficiently small ( the sensitivity of (1 depends primarily on 
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 might be arbitrarily small.

The first order perturbation of w1 is given by
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The eigenvector w1 will be very sensitive to perturbations in A if (1
[image: image12.wmf]is close to any of the other eigenvalues. When (1 is well separated from the other eigenvalues and none of the
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is small, the eigenvector w1 corresponding to the eigenvalue (1 will be comparatively insensitive to perturbations in A. This is the case, for example with skew-symmetric matrices (aji = – aij).
The 
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 are interdependent in a way which precludes the possibility that just one 
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 is large. Thus if one of them is arbitrarily large, they are all arbitrarily large.

However, we want them to be small, i.e., near unity. To see this let
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where |wi| = |vi| = l, i = 1, 2, …, n. It is easy to verify by substitution that
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Then
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for i = j
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Since 
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we have
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which must be true for all i = 1, 2, …
, n. This proves that all the 
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 must be of the same order.

We now show that for consistent matrices 
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cannot be arbitrarily large. We have in the case of consistency
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Therefore :
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since 
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Now 
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 is minimized when all w1i are equal since 
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In practice, to keep 
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 near its minimum we must deal with relatively comparable activities so that no single w1i is too small.

To improve consistency the number n must not be too large. On the other hand, if we are to make full use of the available information and produce results which are valid in practice, n should also not be too small.

If, for example, we reject the values  
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Under the assumption that the number of activities being compared is small and that they are relatively comparable, i.e., their weights differ by a multiple of their number, we can show that none of the components of w1 is arbitrarily small, and none of those of v1 is arbitrarily small, and hence the scalar product of the two normalized vectors cannot be arbitrarily small.

With large inconsistency one cannot guarantee that none of the w1i is arbi​trarily small. Thus, near-consistency is a sufficient condition for stability. Note also that we need to keep the number of elements relatively small, so that the values of all the w1i are of the same order.

The foregoing suggests that reciprocal matrices are the arch typical matrices which produce stable eigenvectors on small perturbations of the consistent case. It provides the significant observation that: to assure the stability of an estimate of an underlying ratio scale from pairwise comparisons, the mind must deal with a small number of elements that are relatively comparable. Social scientists experimentally arrived at this result long ago. They have observed that the number of elements should be 7 ( 2, but have not adequately recognized the need for the relative comparability requirement (Miller, 1956.)

Another useful observation is that if we assume “objects of the same magnitude” to differ by no more than a factor of 10, the scale used in the pairwise comparisons of comparable objects should have values somewhere between one and ten, otherwise we would compare things that are widely disparate in magnitude. This would produce relatively small values for some of the w1i, thus disturbing the stability of the scale, i.e., the eigenvector would vary wildly, even if the judgmental values in the comparison matrix were only slightly changed.
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