
Math 202 Jerry Kazdan

The Exponential Function, Polar Coordinates, and the
Fundamental Theorem of Algebra

Polynomials in the complex plane. Say we have a polynomial in a real variable x :

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 (1)

To extend it to a polynomial; in the complex variable z = x+ iy is is natural to use:

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 (2)

Although the real polynomial x2+4 = 0 has no real roots, the complex polynomial z2+4 = 0
has two roots, z = 2i and z = −2i .

Fundamental Theorem of Algebra: A polynomial of degree n has exactly n complex
roots, some of which may be multiple roots.

For instance, p(z) = z(z − 1)2 has a root with multiplicity 2 at z = 1.

The essential step to proving the Fundamental Theorem of Algebra is to prove that A
polynomial p(z) with degree n ≥ 1 has at least one complex root. Using that it has at
least one complex root, say z1 . We now show that it has exactly n of them. Consider the
polynomial p1(z) := p(z)/(z − z1). It has degree n − 1 so it too has at least one complex
root, say z2 , which is also a root of p(z). Repeat this using p2(z) := p1(z)/(z − z2) which
has degree n − 2. After n repe88titions we end up with p(z) having exactly n complex
roots.

Exponential Function

It will be useful to introduce the exponential function ez . The definition (2) of p(z) moti-
vates us for how to define ez , cos z , and sin z complex z . For real x we have the familiar
power series

ex = 1 + x+
x2

2!
+ · · ·+ xk

k!
+ · · ·

which leads us to define ez for complex z = x+ iy by

ez = 1 + z +
z2

2!
+ · · ·+ zk

k!
+ · · · . (3)

Using the ratio test, which is valid for complex power series, this series converges for all
complex z .

An important observation is that the basic property

ez+w = ezew (4)

still holds for complex z and w , as one can verify by multiplying the power series for ez

and ew and collecting the terms – just as in the case when z and w are real.

Similarly we are led to define cos z and sin z by the power series

cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ · · · , sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · · .
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It is clear that adding the power series for cos z and sin z you almost get the power series
for ez – except for the minus signs. This inspired Euler (1748) to observe that using eiz

instead of ez one obtains the beautiful identity

eiz = cos z + i sin z. (5)

The special case z = π is the celebrated formula

eiπ = −1

relating the four basic constants e , i , π , and −1. One might never suspect a stunning
formula like this. We also see that e2kπi = 1 for any integer k .

An immediate consequence of (5) is DeMoivre’s identity (1707)

(cos θ + i sin θ)n =
(
eiθ
)n

= einθ = cosnθ + i sinnθ, (6)

which he perhaps proved by induction.

Polar Coordinates

We will use (5) to introduce polar coordinates in the complex plane. Let z = x+ iy and let
r = |z| =

√
x2 + y2 be the distance from z to the origin. Also, let θ , 0 ≤ θ < 2π , be the

unique angle between z and the x-axis (θ is not defined at z = 0). Then x = r cos θ and
y = r sin θ so using (5)

z = x+ iy = r(cos θ + i sin θ) = reiθ. (7)

In the previous paragraph we choose 0 ≤ θ < 2π . Below it will be useful to observe
that by the 2π periodicity of cos θ and sin θ , for any integer k , e2kπi = 1, we also have
eiθ = ei(θ+2kπ) .

Geometric Interpretation of Complex Multiplication. If w = |w|eiϕ , then the
product

zw =|z|eiθ|w|eiϕ = |z||w|ei(θ+ϕ)

=|z||w|
(
cos(θ + ϕ) + i sin(θ + ϕ)

)
so the absolute values are multiplied and the angles are added. This geometric interpretation
of multiplication in the complex plane was exploited by Gauss and Wessel around 1799 and
used effectively by Argand in 1806, long after the work of DeMovire and Euler (although
surely they were smart enough to understand intuitively what this was all about).

Solving zn = c

As an application we show that the important special polynomial equation zn = c has
exactly n distinct complex roots – by finding the roots explicitly.

As a warm-up, we compute
√
i , that is, to solve z2 = i . Seek z in polar form z = reiθ , where

r > 0 and 0 ≤ θ < 2π Then we want i = z2 = r2e2iθ so r = 1 and i = cos 2θ + i sin 2θ .
Thus cos 2θ = 0 and sin 2θ = 1. The only possibilities are 2θ = π/2 or 2θ = 3π/2.
Consequently θ = π/4 or θ = 3π/4. The roots are therefore z = eiπ/4 and z = e3πi/4 , that
is, z = ±(1 + i)/

√
2.
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A more complicated example: Solve z3 = 2i .

Step 1 Write c = 2i in polar form c = ρeiα . First, ρ = |c| = 2. Then note that i = ei
π
2 .

