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ABSTRACT

POLYNOMIALITY OF THE BIGRADED SUBDIMENSION OF DIAGONAL HARMONICS

Xinxuan Wang

James Haglund

A sequence of Sn-representation Vn is called representation (multiplicity) stable if after some n, the

irreducible decomposition of Vn stabilizes. In particular, Church and Farb (2013) found that if we

fix a and b, then the space of diagonal harmonics DHa,b
n exhibits this behavior, and its dimension

stabilizes to a polynomial in n eventually. Building on this result, we use the Schedules Formula

by Haglund and Loehr (2005) to get an explicit combinatorial polynomial for the dimension of the

bigraded spaces DHa,b
n . This derivation not only yields the dimension formula but also produces a

new stability bound of a+ b, which is conjectured to be sharp, and determines the exact degree of

the dimension polynomial, which is also a+ b.

vi



TABLE OF CONTENTS

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 : Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 : DIAGONAL HARMONICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Catalan Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Shuffle Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Macdonald Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Schedule’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3 : REPRESENTATION STABILITY . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 FI Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Stability Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 4 : PROOF OF MAIN THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Main formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Proof of Theorem 4.1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Stability Range and Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



LIST OF TABLES

TABLE 4.3.1 Polynomials for dim(DRa,b
n ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



LIST OF ILLUSTRATIONS

FIGURE 2.2.1 Labeled Dyck path γ ∈ LDyck(8) . . . . . . . . . . . . . . . . . . . . . . . . . 12
FIGURE 2.3.1 Computing ∆3,2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
FIGURE 2.4.1 Inserting a 5 into the 2-diagonal. The cars creating new diagonal inversions

with 5 are circled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FIGURE 2.4.2 The tree of parking functions built from τ = 2314. . . . . . . . . . . . . . . . . 20

ix



CHAPTER 1

Overview

This chapter provides a broad overview of the thesis. We begin by introducing our central object

of study, the Diagonal Harmonics DHn, defined as a subspace of C[x1, . . . , xn, y1, . . . , yn]. This

ring carries a natural action of the symmetric group Sn and admits a bigrading, with its bigraded

components denoted by DHa,b
n , consisting of polynomials homogeneous of degree a in the x-variables

and degree b in the y-variables.

The dimension of DHn as an Sn-representation was conjectured by Haiman (1994) to be (n+1)n−1

and later proven by Haiman (2002). Furthermore, the dimension of each bigraded component DHa,b
n

was conjectured by Haglund and Loehr (2005) in terms of number of certain subsets of parking

functions of size n, and later proved by Carlsson and Mellit (2018) in a broader context.

This thesis establishes a new result concerning the dimensions dim(DHa,b
n ): namely, that for fixed a

and b, this dimension eventually becomes a polynomial in n. Moreover, we prove that the stabiliza-

tion starts no later than n = a+ b, and conjecture it to be the sharp bound. Chapter 2 introduces

the necessary combinatorial background on DHn, and Chapter 4 presents the explicit polynomial

expression for dim(DHa,b
n ) and proves the stabilization bound.

We are motivated by a phenomenon discovered by Church and Farb (2013): under certain con-

ditions, sequences of Sn-representations Vn exhibit stabilization in their character and dimension.

Notably, the sequenceDHa,b
n satisfies their conditions and was among the examples discussed in their

foundational work. This result served as the original inspiration for the present thesis. Although

the polynomiality of dim(DHa,b
n ) can be derived from representation-theoretic considerations, a

purely combinatorial proof was previously lacking—this gap motivates our investigation. Chapter

3 provides the necessary background on representation stability.
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CHAPTER 2

DIAGONAL HARMONICS

2.1. Catalan Combinatorics

The study of Diagonal Harmonics is closely related to the beautiful Catalan Combinatorics. We

would start by introducing the Catalan objects, and then tie it with the study of Diagonal Harmon-

ics.

Definition 2.1.1. A parking function of length n denoted as p ∈ PF (n) is a sequence of n positive

integers, each in the ragne from 1 to n, such that 1 ≤ i ≤ n, the sequence contains at least i values

that are at most i.

The name "parking function" comes from the following thought experiment: imagine n many cars

are trying to park in to n parking spaces, and each of the cars have their preferred parking space.

Each car i will go to its preferred parking space, and park there if the space is not already occupied;

otherwise they will try the next spot, until they get parked. A parking function describes preferences

for which all cars can park.

Example 2.1.2. (2,1,2,1) is a parking function, the parking arrangement would be the first car

goes to its preferred spot 2, second car goes to 1, third car goes to 2 but it is occupied so it goes to

3, and the fourth car goes to 1 but it is already occupied, and so are 2 and 3, so it would park at 4.

(3,3,1,3) is not a parking function, as the first car would go to its preferred spot 3, the second car

would go to 4, and the third car goes to 1, but the fourth car has no where to go since 3 and 4 are

both occupied.

Theorem 2.1.3. |PF (n) = (n+ 1)n−1|

To see this, notice that if the parking spaces are circular, then the fourth car could be parked at 1,

i.e. if given n+1 spaces arranged in a circular fashion, then all kinds of preferences can be parked.

There are (n + 1)n many such preferences, each leaving one vacant space; by symmetry there are

2



n+1 choices for preferences that leave space n+1 as the vacant space, thus the number (n+1)n−1.

Parking function first appeared in the study of idealized data storage method popular in theoretical

computer science, and it is also crucial in algebraic combinatorics since the dimension of our diagonal

harmonics is precisely equal to the number of parking function. We will discover deeper connection

between them in Shuffle Theorem. Right now, we want to introduce parking function in another

form which is used in the Shuffle Theorem.

Definition 2.1.4. A Dyck path Γ ∈ Dyck(n) is a staircase walk from (0, 0) to (n, n) that lies above

(but might touch) the diagonal y = x.

Theorem 2.1.5. |Dyck(n)| = Cn = 1
n+1

(
2n
n

)
where Cn denotes the Catalan number.

The Catalan number was first discovered by Mongolian/Chinese mathematician Mingantu around

1730, and was studied more by Euler and Eugène Catalan later. To prove the theorem, we use its

recurrence relation

C0 = 1, Cn =
n∑

i=1

Ci−1Cn−i (2.1.1)

It is clear that C0 = 1. Let (i, i) be the first point of contact with the diagonal, We notice that

the number of possible lower portion of Dyck path (under the point (i.i) where it never touches the

diagonal is exactly Ci−1, and the upper portion has Cn−i many possibilities).

We introduce parking function in the form of labelled Dyck path, which we would continue to work

with and refer to labelled Dyck path as parking function from now on in this text.

Definition 2.1.6. A labeled Dyck path with length n denoted as γ ∈ LDyck(n) is a Dyck path

labelled by the numbers 1, ..., n such that the labels of consecutive north steps are increasing.

We can see the bijection between labelled Dyck paths and parking functions as following: let

a = (a1, ..., an) be a parking function, and let bi count the number of occurrences of i in a. Let

D ∈ Dyck(n) with bi north steps after the (i− 1)-st east-step, the fact that a is a parking function

ensures D being a Dyck path. Label the bi north-steps after the (i−1)-st east step by the positions

of the letter i in a. These combinatorial objects are of special interests to us, because we have the

3



result by Haiman

dim(DHn) = (n+ 1)n−1 (2.1.2)

and the Shuffle Theorem by Carlsson and Mellit (2018)

Hilb(DHn) =
∑

γ∈LDyck(n)

qdinv(γ)tarea(γ) (2.1.3)

where the Hilbert series, dinv and area will be defined in the next section.

2.2. Shuffle Theorem

To introduce Hilbert Series and Frobienius Series thus stating the Shuffle Theorem, we need to start

with some basic representation theory and symmetric function theory.

Definition 2.2.1. Let G be a finite group. A representation of G is a set of square matrices

{M(g)|g ∈ G} such that

M(g)M(h) =M(g · h) ∀g, h ∈ G (2.2.1)

where · means the group multiplication. We would be mostly focusing on the representations

of symmetric groups Sn. Because matrices are linear transformations, one can also think of a

representation as a G-module.

Definition 2.2.2. Let V be a vector space and G be a group. Then V is a G-module if there is a

multiplication gv̄ of elements of V by elements of G such that

1. gv̄ ∈ V

2. g(cv̄ + dw̄) = c(gv̄) + d(gw̄)

3. (gh)v̄ = g(hv̄)

4. 1Gv̄ = v

for g, h ∈ G, v̄, w̄ ∈ V, c, d ∈ C.

4



EveryG-module is aG-representation. Our most prominent example would be C[Xn] = C[x1, ..., xn].

Given f(x1, ..., xn) ∈ C[Xn] and σ ∈ Sn, then

σf = f(xσ1 , ..., xσn) (2.2.2)

defines an action of Sn on C[Xn] thus makes C[Xn] an Sn-module. Let V be a subspace of C[Xn],

then

V =

∞∑
i=0

V (i) (2.2.3)

where V (i) is the subspace consisting of all elements of V of homogeneous degree i in the xj . This

defines a grading of the space V .

Definition 2.2.3. Hilbert series Hilb(V ; q) of V to be the sum

Hilb(V ; q) =
∞∑
i=0

qidim(V (i)) (2.2.4)

One can also think of the Hilbert series as the generating function of the dimensions.

Beyond the Hilbert series, which encodes information about the dimensions of graded subspaces,

the Frobenius series captures the decomposition of these subspaces as Sn-representations. Before

defining the Frobenius series, we first introduce a key property of Sn-representations that enables

its definition.

Theorem 2.2.4. (Maschke’s Theorem) Let G be a finite group and let V be a nonzero G-module

(a G-representation). Then

V =W (1) ⊕W (2) ⊕ · · · ⊕W (k)

where each W (i) is an irreducible G-submodule of V .

Modules that have this property are called completely reducible. Since Sn is a finite group for fixed

n, its representations enjoy this property as well. The irreducible Sn-modules are known as Specht

modules, denoted by Sλ, and are indexed by partitions λ ⊢ n. These modules can be constructed

5



combinatorially; for further details, see Sagan (2001). Now we turn our attention to symmetric

functions. Let K be a field and it is usually C, σ ∈ Sn, and f(x1, . . . , xn) ∈ K[x1, . . . , xn]. f is a

symmetric function if

σ · f = f(xσ1 , . . . , xσn) = f

for all σ ∈ Sn.

Definition 2.2.5. Let λ = (λ1, . . . , λl) be a partition. The monomial sytmmetric function corre-

sponding to λ is

mλ = mλ(x) =
∑

xλ1
i1

∑
xλ2
i2

· · ·
∑

xλl
il

where the sum is over all all distinct monomials having exponents λ1, . . . , λl.

Example 2.2.6.

m2,1 = x21x
2
2 + x1x

2
2 + x21x3 + x1x

2
3 + . . .

