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ABSTRACT

POLYNOMIALITY OF THE BIGRADED SUBDIMENSION OF DIAGONAL HARMONICS

Xinxuan Wang

James Haglund

A sequence of S),-representation V), is called representation (multiplicity) stable if after some n, the
irreducible decomposition of V,, stabilizes. In particular, Church and Farb (2013) found that if we
fix @ and b, then the space of diagonal harmonics DHg’b exhibits this behavior, and its dimension
stabilizes to a polynomial in n eventually. Building on this result, we use the Schedules Formula
by Haglund and Loehr (2005) to get an explicit combinatorial polynomial for the dimension of the
bigraded spaces DHﬁ’b. This derivation not only yields the dimension formula but also produces a
new stability bound of a + b, which is conjectured to be sharp, and determines the exact degree of

the dimension polynomial, which is also a + b.
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CHAPTER 1

Overview

This chapter provides a broad overview of the thesis. We begin by introducing our central object
of study, the Diagonal Harmonics DH,,, defined as a subspace of Clz1,...,Zn,y1,...,Yn]. This
ring carries a natural action of the symmetric group 5, and admits a bigrading, with its bigraded
components denoted by DH, 3’b, consisting of polynomials homogeneous of degree a in the xz-variables

and degree b in the y-variables.

The dimension of DH,, as an S,,-representation was conjectured by Haiman (1994) to be (n+1)""1
and later proven by Haiman (2002). Furthermore, the dimension of each bigraded component DH®
was conjectured by Haglund and Loehr (2005) in terms of number of certain subsets of parking

functions of size n, and later proved by Carlsson and Mellit (2018) in a broader context.

This thesis establishes a new result concerning the dimensions dim(DHﬁ’b): namely, that for fixed a
and b, this dimension eventually becomes a polynomial in n. Moreover, we prove that the stabiliza-
tion starts no later than n = a + b, and conjecture it to be the sharp bound. Chapter 2 introduces
the necessary combinatorial background on DH,,, and Chapter 4 presents the explicit polynomial

expression for dim(DHﬁ’b) and proves the stabilization bound.

We are motivated by a phenomenon discovered by Church and Farb (2013): under certain con-
ditions, sequences of S,-representations V,, exhibit stabilization in their character and dimension.
Notably, the sequence DHg’b satisfies their conditions and was among the examples discussed in their
foundational work. This result served as the original inspiration for the present thesis. Although
the polynomiality of dim(DHﬁ’b) can be derived from representation-theoretic considerations, a
purely combinatorial proof was previously lacking—this gap motivates our investigation. Chapter

3 provides the necessary background on representation stability.



CHAPTER 2

DIAGONAL HARMONICS

2.1. Catalan Combinatorics

The study of Diagonal Harmonics is closely related to the beautiful Catalan Combinatorics. We
would start by introducing the Catalan objects, and then tie it with the study of Diagonal Harmon-

ics.

Definition 2.1.1. A parking function of length n denoted as p € PF(n) is a sequence of n positive
integers, each in the ragne from 1 to n, such that 1 <17 < n, the sequence contains at least ¢ values

that are at most <.

The name "parking function" comes from the following thought experiment: imagine n many cars
are trying to park in to n parking spaces, and each of the cars have their preferred parking space.
Each car ¢ will go to its preferred parking space, and park there if the space is not already occupied;
otherwise they will try the next spot, until they get parked. A parking function describes preferences

for which all cars can park.

Example 2.1.2. (2,1,2,1) is a parking function, the parking arrangement would be the first car
goes to its preferred spot 2, second car goes to 1, third car goes to 2 but it is occupied so it goes to
3, and the fourth car goes to 1 but it is already occupied, and so are 2 and 3, so it would park at 4.
(3,3,1,3) is not a parking function, as the first car would go to its preferred spot 3, the second car
would go to 4, and the third car goes to 1, but the fourth car has no where to go since 3 and 4 are

both occupied.
Theorem 2.1.3. |PF(n) = (n+ 1)}

To see this, notice that if the parking spaces are circular, then the fourth car could be parked at 1,
i.e. if given n + 1 spaces arranged in a circular fashion, then all kinds of preferences can be parked.

There are (n 4+ 1)™ many such preferences, each leaving one vacant space; by symmetry there are



n+ 1 choices for preferences that leave space n + 1 as the vacant space, thus the number (n+1)"~1.
Parking function first appeared in the study of idealized data storage method popular in theoretical
computer science, and it is also crucial in algebraic combinatorics since the dimension of our diagonal
harmonics is precisely equal to the number of parking function. We will discover deeper connection
between them in Shuffle Theorem. Right now, we want to introduce parking function in another

form which is used in the Shuffle Theorem.

Definition 2.1.4. A Dyck path I" € Dyck(n) is a staircase walk from (0, 0) to (n,n) that lies above

(but might touch) the diagonal y = x.

Theorem 2.1.5. |Dyck(n)| = C, = %H(Q:) where C,, denotes the Catalan number.

The Catalan number was first discovered by Mongolian/Chinese mathematician Mingantu around
1730, and was studied more by Euler and Eugéne Catalan later. To prove the theorem, we use its

recurrence relation

Co=1,Cp=> Ci1Cn; (2.1.1)

i=1
It is clear that Cp = 1. Let (i,7) be the first point of contact with the diagonal, We notice that
the number of possible lower portion of Dyck path (under the point (i.7) where it never touches the
diagonal is exactly C;_1, and the upper portion has C,,_; many possibilities).
We introduce parking function in the form of labelled Dyck path, which we would continue to work

with and refer to labelled Dyck path as parking function from now on in this text.

Definition 2.1.6. A labeled Dyck path with length n denoted as v € LDyck(n) is a Dyck path

labelled by the numbers 1, ...,n such that the labels of consecutive north steps are increasing.

We can see the bijection between labelled Dyck paths and parking functions as following: let
a = (ai,...,ay) be a parking function, and let b; count the number of occurrences of i in a. Let
D € Dyck(n) with b; north steps after the (i — 1)-st east-step, the fact that a is a parking function
ensures D being a Dyck path. Label the b; north-steps after the (i — 1)-st east step by the positions

of the letter 7 in a. These combinatorial objects are of special interests to us, because we have the



result by Haiman

dim(DHy,) = (n+1)"! (2.1.2)

and the Shuffle Theorem by Carlsson and Mellit (2018)

Hilb(DH,) = Y gfmvOgeree) (2.1.3)
~ELDyck(n)

where the Hilbert series, dinv and area will be defined in the next section.
2.2. Shuffle Theorem

To introduce Hilbert Series and Frobienius Series thus stating the Shuffle Theorem, we need to start

with some basic representation theory and symmetric function theory.

Definition 2.2.1. Let G be a finite group. A representation of G is a set of square matrices
{M(g)|g € G} such that
M(g)M(h) = M(g-h)Vg,h € G (2.2.1)

where - means the group multiplication. We would be mostly focusing on the representations
of symmetric groups S,. Because matrices are linear transformations, one can also think of a

representation as a G-module.

Definition 2.2.2. Let V be a vector space and G be a group. Then V is a G-module if there is a

multiplication gv of elements of V' by elements of G such that
1. gneV
2. g(cv + dw) = ¢(gv) + d(gw)
3. (gh)v = g(hv)
4. lgv=wv

for g,h € G,v,w € V,¢c,d € C.



Every G-module is a G-representation. Our most prominent example would be C[X,,] = C[zy, ..., zp].

Given f(z1,...,z,) € C[X,] and o € S,, then

of = f(Toyy s Toy) (2.2.2)

defines an action of S,, on C[X,,] thus makes C[X,,] an S,-module. Let V' be a subspace of C[X,,],

then

v=> v (2.2.3)
1=0

where V@ is the subspace consisting of all elements of V of homogeneous degree 7 in the x;. This

defines a grading of the space V.

Definition 2.2.3. Hilbert series Hilb(V;q) of V to be the sum

Hilb(V;q) = Z ¢'dim(V®) (2.2.4)
=0

One can also think of the Hilbert series as the generating function of the dimensions.

Beyond the Hilbert series, which encodes information about the dimensions of graded subspaces,
the Frobenius series captures the decomposition of these subspaces as S,-representations. Before
defining the Frobenius series, we first introduce a key property of S,-representations that enables

its definition.

Theorem 2.2.4. (Maschke’s Theorem) Let G be a finite group and let V' be a nonzero G-module
(a G-representation). Then
V=wDgew®dg...e wk

where each W@ is an irreducible G-submodule of V.

Modules that have this property are called completely reducible. Since .S, is a finite group for fixed
n, its representations enjoy this property as well. The irreducible S,-modules are known as Specht

modules, denoted by S*, and are indexed by partitions A - n. These modules can be constructed



combinatorially; for further details, see Sagan (2001). Now we turn our attention to symmetric
functions. Let K be a field and it is usually C, o € S, and f(x1,...,2,) € Klz1,...,2,]. fisa

symmetric function if

U'f:f(‘ral)"'axan):f
for all o € S,.

Definition 2.2.5. Let A = (\y,..., ;) be a partition. The monomial sytmmetric function corre-

sponding to A is
A A A
my =ma(w) = apl Y apte ) g

where the sum is over all all distinct monomials having exponents A1, ..., \;.

Example 2.2.6.

2.2 2 2 2
Mo = T1T5 + X125 + 13 + T1205 + ...

The ring of symmetric function is defined to be A = Cmy, and it is not hard to verify that it is
indeed a ring since it is close under product. If we denote A™ as the space spanned by all m) of
degree n, then {my : A F n} is a basis for A”. We are mainly interested in another basis for the

symmetric function ring A".

