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1. Introduction
Nearly all of us have been brought up to believe that clear-headed logical thinking is our only 
sure way to face and solve problems. But experience suggests that logical thinking is not 
natural to us.  Indeed, we have to practice, and for a long time, before we can do it well.  Since 
complex problems usually have many related factors, traditional logical thinking leads to 
sequences of ideas so tangled that the best solution cannot be easily discerned. 

A common kind of decision problem we face is something like this: Suppose one wishes to 
buy a  house.   The different  houses being considered have some attributes  or criteria in 
common that are important to the decision-maker.  If one house were best on every criterion 
the choice would be easy, but usually the house that is best on one criterion (e.g., cost) is 
worst on another (e.g., size).  How should one make the tradeoff?  We describe and discuss a 
mathematical model, the Analytic Hierarchy Process (AHP) that can be used to make such 
decisions.

2. Choosing the Best House
Consider  the  following  (hypothetical)  example:  a  family  wishing  to  purchase  a  house 
identifies eight criteria that are important to them. The problem is to select one of three 
candidate houses.  The first step is to structure the problem into a hierarchy (see Figure 1).  On 
the first (top) level is the overall goal of Satisfaction with House.  On the second level are the 
eight criteria that contribute to the goal, and on the third (bottom) level are the three candidate 
houses that are to be evaluated by considering the criteria on the second level.

The criteria important to the family are:
1. Size of House: Storage space; size of rooms; number of rooms; total area of house.
2. Transportation: Convenience and proximity of bus service.
3. Neighborhood: Degree of traffic, security, taxes, physical condition of surrounding 

buildings.
4. Age of House: How long ago house was built.
5. Yard Space: Front, back, and side space, and space shared with neighbors.
6. Modern Facilities: Dishwasher, garbage disposal, air conditioning, alarm system, and 

other such items.
7. General Condition: Extent to which repairs are needed; condition of walls, carpet, drapes, 

wiring; cleanliness.
8. Financing: Availability of assumable mortgage, seller financing, or bank financing.
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Figure 1.  Decomposition of the Problem into a Hierarchy.

The next step is to make comparative judgments.  The family assesses the relative importance 
of all  possible pairs of criteria with respect to the overall  goal,  Satisfaction with House, 
coming to a consensus judgment on each pair, and their judgments are arranged into a matrix. 
The question to ask when comparing two criteria is: which is more important and how much 
more important is it with respect to satisfaction with a house?

The matrix of pairwise comparison judgments on the criteria given by the home-buyers in this 
case is shown in Table 1. The judgments are entered using the fundamental scale of the AHP: 
a criterion compared with itself is always assigned the value 1 so the main diagonal entries of 
the pairwise comparison matrix are all 1. The numbers 3, 5, 7, and 9 correspond to the verbal 
judgments “moderately more dominant”,  “strongly more dominant”,  “very strongly more 
dominant”, and “extremely more dominant” (with 2, 4, 6, and 8 for compromise between the 
previous values).  Reciprocal values are automatically entered in the transpose position, so the 
family must make a total of 28 pairwise judgments. We are permitted to interpolate values 
between the integers, if desired.  

In the AHP model,  the  vector of priorities for the criteria is obtained by computing the 
principal eigenvector, the classical Perron vector, of the pairwise comparison matrix.  Because 
the pairwise comparison matrix has positive entries, the Perron-Frobenius Theorem ensures 
that there is a unique positive vector (denoted by w) whose entries sum to one that is an 
eigenvector  of  the  pairwise  comparison  matrix,  and  it  is  associated  with  an  eigenvalue 
(denoted by  ¸  max) of strictly largest modulus.  That eigenvalue, the Perron eigenvalue, is 
positive and algebraically simple (multiplicity one as a root of the characteristic equation) [3, 
Theorem  8.2.11]  .  Consistency  of  the  family’s  set  of  judgments  is  measured  by  the 
consistency ratio (C.R.), which we explain later.

2



Table 1.  The Family’ s Pairwise Comparison Matrix for the Criteria.