The ring of symmetric function is defined to be Λ = Cmλ, and it is not hard to verify that it is

indeed a ring since it is close under product. If we denote Λn as the space spanned by all mλ of

degree n, then {mλ : λ ⊢ n} is a basis for Λn. We are mainly interested in another basis for the

symmetric function ring Λn.

Definition 2.2.7. A semistandard tableau of shape λ = (λ1, . . . , λl) where λ ⊢ n, is an array with

the first row having λ1 numbers, second row having λ2 numbers,... the l-th row having λl numbers.

The numbers are weakly increasing in the rows, and strictly increasing in the columns.

Example 2.2.8. Below is an exmaple of a semistandard tableuax of shape (3, 2, 1, 1)

1 3 3

2 4

3

5

6



Definition 2.2.9. Given a generalized tableau T of shape λ, it has a weight in C[x]

xT =
∏

(i,j)∈λ

xTi,j

The weight of in Example 2.2.8 is xT = x1x2x
3
3x4x5.

Given a partition λ, the associated Schur function is

sλ(x) =
∑
T

xT

where the sum is over all semistandard λ-tableaux T .

Example 2.2.10. For λ = (2, 1), we have the tableaux

a b

c

where a < c, a ≤ b, so

s2,1(x) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + · · ·+ 2x1x2x3 + 2x1x2x4 + . . .

Next we define the Characteristic Map, which bridges the world of representation theory and sym-

metric function ring.

Definition 2.2.11. A class function on Sn is a function that is constant on the conjugacy classes

of Sn. Let Rn be the space of class functions of Sn. The characteristic map is chn : Rn → Λn

chn(χ) =
∑
µ⊢n

z−1
µ χµpµ

where χµ is the value of χ on the class µ.

Define an inner product on Λn by

< sλ, sµ >= δλµ

7



then chn preserve these inner products. Another important fact about this map is that chn(Sλ) = sλ

where Sλ denotes the irreducible Sn characters. This makes the characteristic map an isometry since

it maps orthonormal basis to another. Now we are ready to define Frobenius series.

Definition 2.2.12. Assume V is a subspace of C[Xn] fixed by the Sn action. The Frobenius series

F (V ; q) of V is defined to be the symmetric function

∞∑
i=0

qi
∑

λ∈Par(i)

Mult(Sλ, V (i)) · sλ

where Mult(Sλ, V (i)) denotes the multiplicity of the irreducible character Sλ in the character of

V (i) under the action.

Note that we can derive the Hilbert Series from a Frobenius Series, namely

< Frob(V ; q), h1n >= Hilb(V ; q)

Now we are ready to introduce the space of Harmonics.

Definition 2.2.13. The space of Harmonics Hn is defined as

Hn = {f(Xn) ∈ C[Xn] :

n∑
i=1

∂kxi
f(Xn) = 0 for all k > 0} (2.2.5)

Hn is isomporphic to the Ring of Coinvariants as Sn modules, but we will keep refering them as

harmonics/coinvariants in this thesis. Given a f ∈ C[Xn], Sn acts on f by permuting the indices of

the variables, i.e.

σ · f(x1, ..., xn) = f(xσ1 , ..., xσn)

Now we are ready to define the ring of coinvariants.

8



Definition 2.2.14. The Coinvariant Ring of Sn is

Rn =
C[Xn]

I(Xn)+
(2.2.6)

where I(Xn)
+ = {f ∈ C[Xn]|σ · f = f and f is not a constant}.

Haiman (1994) has a detailed proof of the isomorphism and notes that an isomorophism f : Hn → Rn

just sends h ∈ Hn to f(h), the element of C[Xn] represented modulo I(Xn)
+ by h.

To study the Hilbert series of Hn, we need to use the basis Artin and Milgram (1944) found for Rn:

Theorem 2.2.15. {xα1
1 · · ·xαn

n : 0 ≤ αi < i} form a basis for Rn.

Corollary 2.2.16. dim(Rn) = n!

The Corollary results from directly computing the number of basis elements.

Corollary 2.2.17. By Artin’s basis, the Hilbert Series of Rn is

Hilb(Rn) =
∑
α|=n

0≤αi<i

q|α| (2.2.7)

= 1 · (1 + q) · (1 + q + q2)...(1 + q + ...qn−1) (2.2.8)

If we introduce a new notation called the q−integers where [k]q = 1 + q + q2 + ... + qk−1, then we

can write (5) as [n]q! = [n]q[n − 1]q...[1]q. Rn while having interesting Sn-module structure itself,

also possesses rich geometric properties.

Theorem 2.2.18. Borel (1953) Rn
∼= H∗(Fln) where Fln denotes the complete flag variety of n.

Other than the coinvariant ring Rn, there is actually a family of generalized coinvariant rings that

are studied by mathematicians, one of them being the Diagonal Coinvariants DRn, and we will

see how Catalan Combinatorics play an important role in the study of DRn. Given a polynomial
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f(Xn, Yn) ∈ C[Xn, Yn], Sn acts diagonally by permuting the x and y variables by

σ · f(x1, ..., xn, y1, ..., yn) = f(xσ1 , ..., xσn , yσ1 , ..., yσn) (2.2.9)

Definition 2.2.19. The Diagonal Coinvariant Ring of Sn is

DRn =
C[Xn, Yn]

I(Xn, Yn)+
(2.2.10)

where I(Xn, Yn)
+ is the ideal generated by all polynomial f(Xn, Yn) ∈ C[Xn, Yn] that are invariant

under the diagonal action of Sn without constant term.

DRn also has interesting geometry, as Carlsson and Oblomkov Carlsson and Oblomkov (2018) re-

lated DRn to type A affine Springer fibers using the Lusztig-Smelt paving of these varieties, which

led to another proof (the original proof by Haiman) that dim(DRn) = (n+ 1)n−1, and an explicit

monomial basis of DRn.

Similar to Rn, it is isomorphic to DHn as Sn-module, which we define below

Definition 2.2.20. The Ring of Diagonal Harmonics is

DHn = {f(Xn, Yn) ∈ C[Xn, Yn] :
n∑

i=1

∂rxi
∂syif(Xn, Yn) = 0 for all r, s ≤ 0, r + s > 0}

The dimension of DRn becomes much harder to track when we add another set of variables, and

the original and first proof of its dimension was by Haiman using geometry of Hilbert Schemes.

Theorem 2.2.21. Haiman (2002)

dim(DRn) = (n+ 1)n−1 (2.2.11)

which is the same as |PF (n)|. The Hilbert and Frobenius series of DRn had been unsolved for many

years too before Calsson and Mellit proved the Shuffle Theorem. First we define what a Hilbert
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Series for a bigraded space is.

Definition 2.2.22. Hilbert Series for a bigraded space V ⊆ C[Xn, Yn] is defined as

Hilb(V a,b
n ) =

∑
a,b≥0

qatb · dim(V a,b) (2.2.12)

Definition 2.2.23. Frobenius Series for a bigraded space is W ⊆ C[Xn, Yn] is defined as

Frob(V a,b
n ) =

∑
i,j≥0

qitj
∑
λ⊢n

sλMult(Sλ,W i,j)

Similarly we have the relation

< Frob(W ; q, t), h1n >= Hilb(V ; q, t)

Before stating the Shuffle Theorem, we need to introduce two statistics on a parking function (in

the labeled Dyck path form).

Definition 2.2.24. The area of a labeled Dyck path γ ∈ LDyck(n) is defined to be the number of

complete boxes above the diagonal line and under the path.

Definition 2.2.25. The diagonal inversion, i.e. dinv of a labeled Dyck path γ ∈ LDyck(n) is a

pair of cars (s, b), where s < b and either

1. (primary diagonal inversion) s and b are on the same diagonal, and b is on the right of s, or

2. (secondary diagonal inversion) b is in the diagonal above s, and b is on the left of s.

Example 2.2.26. In Figure 2.2.1, we have that area(γ) = 6, dinv(γ) = 7, where the dinv pairs

are (1, 3), (1, 6), (3, 6) for primary diagonal inversion, and (2, 7), (1, 8), (3, 8), (6, 8) for secondary

diagonal inversion.
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Figure 2.2.1: Labeled Dyck path γ ∈ LDyck(8)

Theorem 2.2.27. (The Shuffle Theorem) Carlsson and Mellit (2018)

Hilb(DRn) =
∑

P∈PF (n)

qdinv(P )tarea(P ) (2.2.13)

In fact, the shuffle theorem stated the Frobenius series of DRn, so the Hilbert Series is a natural

corollary, but in this text we would just focus on the Hilbert Series.

After Carlsson and Mellit proved the Shuffle conjecture, Haglund and Loher’s derived Schedules

Formula also automatically became true. The Schedules Formula offers a somewhat more compact

expression, since the sum is over permutations rather than parking functions.

Theorem 2.2.28. (The Schedules Formula) Haglund and Loehr (2005)

Hilb(DRn) =
∑
σ∈Sn

tmaj(σ)
n∏

i=1

[wi(σ)]q (2.2.14)

Section 2.4 is dedicated for presenting the details of this formula including the defining the two

statistics maj and wi. The Schedules Formula gave rise to another formula for the Hilbert Series:

Theorem 2.2.29. (W.)

Hilb(DRn) =
∑
a,b≥0

qatbP (n) (2.2.15)
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where P (n) is a polynomial in n, and P (n) is given by (permissible is defined in Chapter 4):

∑
S⊆{1,2,...,b}

s1+s2+···+sd=b

∑
U⊆{1,2,...,sd}

a∑
k=0

∑
τl=k+2 for l∈U
τ permissible

(∣∣DS∩W (τ, U)
∣∣)·([qk](∏sd

i=1[τi]q
))

·
(
[qa−k]

(
[n−sd]q!

))
(2.2.16)

Before we dive into more details of the formulas, we should learn about another object of interest

in algebraic combinatorics which is the Macdonald Polynomials, and its connection to our subject

the Diagonal Harmonics.

2.3. Macdonald Polynomials

Macdonald polynomials, introduced by Ian Macdonald in 1987–1988, revolutionized symmetric

function theory by unifying classical polynomial families (Schur, Hall–Littlewood, Jack) through

a two-parameter (q, t) framework. Their discovery resolved long-standing problems in algebraic

combinatorics and forged unexpected bridges to physics and geometry.

Macdonald Polynomials first emerged from studies of q-analogs of Selberg integrals, prompting

Macdonald to construct these polynomials via orthogonalization under a novel scalar product. For

more on Macdonald Polynomial’s origin story, refer to Haglund (2008). The study of Macdonald

polynomials have importance to geometers and physicists, and for us, a primary reason we study

it is that it is the 2-parameter generalization of the Schur function, which we introduced in the

previous section. Setting the q, t parameter to 0 would give us Schur function. We turn our atten-

tion to the modified Macdonald Polynomial H̃µ(X; q, t). Below is the theorem for the existence of

Macdonald polynomials that is indexed by partitions, and has 2 extra parameters q and t. In other

words, the family of polynomials that satisfy the three triangularity criterions are the Macdonald

Polynomials. Before we can introduce the formula, we need to introduce the dominance ordering

and the plethystic substitution.