Definition 2.2.7. A semistandard tableau of shape A = (A1,...,\;) where A - n, is an array with
the first row having A; numbers, second row having Ao numbers,... the [-th row having A; numbers.

The numbers are weakly increasing in the rows, and strictly increasing in the columns.

Example 2.2.8. Below is an exmaple of a semistandard tableuax of shape (3,2,1,1)

’Cﬂ|0~3 N | =



Definition 2.2.9. Given a generalized tableau T" of shape A, it has a weight in C[z]

T
o= ] o,

(i,7)EN

The weight of in Example 2.2.8 is 2T = x1x2x§x4x5.

Given a partition A, the associated Schur function is

sx(z) = Z:L’T
T

where the sum is over all semistandard A-tableaux 7.

Example 2.2.10. For A = (2,1), we have the tableaux

where a < ¢,a < b, so

2 2 2 2
so1(z) = xixe + 2125 + xir3 + 125+ - - + 2012203 + 2012224 + . .

Next we define the Characteristic Map, which bridges the world of representation theory and sym-

metric function ring.

Definition 2.2.11. A class function on S, is a function that is constant on the conjugacy classes

of S,. Let R, be the space of class functions of S,,. The characteristic map is ch™ : R® — A"

Chn(X) = Z Z;IIXup,u
pukEn

where X, is the value of x on the class p.

Define an inner product on A™ by

< 8\, Sy >= 6)\M



then ch” preserve these inner products. Another important fact about this map is that ch™(Sy) = sy
where S denotes the irreducible S,, characters. This makes the characteristic map an isometry since

it maps orthonormal basis to another. Now we are ready to define Frobenius series.

Definition 2.2.12. Assume V is a subspace of C[X,,] fixed by the S,, action. The Frobenius series

F(V;q) of V is defined to be the symmetric function

iqi Z Mult(S*, V@) . sy

=0  AePar(i)

where Mult(S*,V®) denotes the multiplicity of the irreducible character Sy in the character of

V(@) under the action.

Note that we can derive the Hilbert Series from a Frobenius Series, namely
< Frob(V;q), hin >= Hilb(V;q)

Now we are ready to introduce the space of Harmonics.

Definition 2.2.13. The space of Harmonics H,, is defined as

H, = {f(X,) € C[X,] : znja’;if(xn) =0 for all k > 0} (2.2.5)
=1

H,, is isomporphic to the Ring of Coinvariants as S,, modules, but we will keep refering them as
harmonics/coinvariants in this thesis. Given a f € C[X,,], S, acts on f by permuting the indices of

the variables, i.e.

o f(x1,xn) = f(@oyy -, To,)

Now we are ready to define the ring of coinvariants.



Definition 2.2.14. The Coinvariant Ring of .S, is

R, = (2.2.6)

where I(X,,)T = {f € C[X,]|o - f = f and f is not a constant}.

Haiman (1994) has a detailed proof of the isomorphism and notes that an isomorophism f : H, — R,
just sends h € Hy, to f(h), the element of C[X,,] represented modulo I(X,)* by h.

To study the Hilbert series of Hy,, we need to use the basis Artin and Milgram (1944) found for R,:
Theorem 2.2.15. {z{*---z5" : 0 < o < i} form a basis for R,,.

Corollary 2.2.16. dim(R,) = n!

The Corollary results from directly computing the number of basis elements.

Corollary 2.2.17. By Artin’s basis, the Hilbert Series of R, is

Hilb(R,) = Y ¢ (2.2.7)
aEn
0<a;<1
=1-(1+q)-1+q+¢)..(1+qg+..g" " (2.2.8)

If we introduce a new notation called the g—integers where [k], =1+ ¢ + ¢+ ...+ ¢!, then we
can write (5) as [n]! = [n]q[n — 1]4...[1]4. R, while having interesting S,-module structure itself,

also possesses rich geometric properties.
Theorem 2.2.18. Borel (1953) R, = H*(Fl,) where Fl, denotes the complete flag variety of n.

Other than the coinvariant ring R,, there is actually a family of generalized coinvariant rings that
are studied by mathematicians, one of them being the Diagonal Coinvariants DR, and we will

see how Catalan Combinatorics play an important role in the study of DR,,. Given a polynomial



f( Xy, Y,) € C[X,, Y], S, acts diagonally by permuting the x and y variables by

g f(xl’ ceey Iy Y1, ’yn) = f(xala s Loy Yo s ---ayan) (229)

Definition 2.2.19. The Diagonal Coinvariant Ring of .S, is

C[Xn, Ya)

DR, = =" 0
= 10X, Y

(2.2.10)

where I(X,,,Y,)" is the ideal generated by all polynomial f(X,,Y;,) € C[X,,Y,] that are invariant

under the diagonal action of S, without constant term.

DR, also has interesting geometry, as Carlsson and Oblomkov Carlsson and Oblomkov (2018) re-
lated DR, to type A affine Springer fibers using the Lusztig-Smelt paving of these varieties, which
led to another proof (the original proof by Haiman) that dim(DR,,) = (n + 1)""!, and an explicit
monomial basis of DR,,.

Similar to R, it is isomorphic to DH,, as S,,-module, which we define below

Definition 2.2.20. The Ring of Diagonal Harmonics is

DH, = {f(X,,Y,) € C[X,,Y,] : Za;ia;if(xn, Y,) =0forall r,s < 0,7 +s > 0}
=1

The dimension of DR,, becomes much harder to track when we add another set of variables, and

the original and first proof of its dimension was by Haiman using geometry of Hilbert Schemes.

Theorem 2.2.21. Haiman (2002)

dim(DRy,) = (n+1)"! (2.2.11)

which is the same as |[PF(n)|. The Hilbert and Frobenius series of DR,, had been unsolved for many

years too before Calsson and Mellit proved the Shuffle Theorem. First we define what a Hilbert

10



Series for a bigraded space is.

Definition 2.2.22. Hilbert Series for a bigraded space V' C C[X,,, Y,,] is defined as

Hilb(V') = ) q" - dim(V*?) (2.2.12)
a,b>0

Definition 2.2.23. Frobenius Series for a bigraded space is W C C[X,,,Y,,] is defined as

Frob(Vet)y = > q't! Y sxMult(S*, W)

0,j>0 AFn
Similarly we have the relation
< Frob(W;q,t), hin >= Hilb(V;q,t)

Before stating the Shuffle Theorem, we need to introduce two statistics on a parking function (in

the labeled Dyck path form).

Definition 2.2.24. The area of a labeled Dyck path v € LDyck(n) is defined to be the number of

complete boxes above the diagonal line and under the path.

Definition 2.2.25. The diagonal inversion, i.e. dinv of a labeled Dyck path v € LDyck(n) is a

pair of cars (s,b), where s < b and either
1. (primary diagonal inversion) s and b are on the same diagonal, and b is on the right of s, or
2. (secondary diagonal inversion) b is in the diagonal above s, and b is on the left of s.

Example 2.2.26. In Figure 2.2.1, we have that area(y) = 6,dinv(y) = 7, where the dinv pairs
are (1,3),(1,6),(3,6) for primary diagonal inversion, and (2,7),(1,8),(3,8),(6,8) for secondary

diagonal inversion.

11



8
7
4

5

Figure 2.2.1: Labeled Dyck path v € LDyck(8)

Theorem 2.2.27. (The Shuffle Theorem) Carlsson and Mellit (2018)

Hilb(DR,) = Y gtm(P)gereal?) (2.2.13)
PePF(n)

In fact, the shuffle theorem stated the Frobenius series of DR,,, so the Hilbert Series is a natural
corollary, but in this text we would just focus on the Hilbert Series.

After Carlsson and Mellit proved the Shuffle conjecture, Haglund and Loher’s derived Schedules
Formula also automatically became true. The Schedules Formula offers a somewhat more compact

expression, since the sum is over permutations rather than parking functions.

Theorem 2.2.28. (The Schedules Formula) Haglund and Loehr (2005)

n

Hilb(DRy,) = Y _ ™) [ Jwi(o)], (2.2.14)

oc€Sn =1
Section 2.4 is dedicated for presenting the details of this formula including the defining the two

statistics maj and w;. The Schedules Formula gave rise to another formula for the Hilbert Series:

Theorem 2.2.29. (IV.)

Hilb(DRy) = > q“t"P(n) (2.2.15)
a,b>0

12



where P(n) is a polynomial in n, and P(n) is given by (permissible is defined in Chapter 4):

s £ s (josweo)]) (I ) (1t -si )
SC{1,2,...,b} UC{1,2,....,sq4} k=0 1=k+2 for lcU
S1+8o+--—4sq=b T permissible

(2.2.16)
Before we dive into more details of the formulas, we should learn about another object of interest
in algebraic combinatorics which is the Macdonald Polynomials, and its connection to our subject

the Diagonal Harmonics.
2.3. Macdonald Polynomials

Macdonald polynomials, introduced by Ian Macdonald in 1987-1988, revolutionized symmetric
function theory by unifying classical polynomial families (Schur, Hall-Littlewood, Jack) through
a two-parameter (q,t) framework. Their discovery resolved long-standing problems in algebraic
combinatorics and forged unexpected bridges to physics and geometry.

Macdonald Polynomials first emerged from studies of g-analogs of Selberg integrals, prompting
Macdonald to construct these polynomials via orthogonalization under a novel scalar product. For
more on Macdonald Polynomial’s origin story, refer to Haglund (2008). The study of Macdonald
polynomials have importance to geometers and physicists, and for us, a primary reason we study
it is that it is the 2-parameter generalization of the Schur function, which we introduced in the
previous section. Setting the ¢,t parameter to 0 would give us Schur function. We turn our atten-
tion to the modified Macdonald Polynomial H, 1(X;q,t). Below is the theorem for the existence of
Macdonald polynomials that is indexed by partitions, and has 2 extra parameters ¢ and ¢. In other
words, the family of polynomials that satisfy the three triangularity criterions are the Macdonald
Polynomials. Before we can introduce the formula, we need to introduce the dominance ordering

and the plethystic substitution.