  Size   Trans.  Nbrhd.  Age   Yard
 Moder
n Cond.   Finance

Normalized 
Priority

Vector w

Size
Trans.
Nbrhd.
Age
Yard
Modern
Cond.
Finance

1
1/5
1/3
1/7
1/6
1/6
3
4

5
1
3

1/5
1/3
1/3
5
7

3
1/3
1

1/6
1/3
1/4
2
5

7
5
6
1
3
4
7
8

6
3
3

1/3
1
2
5
6

6
3
4

1/4
1/2
1
5
6

1/3
1/5
1/2
1/7
1/5
1/5
1
2

1/4
1/7
1/5
1/8
1/6
1/6
1/2
1

.175

.062

.103

.019

.034

.041

.221

.345
¸max = 8.811,         Consistency Ratio (C.R.) =.083

                                                  
 

Table 1 shows that size dominates transportation strongly since a 5 appears in the (size, 
transportation) position.  In the (finance, size) position we have a 4, which means that finance 
is between moderately and strongly more important than size. The priority vector shows that 
financing is the most important criterion to the family as the entry of  w corresponding to 
Finance has the largest value, 0.345. 

Consistency is an elaboration of the commonsense view expressed in this statement: if you 
prefer spring to summer by 2, summer to winter by 3, and spring to winter by 6, then those 
three judgments are consistent.

The family’s next task is to compare the houses pairwise with respect to how much better 
(more dominant) one is than the other in satisfying each of the eight criteria.  There are eight 
3-by-3  matrices  of  judgments  since  there  are  eight  criteria,  and  three  houses  are  to  be 
compared for each criterion.  The matrices in Table 2 contain the judgments of the family.  In 
order to facilitate understanding of the judgments, we give a brief description of the houses.

House A: This house is the largest.  It is located in a good neighborhood with little traffic and 
low taxes.  Its yard space is larger than that of either house B or C.  However, its general 
condition is not very good and it needs cleaning and painting. It would have to be bank-
financed at high interest.

House B: This house is a little smaller than house A and is not close to a bus route.  The 
neighborhood feels insecure because of traffic conditions.  The yard space is fairly small and 
the house lacks basic modern facilities.  On the other hand, its general condition is very good, 
and it has an assumable mortgage, with a rather low interest rate.  

House C: House C is very small and has few modern facilities.  The neighborhood has high 
taxes, but is in good condition and seems secure.  Its yard is bigger than that of house B, but 
smaller than house A's spacious surroundings.  The general condition of the house is good, 
and it has a pretty carpet and drapes.  The financing is better than for house A but poorer than 
for house B.
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Table 2.  Pairwise Comparison Matrices for the Alternative Houses 
Size

of House A B C
Distributive 
Priorities

Idealized 
Priorities

Yard 
Space A B C

Distributive 
Priorities

Idealized 
Priorities

A
B
C

1
1/5
1/9

5
1

1/4

9
4
1

.743

.194

.063

1.000
0.261
0.085

A
B
C

1
1/6
1/4

6
1
3

  4
1/3
1

.691

.091

.218

1.000
0.132
0.315

                                                         C.R. = .07                                                  C.R. = .05
Transportatio

n A B C
Distributive 
Priorities

Idealized 
Priorities

Modern 
Facilities A B C

Distributive 
Priorities

Idealized 
Priorities

A
B
C

1
1/4
5

4
1
9

1/5
1/9
1

.194

.063

.743

0.261
0.085
1.000

A
B
C

1
1/9
1/6

9
1
3

6
1/3
1

.770

.068

.162

1.000
0.088
0.210

                                                          C.R. = .07                                                  C.R. = .05
Neighborhood

A B C
Distributive 
Priorities

Idealized 
Priorities

General
Condition A B C

Distributive 
Priorities

Idealized 
Priorities

A
B
C

1
1/9
1/4

9
1
4

4
1/4
1

.717

.066

.217

1.000
0.092
0.303

A
B
C

1
2
2

1/2
1
1

1/2
1
1

.200

.400

.400

0.500
1.000
1.000

                                                          C.R. = .04                                                  C.R. = .00
Age of House

A B C
Distributive 
Priorities

Idealized 
Priorities

Financing
A B C

Distributive 
Priorities

Idealized 
Priorities

A
B
C

1
1
1

1
1
1

1
1
1

.333

.333

.333

1.000
1.000
1.000

A
B
C

1
7
5

1/7
1

1/3

1/5
3
1

.072

.650

.278

0.111
1.000
0.430

                                                          C.R. = .00                                                  C.R. = .06

In Table 2 both ordinary (distributive) and idealized priority vectors of the three houses are 
given for each of the criteria. The idealized priority vector is obtained by dividing each 
element of the distributive priority vector by its largest element.  The composite priority 
vector for the houses is obtained by multiplying each priority vector by the priority of the 
corresponding criterion, adding across all the criteria for each house and then normalizing. 
When we use the (ordinary)distributive priority vectors, this method of synthesis is known as 
the distributive mode and yields A= .345, B= .369, and C= .285.  Thus house B is preferred to 
houses A and C in the ratios: .369/ .346 and .369/ .285, respectively.  