Definition 2.3.1. The dominance order (or majorization order) on partitions is a partial order

defined as follows:

Let λ = (λ1, λ2, . . . , λℓ) and µ = (µ1, µ2, . . . , µm) be two partitions of n (i.e., they both sum to n).
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We say that λ dominates µ (denoted λ ⊵ µ) if:

k∑
i=1

λi ≥
k∑

i=1

µi, for all k ≥ 1

where we assume that missing parts in a partition are treated as 0 (i.e., extend partitions with

trailing zeros if they have different lengths).

Definition 2.3.2. Given a symmetric function f and a formal expression X, the plethystic sub-

stitution f [X] is defined by substituting the power sum symmetric function pk as follows:

pk[X] =
∑
x∈X

xk.

Here, X may represent a sum of variables, an infinite series, or an expression involving other

symmetric functions.

Example 2.3.3. LetX = x1+x2+x3. Then the plethystic substitution of the power sum symmetric

function is:

p2[X] = x21 + x22 + x23.

If X = 1 + q + q2 + . . . , then

pk[X] =
1

1− qk
.

Similarly, for a Schur function sλ, we have:

sλ[1 + q] = sλ(1, q).

Theorem 2.3.4. The following three conditions uniquely determine a family H̃µ(X; q, t) of sym-
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metric functions:

H̃µ[X(q − 1); q, t] =
∑
ρ≤µ′

cρ,µ(q, t)mρ(X) (2.3.1)

H̃µ[X(t− 1); q, t] =
∑
ρ≤µ

dρ,µ(q, t)mρ(X) (2.3.2)

H̃µ(X; q, t)|xn
1
= 1 (2.3.3)

One can regard the previous theorem as the definition of the modified Macdonald Polynomials, but

it is implicitly defined, and so one of the major open problems regarding Macdonald Polynomials was

finding an explicit combinatorial formula for it. The main task was to find appropriate statistics of

labelled partitions so that Macdonald Polynomials can be expressed as a sum of mρ(X)qstat1tstat2.

Fortunately, this was solved by Haiman, Haglund and Loehr and now it is known as the HHL

formula.

Theorem 2.3.5. (HHL Formula)

H̃µ(X; q, t) =
∑

σ:µ→Z+

xσtmaj(σ,µ)qinv(σ,µ)

where maj and inv are statistics defined on labelled partitions.

More details of the HHL formula can be found at Haglund (2004). Another major open problems

surrounding Macdonald Polynomials is its Schur positivity, a fact that beautifully ties Macdonald

Polynomials to Diagonal Harmonics. Garsia and Haiman (1993) defined for each partition λ,

∆λ = det||xpji y
qj
i ||i,j=1,...,n

An example is shown in Figure 2.3.1 for calculating ∆3,2. Denote the linear span of all the partial

derivatives as L[∂x∂y∆λ]. They also realized that if the dimension of L[∂x∂y∆λ] is n!, then we would
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Figure 2.3.1: Computing ∆3,2.

have

Frob(L[∂x∂y∆λ]) = H̃µ(X; q, t)

which by the definition of Frobenius series, is Schur positive, thus proving the Schur positivity of

the Macdonald Polynomials. Therefore the Macdonald Schur Positivity conjecture would be proven

if dim(L[∂x∂y∆λ]) = n!, which is the very famous n! conjecture, is proven. The n! conjecture was

later proven by Haiman, but the proof involves Hilberst Schemes and technqiues from algebraic

geometry, so although the positivity is proven, a combinatorial formula for the Schur coefficient

H̃µ(X; q, t)|sλ is still open. There are some special cases that have been solved, for example when µ

is a hook shape, i.e. µ2 = µ3 = · · · = 1, and also the case µi ≤ 2 for i = 2, 3 . . . by Assaf (2018) , the

2 column case where µi ≤ 2 for all i by Zabrocki (1998), but the general case is still open. There is

also a very interesting conjecture called Butler’s conjecture, which would have given a "recurrence

relation" on the Schur coefficient, in which a special case from a hook shape to an augmented hook

shape is proven by Vetter (2024) and Kim et al. (2022), but the general case is still open.

Notice that the definition of L[∂x∂y∆λ], as the linear span of partial derivatives, closely resembles

the definition of Diagonal Harmonics, which is the solution space to the system given by the sum

of all partial derivatives. In fact, the former is a subspace of the latter.

Theorem 2.3.6. If µ ⊢ n, then L[∂x∂y∆µ] is a subspace of DHn.

The proof just involves checking the sums and determinants, and can be found at Hicks (2019).

Since L[∂x∂y∆µ] is a subspace of DHn, studying one provides insight into the other. This connection

allows us to analyze DHn through the structure of L[∂x∂y∆µ] and vice versa, making their study

inherently intertwined.
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2.4. Schedule’s Formula

In this section, we present the proof of Schedule’s Formula credited to Haglund and Loehr (2005).

Here we recall the Schedules Formula. First we introduce the notion of q-integers, that [k]q =

1 + q + ...+ qk−1. Note the at if we let q = 1 then we have exactly k.

Theorem 2.4.1. (The Schedules Formula) Haglund and Loehr (2005)

∑
P∈PF (n)

qdinv(P )tarea(P ) =
∑
σ∈Sn

tmaj(σ)
n∏

i=1

[wi(σ)]q (2.4.1)

Here we finally introduce the major index statistics and the w-sequence of permutations.

Definition 2.4.2. For σ ∈ Sn, let the 1-st run be defined to be the first increasing subsequence,

i-th run be defined to be the i-th increasing subsequence.

• wi(σ) = |entries σj in the same run as σi and σj > σi|+ |entries σk in the next run of σi and

σk < σi|

While calculating wi, we adjoint 0 at the end of σ. Denote the sequence wi(σ) as wseq(σ).

Example 2.4.3.

σ = 4.25.138.679 ∈ S9 (2.4.2)

wseq(σ) = 1.22.212.321 (2.4.3)

maj(σ) = 1 + 3 + 6 = 10 (2.4.4)

The dots denote the descents set S = {1, 3, 6}. Putting everything together, σ gives t10[2]4·[3]·[2]·[1].

The term "schedules" comes from the idea that the schedule tells you the order (or schedule) of

cars being inserted to build up a parking function. We present the "schedules" in the following

paragraph.

Insertion Schedule: Let Γ be a parking function. We call y = x as the 0-th diagonal, and y = x+i
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as the i-th diagonal for i = 1, 2, 3, .... Let c be a car not present in Γ yet, and let k be the diagonal

such that k + 1th diagonal is empty, and the k-th diagonal contains no car smaller than c.

• Let s < c be a car in the k − 1st diagonal of Γ. Move all cars which are in a higher row than

s up and to the right once. Place car c directly above car s

• Let b > c be a car in the k-th diagonal of Γ. Move all cars which are in a higher row than b

up and to the right once. Place c directly above and to the right of b.

• If k = 0, move all cars up and to the right once. Place c to the lower left corner.

Example 2.4.4. In Figure 2.4.1, we present 3 ways of inserting 5 into the parking function using

the proposed insertion schedule. The first parking function uses the first algorithm, and s = 2. The

second uses the second algorithm, and b = 8. The third uses the first algorithm, and s = 4.

Figure 2.4.1: Inserting a 5 into the 2-diagonal. The cars creating new diagonal inversions with 5
are circled.

Denote the set of all new parking functions as Insert(Γ, c, k), and dc(Γ) as the parking function

obtained by deleting c, and moving everything that was previously to the right and above c, down

and below one step so it is still a parking function. Then we have the following proposition.

Proposition 2.4.5. Let Γ ∈ PF (n). There is exactly one choice of γ, c and k such that Γ ∈

Insert(γ, c, k). In fact k is exactly the highest number of nonempty diagonal of Γ, c is the smallest

car in the k-diagonal of Γ, and γ = dc(Γ).

The insertion algorithm is designed such that the proposition holds. We want to stress that there

is only one way to build up a parking function. Other than this, this insertion algorithm does what

we want with the two parking function statistics area and dinv too.
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Lemma 2.4.6. For any parking function that follows the Insertion Schedule, we have

∑
γ∈Insert(Γ,c,k)

tarea(γ)qdinv(γ) = tarea(Γ)+kqdinv(Γ)[|Insert(Γ, c, k)|]

We get a proof of the lemma with the help from our example.

Example 2.4.7. For our example in Figure 2.4.1, every one of γ ∈ Insert(Γ, c, k) has 2 more areas,

because 5 was added on the 2nd diagonal, thus the change in t power.

For the q power, notice that the only new potential dinv are the s and b in the insertion schedule.

c would potentially create new dinv with s in the previous diagonal, and b in the same diagonal.

In both cases, a dinv is created when c is further to the left. Due to this reasoning, inserting c on

the rightmost possible position gives no new dinv, just like in our example, the first γ has the same

dinv as our original Γ. As 5 moves to the left to the permitted positions, it creates a new dinv with

the car it passed over, whether it was through the first or second insertion schedule, and thus the

appearance of [3] = q0 + q1 + q2 in our example, and in general [|Insert(Γ, c, k)|]. Therefore we

would have γ have dinv(Γ), dinv(Γ) + 1, dinv(Γ) + 2, ...dinv(Γ) + |Insert(Γ, c, k)| − 1 as claimed.

We need a few more observations before we can get to our final theorem. The end goal is that we

want to get a sum in permutations instead of parking functions, while still accounting for dinv and

area. We do this by building trees of parking function from a permutation. Let τ ∈ Sn, we will

build a tree of parking function of τ as following. Start with the τn which will be a parking function

of size 1, and then proceed inductively as such: at the i-th stage, let c = τn−i, and k be so that τn−i

is in the k-th increasing subsequence (we will refer to it as run in the text) counting from the right.

We build a tree of function by adding a child Insert(Γ, c, k) to the current parking function Γ. An

example of tree of parking functions built from τ = 2314 is shown in Figure 2.4.2. Notice that all of

the parking functions generated, has their 0th diagonal being the last run, first diagonal being the

second to last run and so on. We denote the set of parking functions generated by a permutation

(schedule) τ to be PF (τ), thus connecting permutation and parking functions.

Now we ask the question, what happens to t and q while we sum over PF (τ)? If we sum up the
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Figure 2.4.2: The tree of parking functions built from τ = 2314.

trees in our examples, we get precisely t2[2]q. We know exactly what happens when we just insert

one τi to the current parking function by Lemma 2.4.6. Notice that all of the parking functions in

PF (τ) has area exactly the same as maj(τ), since every time a descent appears, all of the elements

afterwards are moved up one diagonal, which is equivalent to what happens to maj of a permutation

when we add a descent in the beginning.