Definition 2.3.1. The dominance order (or majorization order) on partitions is a partial order

defined as follows:

Let A = (A1, A2, ..., Ap) and p = (u1, 2, ..., pm) be two partitions of n (i.e., they both sum to n).
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We say that A\ dominates p (denoted A B> p) if:

k k
D= i, forallk>1
=1 i=1

where we assume that missing parts in a partition are treated as 0 (i.e., extend partitions with

trailing zeros if they have different lengths).

Definition 2.3.2. Given a symmetric function f and a formal expression X, the plethystic sub-

stitution f[X] is defined by substituting the power sum symmetric function pj, as follows:
pr[X] = Z z*.
zeX
Here, X may represent a sum of variables, an infinite series, or an expression involving other

symmetric functions.

Example 2.3.3. Let X = x1+x9+x3. Then the plethystic substitution of the power sum symmetric
function is:

pe[X] = x% +x§ +m§.

If X=14+q+¢>+...,then

Similarly, for a Schur function sy, we have:

S/\[1 + q] = S/\(L q)

Theorem 2.3.4. The following three conditions uniquely determine a family I:[M(X;q,t) of sym-
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metric functions:

Hu[X(q—1)iq,t] = Y cpulg, t)m,y(X) (2.3.1)
p<p

ﬁu[X(t —1)q.t] = Z dp,u(q,t)mp(X) (2.3.2)
p<p

Hy(X;q,t)|n =1 (2.3.3)

One can regard the previous theorem as the definition of the modified Macdonald Polynomials, but
it is implicitly defined, and so one of the major open problems regarding Macdonald Polynomials was
finding an explicit combinatorial formula for it. The main task was to find appropriate statistics of
labelled partitions so that Macdonald Polynomials can be expressed as a sum of m,(X )gstatlystat2,

Fortunately, this was solved by Haiman, Haglund and Loehr and now it is known as the HHL

formula.

Theorem 2.3.5. (HHL Formula)

]SIM (X, q, t) — Z xotmaj(o,p)qinv(a,,u)

ou—Z+t

where maj and inv are statistics defined on labelled partitions.

More details of the HHL formula can be found at Haglund (2004). Another major open problems
surrounding Macdonald Polynomials is its Schur positivity, a fact that beautifully ties Macdonald

Polynomials to Diagonal Harmonics. Garsia and Haiman (1993) defined for each partition A,
Ay = det| |2y []ij=1,...m

An example is shown in Figure 2.3.1 for calculating Az 2. Denote the linear span of all the partial

derivatives as L[0,0yA,]. They also realized that if the dimension of L[0,0yA,] is n!, then we would
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Figure 2.3.1: Computing As .

have

Frob(L[0,0,A,]) = Hy(X;q,t)

which by the definition of Frobenius series, is Schur positive, thus proving the Schur positivity of
the Macdonald Polynomials. Therefore the Macdonald Schur Positivity conjecture would be proven
if dim(L[0,0yA,]) = n!, which is the very famous n! conjecture, is proven. The n! conjecture was
later proven by Haiman, but the proof involves Hilberst Schemes and techngiues from algebraic
geometry, so although the positivity is proven, a combinatorial formula for the Schur coefficient
H 1 (X5 q,1t)|s, is still open. There are some special cases that have been solved, for example when p
is a hook shape, i.e. ps = ug =--- =1, and also the case pu; < 2 fori =2,3... by Assaf (2018) , the
2 column case where u; < 2 for all i by Zabrocki (1998), but the general case is still open. There is
also a very interesting conjecture called Butler’s conjecture, which would have given a "recurrence
relation" on the Schur coefficient, in which a special case from a hook shape to an augmented hook
shape is proven by Vetter (2024) and Kim et al. (2022), but the general case is still open.

Notice that the definition of L[0,0,A,], as the linear span of partial derivatives, closely resembles

the definition of Diagonal Harmonics, which is the solution space to the system given by the sum

of all partial derivatives. In fact, the former is a subspace of the latter.
Theorem 2.3.6. If - n, then L[0,0,A,] is a subspace of DH,,.

The proof just involves checking the sums and determinants, and can be found at Hicks (2019).
Since L[0,0,A,] is a subspace of D H,,, studying one provides insight into the other. This connection
allows us to analyze DH, through the structure of L[0,0,A,] and vice versa, making their study

inherently intertwined.
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2.4. Schedule’s Formula

In this section, we present the proof of Schedule’s Formula credited to Haglund and Loehr (2005).
Here we recall the Schedules Formula. First we introduce the notion of g-integers, that [k], =

14 g+ ...+ ¢"* 1. Note the at if we let ¢ = 1 then we have exactly k.

Theorem 2.4.1. (The Schedules Formula) Haglund and Loehr (2005)

Z qdin'u(P)tarea(P) — Z tmaj(o) ﬁ[wz(g)]q (241)
=1

PEPF(n) oESn

Here we finally introduce the major index statistics and the w-sequence of permutations.

Definition 2.4.2. For o € 5, let the 1-st run be defined to be the first increasing subsequence,

i-th run be defined to be the i-th increasing subsequence.

e w;(0) = |entries o; in the same run as o; and o; > ;| + |entries oy, in the next run of o; and

o < o
While calculating w;, we adjoint 0 at the end of . Denote the sequence w;(o) as wseq(o).

Example 2.4.3.

o = 4.25.138.679 € S (2.4.2)
wseq(o) = 1.22.212.321 (2.4.3)
maj(oc) =1+3+6=10 (2.4.4)

The dots denote the descents set S = {1,3,6}. Putting everything together, o gives t'°[2]4-[3]-[2]-[1].
The term "schedules" comes from the idea that the schedule tells you the order (or schedule) of
cars being inserted to build up a parking function. We present the "schedules" in the following

paragraph.
Insertion Schedule: Let I' be a parking function. We call y = x as the 0-th diagonal, and y = 2+
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as the i-th diagonal for ¢ = 1,2,3,.... Let ¢ be a car not present in I'" yet, and let k£ be the diagonal

such that k + 1th diagonal is empty, and the k-th diagonal contains no car smaller than c.

e Let s < ¢ be a car in the k — 1st diagonal of I'. Move all cars which are in a higher row than

s up and to the right once. Place car c directly above car s

e Let b > ¢ be a car in the k-th diagonal of I'. Move all cars which are in a higher row than b

up and to the right once. Place c¢ directly above and to the right of b.

e If £ =0, move all cars up and to the right once. Place ¢ to the lower left corner.

Example 2.4.4. In Figure 2.4.1, we present 3 ways of inserting 5 into the parking function using
the proposed insertion schedule. The first parking function uses the first algorithm, and s = 2. The

second uses the second algorithm, and b = 8. The third uses the first algorithm, and s = 4.

Figure 2.4.1: Inserting a 5 into the 2-diagonal. The cars creating new diagonal inversions with 5
are circled.

Denote the set of all new parking functions as Insert(I',c, k), and d.(I") as the parking function
obtained by deleting ¢, and moving everything that was previously to the right and above ¢, down

and below one step so it is still a parking function. Then we have the following proposition.

Proposition 2.4.5. Let I' € PF(n). There is exactly one choice of ,c and k such that T’ €
Insert(y,c, k). In fact k is exactly the highest number of nonempty diagonal of ', c is the smallest

car in the k-diagonal of ', and v = d.(T").

The insertion algorithm is designed such that the proposition holds. We want to stress that there
is only one way to build up a parking function. Other than this, this insertion algorithm does what

we want with the two parking function statistics area and dinv too.
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Lemma 2.4.6. For any parking function that follows the Insertion Schedule, we have

Z tarea('y)qdinv('y) _ tzzrea(l")—l—kqdinv(l") HITLSGTt(F, ¢, k) ”
veInsert(T,c,k)

We get a proof of the lemma with the help from our example.

Example 2.4.7. For our example in Figure 2.4.1, every one of 7 € Insert(T', ¢, k) has 2 more areas,
because 5 was added on the 2nd diagonal, thus the change in ¢ power.

For the ¢ power, notice that the only new potential dinv are the s and b in the insertion schedule.
c would potentially create new dinv with s in the previous diagonal, and b in the same diagonal.
In both cases, a dinv is created when c is further to the left. Due to this reasoning, inserting ¢ on
the rightmost possible position gives no new dinv, just like in our example, the first v has the same
dinv as our original I'. As 5 moves to the left to the permitted positions, it creates a new dinv with
the car it passed over, whether it was through the first or second insertion schedule, and thus the
appearance of [3] = ¢° + ¢' + ¢? in our example, and in general [|[Insert(T',c,k)|]. Therefore we

would have v have dinv(I'), dinv(I") 4+ 1, dinv(I") + 2, ...dinv(I") + [Insert(T', ¢, k)| — 1 as claimed.

We need a few more observations before we can get to our final theorem. The end goal is that we
want to get a sum in permutations instead of parking functions, while still accounting for dinv and
area. We do this by building trees of parking function from a permutation. Let 7 € .S, we will
build a tree of parking function of 7 as following. Start with the 7, which will be a parking function
of size 1, and then proceed inductively as such: at the i-th stage, let ¢ = 7,,_;, and k be so that 7,,_;
is in the k-th increasing subsequence (we will refer to it as run in the text) counting from the right.
We build a tree of function by adding a child Insert(T, ¢, k) to the current parking function I'. An
example of tree of parking functions built from 7 = 2314 is shown in Figure 2.4.2. Notice that all of
the parking functions generated, has their Oth diagonal being the last run, first diagonal being the
second to last run and so on. We denote the set of parking functions generated by a permutation
(schedule) 7 to be PF(7), thus connecting permutation and parking functions.