But since we want all of the solutions of z3 = 2i write i = ei(
π
2 +2kπ) where the possible

integers k will be chosen later. Seek the solution z as z = reiθ for all 0 ≤ θ < 2π . Then
z3 = 2i is

r3e3iθ = 2ei(
π
2
+2kπ).

Step 2 Matching the terms we find

r3 = 2 and 3θ =
π

2
+ 2kπ,

so r = 21/3 and θ = π
6 + 2kπ

3 . To find the values of θ recall that we want all the θ ’s in
0 ≤ θ < 2π . Therefore k = 0, k = 1 and k = 2 are all possible. This gives the three
solutions

z1 = 21/3e
π
6
i, z2 = 21/3e

5π
6
i, and z3 = 21/3e

9π
6
i.

If we use integers k ≥ 3, we just repeat these same roots.

More generally, to solve zn = c write c in polar form c = |c|eiα and seek z = reiθ . Then,
as in the example, the equation is

rnenθi = |c|e(α+2kπ)i

so

r = |c|1/n, θ =
α+ 2kπ

n
.

The n values of k we use are k = 0, 1, . . . , n − 1. This gives n distinct solutions. Notice

that e
2kπ
n
i , k = 0, 1, . . . , n− 1, are the n solutions of zn = 1.

Remark We can use the same procedure to find an infinite number of solutions of z
√
2 = 1

(Exercise). Note that z
√
2 − 1 is not a polynomial.

The Fundamental Theorem of Algebra

Some history: For quadratic polynomials, in school we learned an explicit formula for
the roots. For cubic and quartic polynomials much more complicated formulas were found
by Ferro, Tartaglia, Ferrari, and Cardano (1500- 1550). The history is a bit messy. These
formulas for the roots involved only sums, products, and roots of the coefficients. Note that
the equal sign = was not invented until 1557 (by Robert Recorde).

For several centuries mathematicians sought a similar formula for the roots of polynomials
of degree five – but did not succeed. Finally Abel (1824) and in greater depth, Galois
(1832), showed there are no such general formulas for polynomials of degree greater than
four.

We will prove that roots, possibly involving complex numbers, do exist. The proof does not
give a formula for the root.
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As a simple example of such an existence theorem with no formula for the solution, we will
show that every cubic polynomial p(x) := x3+ax2+bx+c with real coefficients has at least
one real root. Look at a graph of p(x). For large pos-
itive x , p(x) = x3 + lower order terms so p(+∞) > 0.
Similarly, p(−∞) < 0. Thus by the intermediate value
theorem p(x0) = 0 for at least one real x0 . Similarly,
every real polynomial whose degree is odd has at least
one real root. This proof by a picture could not have
been given before 1637 when Fermat and Descartes gave
us analytic geometry to graph curves.

This proof fails for polynomials whose degree is even, q(x) = x2k + (lower order terms)
since q(±∞) = +∞ . For such polynomials, using x = ±∞ is crude; for real x infinity
does not have much structure. Of course, the above proof only reveals a real root of a
polynomial and a polynomial of even degree might not have a real root. The key idea to
adapt the above proof to obtain roots, possibly complex, for all polynomials is to observe
that for p(z) = zn , using polar coordinates lifts a veil revealing that infinity has a much
richer structure for both even and odd degrees. This is evident using polar form z = reiθ

since then zn = rneinθ . For large |z| = r , we know that r is large but the angle θ can
be anything (for z real, θ = 0 or π is too constraining). Most proofs of the Fundamental
Theorem of Algebra – including the one here – use this observation to adapt the above
geometric proof we gave for cubic polynomials.

The Maximum and Minimum Principles

Our proof of the existence of roots of polynomials relies on an important geometric under-
standing of a polynomial w = p(z) as a map from the complex z -plane to the complex
w -plane. Note there are two separate pictures, one of the z -plane and one for the w -plane.
A few examples show the idea.

Example 0. The simplest example is w = p(z) = a , where a is some constant. This maps
every point to the same point w = a . Completely uninteresting.

Example 1. The next simplest example is w = p(z) = a + z . In polar coordinates
z = reiθ = r cos θ + ir sin θ

w − a = reiθ.

Then for fixed r > 0 and 0 ≤ θ < 2π , w describes a circle centered at a with radius r that
circles a once.

Example 2. Similarly, for any integer k ≥ 1, say w =
p(z) = a+ zk , so

w − a = rkeikθ.