Now let’s track the q statistics. Given a permutation τ ∈ Sn, we start to append 0 at the end of τ ,

this accounts for the special case k = 0 during the insertion schedule. Then the schedule number

wτ (c) is the number of entries in the same run that is bigger than it plus the number of entries in

the next run that are smaller than it, which correspond to the number of b and c’s in the Insertion

Schedule. Now we finally get

Theorem 2.4.8. For every permutation τ ,

∑
Γ∈PF (τ)

tarea(Γ)qdinv(Γ) = tmaj(τ)
∏
c

[wτ (c)]q (2.4.5)

Theorem 2.4.1 is thus obtained by summing over all the permutations σ ∈ Sn, thus getting all of

the parking functions in their trees. The proof of the main theorem of the thesis has a similar taste

to the proof of the Schedules Fromula.

For now, we have finished telling the combinatorics side of the story. Now we move on to tell the

algebraic side of the story.
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CHAPTER 3

REPRESENTATION STABILITY

3.1. FI Modules

Church and Farb (2013) discovered a significant property of sequences of representations that ul-

timately enabled the development of this thesis. They demonstrated that certain sequences of

representations exhibit stabilization when considered sufficiently far along the sequence. This chap-

ter introduces the underlying representation theory behind this phenomenon, culminating in the

proof of the following theorem:

Theorem 3.1.1. The coefficient of qatb of Hilb(DHn), i.e. the dimension of DHa,b
n is eventually

a polynomial of n.

We start our introduction with a motivating example of representation stability.

Definition 3.1.2. The n-th Configuration Space of C is

Confn(C) = {(z1, ..., zn) ∈ Cn| ∀i < j, zi ̸= zj} (3.1.1)

There is a natrual action of Sn on the Configuration space by permuting the indices, and the action

also descends to its cohomology H i
(
Confn(C);C

)
.

Recall that irreducible representations of Sn are indexed by partitions. Denote the irreducible

representation indexed by (λ1, λ2, ..., λr) as V (λ1, ..., λr). Farb and Church’s calculation shows

that

H1
(
Conf2(C)

)
= V (2)⊕ V (1, 1) (3.1.2)

H1
(
Conf3(C)

)
= V (3)⊕ V (2, 1) (3.1.3)

H1
(
Conf4(C)

)
= V (4)⊕ V (3, 1)⊕ V (2, 2) (3.1.4)

H1
(
Conf5(C)

)
= V (5)⊕ V (4, 1)⊕ V (3, 2) (3.1.5)

H1
(
Conf6(C)

)
= V (6)⊕ V (5, 1)⊕ V (4, 2) (3.1.6)
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Notice that the irreducible decomposition "stabilizes" starting from 4. To state this more rig-

orously, let V (a1, ..., ar) to be the irreducible Sn-representation corresponding to the partition(
(n −

∑r
i=1 ai), a1, ..., ar

)
, where a1 ≥ a2 ≥ ... ≥ an. Note that this is a partition only when

n− (
∑r

i=1 ai) ≥ a1.

Definition 3.1.3. Church and Farb (2013). A sequence of representations Vn are representation

(multiplicity) stable if the decomposition of Vn into Sn-representations as

Vn =
⊕
λ

cλ,nVλ (3.1.7)

stabilizes, i.e. the coefficients cλ,n are eventually independent of n.

Now we introduce the properties needed for representation stability. Let FI be the category of

objects being finite sets n := {1, . . . , n}, and morphism being injections m ↪→ n.

Definition 3.1.4. An FI-module over a commutative ring k is a functor V from FI to the category

of k-modules. Denote the k-module V (n) by Vn.

Example 3.1.5. 1. Vn = H i(Confn(M);Q) is an FI-module, where Confn(M) = Configuration

space of n distinct ordered points on a connected, oriented manifold M .

2. DHa,b
n is an FI-module with the injection map being the canonical inclusion map.

3. R(r)
J (n) is a co-FI-module, where J = (j1, . . . , jr), R(r)(n) = ⊕R(r)

J (n) = r-diagonal coinvariant

algebra.

Our diagonal coinvariant algebra is actually a special case of r-diagonal coinvariant algebra where

r = 2.

Definition 3.1.6. Let K be a field of characteristic 0, and fix r ≥ 1. For n ≥ 0, consider the algebra

of polynomials

K[X(r)(n)] = K[x
(1)
1 , . . . , x(1)n , . . . , x

(r)
1 , . . . , x(r)n ]
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Then Sn acts on this algebra diagonally by

σ · x(i)j := σ
(i)
σ(j)

It has a natural r-fold multi-grading, where a monomial has multi-grading J = (j1, . . . , jr) if its

total degree in the variables x(k)1 , . . . , x
(k)
n is jk, so R(r)(n) = ⊕JR

(r)
J (n).

Definition 3.1.7. An FI-module is finitely generated if there is a finite set v1, . . . , vk of elements

in Vi so that span(v1, . . . , vk) = V .

If V is finitely generated, then it enjoys desirable properties that will be useful later in the text,

particularly in understanding the dimension of the space.

Definition 3.1.8. For each i ≥ 1 and n ≥ 0, let Xi : Sn → N be the class function defined by

Xi(σ) = number of i-cycles in the cycle decomposition of σ

Polynomials in the variables Xi are called character polynomials.

Since the vector space of class functions on Sn is spanned by character polynomials, the character

can always be described by a polynomial. Below are two examples of characters written in character

polynomials.

Example 3.1.9. 1. V ≃ Qn, the standard permutation representation of Sn, then χV (σ) is the

number of fixed points of σ, so χV = X1, the number of 1-cycles in the permutation σ.

2. If W = ∧2V , then χW =
(
X1

2

)
−X2, since σ ∈ Sn fixes the basis elements xi∧xj for which the

cycle decomposition of σ contains the pair (i)(j), and negates those that contains the 2-cycle

(i, j).

Notice that in the previous two examples, one character polynomial describes the entire family of

characters for all n ≥ 1, so there is a natural question to ask: is there "the" character polynomial
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that realizes a sequence of characters χn of Sn?

Definition 3.1.10. A sequence χn of characters of Sn is eventually polynomial if there exists r,N

and a polynomial character polynomial P (X1, . . . , Xr) such that

χn(σ) = P (X1, . . . , Xr)(σ)

for all n ≥ N and all σ ∈ Sn. The degree of the character polynomial is defined by setting

deg(Xi) = i.

The central theorem we want to use from Farb and Church’s result, is the following considering field

of characteristic 0:

Theorem 3.1.11. Let V be an FI-module over a field of characteristic 0. If V is finitely generated,

then the sequence of characters χVn is eventually polynomial. In particular, dimVn is eventually

polynomial.

The dimension being polynomial follows from the fact that

dimVn = χVn(id) = P (n, 0, . . . , 0) (3.1.8)

Farb and Church showed that the characters of r-covariant algebras satisfy the criteria of Theorem

3.1.11, as the co-FI structure they admit also ensures the necessary conditions are met. Thus, we

have:

Theorem 3.1.12. For any fixed r ≥ 1 and J = (j1, . . . , jr), the characters χ
R

(r)
J

are eventually

polynomial in n of degree at most |J |. In particular there exists a polynomial P (r)
J (n) of degree at

most |J | such that

dim(R
(r)
J (n)) = P

(r)
J (n) for all n >> 0 (3.1.9)

Letting r = 2 in the previous theorem brings us to the central result that is the cornerstone of our
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thesis:

Theorem 3.1.13. The characters of χ
DRa,b

n
are eventually polynomial in n of degree at most a+ b.

In particular there exists a polynomial Pa,b(n) of degree at most a+ b such that

dim(DRa,b
n ) = Pa,b(n) (3.1.10)

However, Theorem 3.1.13 establishes only the existence of the polynomial Pa,b(n), without providing

an explicit formula. The primary goal of this thesis is to make this polynomial explicit, which will

be the focus of Chapter 4.

Remark 3.1.14. Notice that Theorem 3.1.12 establishes that many other r-coinvariant algebras also

exhibit representation stability. This suggests it would be interesting to investigate their bigraded

subdimensions polynomials. However, at present, even the general (total) dimensions of these

algebras have not been conjectured. There remain many open problems in this area that are ripe

for exploration.

3.2. Stability Range

The stability range is defined as the smallest integer N such that for all n ≥ N , the dimension

dimVn stabilizes. In Church and Farb (2013), they studied the stability of DRa,b
n , and although

they did not state an explicit bound, their results on FI-modules imply a stability range of at most

2(a+ b) for DRa,b
n . Moreover, they proved that the dimension becomes a polynomial in n of degree

at most a+ b once stabilization occurs.

While Church and Farb (2013) gave a proof of the latter fact, there is still gap in existing theory

(which we will point out later) to prove that one can find an explicit stability bound that is 2(a+ b)

just using FI-module theory.

Conjecture 3.2.1. DRa,b
n and DHa,b

n starts to stabilizes at the latest from n = 2(a+ b)

Theorem 3.2.2. The dimension of DHa,b
n is a polynomial in n of degree at most a + b once they

stabilizes.

25



We will be quoting the theorem numbers from the Church and Farb (2013) paper in the rest of the

section. First, Proposition 3.3.3 states that for DHa,b
n , we have stability range

N ≥Weight(DHa,b
n ) + stab-deg(DHa,b

n ) (3.2.1)

where stab-deg(DHa,b
n ) denotes the stability degree of DHa,b

n . On page 37 "Proof of Theorem 1.11"

of the paper Church and Farb (2013), they proved that both the Weight(DHa,b
n ) and the degree of

dimension polynomial to be bounded by a+ b. Therefore to find a stability range, we just need to

find the stability degree.

Due to a gap in the existing theory, we state the following conjecture and proceed under the

assumption that it holds for the remainder of this section.

Conjecture 3.2.3. stab-deg(DHa,b
n ) ≤ stab-deg(C[Xn, Yn]

a,b).

Now we investigate stab-deg(C[Xn, Yn]
a,b). Notice that we have isomorphism

C[Xn, Yn]
a,b ∼= Syma(Cn) ⊗ Symb(Cn). Since Cn has weight of 1 and Syma(Cn) ∼= Sλ(Cn) where

λ = (a), by Proposition 3.4.3, Syma(Cn)⊗Symb(Cn) has weight a+b. By Corollary 4.1.8, we know

that for an FI#-module, stability degree is bounded above by the weight. Therefore we only need

to prove that Syma(Cn)⊗ Symb(Cn) is an FI#-module to show that stab-deg(DHa,b
n ) ≤ a+ b.

To see that Syma(Cn) ⊗ Symb(Cn) is an FI#-module, we know that Cn is an FI#-module by

Example 4.1.2. Since Sym is a Schur functor, by the last paragraph on page 31 of the paper, we

know Syma(Cn) is an FI#-module and thus C[Xn, Yn]
a,b ∼= Syma(Cn) ⊗ Symb(Cn) is an FI#-

module, so we do have stab-deg(C[Xn, Yn]
a,b) ≤ a+ b.