Now we ask the question, what happens to ¢ and ¢ while we sum over PF(7)? If we sum up the
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Figure 2.4.2: The tree of parking functions built from 7 = 2314.

trees in our examples, we get precisely ¢ [2]4. We know exactly what happens when we just insert
one 7; to the current parking function by Lemma 2.4.6. Notice that all of the parking functions in
PF(7) has area exactly the same as maj(7), since every time a descent appears, all of the elements
afterwards are moved up one diagonal, which is equivalent to what happens to maj of a permutation
when we add a descent in the beginning.

Now let’s track the g statistics. Given a permutation 7 € .S,,, we start to append 0 at the end of T,
this accounts for the special case k = 0 during the insertion schedule. Then the schedule number
wy(c) is the number of entries in the same run that is bigger than it plus the number of entries in
the next run that are smaller than it, which correspond to the number of b and ¢’s in the Insertion

Schedule. Now we finally get

Theorem 2.4.8. For every permutation T,

Z garea(T) dinv(T) _ ymaj(r) H[wT(C)]q (2.4.5)
TePF(t) ¢

Theorem 2.4.1 is thus obtained by summing over all the permutations o € §,,, thus getting all of
the parking functions in their trees. The proof of the main theorem of the thesis has a similar taste
to the proof of the Schedules Fromula.

For now, we have finished telling the combinatorics side of the story. Now we move on to tell the

algebraic side of the story.
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CHAPTER 3

REPRESENTATION STABILITY

3.1. FI Modules

Church and Farb (2013) discovered a significant property of sequences of representations that ul-
timately enabled the development of this thesis. They demonstrated that certain sequences of
representations exhibit stabilization when considered sufficiently far along the sequence. This chap-
ter introduces the underlying representation theory behind this phenomenon, culminating in the

proof of the following theorem:

Theorem 3.1.1. The coefficient of ¢*t* of Hilb(DH,,), i.e. the dimension of DHZ® is eventually

a polynomial of n.
We start our introduction with a motivating example of representation stability.

Definition 3.1.2. The n-th Configuration Space of C is

Confn(C) ={(21,....,2n) € C"|Vi < j,2 # 2z} (3.1.1)

There is a natrual action of .S, on the Configuration space by permuting the indices, and the action
also descends to its cohomology H*(Conf,(C);C).
Recall that irreducible representations of S, are indexed by partitions. Denote the irreducible

representation indexed by (A1, Ag,...,Ar) as V(Aq,...,A). Farb and Church’s calculation shows

that
H'(Confy(C)) =V (2) & V(1,1) (3.1.2)
H'(Confs(C)) =V (3) & V(2,1) (3.1.3)
H'(Confy(C)) =V(4)aV(3,1) @ V(2,2) (3.1.4)
H'(Confs(C)) =V ()@ V(4,1) @ V(3,2) (3.1.5)
H'(Confs(C)) =V (6) @ V(5,1) & V(4,2) (3.1.6)
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Notice that the irreducible decomposition "stabilizes" starting from 4. To state this more rig-
orously, let V(aq,...,a,) to be the irreducible S,-representation corresponding to the partition

((n — Yy a),ai, ...,ar), where a1 > as > ... > a,. Note that this is a partition only when

n—=(imiw) = ar.

Definition 3.1.3. Church and Farb (2013). A sequence of representations V,, are representation

(multiplicity) stable if the decomposition of V;, into S,-representations as
Vn = @ C,\’nv,\ (3.1.7)
A

stabilizes, i.e. the coefficients c) ,, are eventually independent of n.

Now we introduce the properties needed for representation stability. Let FI be the category of

objects being finite sets n := {1,...,n}, and morphism being injections m — n.

Definition 3.1.4. An Fl-module over a commutative ring k is a functor V from FI to the category

of k-modules. Denote the k-module V(n) by V.

Example 3.1.5. 1. V,, = H(Conf,(M);Q) is an Fl-module, where Con f,,(M) = Configuration

space of n distinct ordered points on a connected, oriented manifold M.
2. DH2? is an Fl-module with the injection map being the canonical inclusion map.

3. Ry) (n) is a co-FI-module, where J = (ji,...,j,), R")(n) = EBRST) (n) = r-diagonal coinvariant

algebra.

Our diagonal coinvariant algebra is actually a special case of r-diagonal coinvariant algebra where

r=2.

Definition 3.1.6. Let K be a field of characteristic 0, and fix r > 1. For n > 0, consider the algebra
of polynomials

K[X(r)(n)} = K[q:gl), ... ,xg), - ,xgr), e ,:L‘(T)]

n
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Then S, acts on this algebra diagonally by

0 xp =040
It has a natural r-fold multi-grading, where a monomial has multi-grading J = (j1,...,Jj.) if its
total degree in the variables xgk), e 2 s jk, 50 R (n) = @JRST)(TL).

Definition 3.1.7. An Fl-module is finitely generated if there is a finite set v1,..., vy of elements

in V; so that span(vy,...,vx) =V.

If V is finitely generated, then it enjoys desirable properties that will be useful later in the text,

particularly in understanding the dimension of the space.

Definition 3.1.8. For each ¢ > 1 and n > 0, let X; : S;, — N be the class function defined by
Xi(0) = number of i-cycles in the cycle decomposition of o

Polynomials in the variables X; are called character polynomials.

Since the vector space of class functions on 5, is spanned by character polynomials, the character
can always be described by a polynomial. Below are two examples of characters written in character

polynomials.

Example 3.1.9. 1. V ~ Q" the standard permutation representation of S, then xy (o) is the

number of fixed points of o, so xyy = X;, the number of 1-cycles in the permutation o.

2. If W = A%V, then yw = ()gl) — X, since 0 € ), fixes the basis elements x; A z; for which the

cycle decomposition of o contains the pair (¢)(j), and negates those that contains the 2-cycle
(4,7)-

Notice that in the previous two examples, one character polynomial describes the entire family of

characters for all n > 1, so there is a natural question to ask: is there "the" character polynomial
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that realizes a sequence of characters x, of S,7

Definition 3.1.10. A sequence X, of characters of S, is eventually polynomial if there exists r, N

and a polynomial character polynomial P(X7y,..., X, ) such that
Xn(0) = P(X1,...,X;)(0)

for all n > N and all ¢ € S,,. The degree of the character polynomial is defined by setting
deg(X;) = i.

The central theorem we want to use from Farb and Church’s result, is the following considering field

of characteristic 0:

Theorem 3.1.11. Let V be an Fl-module over a field of characteristic 0. If V is finitely generated,
then the sequence of characters xv, is eventually polynomial. In particular, dimV,, is eventually

polynomial.

The dimension being polynomial follows from the fact that
dimV,, = xv, (id) = P(n,0,...,0) (3.1.8)

Farb and Church showed that the characters of r-covariant algebras satisfy the criteria of Theorem
3.1.11, as the co-FI structure they admit also ensures the necessary conditions are met. Thus, we

have:

Theorem 3.1.12. For any fixed r > 1 and J = (j1,...,jr), the characters Xp(r) are eventually
J

polynomial in n of degree at most |J|. In particular there exists a polynomial Py) (n) of degree at

most |J| such that

dim(RE,T)(n)) = Py) (n) for alln >>0 (3.1.9)

Letting » = 2 in the previous theorem brings us to the central result that is the cornerstone of our
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thesis:

Theorem 3.1.13. The characters of x ,pab are eventually polynomial in n of degree at most a+b.

In particular there exists a polynomial P, y(n) of degree at most a + b such that

dim(DR&Y) = P, 4(n) (3.1.10)

However, Theorem 3.1.13 establishes only the existence of the polynomial P, ;(n), without providing
an explicit formula. The primary goal of this thesis is to make this polynomial explicit, which will

be the focus of Chapter 4.

Remark 3.1.14. Notice that Theorem 3.1.12 establishes that many other r-coinvariant algebras also
exhibit representation stability. This suggests it would be interesting to investigate their bigraded
subdimensions polynomials. However, at present, even the general (total) dimensions of these
algebras have not been conjectured. There remain many open problems in this area that are ripe

for exploration.
3.2. Stability Range

The stability range is defined as the smallest integer N such that for all n > N, the dimension
dim V}, stabilizes. In Church and Farb (2013), they studied the stability of DR’ and although
they did not state an explicit bound, their results on F'I-modules imply a stability range of at most
2(a+1b) for DR%". Moreover, they proved that the dimension becomes a polynomial in n of degree
at most a + b once stabilization occurs.

While Church and Farb (2013) gave a proof of the latter fact, there is still gap in existing theory
(which we will point out later) to prove that one can find an explicit stability bound that is 2(a +b)

just using FI-module theory.
Conjecture 3.2.1. DRZ’b and DHﬁ’b starts to stabilizes at the latest from n = 2(a + b)

Theorem 3.2.2. The dimension of DH is a polynomial in n of degree at most a + b once they

stabilizes.
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We will be quoting the theorem numbers from the Church and Farb (2013) paper in the rest of the

section. First, Proposition 3.3.3 states that for DHff’b, we have stability range
N > Weight(DH®*®) + stab-deg(DH®®) (3.2.1)

where stab—deg(DHg’b) denotes the stability degree of DHg’b. On page 37 "Proof of Theorem 1.11"
of the paper Church and Farb (2013), they proved that both the Weight(DHﬁ’b) and the degree of
dimension polynomial to be bounded by a + b. Therefore to find a stability range, we just need to
find the stability degree.