When we use the idealized priority vector the synthesis is called the ideal mode.  This yields 
A= .315, B= .383, C= .302 and B is again the most preferred house.  The two ways of 
synthesizing are shown in Table 3. 
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Table 3.  Distributive and Ideal Synthesis

Size
(.175)

Trans
(.062)

Nghd 
(.103)

Age
(.019)

Yard
(.034)

Modrn
(.041)

Cond
(.221)

Finan
(.345)

Composite priority 
vector 

A
B
C

.743

.194

.063

.194

.063

.743

.717

.066

.217

.333

.333

.333

.691

.091

.218

.770

.068

.162

.200

.400

.400

.072

.649

.279

Distributive Mode
.346
.369
.285

A
B
C

1.00
.261
.085

.261

.085
1.00

1.00
.092
.303

1.00
1.00
1.00

1.00
.132
.315

1.00
.088
.210

.500
1.00
1.00

.111
1.00
.430

Ideal Mode
.315
.383
.302

3.  The Pairwise Comparison Matrix
In comparing pairs of criteria with respect to the goal, one estimates which of the two criteria 
is more important and how much more. The result of these comparisons is arranged in a 
positive matrix A= [aij] whose entries satisfy the reciprocal property ijji aa /1= . 

We start with a positive reciprocal matrix such as Table 1.  In an  n-by-n table,  n(n-1)/2 
judgments must be made, which is why the house-buying family had to make (8£7)/2=28 

judgments.  These judgments are made independently, but they are not really “independent”. 
If the family feels that financing is twice as important as size,  and that size is twice as 
important as age, for consistency of judgments we should expect them to feel that financing is 
four times as important as age.  The mathematical expression of our expectation is the set of 
identities 

aij = aik/ajk, for all i,j,k= 1,…,n

among the entries of a consistent pairwise comparison matrix A = [aij].  Of course, real world 
pairwise  comparison  matrices  are  very  unlikely  to  be  consistent,  and  we  address  the 
consequences of that reality in the next section [4,5].

Why the Principal Eigenvector?
Suppose a positive square matrix  A = [aij] is consistent.  Then  A must have unit diagonal 
entries, since aii = aik, for all i,k =1,…,n.  Moreover, A must be reciprocal, since aij aji =1  means 
that aij = 1/ aji .  Such a matrix has a very simple structure, since aik = ai1 a1k =ai1 / ak1 for all i,k. 
Thus the entries in the first column of A determine all other entries!  For convenience, write 
®i=  ai1, so that A = [aij] = [ ®i  /®j].  If we define the two positive n-vectors  x=[®i] and y = 

[1=®i], then it is clear that A = xyT has rank one.  Thus, the positive matrix A has one nonzero 
eigenvalue and n-1 zero eigenvalues.  It is easy to check that Ax = §(®i /®j) ®j = [n®i] = nx, so 
the nonzero eigenvalue of A (its Perron eigenvalue, which we have denoted by ¸max ) is n, and 
an associated positive eigenvector is x = [®i].  If we set c = ®1+… +®n, the Perron vector of A 
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(its unique positive eigenvector whose entries sum to one) may be written as w =  x/c = [®i/c]  
[wi].  The Perron vector determines all the entries of A: A= [aij] = [®i  /®j] = [(®i  /c)/(®j/c)] = 
[wi/ wj].

We know that an n-by-n positive consistent matrix A = [aij] has a unique positive eigenvector 
w  [wi] (its Perron vector) whose entries sum to one and whose corresponding eigenvalue (its 
Perron eigenvalue) is n.  Moreover, the ratios of the entries of w are precisely the entries of A: 
aij = wi/ wj.  If we think of A as a matrix of (perfectly) consistent pairwise comparisons for n 
given elements, then the  n values  wi are a natural set of priorities that underlie the set of 
pairwise judgments: aij = wi/ wj.

