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ABSTRACT

COMBINATORIAL EXPANSIONS OF MACDONALD AND LLT POLYNOMIALS

Alexander Vetter

Jim Haglund

In 1987, Ian Macdonald introduced a special family of symmetric polynomials Hµ(X; q, t).

These polynomials, now known as Macdonald polynomials, can be written asHµ(X; q, t) =
∑

λ⊢nKλ,µ(q, t)sλ(X),

a sum over Schur functions sλ(X), a basis for the ring of symmetric functions. Macondald con-

jectured that Kλ,µ(q, t) ∈ N(q, t), i.e., have positive coefficients. Shortly after, a more natural

form of these polynomials was introduced, H̃µ(X; q, t). Written in the Schur basis, H̃µ(X; q, t) =∑
λ⊢n K̃λ,µ(q, t)sλ(X) where K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, 1/t). In 2001, Mark Haiman showed K̃λ,µ(q, t) ∈

N(q, t) using algebraic geometry. Since then, it has been a major open problem to find a combinato-

rial interpretation for K̃λ,µ(q, t). We prove a new formula for K̃λ,µ(q, t) when µ = (n−k−1, 2, 1k−1)

in terms of statistic on Standard Young Tableau. Using this formula, we then prove a special case

of a conjecture due to Lynne Butler in 1994 on the change of Schur coefficients from a hook shape

to an augmented hook shape.

In 1997, Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon introduced a new family of

symmetric polynomials, now known as LLT polynomials. In 2005, Jim Haglund, Mark Haiman, and

Nick Loehr showed how to write Macdonald polynomials as a sum of LLT polynomials. Thus, a

combinatorial formula for Macdonald polynomials can be derived from a combinatorial formula for

LLT polynomials. In 2020, Alex Abreu and Antonio Nigro showed that if G is an indifference graph,

then LLTG(q) =
∑

σ≤m(q − 1)n−ℓ(λ(σ))qwtG(σ)eλ(σ). Using this expansion of the LLT polynomials

into the e-basis, we prove a combinatorial formula for the coefficients of sλ when λ = (n− k, 1k) or

λ = (n− k − 1, 2, 1k−1).
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CHAPTER 1

INTRODUCTION

Upon introducing Macdonald Polynomials in 1987, an enormous amount of new combinatorics

has ensued. It took over a decade to show the Schur coefficients of Macdonald polynomials are

positive, but the proof was not combinatorial. Because of the positivity of the Schur coefficients,

combinatorialists expect a set of mathematical objects and algebraic statistics to be associated

with these statistics. In recent years, a plethora of different objects have been used in Macdonald

combinatorics, but one has become the most common: fillings of Young tableau. We define a statistic

on Standard Young Tableau depending on an augmented hook shape µ = (n − k − 1, 2, 1k−1) and

use this statistic to prove a combinatorial formula for H̃µ(X; q, t) when µ = (n − k − 1, 2, 1k−1).

Using a known formula for H̃µ(X; q, t) when µ = (n− k, 1k), we prove a special case of a conjecture

from 1994 due to Butler.

We then turn our study to LLT polynomials of a family of graphs. Haglund, Haimain, and Loehr

showed how to expand Macdonald polynomials into a sum of LLT polynomials in 2005. Since

then one approach to proving a combinatorial formula for Macdonald polynomials is to study LLT

polynomials. It is know that when G is a graph associated to a unit-interval order, then LLT (G)

is symmetric and Schur-positive. In 2020, Abreu and Nigro proved a formula for the e-expansion

of LLTG(q). Using this formula, we can describe the Schur coefficients in a natural way using the

Pieri rules. We introduce a multivariate version of this formula for the LLT polynomials and prove

the coefficients of sλ are related to inversions in Standard Young Tableau when λ = (n − k, 1k) or

λ = (n− k − 1, 2, 1k−1).

1.1. Outline

This thesis is organized into three parts. The first part is Chapter 2 which provides extensive

background on symmetric functions and the developments of the theory of Macdonald Polynomials.

The second part is contained in Chapters 3 and 4. In chapter 3, we give details on various known

Schur expansions of Macdonald polynomials. In chapter 4, we prove our new formula for the
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Schur expansion of the augmented hook shape Macdonald polynomial. The third part in contained

in chapters 5 and 6. In chapter 5, we provide extensive background on LLT polynomials and

recent formulas for their e-expansion. In chapter 6, we prove the new multivariate formula for the

coefficients of sλ when λ is a hook or an augmented hook shape.
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CHAPTER 2

SYMMETRIC FUNCTION WORLD

We begin by covering the introductory notions in symmetric function theory. We also explore the

classical results in symmetric function theory along with other important results for this thesis.

Most of this material can be found in Haglund (2007), Macdonald (2015), Sagan (2013), Stanley

(2011), and Stanley (1997), among others.

2.1. Basic Symmetric Functions

Here, we will define important notation for symmetric functions.

Definition 2.1.1 (Symmetric Function). Let K be a field (often Q), σ ∈ Sn be a permutation, and

f(x1, . . . , xn) ∈ K[x1, . . . , xn]. We say f is a symmetric function if

σf = f(xσ1 , . . . , xσn) = f

for all σ ∈ Sn.

Often, we will want f to be a function of countably many variables. In this case f = f(x1, x2, . . . )

and we can view f as a formal power series of each xi. In this case, f is symmetric if we permute

the variables in any way and still obtain the original f . We will also use the notation Xn and X to

denote the set of variables {x1, . . . , xn} and {x1, x2, . . . } respectively.

Example 2.1.2. As an example, if n = 3, then the following are symmetric functions over Q :

1. x1 + x2 + x3

2. xk1 + xk2 + xk3 for any k ∈ Q

3. (x1 + x2 + x3)
k for any k ∈ Q.

We may also have countably many variables.
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Example 2.1.3. The following are examples of symmetric functions over Q :

1.
∑∞

i=1 xi

2.
∑∞

i=1 x
k
i for any k ∈ Q

3.
∑∞

i=1

∑∞
j=1 xixj .

2.1.1. Bases For the Ring of Symmetric Functions

We let Λ be the ring of symmetric functions in X and Λn the sub-vectorspace of Λ consisting of the

homogeneous degree n functions. Next, we will consider various bases of Λn which will be important

throughout. We begin by considering partitions.

Definition 2.1.4 (Partitions). Let λ = (λ1, λ2, . . . , λk) where λ1+λ2+ · · ·+λk = n and λ1 ≥ λ2 ≥

· · · ≥ λk ≥ 1. Then, we say λ is a partition of n, denoted as λ ⊢ n. We use the notation Par(n) to

denote the set of partitions of n

Example 2.1.5. The following is a complete list of partitions for n = 4, Par(4):

1. (4)

2. (3,1)

3. (2,2)

4. (2,1,1)

5. (1,1,1,1,1).

Often it is useful to compare two partitions λ and µ of the same n. Is there a way to decide when one

partition is bigger than the other in some way? Here is one widely used partial order on partitions.

Definition 2.1.6 (Dominance Order on Partitions). Let λ, µ ⊢ n. We say λ dominates µ, denoted

4



λ ≥ µ if the following is true:

λ ≥ µ ⇐⇒
min(i,ℓ(λ))∑

i=1

λi ≥
min(i,ℓ(µ))∑

i=1

µi.

We now consider a basis for Λ.

Definition 2.1.7 (Monomial Symmetric Functions). Let λ ⊢ n, so λ ∈ Par(n). We define the

monomial symmetric function mλ = mλ(X) = mλ(Xn) to be the sum of all monomials in the xi

(finite for Xn and infinite for X) where the multiset of exponents of a monomial is equal to the

multiset formed by the parts of λ.

We will consider 3 examples of mλ.

Example 2.1.8. Here are examples with no variables given, a finite set of variables, and an infinite

set of variables.

1. m2,1 =
∑

i<j x
2
ixj + xix

2
j

2. m3,2,1(X3) = x31x
2
2x3 + x31x2x

2
3 + x21x

3
2x3 + x21x2x

3
3 + x1x

3
2x

2
3 + x1x

2
2x

3
3

3. m4(X) =
∑∞

i=1 x
4
i .

Now that we have defined mλ, we will consider 3 special families of symmetric functions that are

bases for Λn.

Definition 2.1.9 (Elementary Symmetric Functions). For any n, let 1n be the partition of n into

1′s. Then, define en = m1n to be the elementary symmetric functions.

Definition 2.1.10 (Power-Sum Symmetric Functions). For any n, let (n) be the partition of n into

exactly one part. Then, define pn = mn to be the power-sum symmetric functions.
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Definition 2.1.11 (Complete Homogeneous Symmetric Functions). For any n, let

hn =
∑

λ∈Par(n)

mλ.

We call hn the complete homogeneous symmetric functions.