Therefore by (3.2.4), we know that stab-deg(DHa,b
n ) ≤ a + b, and by (3.2.1), we would have a

stability range 2(a+ b) assuming that Conjecture 3.2.3 is true.

Remark 3.2.4. Even if the conjecture is proven, we still wouldn’t claim that 2(a + b) is a sharp

bound, and indeed, we find in Section 4.3 a new bound to be actually a+b. In fact, using only tools

from FI-module theory typically does not yield sharp bounds. See Hersh and Reiner (2017) for

an example where a sharp bound for another Sn-representation—the cohomology of configuration
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spaces—is obtained using symmetric function theory.

Remark 3.2.5. Once the character polynomial stabilizes, the dimension of the representation imme-

diately stabilizes as well. However, there is no known theorem guaranteeing the converse. Indeed,

one can construct toy counterexamples—such as a sequence of sign representations. Nevertheless,

in sequences of representations arising "in nature," such pathological behavior appears to be rare.

While we do not claim that the stabilization of dimension and character polynomial always occur

simultaneously—since we lack a proof—empirical evidence suggests that they usually do.
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CHAPTER 4

PROOF OF MAIN THEOREM

4.1. Main formula

Definition 4.1.1. Let τ ∈ Nn, U ⊆ {1, 2, ..., sd}, S be the descent set such that
∑d

i=1 si = b, define

W (τ) = {σ ∈ Sn|wseq(σ) = τ}

DS = {σ ∈ Sn|Desc(σ) = S}

W (τ, U) = {σ ∈ Sn|wi(σ) = τi for i ̸∈ U,wi(σ) ≥ τi for i ∈ U}

Theorem 4.1.2. (W.) The dimension of DRa,b
n is given by

∑
S⊆{1,2,...,b} s.t.
s1+s2+...+sd=b

∑
U⊆{1,2,...,sd}

a∑
k=0

∑
τl=k+2 for l∈U
τ permissible

(∣∣∣∣DS

⋂
W (τ, U)

∣∣∣∣
)

·

(
[qk]

( sd∏
i=1

[τi]q

))
·

(
[qa−k]

(
[n− sd]q!

))

(4.1.1)

There are two key observations of the w-sequence of σ ∈ Sn. Let the descent set S = {s1, s2, ..., sd}

where s1 + ...sd = b be given. First, wsd+i+1 = n− sd − i, i.e. the tail of the w-sequence is

n∏
i=sd+1

[wi] = [n− sd]q! (4.1.2)

We use the following result in our third parenthesis of (4.1.1).

Theorem 4.1.3. Knuth (1997)

[qk]

(
[n]q!

)
=

(
n+ k − 1

k

)
+

∞∑
j=1

(−1)j
(
n+ k − uj − 1

k − uj

)
+

∞∑
j=1

(−1)j
(
n+ k − uj − j − 1

k − uj − j

)
(4.1.3)

where uj =
j(3j−1)

2 the pentagonal numbers, and k ≤ n.
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Margolius (2001) noted that
(
a
b

)
= 0 when b < 0, so we actually have a finite sum, and there are

exactly ⌊
√

1
36 + 2k

3 ⌋ terms together in both summands. Therefore [qk]

(
[n]!

)
is indeed a polynomial

in n for k ≤ n.

Given k ≤ n and σ ∈ Sn, define a truncation map as follow:

tr(y) =


k + 1, if y > k + 1,

y, otherwise.

The second observation is that

[qk]

( sd∏
i=1

[wi(σ)]q

)
= [qk]

( sd∏
i=1

[tr
(
wi(σ)

)
]q

)
(4.1.4)

With this observation in mind, we only need to worry about the counting problem being: Fix a

descent set S, given a w-sequence τ with maximum τi being k + 1, how many σ ∈ Sn has a w-

sequence that truncate to τ?

This is exactly the first parenthesis in (4.1.1) which is
(∣∣DS

⋂
W (τ, U)

∣∣). We claim this is a

polynomial in n, and we will state and prove this in Theorem 4.1.10 later in the text. Assuming

this theorem, we are ready to give a proof of our main result Theorem 4.1.2

Proof of Theorem 4.1.2. First, notice that the first parenthesis
(∣∣DS

⋂
W (τ, U)

∣∣) is a polynomial

in n by Theorem 4.1.10, which we assume now and prove later. Second parenthesis
(
[qk]
(∏sd

i=1[τi]q
))

is a constant, and third parenthesis
(
[qa−k]

(
[n− sd]q!

))
is a polynomial in n by Theorem 4.1.3.

Now we analyze the 4 summations. First, given a fixed b we want to sum over all possible descent

set that gives s1 + s2 + ...sd = b. Given a descent set, we want to sum over all the possible τ ∈ Nn

such that there exists σ ∈ Sn with wseq(σ) = τ . The number of such τ only depends on a and

the descent set S, since we noticed in our first observation that the tail of the w-sequence of σ

is always (n − sd, n − sd − 1, ..., 2, 1). The fact that it also depends on the descent set S comes

from the definition of permissible, which we delay until after this proof, as permissible is another

restriction on τ that depends on S and ensures
(∣∣DS

⋂
W (τ, U)

∣∣) ̸= 0, thus the second and fourth
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summation. In addition, for the fourth summation we are summing from τl = k+2 to avoid double

counting: for example, W
(
(1, 1, 4, 5, 4, 3, 2, 1), ϕ

)
is already counted once for k = 3, U = ϕ, so for

U = {3}, we want to calculate W
(
(1, 1, 5, 3, 2, 1), {3}

)
to avoid counting W

(
(1, 1, 4, 5, 4, 3, 2, 1), ϕ

)
again. Finally, observe that

[qa]
( n∏
i=1

[
wi(σ)]q

)
=

a∑
k=0

(
[qk]
( sd∏
i=1

[wi(σ)]q
))

·
(
[qa−k]

( n∏
i=sd+1

[wi(σ)]q
))

(4.1.5)

Therefore we have the third summation. Notice none of the summations depend on n, as they only

depend on a and b, so we have that (4.1.1) is indeed a polynomial in n that calculates the coefficient

of qatb in the Schedule Formula.

Now we come back to the definition of permissible.

Definition 4.1.4. Let the descent set S and i ∈ {1, 2, . . . , n} be given, and t be so that st ≤ i < st+1.

Define the maxS wi as

max
S

wi :=


(st+1 − i) + (st+2 − st+1), if t < d− 1,

(sd − i) + (n− sd), if t = d− 1,

n− sd, if t = d.

Similarly define minS wi as

min
S
wi :=


st+1 − i, if i is not a descent position,

1, if i = st for some t.

Note that given σ with descent set S, the maximum and minimum number of wi(σ) are exactly

maxS wi and minS wi, hence the definition.

Definition 4.1.5. Let the descent set S be given, let τ ∈ Nn. τ is permissible if minS wi ≤ τi ≤

maxS wi, and for elements j in the i-th run {σsi , σsi+1, ..., σsi+1−1} we have wj ≤ wj+1 + 1.
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Before we prove our claim about permissibility, we need to identify where n can be, given σ ∈ Sn

and σ ∈ DS ∩W (τ, U).

Definition 4.1.6. Let the descent set S and U be given, w ∈ Nn, A maximal spot is σk that

satisfies one of the following conditions

1. k = n and wsd(σ) < maxS wsd

2. k ∈ {s1, ..., sd} and k = sm, sm−1 ̸= sm − 1, wsm−1(σ) < maxS wsm−1(σ), and wsm(σ) =

maxS wsm(σ).

3. k ∈ {s1, ..., sd} and k = sm, sm−1 ̸= sm − 1, wsm−1(σ) < maxS wsm−1(σ), and k ∈ U .

Proposition 4.1.7. If DS
⋂
W (τ) ̸= ϕ, then for σ ∈ Ds

⋂
W (τ), n can only be at the maximal

spots, and there is always at least one maximal spot.

Proof. First of all, n can only be at the descent positions and the last position since it is bigger

than anything else in the permutation. Now separate into 3 cases

1. k = n

If wsd(σ) = max wsd , then σsd is greater than everything in the next run and thus greater

than n, which can’t happen.

2. k ∈ {s1, ..., sd} and k = sm

If sm−1 = sm − 1, then sm = n < sm−1, which can’t happen.

If wsm−1(σ) = maxS wsm−1(σ), then wsm−1(σ) > wsm = n, which can’t happen.

3. k ∈ {s1, ..., sd}, k = sm and k ∈ U

Note since k ∈ U , we have that τk ≥ v for some number v, so naturally τk = maxSwk(σ) is

included in this case.

Now we prove the existence of a maximal spot. First, if wsd < max wsd , then n is a maximal

spot, so we can have σn = n. If not, then we have wsd = max wsd , and if wsd−1
̸= maxS wsd−1

(σ),
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then sd is a maximal spot. If however wsd−1
̸= maxS wsd−1

(σ), then find the smallest v such that

wsv−1 ̸= maxS wsv−1(σ). If we get to v = 2 and still no v satisfies , then s1 is a maximal spot.

Proposition 4.1.8. Let the descent set S be given, and let τ ∈ Nn be permissible, then DS∩W (τ) ̸=

ϕ. The converse of the statement is also valid.

Proof. Observe that any σ ∈ DS
⋂
W (τ) has wi values as described, so the converse of the statement

is true.

Now assume τ is permissible. We can build up a permutation with the desired descent set and the

given τ by finding the maximal spot at every stage.

To build this permutation, start by inserting n. wi = n can only be inserted at a maximal spot, and

we know that maximal spots exist by Proposition 4.1.7, so we know where n would be inserted.

We build up the rest of the permutation in a similar fashion inductively. Now we insert y where

1 ≤ y < n. At this stage we modify our definition of maximal spot to define the maximal spot while

trying to insert y. We call "a maximal spot while trying to insert y" as a y-maximal spot. Denote

the rightmost available spot in each run σsi , ..., σsi+1−1 as ri. A y-maximal spot is defined as follow:

1. Let the last available spot be a. If a > rd−1 and wrd−1
(σ) < a− rd−1, then a is a y-maximal

spot.

2. We know how ri−1, ri and ri+1 compare to each other from their respective wi values, so we

know there exists at least one i where one of the following conditions has to satisfy:

(a) ri > ri+1 and ri > ri−1

(b) neither ri+1 and ri−1 are available spots

(c) ri−1 doesn’t exist and ri+1 < ri

(d) ri+1 doesn’t exist and ri−1 < ri

then ri is a y-maximal spot.
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y is bigger than any number inserted later than y, and so by definition of y-maximal spot, we know

that y we have the correct wi value. At every stage, the condition that for elements in each run

j ∈ {σsi , σsi+1, ..., σsi+1−1}, we have wj ≤ wj+1 + 1 ensures us that for element in each run, the

previous element is smaller than it, thus respecting the descent set, so the resulting permutation

would also respect the descent set. The condition that minS wi ≤ τi ≤ maxS wi for all i ensures

that at every stage, the resulting wi values could be actually reached by inserting a number in

{1, ..., n}. The existence of a y-maximal spot while trying to insert y comes from reading the w

values of ri. Continuing this process, we know that at every stage there is at least one y-maximal

spot while trying to insert y, so we can construct the permutation with the desired descent set and

wi values.