The foregoing discussion is intended to motivate the central and critical choice of the Perron 
vector as the means to extract a vector of priorities from a given pairwise comparison matrix 
in the AHP model.  If humans made perfectly consistent judgments all the time, the model 
would be perfect.   But they do not, so we must now face the question of assessing the 
deviation from consistency of an actual pairwise comparison matrix and the consequences of 
inconsistency for the quality of decisions made according to the AHP model.

4.  When is a Positive Reciprocal Matrix Consistent?

Let A= [aij] be an n-by-n positive reciprocal matrix, so all aii =1 and aij =1/ aji  for all i,j=1,…,n. 
Let w = [wi] be the Perron vector of A, let D = diag (w1, ..., wn) be the n-by-n diagonal matrix 
whose main diagonal entries are the entries of w, and set E =  D-1AD = [aij wj /wi] = [°ij].  Then 
E is similar to A and is a positive reciprocal matrix since °ji  = ajiwi/wj  = (aij wj /wi)-1 = 1/°ij . 
Moreover, all the row sums of E are equal to the Perron eigenvalue of  A:

maxmax
1

//][/ λλε ==== ∑∑
=

iiiiijj ij

n

j
ij wwwAwwwa

.  

The computation

22

1,

1

1,11 1
max 2/)()()()( nnnnnn

n

ji
ji

ijijji

n

ji
ji

ij

n

i
ii

n

i

n

j
ij =−+≥++=++== ∑∑∑∑ ∑

≠
=

−

≠
=== =

εεεεεελ     (1)

reveals that .max n≥λ   Moreover, since   2/1 ≥+ xx    for all x > 0, with equality if and only 

if x = 1, we see that n=maxλ  if and only if all °ij  = 1, which is equivalent to having all aij = 
wi/ wj.

The foregoing arguments show that a positive reciprocal matrix A has n≥maxλ , with equality 
if and only if A is consistent.  As our measure of deviation of A from consistency, we choose 
the consistency index

.
1

max

−
−

≡
n

nλµ
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We have seen that  0≥µ  and  0=µ  if and only if  A is consistent.  These two desirable 
properties explain the term “n” in the numerator of  µ ; what about the term “n-1” in the 

denominator?  Since trace  A =  n is the sum of all the eigenvalues of  A, if we denote the 

eigenvalues of A that are different from maxλ  by 12 ,..., −nλλ , we see that ∑
=

+=
n

i
in

2
max λλ , so 

∑
=

=−
n

i
in

2
max λλ and ∑

=−
=

n

i
in 11

1 λµ  is the average of the non-Perron eigenvalues of A.  

It is an easy, but instructive, computation to show that  2max =λ  for every 2-by-2 positive 
reciprocal matrix:









− 1

1
1α

α








+

+
=








+

+
−− 11 )1(

1
2

)1(

1

αα
α

αα
α

Thus, every 2-by-2 positive reciprocal matrix is consistent.  

Not every 3-by-3 positive reciprocal matrix is consistent, but in this case we are fortunate to 
have again explicit formulas for the Perron eigenvalue and eigenvector.  For
















=

1/1/1

1/1

1

cb

ca

ba

A , 

we have 1
max 1 −++= ddλ , 3/1)/( bacd = and

)1/(1 d

c
bdbdw ++= , )1(/2 d

c
bddcw ++= , )1/(13 d

c
bdw ++= .                      (2)

Note that 3max =λ  when d = 1 or c = b/a, which is true if and only if A is consistent.

In order to get some feel for what the consistency index might be telling us about a positive n-
by-n reciprocal matrix A, consider the following simulation: choose the entries of A above the 
main diagonal at random from the 17 values {1/9, 1/8,…,1/2, 1, 2,…,8, 9}.  Then fill in the 
entries of A below the diagonal by taking reciprocals.  Put ones down the main diagonal and 
compute the consistency index.  Do this 50,000 times and take the average, which we call the 
random index.  Table 4 shows the values obtained from one set of such simulations, for 
matrices of size 1, 2,…,10.

Table 4. Random Index

n 1 2 3 4 5 6 7 8 9 10

Random Index 0 0 .52 .89 1.11 1.25 1.35 1.40 1.45 1.49
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Since it  would be pointless to try to discern any priority ranking from a set  of random 
comparison judgments, we should probably be uncomfortable about proceeding unless the 
consistency  index  of  a  pairwise  comparison  matrix  is  very  much  smaller  than  the 
corresponding random index value in Table 4.  The  consistency ratio (C.R.) of a pairwise 
comparison matrix is the ratio of its consistency index ¹ to the corresponding random index 
value in Table 4. 