Theorem 2.1.12 (Bases of Λn). With the above 3 families of symmetric functions in mind, let

λ ⊢ n and consider:

1. eλ =
∏
i eλi

2. pλ =
∏
i eλi

3. hλ =
∏
i eλi.

Then, {eλ, λ ⊢ n}, {pλ, λ ⊢ n}, and {hλ, λ ⊢ n} are each individually bases for Λn.

2.1.2. Schur Functions

With the above symmetric functions in mind, we will now develop an extremely important basis for

Λn. First, we must introduce Young Diagrams and their fillings.

Definition 2.1.13 (Young Diagram). Let λ = (λ1, λ2, . . . , λk) ⊢ n, then we call Yλ a Young

Diagram of shape λ where Yλ is created by placing λ1 boxes in the bottom row, λ2 boxes in the

second row, up through λk boxes in the kth row.

As an example, let λ = (4, 2, 1), then Yλ is:

We now consider fillings of Yλ. For convenience, we will let Y = Yλ

Definition 2.1.14 (Young Tableaux). Let Y be a Young Diagram of shape λ, where |λ| = n. We

say that a filling of Y with positive integers is a Standard Young Tableaux if rows and columns

6



are strictly increasing. We call the filling a Semistandard Young Tableaux if the rows are weakly

increasing and the columns are strictly increasing.

Continuing with our example of λ = (4, 2, 1) and Yλ, the following are Semistandard and Standard

fillings of Yλ, respectively.

Example 2.1.15 (Semistandard Young Tableau of Shape (4,2,1)).

4

2 3

1 2 2 3

Example 2.1.16 (Standard Young Tableau of Shape (4,2,1)).

5

3 6

1 2 4 7

Now that we understand two different types of fillings of Young Diagrams, we will now consider the

total number of fillings given a specific alphabet.

Definition 2.1.17 (Kostka Numbers). Let µ = {1µ1 , 2µ2 , . . . , nµn}. Let SSY T (λ) be the set of

semistandard Young tableaux of shape λ. Then, we define:

Kλ,µ = #{T ∈ SSY T (λ)| content of T is µ}

and we call Kλ,µ the Kostka Numbers.

In other words, Kλ,µ count the total number of semistandard Young tableaux of shape λ with content

µ. We note that counting the standard Young Tableaux of shape λ (SYT(λ)) is the special case

where µ = (1n). In particular, |SY T (λ)| = Kλ,(1n). In 1953, Frame, Robinson, and Thrall proved

a combinatorial formula for |SY T (λ)|. To understand the formula, we need one more definition,

7



Definition 2.1.18 (Hook-length). Let u ∈ Yλ, i.e., u is a cell in the Young Diagram Yλ. Let h(u)

be the total number of cells in the same row and weakly to the right of u and the number of cells

in the same column and strictly above u. We call h(u) the hook-length of u.

We can now state the famous Hook-Length Formula first proven by Frame, Robinson, and Thrall.

For a detailed history, see Sagan (2013):

Theorem 2.1.19 (Hook-Length Formula). Let λ ⊢ n. Then,

|SY T (λ)| = Kλ,(1n) =
n!∏

u∈Yλ h(u)
.

Though first proven in 1953, Greene et al. (1979) proved the formula using probabilistic methods

that is much more interesting and directly uses the hook content of cells. The Kostka Numbers

often appear when discussing symmetric functions. We will now see one such instance of great

importance.

Proposition 2.1.20. Let λ = (λ1, λ2, . . . , λk) ⊢ n be a partition, then an equivalent definition of

the monomial symmetric functions, mλ(X), is

mλ(X) =
∑
α∼λ

xα1
1 · · ·x

αn
n

where α ∼ λ means α rearranges to λ with possibly extra 0s.

With this equivalent definition of the monomial symmetric functions in mind, we have our first

definition of the Schur functions.

Definition 2.1.21 (Schur Functions). For λ ⊢ n, we can define the Schur functions, sλ(X), as

sλ(X) =
∑
α,T

∏
i

xαi
i

where α is a weak composition of n and T is a tableaux of shape λ and content α.

8



There are several other equivalent definitions of Schur functions. One stems from the Vandermonde

determinant.

Definition 2.1.22. Let λ ⊢ n, then define the following determinant function:

a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn) = det



xλ1+n−1
1 xλ1+n−1

2 · · · xλ1+n−1
n

xλ2+n−2
1 xλ2+n−2

2 · · · xλ2+n−2
n

...
...

. . .
...

xλn1 xλn2 · · · xλnn


.

With the above determinant function, we can now list the equivalent definitions of Schur functions.

Each equivalent definition has use in its own right. Here are three of the important ones.

Proposition 2.1.23 (Equivalent Definitions of Schur Functions). The following are equivalent def-

initions of Schur Functions

1. Monomial Expansion: Let λ = (λ1, λ2, . . . , λk) ⊢ n be a partition, then

sλ(X) =
∑
µ⊢n

Kλ,µmµ(X).

2. Jacobi’s Bialternant Formula: Let λ = (λ1, λ2, . . . , λn) ⊢ n, then,

sλ(X) =
a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn)

a(n−1,n−2,...,0)(x1, x2, . . . , xn)
.

3. Jacobi-Trudi Identity: Let ℓ(λ) be the number of parts of λ. Then,

sλ(X) = det(hλi−i+j)
ℓ(λ)
i,j .

9



2.2. RSK Algorithm

We now proceed to a discussion of the famous Robinson-Schensted-Knuth (RSK) Algorithm. For a

detailed account of the RSK Algorithm, see Stanley (1997) or Sagan (2013). We use this algorithm

to create a bijection between two line arrays of words and pairs of SSYT of the same shape. We start

with a word w = w1...wn where wi ∈ [n]. We then construct a sequence of pairs of SSYT through

the RSK algorithm. We denote this sequence as RSKi(w) = (P iw, Q
i
w) where P iw is known as the

insertion tableau obtained from inserting wi into P i−1
w and Qiw is the tableau formed by recording

the location of the new box from P i−1
w to P iw. Here is a complete description of the RSK algorithm

as found in Sagan (2013). Let π ∈ Sn and suppose that π is the following in 2-line notation:

π =

 1 2 · · · n− 1 n

π1 π2 · · · πn−1 πn


We then construct the sequence of tableaux pairs RSKi(π) = (P iπ, Q

i
π) = (P i, Qi), starting with

(P 0, Q0) = (∅, ∅), and ending with (Pn, Qn) = (P,Q), the output of the RSK algorithm. The RSK

algorithm iterativley inserts πk into πk−1 so that P k is a partial tableaux- a tableaux where the

rows and columns are increasing. We then place k into Qk−1 so that the shape of Qk is the same

as the shape of P k. Here is the precise insertion algorithm:

1. Let R be the bottom row of P k−1 and x = πk.

2. While x is less than some element in row R, let y be the smallest element in R that is greater

than x, and replace y by x in row R. Now, define x to be y and let R be the next row up in

P k−1.

3. After the previous step, x is now greater than every element in row R, so place x at the end

of this row. This gives us P k. Construct Qk for Qk−1 by placing k in the same position that

the last x was placed.

We note that this can be generalized so π is not a permutation and the recording value is not the

10



identity, but we begin with an example of this situation. We begin with an example where w is a

permutation in Sn, and the recording word value is 12 . . . n.

Example 2.2.1. As an example, let w = 425163, then we compute RSK on the two line array:

1 2 3 4 5 6

4 2 5 1 6 3


We start by inserting 4 into the empty tableau, obtaining

(P 0
w, Q

0
w) =

(
,

)
4←−

=

(
4 , 1

)
= (P 1

w, Q
1
w)

where 1 is inserted into the newly inserted position in Pw. Next, we insert 2, obtaining:

(P 1
w, Q

1
w) =

(
4 , 1

)
2←−

=

 4

2
, 2

1

 = (P 2
w, Q

2
w)

Next, we insert 5, obtaining:

(P 2
w, Q

2
w) =

 4

2
, 2

1

 5←−

=

 4

2 5
, 2

1 3

 = (P 3
w, Q

3
w)

11



Next, we insert 1, obtaining:

(P 3
w, Q

3
w) =

 4

2 5
, 2

1 3

 1←−

=

 4

2

1 5

, 4

2

1 3

 = (P 4
w, Q

4
w)

Next, we insert 6, obtaining:

(P 4
w, Q

4
w) =

 4

2

1 5

, 4

2

1 3

 6←−

=

 4

2

1 5 6

, 4

2

1 3 5

 = (P 5
w, Q

5
w)

Finally, we insert 3, obtaining:

(P 5
w, Q

5
w) =

 4

2

1 5 6

, 4

2

1 3 5

 3←−

=

 4

2 5

1 3 6

, 4

2 6

1 3 5

 = (Pw, Qw) .

We now discuss important properties of the RSK algorithm. The first, is the main theorem due to
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Robinson (1938) and Schensted (1961).