Example 4.2.1 Construct a permutation with

n = 10, S = {2, 4, 7}, τ = (2, 2, 3, 2, 2, 4, 3, 3, 2, 1)

Note this τ values is permissible for the descent set S.

First insert 10. Condition 2 is satisfied in Definition 4.1.6, so 7 is a maximal spot.

⃝⃝ .⃝⃝.⃝⃝10.⃝⃝⃝

Condition 2.(c) is satisfied in the definition of 9-maximal spot for 2, so 2 is a 9-maximal spot.

⃝9.⃝⃝.⃝⃝10.⃝⃝⃝

Condition 2.(a) is satisfied in the definition of 8-maximal spot for 4, so 4 is a 8-maximal spot.

⃝9.⃝ 8.⃝⃝10.⃝⃝⃝
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Condition 2.(c) is satisfied in the definition of 7-maximal spot for 1, so 1 is a 7-maximal spot.

7 9.⃝ 8.⃝⃝10.⃝⃝⃝

Condition 2.(c) is satisfied in the definition of 6-maximal spot for 3, so 3 is a 6-maximal spot.

7 9.6 8.⃝⃝10.⃝⃝⃝

Condition 2.(c) is satisfied in the definition of 5-maximal spot for 6, so 6 is a 5-maximal spot.

7 9.6 8.⃝ 5 10.⃝⃝⃝

Condition 1 is satisfied in the definition of 4-maximal spot for 10, so 10 is a 4-maximal spot.

7 9.6 8.⃝ 5 10.⃝⃝4

Condition 1 is satisfied in the definition of 3-maximal spot for 9, so 9 is a 3-maximal spot.

7 9.6 8.⃝ 5 10.⃝ 3 4

Condition 1 is satisfied in the definition of 2-maximal spot for 8, so we have our permutation with

the desired descent set and wi values

7 9.6 8.1 5 10.2 3 4

Corollary 4.1.9. If τ is permissible for the descent set S, then |DS
⋂
W (τ, U)| ̸= 0 for any U ∈

2{1,...,sd}.

This result follows from the fact that W (τ, ϕ) ⊆W (τ, U) for U ̸= ϕ.

Theorem 4.1.10. Let S be given and τ ∈ Nn be permissible, then |DS ∩W (τ, U)| is a polynomial
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in n.

4.2. Proof of Theorem 4.1.10

We prove Theorem 4.1.10 by a recurrence formula. We present an example of such a recurrence

before we give the details of the proof.

In the tree below, the children of each node is obtained by removing the biggest entry in the parent,

so the first generation is obtained by removing n which we proved to be at the maximal spots. In

general, the i-th generation is obtained by removing n− i+1 and tracking how S, τ, and U change,

which we would define the maps ϕ and ψ in Definition 4.2.1 and 4.2.2 and prove that removing n

would affect the corresponding S, τ, U value exactly as we predict in the maps ϕ and ψ.

The base case of the recurrence is when S = 1, then we know that |DS ∩W (τ, U)| = n − τ1 − 1

if U = {1}, and |DS ∩W (τ, U)| = 1 if U = ϕ. We also stop at the node obtained by removing

σn−i = n− i at the i+ 1th level, as that would be our recurrence step. For the sake of readability

in the tree, we denote D1,3,5 ∩W
(
(1, 2, 2, 1, 3) ⊔ (n − 5)!, {5}

)
as 1.22.1 ≥ 3.(n − 5)!, where a dot

denotes a descent.

1.22.1 ≥ 3.(n− 5)!

1.1.1 ≥ 3.(n− 5)!

1.1.1 ≥ 3.(n− 6)! 1.≥ 1(n− 5)! 1.1≥ 3.(n− 5)!

1.1≥ 3.(n− 6)! ≥ 1.(n− 4)!

1.22.1 ≥ 3.(n− 6)!

σ3 = n

σn−1 = n− 1 σ4 = n− 1 σ1 = n− 1

σn−2 = n− 2 σ3 = n− 2

σn = n

We start our calculation from the bottom. ≥ 1.(n− 4)! has S = {1} = U , and for σ ∈≥ 1.(n− 4)!

we have σ ∈ Sn−3, so we get that ≥ 1.(n − 4)! = (n − 3) − 1 = (n − 2) − 2. If we denote
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Fn−2 = 1.22.1 ≥ 3.(n− 5)!, then we have the recurrence step

Fn−2 = Fn−3 + (n− 2)− 2 (4.2.1)

The polynomial that satisfies this relation is

n−2∑
i=6

i− 2 =
1

2
(n− 2)2 − 3

2
(n− 2)− 5 (4.2.2)

=
1

2
(n− 1)2 − 5

2
(n− 1)− 3 (4.2.3)

The summation starts from 6 since the first nonzero term of Fn starts from 6. The resulting

polynomial will be computed using Remark 4.2.6, stated later in this thesis.

It’s not hard to calculate 1. ≥ 1(n − 5)! as it is just the number of permutations of n − 2 with

descent set being {1, 2}, which would be
(
n−2−1

2

)
= 1

2(n− 1)2 − 5
2(n− 1) + 3.

Now we do the recurrence step on 1.1.1 ≥ 3.(n−5)! in a similar fashion, and we skip the calculation

here but provide the final tree of polynomials. For readability, ni = n− i in the tree.

1
12n

4 − 5
6n

3 − 1
12n

2 + 89
6 n− 14

1
3n

3
1 − 2n21 − 7

3n1 + 14

recurrence step
(
n2−1
2

)
1
2n

2
2 − 3

2n2 − 5

recurrence step n3 − 1

recurrence step

σ3 = n

σn−1 = n− 1 σ4 = n− 1 σ1 = n− 1

σn−2 = n− 2 σ3 = n− 2

σn = n

Having presented the example, we will now establish that the results observed hold true in general.

We start by giving details to how S, τ and U change by removing the biggest entry. First, we study

how the descent set S change.

Definition 4.2.1. For m = σt = sk a maximal spot, define ϕm : 2{1,...,b} → 2{1,...,b} as follow:
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1. m = n. Then ϕm(S) = S

2. 1 < m < n.

(a) If τt−1 = 1, which implies σt−1 < σt+1, then si 7→ si − 1 for i > k, si 7→ si for i < k, and

then delete m = sk.

(b) If τt−1 ≥ 2, which implies σt−1 > σt+1, then si 7→ si for 1 ≤ i < k, si 7→ si − 1 for i ≥ k.

Note we can tell whether we have σt−1 < σt+1 or σt−1 < σt+1 just by inspecting wt−1.

3. m = 1, si 7→ si − 1 and then delete s1.

Now we define ψ which tracks how τ and U changes.

Definition 4.2.2. Let S be given, U ⊆ {1, ..., sd}, and τ ∈ Nn permissible. For m = σt a maximal

spot, define ψm : Nn × 2{1,2,...,n} → Nn−1 × 2{1,2,...,n−1} as follows:

1. m = n

First delete wn, and for i ∈ {sd, sd+1, ..., n− 1}, wi 7→ wi− 1. wi stays the same for all other

i. U stays the same.

2. 1 < m < n. Suppose m = sy.

(a) τt−1 = 1, i.e. σt−1 < σt+1, and i− 1 ̸∈ U

First delete wm. If y ̸= d, for elements in the same run as m, i.e. σsy−1 , σsy−1+1, ..., σsy−1,

we have wi 7→ wi − 1 + (sy+1 − sy). If y = d then wi 7→ wi + (n− sy)

For elements in the previous run of m, i.e. σsy−2 , σsy−2+1, ..., σsy−1, if i+τi ≥ m−1, then

u 7→ u for u ∈ U and u < m and u 7→ u− 1 for u > m for i = sy−1, sy−1 + 1, ..., sy − 1.

If i+ τi < m− 1, then first u 7→ u− 1 for u > m and U 7→ U
⋃
{i} for i = sy−1, sy−1 +

1, ..., sy − 1.

All the other wi also stays the same.
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(b) τt−1 ≥ 2, i.e. σt−1 > σt+1

First delete wm. For elements in the same run as m, i.e. σsy−1 , σsy−1+1, ..., σsy , we have

wi 7→ wi − 1 if wi > 1, and wi 7→ 1 if wi = 1.

For u ∈ U and u < m, u 7→ u; for u > m let u 7→ u− 1.

3. m = 1.

Delete w1.

If 1 ∈ U, then delete 1 and u 7→ u− 1 for all u ∈ U.

If τt−1 = 1 and t− 1 ∈ U , then we need to treat ψ
(
W (τ, U)

)
as ψ

(
W (τ ′, U)

)⋃
ψ
(
W (τ, U ′)

)
where

τ ′i = τi for i ̸= t− 1 and τt−1 = 2, and U ′ = U − {t− 1}.

We will do two examples to show how deleting 10 and 9 from a permutation actually affects the

descent set and wi values.

Example 4.2.3. Let n = 10, U = {5}, S = {1, 3, 5}, τ = (1, 2, 2, 1, 3, 5, 4, 3, 2, 1). In other words

we are looking for maximal spots for permutations of 10, with descent set S = {1, 3, 5}, and

w = (1, 2, 2, 1, v, 5, 4, 3, 2, 1) where v ≥ 3.

First we need to find the maximal spots. τ3 = 2 = maxS w3 so 3 is a maximal spot. When τ5 < 5,

we have that 10 is also a maximal spot. Therefore we have in total of two maximal spots.

1. m = 3

Since τ2 = 2 we know that σ2 > σ4, so following Definition 4.2 1.(b), we have that ϕ3(S) =

{1, 2, 4}.

By following Definition 4.2.2(b), we have ψ3(W (τ, U)) = (1, 1, 1, v, 5, 4, 3, 2, 1) where v ≥ 3.

Formally we write this as

ψ3

(
W

(
(1, 2, 2, 1, 3, 5, 4, 3, 2, 1), {5}

))
=W

(
(1, 1, 1, 3, 5, 4, 3, 2, 1), {4}

)

2. m = 10

By following Definition 4.2.1, we have that ϕ10(S) = {1, 3, 5}.
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By following Definition 4.2.2, we have that ψ10

(
W (τ, U)

)
=W

(
(1, 2, 2, 1, 3, 4, 3, 2, 1), {5}

)
.

The descent set and the wi values indeed change accordingly with the maps ϕm and ψm when

removing 10.

