## Problem Set 11

Due: In class Thursday, Dec. 5 Late papers will be accepted until 1:00 PM Friday.
Remarks: Please read Chapter 17 on the integral.

## Problems

1. [\# 17.6] Let $f$ and $g$ be bounded real-valued functions on a set $S$.
a) Prove that $\sup _{S}(f+g) \leq \sup _{S} f+\sup _{S} g$.
b) Give an example where strict inequality holds.
2. [\#17.7] Let $f(x)=x^{2}$, and let $P_{n}$ be a partition of the interval [ 0,3 ] into $n$ intervals of equal length.
a) Compute formulas for $L\left(f, P_{n}\right.$ and $U\left(f, P_{n}\right)$ in terms of $n$. Verify that they have the same limit.
b) Find a number $n$ to insure that $U\left(f, P_{n}\right)$ is within .01 of $\int_{0}^{3} x^{2} d x$.
3. Let $f(x)=0$ for all $x \in[0,2]$ except at $x=1$ where $f(1)=3$. Show that $f$ is Riemann integrable on [0, 2].
4. [\#17.13] Let $f(x)$ be continuous for $x \in[a, b]$.
a) Show there is some point $c \in[a, b]$ where $f$ has its average value, that is,

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

[Suggestion: First do the case where $\int_{a}^{b} f(x) d x=0$. Then reduce the general case to the special case by using $g(x):=f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t$.]
b) If $f$ is not continuous, there may not be any such point $c$. Give an example.
5. If $\int_{0}^{x} f(t) d t=x \cos (\sin x)+C$, find the continuous function $f$ and the constant $C$.
6. [\#17.16] For $x>0$ let $g(x):=\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{1 / x} \frac{1}{1+t^{2}} d t$. Show that $g$ is a constant.
7. For which powers $p>0$ does the series $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{p}}$ converge? [Hint: integral test.]
8. [\#17.26] Use Theorem 17.26 to find the indefinite integrals of $\ln x$ and $\tan ^{-1} x$. [Here $\tan ^{-1} x$ is the "arc tangent of $x$ "].
9. Compute $\lim _{\lambda \rightarrow \infty} \int_{0}^{1} \mid \sin (\lambda x \mid d x$.
10. Let $f(t)$ be a continuous function for $0 \leq t<\infty$. If $\lim _{t \rightarrow \infty} f(t)=c$, show that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(t) d t=c
$$

[Hint: This is like Proposition 14.11 on page 275 in the text.]

## Bonus Problems

[Please give your solutions directly to Professor Kazdan]
1-B Let $f$ be continuous on the interval $[0, \pi]$. Show that $\lim _{\lambda \rightarrow \infty} \int_{0}^{\pi} f(x) \sin (\lambda x) d x=0$.
2-B Let $f(x)=\sin (1 / x)$ for $x \neq 0$ and $f(0)=2$. Show that $f$ is Riemann integrable on the interval $[0,1]$.
[Last revised: December 22, 2013]