Theorem 2.2.2 (Robinson (1938) and Schensted (1961)). The RSK map is a bijection between

permutations in Sn and pairs of Standard Young Tableaux of the same shape λ ⊢ n. In particular,

if fλ = |SY T (λ)|, then ∑
λ⊢n

(fλ)2 = n!

The proof of this theorem uses the invertibility of the RSK map. One of the main motivations for

Schensted work on the RSK algorithm was finding the longest increasing or decreasing subsequence

of a permutation π. He proved the following theorem in Schensted (1961):

Theorem 2.2.3 (Schensted (1961)). Let π ∈ Sn and let P (π) be the P-tableaux from the RSK

algorithm applied to π. Then, the longest increasing subsequence in π is the length of the first row

of P (π) and the longest decreasing subsequence is the length of the first column of P (π).

Another interesting aspect of the RSK algorithm is due to Knuth. Much of the material can be

found in Schensted (1970). We begin with some definition.

Definition 2.2.4 (P-equivalent and Knuth Relations). We give 3 different definitions due to Knuth’s

work.

1. Let π, σ ∈ Sn. We say that π and σ are P-equivalent if P (π) = P (σ).

2. Let x < y < z and π, σ ∈ Sn. We say π and σ differ by a Knuth relation if either of the

following is true:

(a) π = π1 . . . xyz . . . πn and σ = π1 . . . yzx . . . πn

(b) π = π1 . . . xzy . . . πn and σ = π1 . . . zxy . . . πn.

(c) We say π, σ ∈ Sn are Knuth Equivalent if there is a sequence of Knuth relations trans-

forming π to σ.
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With these definitions in mind, we have an important theorem found in Schensted (1970).

Theorem 2.2.5 (Schensted (1970)). Let π, σ ∈ Sn, then π and σ are Knuth equivalent if and only

if they are P-equivalent.

The next interesting RSK result concerns the inverse of permutations. This work is due to Schüten-

zerberger. The proof involves shadow diagrams. For complete details, see Sagan (2013).

Theorem 2.2.6. Let π ∈ Sn, then

P (π−1) = Q(π) and Q(π−1) = P (π).

In particular, note that if π = π−1, then P (π) = Q(π). This also shows that the number of

involutions in Sn is equal to the total number of Standard Young Tableaux for any n.

There are many other important properties of the RSK algorithm. We will see others later. For

now, we move consider a similar algorithm due to Schütenzerberger, Jeu de Taquin.

2.2.1. Jeu de Taquin

We consider a new algorithm performed on skew tableaux.

Definition 2.2.7 (Skew-Diagram). Let µ ⊢ n, and let ν ⊢ k where k <= n, ℓ(ν) <= ℓ(µ) and

νi <= µi for 1 ≤ i ≤ ℓ(ν). We call Yµ/ν , the skew diagram of shape µ/ν, where we start with the

diagram Yµ and remove the boxes corresponding to Yν .

Here is an example of a skew diagram where µ = (6, 4, 3) and ν = (3, 1).

µ/ν =

We will now describe how to perform Jeu de Taquin on skew tableaux using our example for
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µ = (6, 4, 3) and ν = (3, 1). Consider the diagram with added bullets denoting the corner squares:

µ/ν =
•

•

If we pick a corner square, we can perform the following jdt moves.

1. If x > y, then
x

• y

jdt
= x

y •

2. If x <= y, then
x

• y

jdt
= •

x y

Using our example, suppose we have the following filling:

µ/ν = 3 5 9

• 1 7 8

• 2 4 6

and we move the top left corner square using jdt moves. We then obtain the tableaux:

3 5 9

• 1 7 8

• 2 4 6

jdt
= 3 5 9

1 • 7 8

• 2 4 6

jdt
= 3 • 9

1 5 7 8

• 2 4 6

jdt
= 3 9

1 5 7 8

• 2 4 6

We can now use this last tableau and perform jdt moves until no corner squares remain (i.e., we
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obtain a standard tableaux):

3 9

1 5 7 8

• 2 4 6

jdt
= 3 9

1 5 7 8

• 2 • 4 6

jdt
= 3 9

1 5 7 8

• 2 4 • 6

jdt
= 3 9

1 5 7 8

• 2 4 6

jdt
= 3 9

1 5 7 8

2 • 4 6

jdt
= 3 9

1 5 7 8

2 4 • 6

jdt
= 3 9

1 5 7 8

• 2 4 6

jdt
= 3 9

• 5 7 8

1 2 4 6

jdt
= • 9

3 5 7 8

1 2 4 6

jdt
= 9

3 5 7 8

1 2 4 6

We now have a standard Young Tableaux. We now discuss some important properties of Jeu de

Taquin. If P and Q are skew tableaux and there is some sequence of jdt moves transforming P to

Q, we say that P and Q are jdt-equivalent. The following theorem can be found in Sagan (2013),

originally due to Schütenzerberger.

Theorem 2.2.8. If P and Q are standard skew tableau, then P and Q are jdt-equivalent if and

only if they are Knuth equivalent.

Note that there are also dual version of Knuth relations, RSK and jdt that result in dual equivalence

relations. See Sagan (2013) for further details.

Another important characteristic about Jeu de Taquin and RSK corresponds to the reading word

of a tableau.

Definition 2.2.9. Let T be a tableau. We define the reading word of T, rw(T), to be the word

formed by the rows of numbers in tableau from top to bottom.
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Example 2.2.10. If we have the tableau

T = 4

2 5

1 3 6

,

then rw(T ) = 425136.

Let jdta(T ) denote a Jeu de Taquin move of a in T. Then the following holds.

Lemma 2.2.11 (Stanley (1997)). A Jeu de Taquim slide converts the reading word of a tableau

into a Knuth-equivalent word. In particular,

rw(jdta(T ))
K∼ rw(T ).

Further, we obtain an important theorem on equivalence classes of tableau.

Theorem 2.2.12 (Stanley (1997)). Each Jeu de Taquin equivalence class contains exactly one

straight shape tableau.

We now consider another important property of jdt and RSK.

Definition 2.2.13 (Evacuation). Let Q be a partial skew tableau, and let m be the smallest number

in Q. Erase m from its cell, replace it with a bullet, and perform jdt moves on this bullet square.

This process is called evacuation.

Now, start with a standard tableau Q and a corresponding diagram Y of the same shape. Starting

with i = 1, evacuate Q until empty. For each evacuation, there is now a cell that is in Y that is

no longer in the evacuated Q tableau. Place n − i + 1 in this cell. The resulting tableau is the

evacuation of Q, denoted evQ. Here is an example:
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Example 2.2.14 (Evacuation Tableau).

Q = 6

3 5

1 2 4 7

ev(1)−→ 6

3 5

2 4 7

ev(2)−→ 6

5

3 4 7

ev(3)−→ 6

5

4 7

ev(4)−→ 6

5 7

ev(5)−→ 6 7 ev(6)−→ 7 ev(7)−→ ∅

P =
in(7)−→

7

in(6)−→
6

7

in(5)−→
6

5 7

in(4)−→ 4

6

5 7

in(3)−→ 4

3 6

5 7

in(2)−→ 4

3 6

2 5 7

in(1)−→ 4

3 6

1 2 5 7

Thus,

ev(Q) = 4

3 6

1 2 5 7

We can now state an interesting theorem about the Q-tableau from RSK and evacuation tableau.

See Sagan (2013) for details.

Theorem 2.2.15. Let π ∈ Sn, and let πr be the permutation in Sn where πri = πn−i+1, i.e., the

reversed permutation. Then,

Q(πr) = ev(Q(π))t.

With the previous theorem in mind, we have an important, useful proposition. Recall that there is

exactly one unique standard, straight tableaux in each jdt equivalence class. For a given β ∈ Sn,

we can construct the insertion tableaux through a sequence of jdt moves.

Proposition 2.2.16. Let β ∈ Sn, where β = β1β2 · · ·βn and form a skew diagram, Tβ, by placing

βi+1 below βi if βi > βi+1, and to the right otherwise. Let jdt(β) be the tableau obtained by

performing jdt on Tβ until we have a standard tableau. Then, jdt(β) = Pβ and jdt(β−1) = Qβ from
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RSK(β).

We will show an example obtaining Pβ . Note that jdt(β−1) = Qβ follows from jdt(β) = Pβ and

the previously mentioned properties of RSK.