Example 4.2.4. Let n = 9, S = {1, 3, 5}, U = {5}, τ = (1, 1, 1, 3, 5, 4, 3, 2, 1). In other words we are

looking for permutations of 9, with descent set S = {1, 2, 4}, and w = (1, 1, 1, v, 5, 4, 3, 2, 1) where

v ≥ 3.

First we need to find the maximal spots. 1 is a maximal spot, since τ1 = maxS w1 = 1. 4 is also a

maximal spot, and 9 is a maximal spot when τ4 < 5.

1. m = 1

By following Definition 4.2.1.3 and 4.2.2.3, we get that ϕ9(S) = {1, 3} and ψ9(W (τ, U)) =

(1, 1, v, 5, 4, 3, 2, 1) where v ≥ 3. We can also write this as

ψ9

(
W
(
(1, 1, 1, 3, 5, 4, 3, 2, 1), 4

))
=W

(
(1, 1, 3, 5, 4, 3, 2, 1), 3

)
(4.2.4)

2. m = 4

In this case τ4 = 5. Note that since τ2 = 1 we have that σ2 < σ4, so if we follow Definition

4.2.1(a) and 4.2.2(a), we have that ϕ4(S) = {1, 2}, ψ4

(
W (τ, U)

)
= (1, v, 6, 5, 4, 3, 2, 1) where

v ≥ 1. We can also write this as

ψ4

(
W (τ, U)

)
=W

(
(1, 1, 6, 5, 4, 3, 2, 1), {2}

)
(4.2.5)

3. m = 9

In this case τ4 < 5. By following Definition 4.2.1.2 and 4.2.2.2, we have that ϕ9(S) =

{1, 2, 4}, ψ9

(
W (τ, U)

)
= (1, 1, 1, v, 4, 3, 2, 1) where v ≥ 3. We can also write this as

ψ9

(
W (τ, U)

)
=W

(
(1, 1, 1, 3, 4, 3, 2, 1), {4}

)
(4.2.6)
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Theorem 4.2.5. Let S be given, τ be permissible and U ⊆ {1, 2, ..., sd}. Then

∣∣∣∣DS

⋂
W (τ, U)

∣∣∣∣ = ∑
m a maximal spot

∣∣∣∣Dϕm(S)

⋂
ψm

(
W (τ, U)

)∣∣∣∣ (4.2.7)

Proof. Let σ ∈ DS
⋂
W (τ, U). First, we will prove that if σm = n where we proved that m has to be

a maximal spot, then removing n we would get exactly a permutation σ′ ∈ Dϕm(S)

⋂
ψm

(
W (τ ;U)

)
.

It’s clear to see that σ′ ∈ Dϕm(S) by the definition of ϕ, so we just need to prove that σ′ ∈

ψm

(
W (τ, U)

)
. We divide into 3 cases as before.

1. If m = n, then no elements in the previous run is affected by removing n, but every element

in the same run as n is less than n so we have wi decreases 1 as defined. No other elements

would have wi value changed by removing n.

2. 1 < m < n. Suppose m = sy

(a) σm−1 < σm+1

For elements σi in the same run as n, removing n removes a number that is bigger than

σi, so we have wi − 1, but in the new permutation since σm+1 > σm−1, the next run

becomes the same run as σj , and by the descent set we know every one of the element in

the next run is bigger than σj , so we need to add the length of the next run, giving us

wi − 1+ (sy+1 − sy). For the case y = d we modified the map by the fact that σn+1 = 0.

For elements σi in the previous run of n, if i+ τi ≥ m− 1, then we have σi > σm−1, so

by removing n, there might be more elements in the run after n that are smaller than σi

that are now in the next run of σi, and in fact there exist permutations with wi(σ) = s

for every 0 ≤ s ≤ sy+1 − sy. The reason is that given any 0 ≤ s ≤ sy+1 − sy, if there

are s elements among σsy to σsy+1 that are bigger than σi, and if we insert m back to

its original position, we get a permutation in DS
⋂
W (τ, U). Thus the definition of ψ in

this case.

If instead i+ τi < m−1, then any thing in the run after m is bigger than σi, so although

the next run becomes longer, the number of elements in the next run bigger than σi
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remains the same, thus the definition of ψ in this case.

(b) σm−1 > σm+1

For elements in the previous run of m, the wi values do not change because removing n

does not merge the next 2 runs. The only values affected is the elements in the same run

and it is wi 7→ wi − 1.

3. m = 1

No elements after n would have their wi values affected by removing σ1 = n, so just delete

w1.

Therefore we have proven that σ′ ∈ ψm

(
W (τ ;U)

)
. Since we have proven that n appear and only

appear at the maximal spots, we get the result by summing over all the maximal spots.

Now we are ready to give a proof of Theorem 4.1.10.

Proof. First we formalize the action of removing the biggest entry and applying the maps ϕ and ψ

we defined in Definition 4.2.1 and Definition 4.2.2. Let

Zm : 2{1,...,b} × Nn × 2{1,...,b} → 2{1,...,b} × Nn−1 × 2{1,...,b} (4.2.8)

DS

⋂
W (τ, U) 7→ Dϕm(S)

⋂
ψm

(
W (τ, U)

)
(4.2.9)

Let Zj
(m1,...,mj)

(S, τ, U) denote Zmj ◦ Zmj−1 ...Zm1(S, τ, U), where mi is a maximal spot of

Zi−1
(m1,...,mi−1)

(S, τ, U) for all i. For example, in the example we have shown in the beginning of this

section, we see that in the first generation, the branch on the left shows Z
(
{1, 3, 5}, (1, 2, 2, 1, 3) ⊔

(n− 5)!, {5}
)
= Z

(
{1, 2, 4}, (1, 1, 1, 3) ⊔ (n− 5)!, {4}

)
First, prove that Z1

m1
(S, τ, U) where m1 ̸= n is a polynomial in n − 1. By definition of the map

ϕ, we know that by at most sd − 1 times of applying ϕ, we can get to the descent set S = {1}.

Let the number of times needed to be applied to S to get to S = {1} to be j. We will prove the
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aforementioned statement by reverse induction on the number of times Z map is applied.

First, prove for the base case Zj
(m1,...,mk)

(S, τ, U) where m1 ̸= n,m2 ̸= n − 1, ...mj ̸= n − j +

1, and we know that S = {1}. If U = ϕ, then |Zj
(m1,...,mj)

(S, τ, U)| = 1. If U = {1}, then

|Zj
(m1,...,mj)

(S, τ, U)| = n−j−τ ′1, where τ ′ is the resulting τ value in Zj
(m1,...,mj)

(S, τ, U). Both cases

are polynomials of n− j.

Now, assume that |Zi
(m1,...,mi)

(S, τ, U)|, where m1 ̸= n,m2 ̸= n−1, ...,mi ̸= n−i+1, is a polynomial

in n−i. Prove that |Zi−1
(m1,...,mi−1)

(S, τ, U)|, wherem1 ̸= n,m2 ̸= n−1, ...,mi−1 ̸= n−i is a polynomial

in n− i+ 1.

We know that |Zi
(m1,...,mi)

(S, τ, U)| =
∑

maximal spots mk
i

∣∣∣∣Zmk
i

(
Zi−1
(m1,...,mi−1)

(S, τ, U)
)∣∣∣∣. For mk

i ̸=

n− i+ 1, i.e. the rightmost position of the permutation after applying Z for i− 1 times, we know∣∣∣∣Zmk
i

(
Zi−1
(m1,...,mi−1)

(S, τ, U)
)∣∣∣∣ = ∣∣∣∣Zi

m1,...,mi−1,mk
i
(S, τ, U)

∣∣∣∣ satisfies the induction hypothesis, so each

one of them is a polynomial in n− i. Denote the sum of them, which is also a polynomial in n− i, as

P (n− i). Rewrite this as a polynomial in n− i+1, and denote it as Q(n− i+1). For mk
i = n− i+1,

we know Zn−i+1

(
(Zi−1

(m1,...,mi−1)
(S, τ, U)

)
has the same descent set S, U with Zi−1

(m1,...,mi−1)
(S, τ, U)

and τ up until the last descent α by the definitions 4.2.1.1 and 4.2.2.1 of ϕ and ψ, with the only

difference being that the length of τ in Zi−1
(m1,...,mi−1)

(S, τ, U) being n− i+ 1 and the length of τ in

Zn−i+1

(
Zi−1
(m1,...,mi−1)

(S, τ, U)
)

being n− i, so we get

∣∣Zi−1
(m1,...,mi−1)

(S, τ, U)
∣∣ = Q(n− i+ 1) +

∣∣Zi
(m1,...,mi−1,n−i)(S, τ, U)

∣∣ (4.2.10)

If we denote the number of permutations in Sn−i+1 that has descent set ϕi−1
(m1,...,mi−1)

(S) and is in

ψi−1
(m1,...,mi−1)

(
W (τ, U)

)
as Fn−i+1, and the number of permutations in Sn−i that has descent set

ϕi−1
(m1,...,mi−1)

(S) and is in ψi−1
(m1,...,mi−1)

(
W (τ ′, U)

)
as Fn−i, where τ ′ is of length n− i but τi = τ ′i for

i = 1, ..., α then (3) can be rewritten as

Fn−i+1 = Q(n− i+ 1) + Fn−i (4.2.11)

Then the function Fn−i+1 that satisfies this recurrence, is a polynomial in n − i + 1 (see Remark
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4.2.6 below for details), namely

∣∣Zi−1
(m1,...,mi−1)

(S, τ, U)
∣∣ = n−i+1∑

l=α+τα

Q(l)

where α is the last descent place of permutations in Zi−1
(m1,...,mi−1)

(S, τ, U), and Q(α+ τα) is the first

nonzero term of the recursion formula.

Now, by reverse induction, we have proven that Z1
m1

(S, τ, U) where m1 ̸= n is a polynomial in n−1.

Using similar reasoning, we can prove that DS
⋂
W (τ, U) = Z0(S, τ, U) is a polynomial in n. We

know that

|DS

⋂
W (τ, U)| = |Z0(S, τ, U)| =

∑
maximal spots m1

|Zm1(S, τ, U)|

For m1 ̸= n, we have that
∑

m̸=n |Zm(S, τ, U)| is a polynomial in n−1 denoted as P (n−1), and after

rewriting it into a polynomial of n we get a polynomial Q(n). For m1 = n, we get that Zn(S, τ, U)

does not change S and U , so we get

|Z0(S, τ, U)| = Q(n) + Z1
n(S, τ, U)

By similar reasoning as proving the induction step, we can find that the function that satisfies this

recurrence is a polynomial in n, namely

|DS

⋂
W (τ, U)| =

n∑
l=sd+τsd

Q(l)

Now we have proved the theorem.