Then for fixed r > 0 and 0 ≤ θ < 2π , as z circles
the origin once in the z -plane then w describes a circle
centered at w = a with radius R = rk that circles the
point a k times.
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Example 3. Slightly more complicated: w = p(z) = a + bzk where b 6= 0 is a constant.
Say in polar form, b = ρeiβ . Then

w = a+ bzk, so w − a = ρrkei(β+kθ). (8)

For fixed r > 0 and 0 ≤ θ < 2π , as z circles the origin once in the z -plane then w describes
w describes a circle centered at a radius ρrk that circles the point a k times. Thus if z is
in the disk of radius r centered at he origin, then the corresponding points w given by (8)
are exactly the points in the disk with center a and radius ρrk = |b|rk (covered k times).

While Examples 1–3 are different, we now give a crude, yet valuable, geometric summary
that covers all of them:

Local Max and Min of |p(z)| . There is a point z1 near z = 0 (in fact, many points),
in the z -plane whose image, w1 = p(z1) is further from the origin than a = p(0): |p(0)| <
|p(z1)| .
If a 6= 0 the same picture shows there are many points z2 near z = 0 whose image,
p(z2) 6= 0 is closer to the origin, 0 < |p(z2)| < |p(0)| = |a| .

We want to extend our geometric insight to general polynomials. The result answers the
following specific question: Say we are investigating a polynomial p(z) where z is in a disk
D := {|z| < R} . Where in D is |p(z)| largest? Where is is |p(z)| smallest? The (crude)
result is surprisingly simple: |p(z)| is largest at some point z on the boundary of D , that
is, on the circle |z| = R , not inside the disk D . Also, if p is not zero in D then |p(z)| is
smallest at some other point z on the boundary of D , not inside D .

To prove this we closely examine a polynomial p(z) locally. near a point, say z0 (in the
above Examples we used z0 = 0). For this we write p as a Taylor polynomial

p(z) = b0 + b1(z − z0) + b2(z − z0)2 + · · ·+ bn(z − z0)n (9)

For z near z0 as k increases the terms bk(z − z0)k become less important. Thus the most
important term (after b0 ) will be the smallest k ≥ 1 for which bk 6= 0. Then, near z0

p(z) = b0 + bk(z − z0)k + (z − z0)k+1
[
bk+1 + · · ·+ bn(z − z0)n−(k+1)

]
(10)

The polynomial
p(z) =z3 − 3z2 + 3z − 1

=(z − 1)3

looks quite different near z = 0 and near z = 1, exhibiting behavior of both Examples 1
and Example 2.

This leads us to the following extension of the Local Max and Min interpretation of Example
3 above1. It is the main technical step in our approach. At first glance it is not obvious
how useful this result is.

1 The Examples suggest an even stronger more intuitive result. Let w = p(z) with w0 = p(z0) . If p(z) is
not identically constant, then the image of a small disk {|z − z0| < ε} contains a small disk {|w−w0) < δ}
around w0 . In brief, p maps open open sets in the z -plane to open sets in the w -plane. This is true but
more complicated to prove.
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Lemma 1. Local Max and Min of |p(z)| . Say near z = z0 the polynomial p(z) is

w := p(z) = a+ b(z − z0)k + g(z)(z − z0)k+1, (11)

where b 6= 0 and g(z) is bounded for |z − z0| small: |g(z)| ≤ M (for equation (10) this
clearly holds for |z − z0| < 1).

(i). There is a point z1 (in fact many points) near z0 whose image p(z1) is further from
the origin than a = p(z0): |p(z1)| > |p(z0)| . Thus the real-valued function |p(z)| cannot
have a local maximum at z0 .

(ii). If a 6= 0 there is a point z2 near z = z0 such that p(z2) is closer to the origin than
p(z0): 0 < |p(z2)| < |p(z0)| = |a| . Thus, if p(z0) 6= 0 the real-valued function |p(z)| cannot
have a local minimum at z0 .

Proof of (i). By a translation in the z -plane we may assume that z0 = 0. The case a = 0
is trivial (pick any small z1 ) so assume a 6= 0. We will follow the special case g(z) = 0 of
Example 3. The idea is that if z is small, then the term |g(z)zk+1| will be smaller than
|bzk| so near z = 0 the picture will be a small perturbation of Example 3.

To prove this we use a simple explicit choice of the point z1 : choose z1 so that in the
w -plane bzk1 is on the line from the origin to a , that is, bzk1 = λa for λ > 0 to be chosen
shortly. Thus, zk1 = λa/b (we solved equations of the form zn = c above). Note that
a+ bzk1 = (1 + λ)a is further from the origin than a .

Also, pick z1 so that |g(z)zk+1
1 | < 1

2 |bz
k
1 | , that is, |Mz1| < 1

2 |b| . This will hold by choosing
λ > 0 sufficiently small. Then by the triangle inequality2

|p(z1)| ≥|a+ bzk1 | − |g(z)zk+1
1 |

≥ (1 + λ)|a| − 1
2 |bz

k
1 |

= (1 + λ)|a| − 1
2λ|a| > |a| = |p(0)|

Thus p(z1) is further from the origin than a .