Example 2.2.17. As an example, let β = 425163, then the skew tableau associated to β would be:

4

2 5

1 6

3

Note that for a given skew tableau, there may be multiple corner squares, as is the case in this

example. It is known that the result of performing jdt is independent of which corner square we

start with. The following is the jdt algorithm performed on this skew tableau:

4

2 5

• 1 6

• 3

jdt
= 4

2 5

1 • 6

• 3

jdt
= 4

2 •
1 5 6

• 3

jdt
= 4

2

1 5 6

3 •

jdt
= 4

2

1 5 •
3 6

jdt
= 4

2

1 5

• 3 6

jdt
= 4

2

• 5

1 3 6

jdt
= 4

•
2 5

1 3 6

jdt
= •

4

2 5

1 3 6

jdt
= 4

2 5

1 3 6

= jdt(β)

Now, note that the final tableau, jdt(β) is precisely equal to Pβ from RSK(β). If we were to

compute jdt(β−1), we would obtain Qβ .
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With the above in mind, we see an important property of evacuation.

Proposition 2.2.18 (Schütenzerberger Involution Stanley (1997)). The map Q → ev(Q) is an

involution.

With this background on basic symmetric functions and two important combinatorial algorithms,

we will now turn to the main symmetric functions under consideration, Macdonald Polynomials.

2.3. Development of Macdonald Polynomials

In this section, we will introduce many important properties of Macdonald Polynomials and the

goal of this thesis. Much of the background can be found in the classic text Macdonald (2015) with

new developments in Haglund (2007).

We begin by defining two important functions for a given partition λ. We use these notations

throughout.

Definition 2.3.1. Let λ ⊢ n

1. n(λ) =
∑

i(i− 1)λi

2. zλ =
∏
i i
nini!

where ni is the number of parts of λ that are equal to i.

We can now state the three fundamental identities concerning the infinite product:

∏
i,j

(1− xiyi)−1

where x′is and y′is are independent variables.

Theorem 2.3.2 (Macdonald (2015)). Let λ ⊢ n be a partition, pλ, mλ, hλ, and sλ the symmetric
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functions defined previously. Then,

∏
i,j

(1− xiyi)−1 =
∑
λ

z−1
λ pλ(x)pλ(y)

=
∑
λ

hλ(x)mλ(y)

=
∑
λ

sλ(x)sλ(y)

summed over all partitions λ.

With the above theorem in mind, we define a scalar product ⟨· , ·⟩ on Λ such that

⟨hλ,mµ⟩ = δλ,µ

for all λ, µ ⊢ n. This is known as the Hall Scalar Product. Note that δλ,µ is 1 when λ = µ, and

0 otherwise. We use an alternative notation that sometime appears in the literature. If P is a

statement, then we say χ(P ) = 1 if P is a true statement, and χ(P ) = 0 otherwise. Hence, in this

case, δλ,µ = χ(λ = µ).

We note two important properties of this scalar product. First,

⟨pλ, pµ⟩ = δλ,µzλ

giving an orthogonal basis for Λ. Second,

⟨sλ, sµ⟩ = δλ,µ

giving an orthonormal basis for Λ, showing the importance of the Schur functions. Now, for any

f ∈ Λ, and any basis bλ of Λ, let f |bλ denote the coefficient of bλ when f is expressed in that basis.

As an example,

f |mλ
= ⟨f, hλ⟩
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by the above properties of the Hall Scalar product. Further, because the Schur basis is orthonormal

with respect to the inner product,

f |sλ = ⟨f, sλ⟩

2.3.1. Plethysm

The last notation we need before turning to Macdonald polynomials is for a plethystic substitution.

An abstract description of plethysm can be found in Macdonald (2015), but we will follow Haglund

(2007) for a more understandable definition.

Definition 2.3.3 (Plethystic Substitution). Let E(t1, t2, . . . ) be a formal power series of rational

functions in the variables t1, t2, . . . . Define the plethystic substitution of E into pk by

pk[E] = E(tk1, t
k
2, . . . ).

In other words, the kth-plethystic substitution of a formal power series is computed by replacing

each variable with its kth power. We note for ease of notation, if we have the notation X inside of

plethystic brackets, we really mean

X = p1(X) = x1 + x2 + x3 + · · · .

We now remark on taking the negative inside of plethystic brackets. Let X = (x1, x2, . . . ). Suppose

we want to consider the negative of each variable, namely Z = (−x1,−x2, . . . ). From the definitition

of plethysm,

pk(Z) =
∑
i

(−1)kxki ̸= pk[−X].

Because of this, we use a special notation for using negatives with plethysm. We let

pk[ϵX] =
∑
i

(−1)kxki .
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We only defined plethysm in terms of the power-symmetric function. However, for any f ∈ Λ, we

can write f in the pλ basis, and then compute the plethysym. Thus, it makes sense to consider

plethsym on any symmetric function. Next, consider the important involution ω defined as follows:

ω(pk) = (−1)k−1pk

and extend it to pλ by

ω(pλ) = (−1)|λ|−ℓ(λ)pλ.

Again, because pλ is a basis for Λ, we can compute ω(f) for any symmetric function by first writing

f in the pλ basis. Here are two interesting examples of the involution:

1. ω(eλ) = hλ

2. ω(sλ) = sλ′ .

With the definitions of plethysm, ϵ, and ω in mind, for any f ∈ Λ

ω(f(X)) = f [−ϵX].

We will now consider symmetric functions over Q(q, t) and introduce Macdonald polynomials.

2.3.2. Macdonald Polynomials

Here, we consider the symmetric functions developed by Macdonald in chapter 6 of Macdonald

(2015). Macdonald denotes these functions as Pλ(x; q, t), a class of rational functions depending on

two parameters q and t. This family of functions satisfies a modified Hall Scalar product that now

depends on the parameters q and t.

Definition 2.3.4. Let λ ⊢ n. Then, let:

⟨pλ, pµ⟩q,t = δλ,µzλ

ℓ(λ)∏
i=1

1− qλi
1− tλi

.
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Note that when q = t, we obtain the usual Hall Scalar product.

We now extend our definition of symmetric functions Λ. Let F = Q(q, t), the field of rational

functions in q and t. Then, define ΛF = Λ ⊗ F to be the F − algebra of symmetric functions

with coefficients in F . In other words, we extend our ring of symmetric functions Λ so that the

coefficients are no longer restricted to Q, but are in the field extension of Q by q and t. Macdonald

proves the following:

Theorem 2.3.5 (Macdonald (2015) Chapter 6, Theorem 4.7). For each partition λ, there is a

unique symmetric function Pλ = Pλ(x; q, t) ∈ ΛF such that:

Pλ =
∑
µ≤λ

uλ,µmµ

where uλ,µ ∈ F and uλ,λ = 1 and

⟨Pλ, Pµ⟩q,t = 0

if λ ̸= µ.

This family of symmetric functions contains a few important subfamilies. First, when q = t,

Pλ(x; t, t) = sλ(x), the usual Schur functions. When q = 0, Pλ(x, ; 0, t) = Pλ(x; t), which are known

as Hall-Littlewood polynomials. Finally, let q = tα and divide Pλ by (1 − t)|λ|. If we let t → 1−,

then the Pλ are equal to another family of symmetric functions, the Jack polynomials. The Pλ are

now known as Macdonald Polynomials. Now that we have defined this special family of polynomials

and seen that they do in fact exist, we will discuss some of their properties and modifications that

have occurred over the years. Throughout, our goal is to reformulate Macdonald polynomials in

combinatorial terms. Often, we use various properties of tableaux to derive special formulas. We

will define various tableaux statistics.

Definition 2.3.6. Let Yλ be the Young diagram of shape λ. Let c = (i, j) be a cell in Yλ corre-

sponding to the square in the ith row and jth column. We define the following 4 quantities:
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1. Let arm(c) = a be the number of cells strictly to the right of c and in Yλ.

2. Let coarm(c) = a′ be the number of cells strictly to the left of c and in Yλ.

3. Let leg(c) = l be the number of cells strictly above c and in Yλ.

4. Let coleg(c) = l′ be the number of cells strictly below c and in Yλ.

For instance, if we have the Young diagram

Yλ = ,

then the green square corresponds to the cell c = (2, 4) and has arm = 4, coarm = 3, leg = 2, and

coleg = 1.

With the definitions above, we can now consider a modification of the Macdonald polynomials,

known as the Macdonald Integral Form Polynomials where:

Jµ(X; q, t) =
∏
c∈µ

(1− qa(c)tl(c)+1)Pµ(X; q, t).

With these modified symmetric functions in mind, we consider the work of Mark Haiman in 2000,

proving a famous open problem posed by Macdonald. See Haiman (2000) for full details.

First, Macdonald showed that the plethystic form of the Schur functions are a basis for ΛF . These

modified Schur functions are defined as sλ[X(1 − t)], see Macdonald (2015) Chapter 3, 4.5 and

Chapter 6, 8.9 for more details. Because of this, we can express the Jµ in the sλ[X(1 − t)] basis,

obtaining:

Jµ(X; q, t) =
∑
λ

Kλ,µ(q, t)sλ[X(1− t)]
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and our goal is to understand the Kλ,µ(q, t). When q = 0, Kλ,µ(0, t) = Kλ,µ(t). The Kλ,µ(t) were

introduced through the transition matrix from sλ(x) to the Hall-Littlewood functions Pµ(X; t). A

famous conjecture in Foulkes (1974), says that there is some positive integer statistic c(T ) associated

to semistandard Young tableaux such that:

Kλ,µ(t) =
∑

T∈SSY T (λ,µ)

tc(T ),

where SSY T (λ, µ) is the set of semistandard Young tableaux of shape λ and weight µ. A statistic

known as charge was discovered by Lascoux and Schütenzerberger, proving the conjecture of Foulkes.