As a rule of thumb, we do not recommend proceeding if the consistency ratio is more than 
about .10 for n ¸ 4. For n = 3, we recommend that the C.R. be less than .05. 

If the C.R. is larger than desired, we do three things: 1) Find the most inconsistent judgment in 
the  matrix,  2)  Determine  the  range  of  values  to  which  that  judgment  can  be  changed 
corresponding to which the inconsistency would be improved, 3) Ask the family to consider, 
if they can, changing their judgment to a plausible value in that range.  If they are unwilling, 
we try with the second most inconsistent judgment and so on.  If no judgment is changed the 
decision is postponed until better understanding of the criteria is obtained.  In our house 
example the family initially made a judgment of 6 for the  37a  entry in Table 1 and the 
consistency index of the set of judgments was ¹ = (9.669 – 8)/7 = .238.  But C.R. = .238/1.40 
= .17 is higher than the recommended value of .10.  If we are going to ask the family to 
reconsider, and perhaps change, some of their pairwise comparisons, where should we start? 

Four methods are plausible for this purpose, and two of them have been implemented in 
software. All require theoretical investigation of convergence and efficiency. The first uses an 
explicit formula for the partial derivatives of the Perron eigenvalue with respect to the matrix 
entries. 

For a given positive reciprocal matrix A= [aij] and a given pair of distinct indices k > l, define 
A(t)= [aij(t)] by akl(t) ´ akl + t, alk(t) ´ (alk + t) –1, and aij(t) ´aij  for all i_≠ k,  j≠ l , so A(0) = 

A.  Let maxλ (t) denote the Perron eigenvalue of A(t) for all t in a neighborhood of t = 0 that is 
small enough to ensure that all entries of the reciprocal matrix A(t) are positive there.  Finally, 
let v = [vi] be the unique positive eigenvector of the positive matrix AT that is normalized so 
that vTw = 1. Then a classical perturbation formula [3, theorem 6.3.12] tells us that 

wAv
wv

wAv

dt

td T
T

T

t

)0('
)0(')(

0

max ==
=

λ
.

1
2 kl
kl

lk wv
a

wv −=

  We conclude that 

                               ijjiji
ij

wvawv
a

2max −=
∂

∂λ
 for all  i,j=1,…,n.                              (3)
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Because we are operating within the set of positive reciprocal matrices,  =
∂

∂

jia
maxλ

-
ija∂

∂ maxλ
 

for all i and j.
Thus, to identify an entry of A whose adjustment within the class of reciprocal matrices would 
result in the largest rate of change in maxλ (and hence in ) we should examine the n(n-1)/2 

values jiwvawv ijjiji >− },{ 2
and select (any) one of largest absolute value. For the pairwise 

comparison matrix in Table 1,  v = (.042, .114, .063, .368, .194, .168, .030, .021)T. Table 5 

gives the array of partial derivatives (3) for  the matrix of criteria in Table 1 with 37a = 6. 

Table 5: Partial Derivatives for the House Example
Size   Trans.   Nbrhd.   Age  Yard   Modern    Cond.  Finance

Size - 0.032885 0.056378 -0.009009 0.008752 0.016702 -0.686161 -0.777949
Trans. - - -0.427761 0.02325 0.045492 0.064006 -0.38795 -0.421008
Nbrhd. - - - 0.003075 -0.00144 0.027725 0.028884 -0.564602
Age - - - - -0.384938 -0.663086 0.954093 1.835323
Yard - - - - - -0.266026 0.315209 0.757916
Modern - - - - - - 0.109645 0.494418
Cond. - - - - - - - -0.141185
Finance - - - - - - - -

The (4,8) entry  in Table 5 is largest in absolute value. Thus, the family could be asked to 
reconsider their judgment (4,8) of Age vs. Finance.  One can then repeat this process with 
the goal of bringing the C.R within the desired range. If the indicated judgments cannot be 
changed fully according to one’s understanding, they can be changed partially. Failing the 
attainment of a consistency level with justifiable judgments, one needs to learn more before 
proceeding with the decision.