Proof of (ii). This is quite similar. Pick z2 so that bzk2 is on the line from the origin to
a , but so that a + bzk2 = (1 − λ)a is closer to the origin than a , that is, bzk2 = −λa for
some 0 < λ < 1. Thus, zk2 = −λa/b . Again pick λ > 0 so small that |Mz2| < 1

2 |b| .
2 Write |A+B| ≤ |A|+ |B| in the form |B| ≥ |A+B| − |A| .
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By the triangle inequality

|p(z2)| ≤|a+ bzk2 |+ |g(z)zk+1
2 |

≤|a− λa|+ 1
2 |bz

k
2 |

=(1− λ)|a|+ 1
2λ|a| < |a| = |p(0)|

The following theorem summarizes the local results of the Lemma.

Theorem Let D be any disk, {|z| < R} in the complex plane.

(a). [Maximum Principle] The function |p(z)| cannot have a local maximum inside D .
In particular, a local maximum of |p(z)| in {|z| ≤ R} can only occur on the boundary
{|z| = R} . In other words, the point z in D̄ = {|z| ≤ R} where p(z) is furthest from the
origin is on the boundary of D , that is, on the circle {|z| = R} .

(b). [Minimum Principle] If p(z) is not zero at any point of D , then |p(z)| can not have
a local minimum in D . In particular, the minimum of |p(z)| in D̄ can only occur on the
boundary {|z| = R} . Consequently, the point z in D̄ where p(z) is closest to the origin is
on the circle {|z| = R} .

Proof. a). Since D̄ is a closed and bounded set, the continuous real-valued function
|p(z)| has it’s maximum value at some point of D̄ . But by Lemma 1 it cannot have a local
maximum at any point inside D . Thus the maximum buts be somewhere on the boundary
of D .

b). If p(z) is not zero at any point in D , then by the Lemma |p(z)| cannot have its minimum
at any point inside D . Thus the minimum must be at some point on the boundary of D .

What is special about polynomials?

As motivation for the next step, we note that the above Maximum/Minimum principle
actually hold for much more general regions D (any bounded open set) and functions
than polynomials (any function having a convergent complex power series). An example
is the exponential function ez whose power series converges for all complex z . But since
eze−z = 1, the function ez is never zero. Thus, to prove that polynomials do have complex
zeros we need to use a special property of polynomials whose degree is at least 1: they get
large at infinity.

Lemma 2. [ lim|z|→∞ |p(z)| = ∞ ] 3. Let p(z) be as in (2) with n ≥ 1 and M :=
|an−1|+ · · ·+ +|a1] + |a0| . If |z| ≥ 1 then

|p(z)| ≥ |z|n−1(|z| −M). (12)

For any c > 0, if |z| ≥ 1 and |zn−1(z −M)| > c , then |p(z)| > c . In particular, the zeroes
of p(z) lie the disk |z| ≤ R where R = max (1,M).

3The converse of this is also true: Say f(z) =
∑∞

0 akz
k and the series converges for all complex z . If

|f(z)| → ∞ as |z| → ∞ , then f is a polynomial.
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Proof: We show that for |z| large, zn is the dominant term in p(z). We first estimate
the lower order terms in p(z). For |z] ≥ 1.

|an−1zn−1|+ · · ·+ a1z + a0| ≤
(
|an−1|+ · · ·+ |a1|+ |a0|

)
|z|n−1

=M |z|n−1.

Therefore

|zn| =
∣∣p(z)− (an−1z

n−1 + · · ·+ a1z + a0)
)
|

≤|p(z)|+M |z|n−1.

Consequently,
|z|n−1(|z| −M) ≤ |p(z)|.

Thus if |z| is large, so is |p(z)| . In particular, since this estimate assumed |z| ≥ 1, all of
the zeroes of p(z) lie in the disk of radius R = max(1,M).

Proof of the Fundamental Theorem of Algebra

Proof: By contradiction, say p(z) is never zero. We use the Minimum Principle con-
cerning the minimum of |p(z)| . Let D̄ be the closed disk {|z| ≤ R} , where R is a large
number to be chosen.

Since D̄ is a closed and bounded set, the continuous function |p(z)| attains its minimum
at some point zmin of D̄ . Note that |p(zmin)| ≤ |p(0)| .

By Lemma 2 we can find R so that if |z| ≥ R then |p)z)| > |p(0)| ≥ |p(zmin)| . Thus zmin

must satisfy |zmin| < R . Since we assumed that p(z) has no zeroes, his contradicts the
Minimum Principle.

Remark: As you noticed, I never used the maximum principle here. I included it because
it makes the story clearer and because it is so useful in other applications.
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