With this is mind, Kλ,µ(q, t) are now known as the q,t-Kostka-Foulkes polynomials. Macdonald

proved many special cases regarding Kλ,µ(q, t) in Macdonald (2015) including:

Proposition 2.3.7. The following are true regarding Kλ,µ(q, t):

1. Kλ,µ(0, 0) = δλ,µ

2. Kλ,µ(0, 1) = Kλ,µ

3. Kλ,µ(q, t) = Kλ′,µ′(t, q)

4. Kλ,µ(1, 1) =
n!
h(λ) .

However, the famous conjecture due to Macdonald is that Kλ,µ(q, t) ∈ N[q, t], i.e., the coefficients

are non-negative integers. Garsia and Haiman modified the q,t-Kostka-Foulkes polynomials in the

following way:

K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, 1/t).

We will refer to the Macdonald polynomials with the modified q,t-Kostka-Foulkes polynomials

as the modified Macdonald polynomials, denoted H̃µ(x; q, t). In Haiman (2000), Haiman showed

that K̃λ,µ(q, t) ∈ N[q, t], proving the conjecture of Macdonald. However, Haiman’s proof involved

deep algebraic geometry. It is our goal to discover some combinatorial formula for the K̃λ,µ(q, t).

Macdonald’s open conjecture is the following:
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Conjecture 2.3.8. Let λ, µ ⊢ n, then there exist algebraic statistics, qstat(T, µ) and tstat(T, µ),

such that

K̃λ,µ(q, t) =
∑

T∈SY T (T )

qqstat(T,µ)ttstat(T,µ).

This conjecture has been solved in a few cases, but is largely open. We will solve one of the

open cases later. We now construct the famous combinatorial formula for Macdonald polynomials

first conjectured by Haglund in Haglund (2004) and proven by Haglund, Haiman, and Loehr in

Haglund et al. (2005b).

2.3.3. HHL Formula for Macdonald Polynomials

We now look at the famous combinatorial formula for Macdonald polynomials, now known as the

HHL Formula. Let µ ⊢ n, we define a filling of µ to be a function σ : Yµ → Z+, i.e., we fill the

diagram of shape µ with positive integers, and no other restrictions. For a given filling σ, we define

the x-weight of the filling to be

xσ =
∏
c∈Yµ

xσ(c),

i.e., we take the product of xi for each i in the filling of Yµ. From Haglund (2004), we have

two algebraic statistics on fillings, invµ(σ) and majµ(σ). We say a descent in a filling is a cell

u = (i, j) ∈ Yµ such that σ(u) > σ(v) where v = (i+1, j). In other words, a cell is a descent if it is

larger than the number in the cell directly below it. We defined Des(σ) to be the set of cells that

are descents in a given filling. Next, we define an attack relation between cells. Let u, v ∈ Yµ, then

we say u attacks v if either of the following hold:

1. u and v are in the same row with u to the left of v

2. u and v are in consecutive rows,u in the higher row, and v is in the lower row and to the left.

Then, we say that u and v form an inversion pair if u attack v and σ(u) > σ(v). We denote the set

of inversions for a given filling as Inv(σ). With these definitions in mind, we can now define the
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algebraic statistics formulated in Haglund (2004):

majµ(σ) =
∑

u∈Des(σ)

leg(u) + 1

and

invµ(σ) = |Inv(σ)| −
∑

u∈Des(σ)

arm(u).

Sometimes, we will simply write inv(σ) or maj(σ) when µ is clear. Now, consider the following

function:

Cµ(x; q, t) =
∑

σ:µ→Z+

qinvµ(σ)tmajµ(σ)xσ.

The following is the famous theorem in Haglund et al. (2005b), giving rise to the HHL formula:

Theorem 2.3.9 (HHL Formula Haglund et al. (2005b) Theorem 2.2). For any µ,

Cµ(x; q, t) = H̃µ(x; q, t).

Now that we have seen the famous HHL formula, we now present an important theorem regarding

the modified Macdonald polynomials, which is vital to the proof of the HHL Formula and also found

in Haglund et al. (2005b).

Theorem 2.3.10 (Macdonald Polynomial Triangularity). The following 3 conditions define a

unique family of symmetric functions:

1. H̃µ[X(q − 1)]; q, t] =
∑

ρ≤µ′ cρ,µ(q, t)mρ(X)

2. H̃µ[X(t− 1)]; q, t] =
∑

ρ≤µ dρ,µ(q, t)mρ(X)

3. H̃µ(x; q, t)|xn1 = 1.

Later, we will use these 3 properties to show a conjectured combinatorial formula for the modified
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Macdonald Polynomials for the augmented hook shape is in fact equal to the Macdonald Polynomial.
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CHAPTER 3

SCHUR EXPANSION OF MACDONALD POLYNOMIALS

With the background information from Chapter 2, we now consider various combinatorial descrip-

tions of the Schur expansion of Macdonald polynomials. In particular if we write the modified

Macdonald polynomials in the Schur basis,

H̃µ(x; q, t) =
∑
λ

K̃λ,µ(q, t)sλ(x),

our goal is to find a combinatorial description ofKλ,µ(q, t). Doing this for arbitrary µ is an extremely

difficult challenge. Thus, we will consider various families of µ that have been solved and describe

some of the combinatorics behind the proofs. Then, we will consider a conjecture due to Lynne

Butler in the early 1990s that gives us a possible approach to tackle the general problem, see Butler

(1994) for full details.

3.1. Combinatorial Formulas for Hook Shape Macdonald Polynomials

The first shape we consider is known as the hook shape. By a hook, we mean µ = (k, 1n−k), so that

the first row has k boxes, and the first column has n − k + 1 boxes. Here is a basic example of a

hook shape diagram:

...

· · ·

Now define the function Bµ for any shape µ as:

Bµ =
∑
c∈Yµ

qa
′(c)tl

′(c).
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By slightly modifying a result from Macdonald in Macdonald (2015), we have the following result

Theorem 3.1.1. For any µ and λ = (k, 1n−k) a hook shape,

K̃λ,µ(q, t) = en−k[Bµ − 1].

Thus, we can express the Schur coefficient associated to a hook shape for any Macdonald polynomial

indexed by µ using this plethystic evaluation and the coarm and coleg of cells in a diagram. However,

it would be nice to have more concrete combinatorial expansions. We will see more of these, starting

with µ a hook shape. Before describing this formula, we need to consider statistics on skew tableau.

Definition 3.1.2. Let T be a skew tableau, and let α = (α1, . . . , αk) be a composition of n into

k parts. Let T (i) be the parts of the tableau T that contain the numbers αi−1 + 1 through αi

where α0 = 0, where we standardize the numbers, i.e., the αi numbers are rewritten as 1 through

αi maintaining their order. Then, we call the set of T (i) the α-sectionalization of T . Further, if

we have some statistics stat(T ), then we can define stat(T, α) to be the α-sectionalization of the

statistic, evaluated as:

stat(T, α) =
k∑
i=1

stat(T (i)).

Recall the previous definition of majµ dealing with descents and legs in a diagram. We will now

modify the maj statistic to match Stembridge.

Definition 3.1.3. Let T ∈ SY T (λ), then define the descent set, Des(T), to be the set of i such

that i + 1 is in a row above i in T . With the descent set in mind, consider two different statistics

on T used by Stembridge:

1. maj(T ) =
∑

i∈Des(T ) i

2. comaj(T ) =
∑

i ̸∈Des(T ) |λ| − i

With the above in mind, the following is a result in Stembridge (1994), a purely combinatorial
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formula for the hook shape Macdonald polynomial using statistic on tableau.

Theorem 3.1.4 (Stembridge (1994)). Let α = (α1, . . . , αk) be a composition of n into k parts. Let

rev(α) = (αk, . . . , α1) be the reverse composition of α. When µ = (n− k, 1k),

Kλ,µ =
∑

T∈SY T (λ)

qmaj(T,µ)tcomaj(T,rev(µ
′)).

We will now show an example confirming the two formulas due to Macdonald and Stembridge, are

in fact equivalent.

Example 3.1.5. As an example, consider µ = (4, 1) and λ = (3, 1, 1), then we can compute B(3,1,1)

as the sum of the coefficients in the following diagram:

t

1 q q2 q3

so Bµ = q3 + q2 + q + t+ 1. When computing K̃λ,µ(q, t) from Macdonald’s plethystic formular, we

obtain:

K̃λ,µ(q, t) = e2[Bµ − 1]

= e2[q
3 + q2 + q + t]

= q5 + q4 + q3 + q3t+ q2t+ qt.