The other  three  methods,  presented here in  order  of  increasing observed efficiency in 
practice, are conceptually different. They are based on our earlier observation (1) that

).(
1,

1
max ∑

≠
=

−+=−
n

ji
ji

ijijnn εελ

This suggests that we examine the judgment for which ij is farthest from one, that is, an 
entry aij for which aij wj / wi is the largest, and see if this entry can reasonably be made 
smaller.  We hope that such a change of aij also results in a new comparison matrix with 
smaller Perron eigenvalue. To demonstrate how improving judgments works, let us return 
the house example matrix in Table 1.  The family first gave a judgment of 6 for the  a37 

entry.  This caused the matrix to have C.R. = .17, which is high.  To identify an entry ripe 
for  consideration,  construct  the  matrix  °ij (Table  6).   The  largest  value in  Table 6  is 
5.32156, which focuses attention on a37 = 6. 

Table 6: °ij = aij wj/wi
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1.00000 1.55965 3.26120 0.70829 1.07648 1.25947 0.32138 0.48143
0.64117 1.00000 1.16165 1.62191 1.72551 2.01882 0.61818 0.88194
0.30664 0.86084 1.00000 0.55848 0.49513 0.77239 5.32156 0.35430
1.41185 0.61656 1.79056 1.00000 0.59104 0.51863 1.36123 2.37899
0.92895 0.57954 2.01967 1.69193 1.00000 0.58499 1.07478 1.78893
0.79399 0.49534 1.29467 1.92815 1.70942 1.00000 0.91862 1.52901
3.11156 1.61765 2.25498 0.73463 0.93042 1.08858 1.00000 0.99868
2.07712 1.13386 2.82246 0.42035 0.55899 0.65402 1.00133 1.00000



How does one determine the most consistent entry for the (3,7) position? When we compute 
the new eigenvector  w after changing the (3,7) entry, we want the new (3,7) entry to be w3 /  
w7 and the new (7,3) to be w7 /w3 . On replacing a37 by w3 / w7 and a73 by w7 / w3 and multiplying 
by the vector w one obtains the same product as one would by replacing a37 and a73 by zeros 
and the two corresponding diagonal entries by two.  We take the Perron vector of the latter 
matrix to be our w and use the now-known values of w3 / w7 and w7 / w3 to replace a37 and a73 in 
the original matrix [2].The family is now invited to change their judgment towards this new 
value of a37 as much as they can. Here the value was a37 = 1/ 2.2, approximated by 1/ 2 from 
the  AHP integer  valued  scale  and  we  hypothetically  changed  it  to  1/2  to  illustrate  the 
procedure. If the family does not wish to change the original value of a37, one considers the 
second most inconsistent judgment and repeats the process. The procedure just described is 
used in the AHP software Expert Choice.  

A refinement of this approach is due to W. Adams. One by one, each reciprocal pair aij and aji  

in the matrix is replaced by zero and the corresponding diagonal entries aii and ajj are replaced 
by 2, the Perron eigenvalue  maxλ is computed. The entry with the largest resulting  maxλ  is 
identified for change as described above. This method, unpublished, is in use in the Analytic 
Network Process (ANP) software program [6].

5.  Alternative Ways to Determine a Priority Vector
Several ways, other than the Perron eigenvector method (EM), have been proposed to 
associate a priority vector with a given positive reciprocal matrix A. 

The method of least squares (LSM) determines a priority vector by minimizing the Frobenius 
norm of the difference between A and a positive rank one reciprocal matrix [yi /yj]: 

                                                        
2

1,
0

)/(min j

n

ji
iij

y
yya∑

=

−


                                                                   (4)

The method of logarithmic least squares (LLSM) determines a priority vector by minimizing 
the Frobenius norm of  [log (aij xj /xi)]:

2

1,
0

)]/log([logmin j

n

ji
iij

x
xxa∑

=

−


All three methods –EM, LSM, and LLSM– produce the same priority vector when A is 
consistent. In general, the three methods give different priority vectors and different rankings. 
Here is an example: 

                                                    EM  =  LLSM    LSM 
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LSM does not always yield a unique priority vector.  In this case, a second LSM solution is 
(.779, .097, .124); both solutions yield the minimum value 71.48 for (4). 

Remarkably, a straightforward calculation (differentiate and equate to zero) gives an analytic 
expression for the normalized LLSM priority vector, which is unique:
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n
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n
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n
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A computation reveals that for n = 3, this priority vector coincides with that of EM given in 
(2). 