■

Remark 4.2.6. Let P (x) =
∑k

j=0 ajx
j ∈ Q[x]. While calculating

∑n
i=m P (i) as performed in the

43



example provided in p37, we can use the formula

n∑
i=1

ip =

p+1∑
i=1

1

i
· S(p+ 1, i) · (n)i (4.2.12)

where S(n, k) denotes the second Stirling number of n and k. The proof of the formula follows

from the fact that both the left hand side and the right hand side counts the number of functions

f : [p+ 1] → [n] where f(1) = k is the maximum of the function.

Note (n)i = n · (n−1)... · (n− i+1) only has i terms in the product so each (n)i indeed a polynomial

in n; there are only p terms in the sum, so the sum on the right hand side of (4.2.10) is also a

polynomial in n. Let P (x) =
∑k

j=0 ajx
j ∈ Q[x], then we know by Remark 4.2.6 that

∑n
i=0 P (i) is

a polynomial in n, so we also have that
∑n

i=m P (i) for some fixed m is a polynomial in n.

Remark 4.2.7. While calculating DS
⋂
W (τ, U), if the maximal spot is n = σt, τt−1 = 1 and

t− 1 ∈ U , then

Zm(S, τ, U) = Zm(S, τ ′, U) + Zm(S, τ, U ′)

where τ ′i = τi for i ̸= t− 1 and τ ′t−1 = 2, and U ′ = U − {t− 1}. This adjustment needs to be made

because ϕ and ψ are defined differently for τt−1 = 1 and τt−1 ≥ 2.

Remark 4.2.8. While calculating DS
⋂
W (τ, U) for U = ϕ and τ ∈ Nn, the only maximal spot at

the first generation is n, and similarly for all the later generation until n = sd + τd. Therefore,

|DS
⋂
W
(
(τ1, . . . , τsd) ⊔ (n − sd)!, ϕ

)
| = |DS

⋂
W
(
(τ1, . . . , τsd ⊔ (τsd)!, ϕ

)
|. For example for S =

{2}, τ1 = 1, τ2 = 2, we have 12.(n− 2)! = 12.21. For any n ≥ 5, the only satisfying permutation is

(1, 4, 2, 3, 5, . . . , n − 1, n). In general, we can also count |DS
⋂
W
(
(τ1, . . . , τsd ⊔ (τd)!, ϕ

)
| using our

recursion thus get |DS
⋂
W
(
(τ1, . . . , τsd) ⊔ (n− sd)!, ϕ

)
| in the end.

4.3. Stability Range and Degree

In this section, to better investigate the boundary cases, we employ an alternative form of our

formula that avoids double-counting certain τ in a different way, while leaving the rest of the
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formula unchanged. The version below will be used throughout this section:

∑
S⊆{1,2,...,b}

s1+s2+...+sd=b

∑
U⊆{1,2,...,sd}

a∑
k=0

∑
τl=k+1 for l∈U
τl≤k for l/∈U
τ permissible

(∣∣∣∣DS

⋂
W (τ ;U)

∣∣∣∣
)

·

(
[qk]

( sd∏
i=1

[τi]q

))
·

(
[qa−k]

(
[n− sd]q!

))

Theorem 4.3.1. The polynomial starts to stabilizes from a+ b.

Proof. First we observe that for the 3rd parenthesis in (4.1.1), the Knuth (1997) formula works for

all k = 0, 1, . . . , a when n ≥ a+ b, so we mainly need to investigate DS
⋂
W (τ, U).

Our final polynomial is a sum of polynomials, and it starts to stabilize when we haveDS
⋂
W (τ, U) >

0, so considering the boundary case when S = {b}, k = a so τb = a + 1, b ∈ U , we know from our

algorithm that we will have a nonzero polynomial in n for DS
⋂
W (τ, U) starting from a+ b+1, so

for n ≥ a+ b+ 1, the polynomial stabilizes. However if we take a closer look at our algorithm, we

can actually find that our polynomial starts to stabilizes from a+ b. We will prove that the formula

is still true, i.e. P (a+ b) = 0.

For the boundary case, at the last step, we have one branch being the recurrence branch, and

potentially several other branches that add up to a polynomial in n we denote as p(n), and then we

use Remark 4.2.6 to calculate the final polynomial in n, which is the polynomial that satisfies the

recurrence Fn = Fn−1 + p(n), and since the first nonzero term is a+ b+1 in the boundary case, we

were calculating

n∑
i=a+b+1

ip =
n∑

i=1

ip −
a+b∑
i=1

ip (4.3.1)

therefore when n = a + b, we get exactly 0, which is true since |DS
⋂
W (τ, U)| = 0. Therefore

we proved that the first parenthesis is indeed correct for all cases for n = a + b. For the third

parenthesis when we use Knuth (1997) formula, which is true for all k value when n = a + b.

Therefore stabilization starts from a+ b the latest.

Conjecture 4.3.2. a+b is the sharp bound, meaning it is the smallest value of n for which stabilization
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occurs.

We first consider the boundary case when the first parenthesis fails to be stable. Notice that for

n < a+ b, the algorithm will give the correct formula for |DS
⋂
W (τ, U)| for all of the S, τ, U and k,

except for the boundary case k = a+ 1, S = {b}, b ∈ U . For example, if b = 3, S = {3}, k = a = 2,

then our formula for 11 ≥ 3|(n − 3)! is true for n ≥ 6, and is true for n = 5 by our last theorem,

but becomes negative if n ≤ 4, when in fact, |DS
⋂
W (τ, U)| should be 0. The boundary is also

sharp in the sense that, if we relax k so that k = a = 2, then the algorithm for |DS
⋂
W (τ, U)| will

provide the correct polynomial for n = 4 = a + b − 1; or if we relax S so that S = {1, 2}, then

sd = 2 so again we would get the correct polynomial for n = 4. We claim that the boundary cases

would always produce a non-positive number for n = a+ b−1, and the details of the analysis of the

boundary cases for DS
⋂
W (τ, U) will be found in our upcoming preprint. Now we investigate the

second and third parenthesis of the boundary cases in (4.1.1) in this case. The second parenthesis

[qa]
(∏b

i=1[τi]q
)

is nonzero since τb = a+1, and the third parenthesis is the constant term in [n−b]q!

which is 1, so the product of the three parenthesis would give a non-positive number, when the

correct value should be 0.

Assuming we have successfully proved the claim for the boundary cases of the first parenthesis, we

now assert that the boundary cases for the third parenthesis—specifically when k = 0, S = {b},

and n = a + b − 1—also yield a value that is strictly smaller than the true value predicted by

the polynomial when evaluated at n = a + b − 1, using the formula from Knuth (1997). Further

details will be provided in our upcoming preprint. Therefore, the product of the 3 parenthesis is

smaller than the true value for the boundary cases, and the polynomial in the end would predict

lower dimension number, for both cases of boundary cases discussed. In other words, if we denote

the polynomial for dim(DHa,b
n ) as P (n, a, b), then for n = a + b − 1, we will have our formula

P (n, a, b) < dim(DHa,b
n ), given the details being filled.

Conjecture 4.3.3. DHa,b
n is not an FI#-module.

This conjecture is proven once Conjecture 4.3.2 is proven. For an FI-module to be FI#, we need
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stabilization to start immediately from 0. Since by Conjecture 4.3.2 the sharp bound is a+ b, this

would be a proof that DHa,b
n is not FI# combinatorially.

Theorem 4.3.4. The degree of the polynomial of coefficient of qa for the descent set S with maxS =

d of Hilb(DHn) is d+ a.

Proof. If we fix the descent set S and increase a by 1, then the polynomial increases by degree 1.

This is by the observation that

a∑
j=0

d∏
i=1

[wi(σ)]

∣∣∣∣
qj
· [n− d]!

∣∣∣∣
qa−j

increases its degree by 1 when a increases by 1. By increasing a by 1, [wi(σ)]

∣∣∣∣
qj

does not change,

so we only need to track how the degree of [n− d]!

∣∣∣∣
qa−j

changes. In the formula for [n]!|qk , the first

term is always
(
n+k−2

k

)
, and so the first term of [n − d]!

∣∣∣∣
qa−j

is always
(
(n−d)+(a−j)−2

a−j

)
. This term

has the highest degree and it is of degree a − j, so increasing a by 1 would increase the degree of

the whole formula by 1.

If a = 0, then the inductive formula reduces to

∑
S⊆{1,2,...,b}

s.t. s1+s2+...+sd=b

PS(n)

where PS(n) denotes the polynomial in n which represents the number permutations of n with the

descent set S. We can do the same recursion on the descent set S by using the map ϕ defined in

Definition 4.2.1, where all of the descents are maximal spots, and we treat all ϕm in the condition

that τm−1 = 1 and m− 1 ∈ U . In this way, every time we apply ϕ, there is one branch that has the

maximum of ϕ(S) as max ϕi+1(S) = max ϕi(S) − 1, so it takes exactly d − 1 times of applying ϕ

to get to S = [1], which is the base case n− 1. When we do the recurrence starting with the base

case S = [1], applying ϕ for d− 1 times would produce a degree d polynomial in the end. Therefore

by increasing a, we would get a polynomial of degree d+ a.
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Corollary 4.3.5. The degree of the coefficient of qatb of Hilb(DHn) is a+ b.

This is because that among all the descent sets with maj(S) = b, the biggest d can be is exactly b

when S = {b}.

Remark 4.3.6. We actually improved both the stability range and the degree of the dimension

polynomial. In Section 3.2, we used the theory of FI-modules to conjecture a stability bound for

dim(DRa,b
n ) to be 2(a+ b), but we proved in the thesis that stabilization actually starts from a+ b,

and conjectured it to be the sharp bound. Furthermore, while FI-module theory gives an upper

bound of a+ b for the degree of dim(DHa,b
n ), we showed that the degree is exactly a+ b.

We provide a table of polynomials of dim(DRa,b
n ) = [qatb]

( ∑
σ∈Sn

tmaj(σ)
n∏

i=1
[wi(σ)]q

)
given n ≥ a+ b

in Table 4.3.1.
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/ q0 q1 q2 q3

t0 1 n− 1 1
2n

2 − 1
2n− 1 1

6n
3 − 7

6n

t1 n− 1 n2 − 2n n3

2 − n2 − 3n
2 + 1 1

6n
4 − 1

6n
3 − 5

3n
2 + 2

3n+ 1

t2 n2

2 − n
2 − 1 n3

2 − n2 − 3n
2 + 1 n4

4 − n3

2 − 7n2

4 + n+ 1 1
12n

5 − 1
12n

4 − 5
4n

3 + 1
12n

2 + 13
6 n+ 1

t3 n3

6 − 7n
6

n4

6 − n3

6 − 5n2

3 + 2n
3 + 1 n5

12 − n4

12 − 5n3

4 + n2

12 + 13n
6 + 1 n6

36 − 23n4

36 − n3

2 + 19n2

9 + 3n− 1

Table 4.3.1: Polynomials for dim(DRa,b
n )
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