We now compare this two Stembridge’s formula. Here, we need the following 6 standard tableau:

5

4

1 2 3

5

3

1 2 4

5

2

1 3 4

4

3

1 2 5

4

2

1 3 5

3

2

1 4 5

Because µ = (4, 1), when we compute the µ-sectionalization, we are really just ignoring the entry

5. Hence, maj(T, µ) for the above 6 tableau is 3, 2, 1, 5, 4, 3 respectively. Next, µ′ = (2, 1, 1, 1),

and rev(µ′) = (1, 1, 1, 2). When computing comaj(T, rev(µ′)), we need only consider T (4) from the
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rev(µ′)-sectionalization. Thus, comaj for the 6 tableau is 0, 0, 0, 1, 1, 1. Thus, Kλ,µ = q3 + q2 + q +

q5t+ q4t+ q3t, and since

K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, 1/t)

and n(µ) = 1,

K̃λ,µ(q, t) = t(q3 + q2 + q + q51/t+ q41/t+ q31/t)

= q3t+ q2t+ qt+ q5 + q4 + q3

which matches the above plethystic formula as desired.

3.2. Combinatorial Formulas for Two Column Macdonald Polynomials

3.2.1. Fishel Two-Column Formula

Shortly after Macdonald’s conjecture, many people solved special cases of the q, t-Kostka Polynomi-

als. In 1995, Fishel worked on the case where µ1 ≤ 2, i.e., the two-column case. Here, we describe

her results. Her work begins with a formula from Stembridge on the two column case. In particular,

in Stembridge (1994), we have

Theorem 3.2.1 (Stembridge (1994)). Let µ = (2r, 1n−2r), then

Kλ,µ(q, t) =
r∑
s=0

qr−s(tn−rq; t−1)s

[
r

s

]
t

Kλ,(2r,1n−2r)(t).

From this formula involving Macdonald’s charge polynomial, in Fishel (1995), Fishel finds statistics

cr and cutr such that

Kλ,µ(q, t) =
∑

(α(0),L)∈M0
0

qcutr(α(0),L)tcr(α(0),L)

where M0
0 is a set of rigged configurations of the tableaux of shape λ, developed by Kirillov and

Reshetikhin in the 1980s. See Kerov et al. (1988) and Kirillov and Reshetikhin (1988) for full details

on rigged configurations. Though nice to have a combinatorial formula, it is quite difficult to state

and requires new combinatorial objects to prove it. So people continued to search for a more concise
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combinatorial formula.

3.2.2. Lapointe and Morse Two-Row Formula

First appearing on the arXiv in 1998 and then published in a book in 2003, Lapointe and Morse found

another formula that can be translated into a formula for the two-column Macdonald polynomial

in Lapointe and Morse (2003). Their work is deeply algebraic with a series of complex operators on

tableaux. They produce the following theorem:

Theorem 3.2.2 (Lapointe and Morse (2003) Theorem 27). Let µ = (2m+ ℓ+ a, ℓ), then

Hµ(x; q, t) =
∑

|T |=|µ|

stat(T )sshape(T ).

Here, Lapointe and Morse found a statistic, stat(T), that is a q, t statistic on tableaux computed

after finding something known as the domino vector of a tableaux. As stated, this is a result for

a two-row Macdonald polynomial. Through the transposition property of q, t-Kostka polynomials,

we can translate this into a result for the two-column Macdonald polynomials. Again, though it

is great that we have another result towards a combinatorial expression for the Schur expansion of

Macdonald polynomials, the complexity as stated leaves much to be desired.

3.2.3. Zabrocki Two-Column Formula

In 1998, Zabrocki worked on algebraic operators on Macdonald polynomials that led to a formula

for the two-column Macdonald polynomials in Zabrocki (1998). In particular, Zabrocki wanted to

find a vertex operator on Macdonald polynomials in the same spirit as the vertex operators on

other families of symmetric functions. In particular, on the homogeneous symmetric functions,

Schur functions, and Hall-Littlewood symmetric functions, there are vertex operators, hm, Sm, Ht
m,

respectively, such that for m ≥ µ1,

1. hmhµ[X] = h(m,µ)[X]

2. Smsµ[X] = s(m,µ)[X]
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3. Ht
mHµ[X; t] = H(m,µ)[X; t].

Zabrocki’s goal was to find a vertex operator that extends to the Macdonald polynomials. In other

words, he wanted to find an operator Hqt
m such that

Hqt
mHµ[X; q, t] = H(m,µ)[X; q, t]

For general partitions, this condition is not enough to show uniqueness. However, for special cases,

it is. In Zabrocki (1998), he proved the following theorem.

Theorem 3.2.3 (Zabrocki (1998) Theorem 2.6). The operator

Hqt
2 = Ht

2 + qωH
1/t
2 ωRt

gives the desired formula

Hqt
2 H(2a,1b)[X; q, t] = H(2a+1,1b [X; q, t].

Using this result, Zabrocki then proves the following on the Schur expansion of two-column Mac-

donald polynomials.

Theorem 3.2.4 (Zabrocki (1998) Corollary 3.7). Let µ = (2a, 1b), then there are statistics aµ(T )

and bµ(T ) such that:

H(2a,1b) =
∑

T∈SY T (2a+b)

qbµ(T )taµ(T )sshape(T )(x)

where aµ(T ) and bµ(T ) are defined from a series of tableaux operators Hsi
2 where si is either 1 2

or 2

1
.

Understanding the full details requires lots of examples and is beyond the scope here. However,

each operator Hsi
2 and the statistics aµ(T ) and bµ(T ) boils down to finding the relative locations

on sets of numbers depending on µ and determining if they are of type 1 2 or 2

1
. Thus, the

combinatorics involved is quite interesting, though difficult. However, we continue on our journey
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to finding simpler combinatorial formulas for the q, t-Kostka polynomials for two columns. Next, is

the best known result and by far the simplest.

3.2.4. Haglund, Haiman, and Loehr Two-Column Formula

We now consider the two-column formula derived in Haglund et al. (2005a). We consider this

the best two-column formula to date given its simple characterization in terms of filling of Young

diagrams. Further, the algebraic statistics are easy to state and compute.

Definition 3.2.5 (Yamanouchi Words). Let w be a word in Zn+. We say w satisfies the Yamanouchi

condition if for any k, the final part of w beginning at k,wkwk+1 . . . wn has partition content. In

other words, the content of wk . . . wn is {1λk1 , . . . , jλkj } where λk1 ≥ λk2 ≥ · · · ≥ λkj . Let Y am(λ)

be the set of Yamanouchi words with content {1λ1 , . . . , jλj}.

Example 3.2.6. As an example, let us compute Y am(3, 2). Now, the full set of words with content

{13, 22} are

{11122, 11212, 11221, 12112, 12121, 12211, 21112, 21121, 21211, 22111}.

From these words, the following satisfy the Yamanouchi condition:

{12121, 12211, 21121, 21211, 22111}

We have the following theorem.

Theorem 3.2.7 (Haglund et al. (2005a) Proposition 9.2). Let µ1 ≤ 2, then

K̃λ,µ(q, t) =
∑

σ:µ→Z+

w(σ)∈Y am(λ)

qinv(σ)tmaj(σ)

where w(σ) is the reading word of the filling σ.

The proof of this theorem comes from a crystal structure on the set of fillings. In the construction
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of the crystal structure, the set of fillings, Σµ, are partitioned into components where qinv(σ)tmaj(σ)

is constant on each component. The authors hoped to extend the crystal structure and algebraic

statistics to other families, so far, such an extensions has been elusive, even for the case µ1 = 3. We

will continue with our previous example and compute K̃(3,2),(2,2,1)(q, t).

Example 3.2.8. Note that for λ = (3, 2), Y am(λ) = {12121, 12211, 21121, 21211, 22111}. Hence,

there are five terms in K̃(3,2),(2,2,1)(q, t) corresponding to the following five fillings of µ.

1

2 1

2 1

1

2 2

1 1

2

1 1

2 1

2

1 2

1 1

2

2 1

1 1

These five tableau have q, t weights q2t0, q0t3, q1t1, q1t2, q0t2, respectively. Thus,

K̃(3,2),(2,2,1)(q, t) = q2 + t3 + qt+ qt2 + t2.

This formula is simple to compute compared to all other known formulas. Unfortunately, if we try

to extend this to larger shapes, it fails. Even in the simplest case µ = (3, 3), the formula fails. The

hope is to modify the definition of Yamanouchi and find a formula when µ1 = 3. Though this has

been unsuccessful thus far, we do have a few other larger families that have been solved.