Due to a gap in the existing theory, we state the following conjecture and proceed under the

assumption that it holds for the remainder of this section.
Conjecture 3.2.3. stab—deg(DHﬁ’b) < stab-deg(C[X,, Yn]%?).

Now we investigate stab-deg(C[X,,, Y;,]%?). Notice that we have isomorphism

C[X,, Yn]*b =2 Sym®(C") ® Sym®(C™). Since C™ has weight of 1 and Sym?®(C") = S*(C") where
A = (a), by Proposition 3.4.3, Sym®(C™) ® Sym®(C™) has weight a+b. By Corollary 4.1.8, we know
that for an FI#-module, stability degree is bounded above by the weight. Therefore we only need
to prove that Sym®(C") @ Sym?(C™) is an FI#-module to show that stab-deg(DHY") < a + b.
To see that Sym?(C") ® SymP(C") is an FI#-module, we know that C" is an FI#-module by
Example 4.1.2. Since Sym is a Schur functor, by the last paragraph on page 31 of the paper, we
know Sym®(C") is an FI#-module and thus C[X,, Y,]%"* = Sym®(C") @ Sym’(C") is an FI#-
module, so we do have stab-deg(C[X,,, Y,]*") < a +b.

Therefore by (3.2.4), we know that stab-deg(DHSE") < a + b, and by (3.2.1), we would have a

stability range 2(a + b) assuming that Conjecture 3.2.3 is true.

Remark 3.2.4. Even if the conjecture is proven, we still wouldn’t claim that 2(a 4 b) is a sharp
bound, and indeed, we find in Section 4.3 a new bound to be actually a+b. In fact, using only tools
from FI-module theory typically does not yield sharp bounds. See Hersh and Reiner (2017) for

an example where a sharp bound for another S, -representation—the cohomology of configuration
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spaces—is obtained using symmetric function theory.

Remark 3.2.5. Once the character polynomial stabilizes, the dimension of the representation imme-
diately stabilizes as well. However, there is no known theorem guaranteeing the converse. Indeed,
one can construct toy counterexamples—such as a sequence of sign representations. Nevertheless,
in sequences of representations arising "in nature," such pathological behavior appears to be rare.
While we do not claim that the stabilization of dimension and character polynomial always occur

simultaneously—since we lack a proof—empirical evidence suggests that they usually do.
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CHAPTER 4

PROOF OF MAIN THEOREM
4.1. Main formula
Definition 4.1.1. Let 7 € N* U C {1,2,..., 54}, S be the descent set such that Z?:l s; = b, define
W(r) ={o € Sp|wseq(c) =1}

Dg ={o € S,| Desc(c) = S}

W(r,U) ={o € Sp|wi(c) =7 for i ¢ U,w;(c) > 7; for i € U}

Theorem 4.1.2. (W.) The dimension of DRY is given by

52{172217} s.t. Ug{lg..,sd}gm_szf:orzw <’DSHW(T’ U)D ' (Mk](ﬁ[Ti]tJ)) : ([qak]<[n sd]q!>>
s1+80+. +8a=b

=1
T permassible

There are two key observations of the w-sequence of o € S,,. Let the descent set S = {s1, s9, ..., 4}
where s1 4 ...sq = b be given. First, ws, ;41 =n — sq — %, i.e. the tail of the w-sequence is

(4.1.2)
1=sq+1

We use the following result in our third parenthesis of (4.1.1).

Theorem 4.1.3. Knuth (1997)

()

Jj=1

(n—kllj—l)+i(_1)j(n+k—ui—1)+i(_1>j<n+k—Uj—j—1>

where u; = @ the pentagonal numbers, and k < n.
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Margolius (2001) noted that (§) = 0 when b < 0, so we actually have a finite sum, and there are
exactly |/ = + z—?ﬂ terms together in both summands. Therefore [¢"] ([n]') is indeed a polynomial
in n for k <n.

Given k <n and o € S,, define a truncation map as follow:

k+1, ify>k+1,
tr(y) =
Y, otherwise.

The second observation is that

o (ﬁ[wxanq) -1 ﬁ[tr(wxa))]q) (4.1.4)

i=1 i=1

With this observation in mind, we only need to worry about the counting problem being: Fix a
descent set S, given a w-sequence 7 with maximum 7; being k£ + 1, how many o € S,, has a w-
sequence that truncate to 77

This is exactly the first parenthesis in (4.1.1) which is <‘DsﬂW(T, U )|> We claim this is a
polynomial in n, and we will state and prove this in Theorem 4.1.10 later in the text. Assuming

this theorem, we are ready to give a proof of our main result Theorem 4.1.2

Proof of Theorem 4.1.2. First, notice that the first parenthesis (‘DS AW (r, U)’) is a polynomial

in n by Theorem 4.1.10, which we assume now and prove later. Second parenthesis ( [¢*] ([}, [Ti]q)>

is a constant, and third parenthesis ([q“_k] ([n — sd}q!)> is a polynomial in n by Theorem 4.1.3.
Now we analyze the 4 summations. First, given a fixed b we want to sum over all possible descent
set that gives s1 + s + ...sqg = b. Given a descent set, we want to sum over all the possible 7 € N"
such that there exists o € S, with wseq(c) = 7. The number of such 7 only depends on a and
the descent set S, since we noticed in our first observation that the tail of the w-sequence of o
is always (n — sq,n — sq — 1,...,2,1). The fact that it also depends on the descent set S comes
from the definition of permissible, which we delay until after this proof, as permissible is another

restriction on 7 that depends on S and ensures <|DS AW (r,U) ‘) # 0, thus the second and fourth
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summation. In addition, for the fourth summation we are summing from 7; = k + 2 to avoid double
counting: for example, W((l, 1,4,5,4,3,2, 1),(;5) is already counted once for k = 3,U = ¢, so for
U = {3}, we want to calculate W ((1,1,5,3,2,1),{3}) to avoid counting W ((1,1,4,5,4,3,2,1), ¢)

again. Finally, observe that
(T fwi@)y) = S ([qk](H[wxoﬂq)) ~ ([qa-k]( 11 [w(anq)) (4.1.5)
i=1 k=0 i=1 i—sqt1

Therefore we have the third summation. Notice none of the summations depend on n, as they only
depend on a and b, so we have that (4.1.1) is indeed a polynomial in n that calculates the coefficient

of ¢®t® in the Schedule Formula. O

Now we come back to the definition of permissible.

Definition 4.1.4. Let the descent set S and i € {1,2,...,n} be given, and ¢ be so that s; <@ < s441.
Define the maxg w; as

,

(St41 — 1) + (S442 — S¢41), ift <d—1,
MAXW; =9 (sq — ©) + (n — sq), ift=d-1,

n — Sq, if t =d.

Similarly define ming w; as

S¢+1 — 4, if ¢ is not a descent position,
min w; 1=
S

1, if ¢ = s; for some t.

Note that given o with descent set S, the maximum and minimum number of w;(c) are exactly

maxg w; and ming w;, hence the definition.

Definition 4.1.5. Let the descent set S be given, let 7 € N”. 7 is permissible if mingw; < 7, <

maxg wj, and for elements j in the i-th run {os,, 05,41, ..., 0-375#»171} we have w; < w1+ 1.
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Before we prove our claim about permissibility, we need to identify where n can be, given o € S,

and o € Dg N W (r,U).

Definition 4.1.6. Let the descent set S and U be given, w € N”, A maximal spot is o} that

satisfies one of the following conditions
1. k=n and w,,(0) < maxgws,

2. k € {s1,...,sq4} and k = Sy, Sm—1 # Sm — 1, ws,_,(0) < maxgws, ,(0), and ws, (o) =

maxg ws,, (o).
3. ke{s1,...,sq} and k = Sy, Sm—1 7 Sm — 1, ws,, ,(0) < maxgws,, ,(c), and k € U.

Proposition 4.1.7. If Ds(\W(7) # ¢, then for o € Ds(\W(7), n can only be at the mazimal

spots, and there is always at least one maximal spot.

Proof. First of all, n can only be at the descent positions and the last position since it is bigger

than anything else in the permutation. Now separate into 3 cases

1. k=n
If ws,(0) = maz ws,, then oy, is greater than everything in the next run and thus greater

than n, which can’t happen.

2. ke{s1,...,sq} and k = s,
If ;-1 = s, — 1, then s, = n < s,,_1, which can’t happen.

If ws,, ,(0) =maxgws,, ,(c), then ws,, ,(c) > ws, =mn, which can’t happen.

3. ke{s1,...,8q4}, k=spmand k € U
Note since k € U, we have that 7, > v for some number v, so naturally 7, = maxgwg (o) is

included in this case.

Now we prove the existence of a maximal spot. First, if ws;, < maz ws,, then n is a maximal

spot, so we can have o, = n. If not, then we have w,, = maz ws,, and if w,, , # maxgw,, (o),
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then s4 is a maximal spot. If however w,, , # maxgws, ,(0), then find the smallest v such that

ws, , # maxgws, (o). If we get to v = 2 and still no v satisfies , then s; is a maximal spot. [

Proposition 4.1.8. Let the descent set S be given, and let T € N™ be permissible, then DgNW (1) #

¢. The converse of the statement is also valid.

Proof. Observe that any o € Dg (| W (7) has w; values as described, so the converse of the statement
is true.

Now assume 7 is permissible. We can build up a permutation with the desired descent set and the
given 7 by finding the maximal spot at every stage.

