Problem Set 11

Due: In class Thursday, Dec. 5 Late papers will be accepted until 1:00 PM Friday.

Remarks: Please read Chapter 17 on the integral.

PROBLEMS

- 1. [# 17.6] Let f and g be bounded real-valued functions on a set S.
 - a) Prove that $\sup_{S} (f+g) \leq \sup_{S} f + \sup_{S} g$.
 - b) Give an example where strict inequality holds.
- 2. [#17.7] Let $f(x) = x^2$, and let P_n be a partition of the interval [0, 3] into n intervals of equal length.
 - a) Compute formulas for $L(f, P_n)$ and $U(f, P_n)$ in terms of n. Verify that they have the same limit.
 - b) Find a number n to insure that $U(f, P_n)$ is within .01 of $\int_0^3 x^2 dx$.
- 3. Let f(x) = 0 for all $x \in [0, 2]$ except at x = 1 where f(1) = 3. Show that f is Riemann integrable on [0, 2].
- 4. [#17.13] Let f(x) be continuous for $x \in [a, b]$.
 - a) Show there is some point $c \in [a, b]$ where f has its average value, that is,

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

[SUGGESTION: First do the case where $\int_a^b f(x) dx = 0$. Then reduce the general case to the special case by using $g(x) := f(x) - \frac{1}{b-a} \int_a^b f(t) dt$.]

- b) If f is not continuous, there may not be any such point c. Give an example.
- 5. If $\int_0^x f(t) dt = x \cos(\sin x) + C$, find the continuous function f and the constant C.
- 6. [#17.16] For x > 0 let $g(x) := \int_0^x \frac{1}{1+t^2} dt + \int_0^{1/x} \frac{1}{1+t^2} dt$. Show that g is a constant.
- 7. For which powers p > 0 does the series $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$ converge? [HINT: integral test.]

- 8. [#17.26] Use Theorem 17.26 to find the indefinite integrals of $\ln x$ and $\tan^{-1} x$. [Here $\tan^{-1} x$ is the "arc tangent of x"].
- 9. Compute $\lim_{\lambda \to \infty} \int_0^1 |\sin(\lambda x)| dx$.
- 10. Let f(t) be a continuous function for $0 \le t < \infty$. If $\lim_{t\to\infty} f(t) = c$, show that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) \, dt = c.$$

[Hint: This is like Proposition 14.11 on page 275 in the text.]

Bonus Problems

[Please give your solutions directly to Professor Kazdan]

- 1-B Let f be continuous on the interval $[0, \pi]$. Show that $\lim_{\lambda \to \infty} \int_0^{\pi} f(x) \sin(\lambda x) dx = 0$.
- 2-B Let $f(x) = \sin(1/x)$ for $x \neq 0$ and f(0) = 2. Show that f is Riemann integrable on the interval [0, 1].

[Last revised: December 22, 2013]