3.3. Other Combinatorial Formulas for Families of Macdonald Polynomials

In the last 10 years, several new combinatorial formulas have been proven. There are two very

different formulas concerning "doubly-augmented hook" Macdonald polynomials. These have µ2 ≤

2, i.e. they are extended two-column Macdonald polynomials. The main work on these families

are found in Loehr (2017) and Assaf (2018). Additionally, the best known result can be found in

Blasiak (2016). Here, he solves the "three-column" case, i.e., µ1 ≤ 3. We now give an overview of

these three different combinatorial formulas.
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3.3.1. Loehr’s Combinatorial Formula Using RSK Variants

Here, we consider the modified Macdonald polynomial with µ1 ≤ 3 and µ2 ≤ 2. The main new

results in Loehr (2017) concerns new modified RSK algorithms. With these modified RSK algo-

rithms, Loehr is able to translate Haglund’s combinatorial formula and algebraic statistics into a

Schur expansion. Recall the following algebraic statistics

majµ(σ) =
∑

u∈Des(σ)

leg(u) + 1

and

invµ(σ) = |Inv(σ)| −
∑

u∈Des(σ)

arm(u)

where σ is a filling of the diagram µ and Inv(σ) is the set of inversions pairs that are attacking in

µ. We now describe and equivalent characterization of invµ(σ). Consider any set of 3 cells in the

Ferrer’s diagram of the form:
a · · · c
b

,

where we set b = ∞ if a and c are in the bottom row. After standardization, we call the triple

(a, b, c) an inversion triple if and only if a < b < c, b < c < a, or c < a < b. Then, invµ(σ) is

equal to the total number of inversion triples in the diagram. Now, consider any π ∈ Sn, we will

associate π to a tableau T by filling the diagram left to right, top to bottom with π. In other words,

we sometimes associate a permutation π to a tableaux such that the reading word of the tableau,

rw(T ) is equal to π. With this in mind, we have the following theorem.

Theorem 3.3.1 (Loehr (2017) Theorem 5). For all n ≥ 1 and µ ⊢ n with µ1 ≤ 3 and µ2 ≤ 2,

H̃µ(X; q, t) =
∑

λ∈Par(n)

 ∑
T∈SY T (λ)

qinvµ(rw(T )
−1)tmajµ(rw(T )

−1)

 sλ(X).

Loehr notes that if we consider the simplest extension and let µ = (4), the theorem fails to hold.

Thus, a different approach must be used for other cases. In order to prove this case, Loehr develops
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a series of new rules for the RSK algorithm. His new RSK algorithm is built on "p-row insertion"

which modifies the usual row insertion of RSK with a few special new rules depending on a parameter

p. Just like the usual row insertion of RSK, p-row insertion is invertible. With the modification in

mind, Loehr proves several properties of the modified RSK algorith, RSKp. Here is a summary of

the important properties found in Loehr (2017).

Theorem 3.3.2 (Properties of RSKp in Loehr (2017)). Let RSKp(σ) = (Pp(σ), Qp(σ)), then

1. Theorem 14 RSKp is a bijection from Sn to ∪λ⊢nSY T (λ)× SY T (λ).

2. Theorem 18 For all w ∈ Sn, Des(w) = Des(Qp(w)).

3. Theorem 19 If w ∈ Sn is the reading word of a partial standard tableau, then Pp(w) =

P (w) = w and Qp(w) = Q(w).

4. Theorem 22 By extending Knuth relations to a p-Knuth relation, ∼p, for all partial permu-

tation w, w ∼p Pp(w)

5. Theorem 24 For all w, Qp(w) = Q(w).

Many of these properties are identical to the usual RSK properties. Now, when µ1 ≤ 3 and µ2 ≤ 2,

let m1(µ) equal the total number parts of µ equal to 1 and p(µ) = m1(µ) + 1. Now, define

RSKµ(w) = (Pµ(w), Qµ(w)) = (Qp(w
−1), Pp(w

−1)).

This definition may seem strange, but Loehr is able to show this definition of RSKµ satisfy the

following extremely useful theorem.

Theorem 3.3.3 (Theorem 7 Loehr (2017)). Let µ ⊢ n, and suppose we can construct an RSK-like

algorithm RSKµ = (Pµ, Qµ) that satisfies the following 3 conditions:

1. RSKµ is a bijection from Sn to ∪λ⊢nSY T (λ)× SY T (λ).

2. For all w ∈ Sn, IDes(w) = Des(Pµ(w).
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3. For all w ∈ Sn, the values of invµ(w) and majµ(w) depend only on Qµ(w) and not on Pµ(w).

Then, for all λ

K̃λ,µ =
∑

T∈SY T (λ)

qãµ(T )tb̃µ(T )

where

ãµ(T ) = invµ(w)

and

b̃µ(T ) = majµ(w)

for all w ∈ Sn such that Qµ(w) = T . Or, equivalently,

ãµ(Q) = invµ((RSK
µ)−1(P,Q))

and

b̃µ(Q) = majµ((RSK
µ)−1(P,Q)).

Here, Loehr shows his definition of RSKµ satisfies the above theorem, which then proves Theorem

5 in Loehr (2017). Theorem 7 is of great interest because it provides a general framework for solving

the Schur expansion problem. If we can develop an RSK variant that satisfies those properties, then

we can find a Schur expansion for Macdonald polynomials. We will use this framework in the next

chapter to prove a new positive combinatorial Schur expansion.

3.3.2. Assaf’s Combinatorial Formula Using Dual Equivalence Graphs

Here, we give a combinatorial formula for Macdonald polynomials with restriction µ2 ≤ 2. This

work appears in Assaf (2018) and utilizes the theory of dual equivalence graphs. We consider a dual

equivalence relation on the set of permutations.

Definition 3.3.4. Let w ∈ Sn and 1 < i < n. We define the ith elementary dual equivalence

relation di the map such that if i is between i − 1 and i + 1 in w, then di(w) = w. Otherwise, di

interchanges i with whichever of i− 1 and i+ 1 is further away from i in w.
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Now, suppose we consider all permutations in Sn with a fixed major index. Then, the di partition

this set into equivalence classes, where two permutations are in the same equivalence class if there

is a sequence of the di transforming one into the other. As an example, 2314 and 1423 are dual-

equivalent as d2(2314) = 1324 and d3(1324) = 1423. It turns out that there are exactly two

equivalence classes for S4 with major index 2. They are {2314, 1324, 1423} and {2413, 3412}.

Definition 3.3.5. Let w ∈ Sn and IDes(w) = {i1, i2, . . . , ik}. We define the de-standardization of

w to be the word obtained by changing 1 through i1 to 1, i1 + 1 through i2 to 2, etc. We call the

weight of the de-standardization to be the composition whose ith part is the number of i′s of the

word.

As an example, consider the permutation 381265974 ∈ S9 with iDes = {2, 4, 5, 7}. The de-

standardization is 251143542 with weight (2, 2, 1, 2, 2). Now let dstk(w) be the de-standardization

of the subword wk · · ·wn. Suppose that for all k, dstk(w) has at least as many i−1′s as i′s. In other

words, every suffix of dst(w) has partition weight. Then, we call w a super-standard word. As an

example, let w = 518296734, then dst(w) = 213132211 with weight (4, 3, 2), and for all k, dstk(w)

has partition weight and is thus a super-standard word. To demonstrate, dst4(w) = 132211 which

has weight (3, 2, 1). With this in mind, the following is shown in Assaf (2018).

Theorem 3.3.6 (Theorem 7 Assaf (2018)). Every permutation is dual-equivalent to a unique super-

standard permutation. Further, the quasi-symmetric generating function of a dual equivalence class

of a super-standard permutation is equal to the Schur function indexed by its weight.

With this theorem in mind and the previous knowledge about maj being preserved in dual-

equivalence classes, Assaf gives the following combinatorial formula for the single column Macdonald

polynomial:

H̃(1n)(X; q, t) =
∑
λ⊢n

 ∑
u∈SS(λ)

tmaj(u)

 sλ(X)

where SS(λ) is the set of super-words with weight λ. Now, with the previous results about dual-
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equivalence in mind, Assaf considers a modification which will turn into a formula for other families

of Macdonald polynomials.

Definition 3.3.7. Let w ∈ Sn and 1 < i < n. We define the ith elementary twisted dual equivalence

relation d̃i the map such that if i is between i − 1 and i + 1 in w, then d̃i(w) = w. Otherwise, d̃i

cyclically rotates i− 1, i, i+ 1 so that i lies on the other side of i− 1 and i+ 1.

The significance of these equivalence relations comes from preserving the number of inversions.