To build this permutation, start by inserting n. w; = n can only be inserted at a maximal spot, and
we know that maximal spots exist by Proposition 4.1.7, so we know where n would be inserted.
We build up the rest of the permutation in a similar fashion inductively. Now we insert y where
1 <y < n. At this stage we modify our definition of maximal spot to define the maximal spot while
trying to insert y. We call "a maximal spot while trying to insert y" as a y-maximal spot. Denote

the rightmost available spot in each run oy, ..., 04, , -1 as r;. A y-maximal spot is defined as follow:

1. Let the last available spot be a. If @ > r4_1 and w,, ,(0) < a —r4_1, then a is a y-maximal

spot.

2. We know how r;_1,r; and r;+1 compare to each other from their respective w; values, so we

know there exists at least one 7 where one of the following conditions has to satisfy:
(a) ri > i1 and 1y > riy
(b) neither 7;41 and r;_; are available spots
(¢) 7ri—1 doesn’t exist and r;y1 < 1;
(d) riy1 doesn’t exist and r;—1 < r;

then r; is a y-maximal spot.
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y is bigger than any number inserted later than y, and so by definition of y-maximal spot, we know
that y we have the correct w; value. At every stage, the condition that for elements in each run
J € {0s;,0541,-,0s,.1_, }» we have w; < wjq1 + 1 ensures us that for element in each run, the
previous element is smaller than it, thus respecting the descent set, so the resulting permutation
would also respect the descent set. The condition that ming w; < 7; < maxgw; for all 7 ensures
that at every stage, the resulting w; values could be actually reached by inserting a number in
{1,...,n}. The existence of a y-maximal spot while trying to insert y comes from reading the w
values of r;. Continuing this process, we know that at every stage there is at least one y-maximal
spot while trying to insert y, so we can construct the permutation with the desired descent set and

w; values. O

Example 4.2.1 Construct a permutation with

n=10,8={2,4,7}7=(2,2,3,2,2,4,3,3,2,1)

Note this 7 values is permissible for the descent set S.

First insert 10. Condition 2 is satisfied in Definition 4.1.6, so 7 is a maximal spot.

O0.00.-001.000

Condition 2.(c) is satisfied in the definition of 9-maximal spot for 2, so 2 is a 9-maximal spot.

09-O0O-0010.O 00

Condition 2.(a) is satisfied in the definition of 8-maximal spot for 4, so 4 is a 8-maximal spot.

9.0 8.0 010. 000
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Condition 2.(c) is satisfied in the definition of 7-maximal spot for 1, so 1 is a 7-maximal spot.

79.08.0010.000

Condition 2.(c) is satisfied in the definition of 6-maximal spot for 3, so 3 is a 6-maximal spot.

79.68 .0 010.000

Condition 2.(c) is satisfied in the definition of 5-maximal spot for 6, so 6 is a 5-maximal spot.

79.68.0510.0 00

Condition 1 is satisfied in the definition of 4-maximal spot for 10, so 10 is a 4-maximal spot.

79.68.0510.0 04

Condition 1 is satisfied in the definition of 3-maximal spot for 9, so 9 is a 3-maximal spot.

79.68.0510.034

Condition 1 is satisfied in the definition of 2-maximal spot for 8, so we have our permutation with

the desired descent set and w; values

79681510234

Corollary 4.1.9. If 7 is permissible for the descent set S, then |Dg (W (r,U)| # 0 for any U €

This result follows from the fact that W(r,¢) C W(r,U) for U # ¢.

Theorem 4.1.10. Let S be given and 7 € N" be permissible, then |Dg N W (7,U)| is a polynomial
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mn.
4.2. Proof of Theorem 4.1.10

We prove Theorem 4.1.10 by a recurrence formula. We present an example of such a recurrence
before we give the details of the proof.

In the tree below, the children of each node is obtained by removing the biggest entry in the parent,
so the first generation is obtained by removing n which we proved to be at the maximal spots. In
general, the i-th generation is obtained by removing n — i+ 1 and tracking how S, 7, and U change,
which we would define the maps ¢ and v in Definition 4.2.1 and 4.2.2 and prove that removing n
would affect the corresponding S, 7, U value exactly as we predict in the maps ¢ and .

The base case of the recurrence is when S = 1, then we know that |[Ds "W (r,U)| =n—1 — 1
if U = {1}, and |[Ds N W(r,U)| = 1if U = ¢. We also stop at the node obtained by removing
on—; = n — 1 at the i 4+ 1th level, as that would be our recurrence step. For the sake of readability
in the tree, we denote Dy 35N W ((1,2,2,1,3) U (n —5)!,{5}) as 1.22.1 > 3.(n — 5)!, where a dot

denotes a descent.

1.22.1 > 3.(n — 5)!

/ N
o3 =mn on=n
/ N
1.1.1 > 3.(n —5)! 1.22.1 > 3.(n — 6)!
— \ T~
Opn—1=n—1 og=n—1 or=n-—1
— \ T~
1.1.1 > 3.(n — 6)! 1.> 1(n —5)! 1.1> 3.(n — 5)!
/ AN
Op—2=mn—2 o3 =n—2
/ AN
1.1> 3.(n — 6)! > 1.(n—4)!

We start our calculation from the bottom. > 1.(n —4)! has S = {1} = U, and for 0 €> 1.(n — 4)!

we have o € Sp_3, so we get that > 1.(n —4)! = (n—3) —1 = (n —2) — 2. If we denote
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F,_2=1.221 > 3.(n—5)!, then we have the recurrence step
Fn_o=F,_3+ (n — 2) -2 (421)

The polynomial that satisfies this relation is

Zz’—2:;(n—2)2—;’(n—2)—5 (4.2.2)

1 5
=51 = 5(n—1)-3 (4.2.3)

The summation starts from 6 since the first nonzero term of F;, starts from 6. The resulting
polynomial will be computed using Remark 4.2.6, stated later in this thesis.

It’s not hard to calculate 1. > 1(n — 5)! as it is just the number of permutations of n — 2 with
descent set being {1, 2}, which would be ("_g_l) =1in—-12-3(n—-1)+3.

Now we do the recurrence step on 1.1.1 > 3.(n—5)! in a similar fashion, and we skip the calculation

here but provide the final tree of polynomials. For readability, n; = n — 4 in the tree.

1.4 5.3 _ 1,2, 8, _
27 — gl pn”+Gn—14

- L
o3 =n Op =MN
%ni’ —2n? — %m + 14 recurrence step
Opn—1=n—1 o4 =n—1 op=n-—1
recurrence step ("22_ 1) %n% — %ng -5
s AN
Op—2=nNn—2 o3=n-—2
s N
recurrence step ng — 1

Having presented the example, we will now establish that the results observed hold true in general.
We start by giving details to how S, 7 and U change by removing the biggest entry. First, we study

how the descent set S change.

Definition 4.2.1. For m = o; = s;, a maximal spot, define ¢,, : 2110 — 2{1-b} 45 follow:
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1. m =n. Then ¢,,(S) =S
2. 1<m<n.

(a) If ;,—1 = 1, which implies 0,1 < o441, then s; — s; — 1 for i > k, s; — s; for i < k, and

then delete m = sy.
(b) If 74—y > 2, which implies oy—1 > o441, then s; — s; for 1 <i < k, s; — s; — 1 for i > k.
Note we can tell whether we have oy_1 < 0441 or 041 < 0411 just by inspecting w;_1.
3. m=1, s; — s; — 1 and then delete s;.
Now we define ¥ which tracks how 7 and U changes.

Definition 4.2.2. Let S be given, U C {1, ..., 54}, and 7 € N” permissible. For m = o, a maximal

spot, define ¢, : N™ x 2{1.2nb _y Nn—1 5 9{1.2.n=1} 4 follows:

1. m=n
First delete wy,, and for i € {sq,sq+1,...,n—1}, w; — w; — 1. w; stays the same for all other

1. U stays the same.
2. 1 <m < n. Suppose m = s,.
(a) i1 =1,1e. 04—1 < o1, and i — 1 €U

First delete wy,. If y # d, for elements in the same run as m, i.e. o5, ,,05, ,41,..+,0s,-1,
we have w; — w; — 1+ (sy41 — 8y). If y = d then w; — w; + (n — sy)

For elements in the previous run of m, i.e. os,_,,0s, 41,...,0s,-1, if i+7; > m—1, then
urruforueUand u <mand u—u—1foru>mfori=s,_1,5,-1+1,....,5, — L.
If i+ 7, <m —1, then first uw — v — 1 for v > m and U — U |J{i} for i = sy_1,54-1 +
1,8y — L.

All the other w; also stays the same.

37



(b) T—1 > 2,1ie o1 > Ot41
First delete wy,. For elements in the same run as m, i.e. 05, ,,05, ,+41,...,0s,, We have
w; — w; — 1if w; > 1, and w; — 1 if w; = 1.

Forue U and u <m, u+— u; for u >m let u+— u— 1.

3. m=1.
Delete w;.

If 1 € U, then delete 1 and v — u — 1 for all u € U.

If v_1 =1and ¢t — 1 € U, then we need to treat (W (r,U)) as (W (7', U)) Jv (W (r,U’)) where
7/l=rifori#t—1land 7y =2,and U' =U — {t — 1}.

We will do two examples to show how deleting 10 and 9 from a permutation actually affects the

descent set and w; values.

Example 4.2.3. Let n = 10,U = {5}, S = {1,3,5},7 = (1,2,2,1,3,5,4,3,2,1). In other words
we are looking for maximal spots for permutations of 10, with descent set S = {1,3,5}, and
w=(1,2,2,1,v,5,4,3,2,1) where v > 3.

First we need to find the maximal spots. 73 = 2 = maxg w3 so 3 is a maximal spot. When 75 < 5,

we have that 10 is also a maximal spot. Therefore we have in total of two maximal spots.