However, the following example shows that for n > 3, the priority vector and criteria rankings 
produced by EM and LLSM need not be the same.  
                                                                                                     

                                                                                        EM  LLSM
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134.
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061.

   

042.

380.

133.

384.

062.

                                        (5)

                                                                                       
EM ranks the fourth criterion above the second, while LLSM ranks the second above the 
fourth. LLSM simply takes the normalized values of the 5th roots of the products of the 
entries in each row without regard to the numerical relation of these elements to other entries 
in the matrix.

But there is more to a priority vector than uniqueness. When A = [ i /j] is consistent, then Ak 

= nk-1A.  This says that how much a criterion represented by a row of  A  dominates other 
criteria through chains of k arcs is uniquely determined by the single arc chains represented by 
the rows of A itself. But this is not true when A is inconsistent. 

Criterion i is said to dominate criterion j in one step, if the sum of the entries in row i of A 
is greater than the sum of the entries in row j. It is convenient to use the vector e = (1,…,1)T 

to express this dominance: Criterion i  dominates criterion j in one step if (Ae)i> (Ae)j  . A 
criterion can dominate another criterion in more than one step by dominating other criteria 
that in turn dominate the second criterion. Two-step dominance is identified by squaring 
the matrix and summing its rows, three-step dominance by cubing it,  and so on. Thus, 
criterion i dominates criterion j in k steps if if (Ake)i> (Ake)j . Criterion i is said simply to 
dominate criterion j if entry i of the vector                                                      
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is greater than its entry j. But this limit of averages can be evaluated: The Perron-Frobenius 
Theorem  ensures  that  Tkk wvA →max/ λ as  ∞→k ,  so 

wevweevweAeeA TTkTkkTk =≈ ))((/)()/( maxmax λλ  as  ∞→k .   Since  (6)  is  a  limit  of 
averages of terms of a sequence that converges to the Perron vector w of A, (6) is actually 
equal to w. 

6. Diverse Uses6. Diverse Uses

The Analytic Hierarchy Process has been used in various settings to make decisions.
• British Airways used it in 1998 to choose the entertainment system vendor for its entire 

fleet of airplanes
• A company used it in 1987 to choose the best type of platform to build to drill for oil in 

the North Atlantic.  A platform costs around 3 billion dollars to build, but the 
demolition cost was an even more significant factor in the decision.

• The process was applied to the U.S. versus China conflict in the intellectual property 
rights battle of 1995 over Chinese individuals copying music, video, and software tapes 
and CD’s.  An AHP analysis involving three hierarchies for benefits, costs, and risks 
showed that it was much better for the U.S. not to sanction China.  Shortly after the 
study was complete, the U.S. awarded China most-favored nation trading status and did 
not sanction it.

• Xerox Corporation has used the AHP to allocate close to a billion dollars to its research 
projects.

• In 1999, the Ford Motor Company used the AHP to establish priorities for criteria that 
improve customer satisfaction.  Ford gave Expert Choice Inc, an Award for Excellence 
for helping them achieve greater success with its clients.

• In 1986 the Institute of Strategic Studies in Pretoria, a government-backed 
organization, used the AHP to analyze the conflict in South Africa and recommended 
actions ranging from the release of Nelson Mandela to the removal of apartheid and the 
granting of full citizenship and equal rights to the black majority.  All of these 
recommended actions were quickly implemented. 

• The AHP has been used in student admissions, military personnel promotions, and 
hiring decisions.

• In sports it was used in 1995 to predict which football team would go to the Superbowl 
and win (correct outcome, Dallas won over my hometown, Pittsburgh).  The AHP was 
applied in baseball to analyze which Padres players should be retained.

• IBM used the process in 1991 in designing its successful mid-range AS 400 computer. 
IBM won the prestigious Malcolm Baldrige award for Excellence for that effort.  The 
book [1] about the AS 400 project has a chapter devoted to how AHP was used in 
benchmarking.
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Since  the  AHP helps  one  organize  one’s  thinking,  it  can  be  used  to  deal  with  many 
decisions  that  are  often  made  intuitively.   At  a  minimum the  process  allows  one  to 
experiment with different criteria and different judgments.  A trial version of the AHP 
software can be obtained from www.expertchoice.com. The ANP software is  an alpha 
version obtainable on www.creativedecisions.net.
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