1. m=3
Since T2 = 2 we know that oy > 04, so following Definition 4.2 1.(b), we have that ¢3(S) =
{1,2,4}.
By following Definition 4.2.2(b), we have ¢3(W(7,U)) = (1,1,1,v,5,4,3,2,1) where v > 3.

Formally we write this as

Y3 (W((l, 2,2,1,3,5,4,3,2, 1), {5})) = W<(1, 1,1,3,5,4,3,2,1), {4})

2. m=10

By following Definition 4.2.1, we have that ¢19(S) = {1, 3,5}.
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By following Definition 4.2.2, we have that 110 (W (7,U)) = W ((1,2,2,1,3,4,3,2,1),{5}).

The descent set and the w; values indeed change accordingly with the maps ¢,, and ,, when

removing 10.

Example 4.2.4. Let n =9,5 ={1,3,5},U = {5},7 = (1,1,1,3,5,4,3,2,1). In other words we are
looking for permutations of 9, with descent set S = {1,2,4}, and w = (1,1,1,v,5,4,3,2,1) where
v > 3.

First we need to find the maximal spots. 1 is a maximal spot, since 3 = maxgw; = 1. 4 is also a

maximal spot, and 9 is a maximal spot when 74 < 5.

1. m=1
By following Definition 4.2.1.3 and 4.2.2.3, we get that ¢9(S) = {1,3} and y(W(r,U)) =

(1,1,v,5,4,3,2,1) where v > 3. We can also write this as

g (W((l,1,1,3,5,4,3,2,1),4)) =W((1,1,3,5,4,3,2,1),3) (4.2.4)

2. m=4
In this case 74 = 5. Note that since 79 = 1 we have that o9 < 04, so if we follow Definition
4.2.1(a) and 4.2.2(a), we have that ¢4(S) = {1,2},¢4(W(7,U)) = (1,v,6,5,4,3,2,1) where

v > 1. We can also write this as

Vs (W(r,U)) =W ((1,1,6,5,4,3,2,1),{2}) (4.2.5)

3. m=9
In this case 74 < 5. By following Definition 4.2.1.2 and 4.2.2.2, we have that ¢9(S) =

{1,2,4}, 9 (W(T, U)) =(1,1,1,v,4,3,2,1) where v > 3. We can also write this as

Yo (W (r,U)) =W ((1,1,1,3,4,3,2,1), {4}) (4.2.6)
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Theorem 4.2.5. Let S be given, T be permissible and U C {1,2,...,sq}. Then

‘DsﬂW(T, U)‘ = > Dy, s) [ \om(W (7, 1)) (4.2.7)

m a mazimal spot

Proof. Let 0 € Dg (YW (r,U). First, we will prove that if o,,, = n where we proved that m has to be
a maximal spot, then removing n we would get exactly a permutation o’ € Dy sy () ¢hm (W (73 U)).
It’s clear to see that o € Dy, .(s) by the definition of ¢, so we just need to prove that o €

U (W(7,U)). We divide into 3 cases as before.

1. If m = n, then no elements in the previous run is affected by removing n, but every element
in the same run as n is less than n so we have w; decreases 1 as defined. No other elements

would have w; value changed by removing n.
2. 1 <m < n. Suppose m = s,

(a) Om—1 < Omt1

For elements ¢; in the same run as n, removing n removes a number that is bigger than
oi, so we have w; — 1, but in the new permutation since o,,4+1 > op—1, the next run
becomes the same run as o, and by the descent set we know every one of the element in
the next run is bigger than o, so we need to add the length of the next run, giving us
w; — 1+ (8y+1 — sy). For the case y = d we modified the map by the fact that ¢,,41 = 0.
For elements o; in the previous run of n, if ¢ + 7, > m — 1, then we have o; > 0,,_1, S0
by removing n, there might be more elements in the run after n that are smaller than o;
that are now in the next run of o;, and in fact there exist permutations with w;(c) = s
for every 0 < s < sy41 — 8y. The reason is that given any 0 < s < sy41 — sy, if there
are s elements among o, to o5, , that are bigger than o;, and if we insert m back to
its original position, we get a permutation in Dg (W (7,U). Thus the definition of 1 in
this case.

If instead i 4+7; < m — 1, then any thing in the run after m is bigger than o;, so although

the next run becomes longer, the number of elements in the next run bigger than o;
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remains the same, thus the definition of ¢ in this case.

(b) Om—1 > Om+1
For elements in the previous run of m, the w; values do not change because removing n
does not merge the next 2 runs. The only values affected is the elements in the same run

and it is w; — w; — 1.

3. m=1
No elements after n would have their w; values affected by removing o1 = n, so just delete

w1.

Therefore we have proven that o’ € 1, (W(T; U )) Since we have proven that n appear and only

appear at the maximal spots, we get the result by summing over all the maximal spots.

Now we are ready to give a proof of Theorem 4.1.10.

Proof. First we formalize the action of removing the biggest entry and applying the maps ¢ and v

we defined in Definition 4.2.1 and Definition 4.2.2. Let

Zyy 2 2B s N 2] et it gl (428)
Ds(YW(r,U) = Dy,.(s)[ | tom (W (4.2.9)

Let ng i _)(S, 7,U) denote Zp,; 0 Zm;_,...2Zm, (S, 7,U), where m; is a maximal spot of

Z(’mi i )(S, 7,U) for all 7. For example, in the example we have shown in the beginning of this

section, we see that in the first generation, the branch on the left shows Z({l, 3,5},(1,2,2,1,3) U
(n—5),{5}) = Z({1,2,4},(1,1,1,3) U (n — 5)!,{4})

First, prove that Z%“(S, 7,U) where my # n is a polynomial in n — 1. By definition of the map
¢, we know that by at most sq — 1 times of applying ¢, we can get to the descent set S = {1}.

Let the number of times needed to be applied to S to get to S = {1} to be j. We will prove the
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aforementioned statement by reverse induction on the number of times Z map is applied.

First, prove for the base case Z{ k)(S, 7,U) where my # n,ma # n—1,.m; # n —j+

mi,...,m

L, and we know that S = {1}. If U = ¢, then |Z] ~ (S,7,U)] = L. It U = {1}, then

\ngl )(S, 7,U)| = n—j—1}, where 7' is the resulting 7 value in Z/ (S,7,U). Both cases

----- m; (m1,...,mj)

are polynomials of n — j.
Now, assume that \ngl mi)(S’, 7,U)|, where my # n,mg #n—1,...,m; # n—i+1, is a polynomial

in n—i. Prove that ]Z(i_l
m

- m__l)(S, 7,U)|, where m; # n,mg # n—1,...,m;_1 # n—iis a polynomial

inn-—1t+ 1.

We know that |ZZm1 mmi)(S, nU) = >

Z (z/1 (S,7,U))|. For mF #

; k
maximal spots m/} (m1,eeeymi—1)

n — ¢+ 1, i.e. the rightmost position of the permutation after applying Z for i — 1 times, we know

zZ mk(sa T, U)

_ satisfies the induction hypothesis, so each
MLy —1,T1y

(m1,ee.;mi—1)

me (Zi_l (57 T, U))' =

one of them is a polynomial in n —i. Denote the sum of them, which is also a polynomial in n —1, as

P(n—1i). Rewrite this as a polynomial in n—i+ 1, and denote it as Q(n—i-+1). For m¥ =n—i+41,

i =

we know Z, ;11 ((ZZ (S,7,U)) has the same descent set S, U with Z!

—1
(m1,..;mi—1)

(S,7,U)

-1
M, sMi—1)

and 7 up until the last descent o by the definitions 4.2.1.1 and 4.2.2.1 of ¢ and v, with the only
difference being that the length of 7 in Z° ! (S,7,U) being n — i + 1 and the length of 7 in

(ma,...,mi—1)

Zn—it1 (Z"_1 )(S, T, U)) being n — i, so we get

(m1,..mi—1

Z00 o ST = Q=i+ 1) +| 2,

(m1,...,m;_1)

S,7,0)| (4.2.10)

m¢,1,’nfi) (

If we denote the number of permutations in S, —;4+1 that has descent set qﬁ’(;ll m__l)(S ) and is in
¢E;n11 m-,l)(W(T’ U)) as Fp_;1+1, and the number of permutations in S,,_; that has descent set

i—1 (S) and is in wéV_rlll,-~~7mi—1) (W(T’, U)) as F,_;, where 7’ is of length n — ¢ but 7; = 7/ for

(m1,...,ms_1)

i =1,...,a then (3) can be rewritten as
Fhiv1= Q(TL —i+ 1) + Fo_; (4211)

Then the function F,,_;;1 that satisfies this recurrence, is a polynomial in n — i + 1 (see Remark
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4.2.6 below for details), namely

n—i+1

}Zé;i,...,mifﬂ(s’,r’[])}: Z Q(l)

l=a+T1a

where « is the last descent place of permutations in Z(i (S,7,U), and Q(a+ 7,) is the first

—1

M, Mi_1)
nonzero term of the recursion formula.

Now, by reverse induction, we have proven that Z,ln1 (S, 7,U) where m; # n is a polynomial in n—1.

Using similar reasoning, we can prove that Dg(\W(7,U) = Z°(S, 7,U) is a polynomial in n. We

know that

|DSHW(7—7 U)l = ’Z()(SvT? U)| = Z | Zmy (S, 7, U)

maximal spots mj

For my # n, we have that }_, , [Zn (S, 7, U)| is a polynomial in n—1 denoted as P(n—1), and after
rewriting it into a polynomial of n we get a polynomial Q(n). For m; = n, we get that Z,(S,7,U)

does not change S and U, so we get
1Z°(S,7,U)| = Q(n) + Z1(S,7,U)

By similar reasoning as proving the induction step, we can find that the function that satisfies this

recurrence is a polynomial in n, namely

n

Ds(\W(U) = > Q)

l=s4+7s,

Now we have proved the theorem.

Remark 4.2.6. Let P(z) = Z?:o ajz’ € Q[z]. While calculating Y"1 P(i) as performed in the
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example provided in p37, we can use the formula

n p+1 1
Zz’pzzg-S(p+1,i)-(n)i (4.2.12)
=1 =1

where S(n, k) denotes the second Stirling number of n and k. The proof of the formula follows
from the fact that both the left hand side and the right hand side counts the number of functions
f:[p+1] — [n] where f(1) = k is the maximum of the function.

Note (n); =n-(n—1)...-(n—i+1) only has i terms in the product so each (n); indeed a polynomial
in n; there are only p terms in the sum, so the sum on the right hand side of (4.2.10) is also a
polynomial in n. Let P(z) = Z?:o a;z? € Q[z], then we know by Remark 4.2.6 that Y 1 P(4) is

a polynomial in n, so we also have that ). P(i) for some fixed m is a polynomial in n.

Remark 4.2.7. While calculating Dg(\W (7,U), if the maximal spot is n = oy, 7,1 = 1 and

t—1¢€U, then
Zm (S, 7,U) = Z (S, 7, U) + Zp(S,7,U")

where 7/ = 7; for i #t — 1 and 7/_; = 2, and U’ = U — {t — 1}. This adjustment needs to be made

because ¢ and 1 are defined differently for »_1 =1 and 71 > 2.

Remark 4.2.8. While calculating Dg (W (r,U) for U = ¢ and 7 € N, the only maximal spot at
the first generation is n, and similarly for all the later generation until n = sq 4+ 74. Therefore,
|DSﬂW((7'1, cey Tey) U (0 — sd)!,gb)\ = |DSﬂW((7'1, e, Ts, U (Tsd)!,¢)|. For example for S =
{2}, 71 = 1,72 = 2, we have 12.(n — 2)! = 12.21. For any n > 5, the only satisfying permutation is
(1,4,2,3,5,...,n — 1,n). In general, we can also count |DSﬂW((7'1, cey Tey U (Td)!,¢>)\ using our

recursion thus get |Dg (W ((1,...,7s,) U (n — sq)!,¢)| in the end.

4.3. Stability Range and Degree

In this section, to better investigate the boundary cases, we employ an alternative form of our

formula that avoids double-counting certain 7 in a different way, while leaving the rest of the
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formula unchanged. The version below will be used throughout this section:

> DD (’DSQW(T;WD-([qkl(ﬁ[n]q)>.<[qa—k]([n—sd]q!)>

5C{1,2,...b} UC{1,2,...,sq} k=0 r,=k+1 for I€U i=1
s1+52+...+s55=b 1<k for l¢gU
7 permissible

Theorem 4.3.1. The polynomial starts to stabilizes from a + b.

Proof. First we observe that for the 3rd parenthesis in (4.1.1), the Knuth (1997) formula works for
all k=0,1,...,a when n > a + b, so we mainly need to investigate Dg (W (7,U).

Our final polynomial is a sum of polynomials, and it starts to stabilize when we have Dg (W (1,U) >
0, so considering the boundary case when S = {b}, k =aso 7, = a+ 1,b € U, we know from our
algorithm that we will have a nonzero polynomial in n for Dg (W (7, U) starting from a+b+ 1, so
for n > a + b+ 1, the polynomial stabilizes. However if we take a closer look at our algorithm, we
can actually find that our polynomial starts to stabilizes from a4+ b. We will prove that the formula
is still true, i.e. P(a+b) = 0.

For the boundary case, at the last step, we have one branch being the recurrence branch, and
potentially several other branches that add up to a polynomial in n we denote as p(n), and then we
use Remark 4.2.6 to calculate the final polynomial in n, which is the polynomial that satisfies the
recurrence F,, = F,,_1 + p(n), and since the first nonzero term is a + b+ 1 in the boundary case, we

were calculating

n n a+b
Yo=Y (4.3.1)
i=a+b+1 i=1 i=1

therefore when n = a + b, we get exactly 0, which is true since |Dg (W (7,U)| = 0. Therefore
we proved that the first parenthesis is indeed correct for all cases for n = a + b. For the third
parenthesis when we use Knuth (1997) formula, which is true for all k£ value when n = a + b.

Therefore stabilization starts from a + b the latest.

Conjecture 4.3.2. a+b is the sharp bound, meaning it is the smallest value of n for which stabilization
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occurs.

We first consider the boundary case when the first parenthesis fails to be stable. Notice that for
n < a+b, the algorithm will give the correct formula for |Dg ()W (7, U)| for all of the S, ,U and k,
except for the boundary case k = a + 1,5 = {b},b € U. For example, if b =3,5 = {3},k =a =2,
then our formula for 11 > 3|(n — 3)! is true for n > 6, and is true for n = 5 by our last theorem,
but becomes negative if n < 4, when in fact, |[Dg( W (7,U)| should be 0. The boundary is also
sharp in the sense that, if we relax k so that k = a = 2, then the algorithm for |Dg (W (7, U)| will
provide the correct polynomial for n = 4 = a + b — 1; or if we relax S so that S = {1,2}, then
sq = 2 so again we would get the correct polynomial for n = 4. We claim that the boundary cases
would always produce a non-positive number for n = a4+ b — 1, and the details of the analysis of the
boundary cases for Dg (W (7,U) will be found in our upcoming preprint. Now we investigate the
second and third parenthesis of the boundary cases in (4.1.1) in this case. The second parenthesis
[q*)( H?:1 [7:]4) is nonzero since 7, = a+ 1, and the third parenthesis is the constant term in [ — b],!
which is 1, so the product of the three parenthesis would give a non-positive number, when the
correct value should be 0.

Assuming we have successfully proved the claim for the boundary cases of the first parenthesis, we
now assert that the boundary cases for the third parenthesis—specifically when k& = 0, S = {b},
and n = a + b — 1—also yield a value that is strictly smaller than the true value predicted by
the polynomial when evaluated at n = a + b — 1, using the formula from Knuth (1997). Further
details will be provided in our upcoming preprint. Therefore, the product of the 3 parenthesis is
smaller than the true value for the boundary cases, and the polynomial in the end would predict
lower dimension number, for both cases of boundary cases discussed. In other words, if we denote
the polynomial for dim(DHﬁ’b) as P(n,a,b), then for n = a + b — 1, we will have our formula

P(n,a,b) < dim(DHY"), given the details being filled. O

Conjecture 4.3.3. DH®" is not an FI#-module.

This conjecture is proven once Conjecture 4.3.2 is proven. For an FI-module to be FI#, we need
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stabilization to start immediately from 0. Since by Conjecture 4.3.2 the sharp bound is a + b, this

would be a proof that DH2? is not FI # combinatorially.

Theorem 4.3.4. The degree of the polynomial of coefficient of ¢* for the descent set S with maxS =
d of Hilb(DH,) is d + a.

Proof. If we fix the descent set S and increase a by 1, then the polynomial increases by degree 1.

This is by the observation that

increases its degree by 1 when a increases by 1. By increasing a by 1, [w;(0)]| does not change,
@

so we only need to track how the degree of [n — d]! changes. In the formula for [n]!| &, the first

g

qe=J

is always ((”7d);r£“fj)72). This term

term is always ("HC*Z), and so the first term of [n — d]! .

k

q*7
has the highest degree and it is of degree a — j, so increasing a by 1 would increase the degree of

the whole formula by 1.

If a = 0, then the inductive formula reduces to

> Ps(n)

SC{1,2,....b}
s.t. s1+s2+...+84=b

where Pg(n) denotes the polynomial in n which represents the number permutations of n with the
descent set S. We can do the same recursion on the descent set S by using the map ¢ defined in
Definition 4.2.1, where all of the descents are maximal spots, and we treat all ¢,, in the condition
that 7,1 =1 and m — 1 € U. In this way, every time we apply ¢, there is one branch that has the
maximum of ¢(S) as mazr ¢*+1(S) = max ¢*(S) — 1, so it takes exactly d — 1 times of applying ¢
to get to S = [1], which is the base case n — 1. When we do the recurrence starting with the base
case S = [1], applying ¢ for d — 1 times would produce a degree d polynomial in the end. Therefore

by increasing a, we would get a polynomial of degree d + a. O
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Corollary 4.3.5. The degree of the coefficient of ¢*t® of Hilb(DH,,) is a + b.

This is because that among all the descent sets with maj(S) = b, the biggest d can be is exactly b
when S = {b}.

Remark 4.3.6. We actually improved both the stability range and the degree of the dimension
polynomial. In Section 3.2, we used the theory of FI-modules to conjecture a stability bound for
dim(DR%") to be 2(a+ b), but we proved in the thesis that stabilization actually starts from a - b,
and conjectured it to be the sharp bound. Furthermore, while FI-module theory gives an upper
bound of a + b for the degree of dim(DHf{’b), we showed that the degree is ezactly a + b.

We provide a table of polynomials of dim(DR%?) = [¢2t?] ( SO gmailo) ﬁ [wi(a)]q) givenn > a+b

oESH i=1
in Table 4.3.1.
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67

q' q* o’
n—1 %nQ—%n—l %n?’—%n
n? —2n g—nQ—%n—l-l %n4—%n3—%n2+%n—|—1
T+l | H-9 a1 | gt et gis gt Borl

Table 4.3.1: Polynomials for dim(DR%")
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