Notice that when the relative order of i − 1, i, i + 1 satisfies the second part of the definition of

twisted dual equivalence, the cyclical rotation preserves the number of inversions. Now, for a

permutation w and wi and wj in w, we say wi and wj are potential µ-descents or µ-inversions if

they form possible descents or inversions in the filling of µ by w. Finally, we have the following set

of involutions:

Definition 3.3.8. Let 1 < i < n, then define

Dµ
i =


d̃i(w) if both i− 1 and i+ 1 are potential µ-descents or potential µ-inversions with i

di(w) otherwise.
(3.1)

As shown in Proposition 12 in Assaf (2018), majµ and invµ are fixed if we apply Dµ
i . Though not

appearing in the statements of any of the combinatorial formulas for Assaf, the Dµ
i involutions are

vital to the proofs. Assaf uses these involutions to build modified Foata maps. The Foata map is

a bijection on Sn where the major index of a permutation is equal to the inversion number of its

image. The Foata map is indexed by a number x at each step. We will let γx be the Foata map

relative to x. Assaf defines a family of maps ϕk(w) defined as

ϕk(w) = w1 · · ·wkγwk
(wk+1 · · ·wn).

With this definition in mind and the previous comments on preserving inversions and major index,

Assaf shows the following combinatorial formula.
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Theorem 3.3.9 (Corollary 19 Assaf (2018)). Let µ = (n−k, 1k) and ψµ = ϕk+1ϕk+2 · · ·ϕn−1, then

H̃µ(X; q, t) =
∑
λ⊢n

 ∑
u∈SS(λ)

qinvµ(ψµ(u))tmajµ(ψµ(u))

 sλ(X)

Now, we have seen similar combinatorial formulas for hook shape partitions. Assaf’s goal is to

extend this to partitions where µ = (n − 2b − a, 2b, 1a). Her process is very similar in nature

developing the formula for the hook shape. She first defines a map called βx that swaps certain

adjacent indices in a permutation. She then uses this map to create a family of bijections called

σ(k,m) that applied bx to wk+1 · · ·wk+m. This family of maps is then used to construct a recursive

family of maps ϕa,b that are very much in the spirit of the Foata map. The full details of these

various maps are beyond the scope, but the overall goal is to have a bijection similar to the bijection

for the hook shape that preserves inv and maj. The main result is now stated.

Theorem 3.3.10 (Corollary 23 Assaf (2018)). Let µ = (n−2b−a, 2b, 1a) and ψµ = ϕ(a+2,b−1)ϕ(a+4,b−2) · · ·ϕ(a+2b,0)ϕa+2b+1 · · ·ϕn−1,

then

H̃µ(X; q, t) =
∑
λ⊢n

 ∑
u∈SS(λ)

qinvµ(ψµ(u))tmajµ(ψµ(u))

 sλ(X).

This gives the first combinatorial formula for the family of Macondald polynomials indexed by

µ = ((n − 2b − a, 2b, 1a). Later, we give a new combinatorial formula for the case where µ =

(n− 2− a, 2, 1a) and it is interesting to note that these formulas are quite different. We now briefly

discuss the best known result for Schur expansions of Macdonald polynomials.

3.3.3. Blasiak’s Three-Column Formula

We now consider a conjecture due to Haglund in Haglund (2004) and proven by Blasiak in Blasiak

(2016). This formula depends on the expansion of Macdonald polynomials into a positive sum of

LLT polynomials. We will briefly define LLT polynomials in this section with much greater detail
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about LLT polynomials in Chapter 5. As defined in the proof of the HHL formula, consider

FD(X; q) =
∑

σ:µ→Z+

Des(σ,µ)=D

qinvµ(σ)xσ

where D is a fixed descent set. We will see later that FD is an LLT product of ribbons. Now, define

LD =
∑
s∈D

leg(s) + 1

AD =
∑
s∈D

arm(s).

With these definitions in mind, it is shown in Haglund et al. (2005b) that

H̃µ(X; q, t) =
∑
D

tLDq−ADFD(X; q)

where D is any potential set of descents in a filling of µ. Now, in Haglund (2004), this formula is

slightly modified so that we have:

H̃µ(X; q, t⃗) =
∑
D

FD(X; q)
∏
s∈D

ts,

which can be viewed as a multi-t-variate version of the modified Macdonald polynomials. If we set

ts = tleg(s)+1, we obtain the original formula. We now describe a weight associated to special fillings

that leads to Haglund’s conjecture. Let F1 be the filling of µ whose reading word is the identity, and

let F2 be the filling of µ whose reading word is the reverse of the identity. Now, for 1 ≤ a < b ≤ n,

let µ(a) = A and µ(B) = B be the squares that a and b occupy in µ respectively. Consider the

following weight contribution of a and b

wt(µ, a, b) =


q if (A,B) is an inversion in F2

q−arm(A)ta if A is a descent in F2 with B = South(A)

1 otherwise.
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The following is conjectured in Haglund (2004):

Conjecture 3.3.11 (Conjecture 3 Haglund (2004)). If µ1 ≤ 3, then

H̃µ(X; q, t⃗) =
∑
λ⊢n

 ∑
T∈SY T (λ)

∏
(a,b)∈Inv(T )

wt(µ, a, b)

 sλ.

In Blasiak (2016), this conjecture is proven. This gives a positive combinatorial formula for the Schur

coefficients of the LLT product indexed by 3 partitions and gives the positive combinatorial formula

for the modified Macdonald polynomials with at most 3 columns. The full details of the proof

are beyond the scope here. It is important to see this formula because it is still the best known

result for LLT products to this day and gives a combinatorial formula for the largest family of

Macdonald polynomials. We now turn to an old conjecture from the 1990s on the Schur coefficients

of Macdonald polynomials.

3.3.4. Butler’s Conjecture

Our overarching goal is to find a new method of computing the Schur coeficients of Macdonald

polynomials. In Butler (1994), we find an interesting pattern in the coefficients for a fixed λ, and

variable µ. To illustrate this phenomenon, we consider two examples for n = 5.

µ K̃221,µ(q, t)

5 q8 + q7 + q6 + q5 + q4

4,1 q5 + q4t+ q4 + q3t+ q2t

3,2 q4 + q3t+ q2t2 + q2t+ qt2

3,1,1 q3t+ q2t2 + qt3 + q2t+ qt2

2,2,1 q2t2 + qt3 + t4 + q2t+ qt2

2,1,1,1 qt4 + t5 + qt3 + t4 + qt2

1,1,1,1,1 t8 + t7 + t6 + t5 + t4

Table 3.1: Table of values of K̃221,µ(q, t)

Example 3.3.12. First, let us consider the coefficients in 3.1. Let us compare for µ = 5 and

µ = 4, 1: the coefficients are q8 + q7 + q6 + q5 + q4 and q5 + q4t+ q4 + q3t+ q2t, respectively. Here

we see q5 and q4 occur in both, leaving q8 + q7 + q6 and q4t + q3t + q2t, respectively. Notice that

(q8+q7+q6)q−4t = q4t+q3t+q2t. This is just one example, but does this pattern persist. Let’s look
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µ K̃311,µ(q, t)

5 q7 + q6 + 2q5 + q4 + q3

4,1 q5 + q4 + q3t+ q3 + q2t+ qt

3,2 q3t+ q3 + 2q2t+ qt2 + qt

3,1,1 q2t2 + q3 + q2t+ qt2 + t3 + qt

2,2,1 qt3 + q2t+ 2qt2 + t3 + qt

2,1,1,1 t5 + qt3 + t4 + qt2 + t3 + qt

1,1,1,1,1 t7 + t6 + 2t5 + t4 + t3

Table 3.2: Table of values of K̃311,µ(q, t)

at the next two, µ = (4, 1) and µ = (3, 2). Following the same steps, we have q5+q4t+q4+q3t+q2t

and q4+q3t+q2t2+q2t+qt2, respectively. Here we see q4, q3t, and q2t occur in both, which is a bit

more complex than the first case. However, if we ignore q4 and q2t, we have (q5 + q4t+ q3t)q−2t =

q3t+q2t2+qt2. We can actually continue in this way and find that for two partitions µ and ν, as long

as we only have to move one square to convert µ into ν, exactly two coefficients are fixed, and the

remaining are exactly qatb away from the others. In our case, if µ = (4, 1) and ν = (3, 2), we have

a = −2 and t = 1. One can check that if we let µ = (4, 1) and ν = (3, 1, 1), then a = −3 and t = 2.

Let’s now look at a slightly more complicated example with the coefficients in 3.2. Let µ = (4, 1)

and ν = (3, 2), so we are comparing q5 + q4 + q3t+ q3 + q2t+ qt with q3t+ q3 +2q2t+ qt2 + qt. We

now have 6 coefficients to consider. Notice that q3t, q3, q2t, and qt all appear in both. However, if

we ignore q3, q2t, and qt, then (q5+q4+q3t)q−2t = q3t+q2t+qt2. Here, exactly 3 of the coefficients

are fixed, and the other 3 change. In our case, if µ = (4, 1) and ν = (3, 2), we have a = −2 and

b = 1. Comparing to the case above, we got the same values of a and b. Now this is beginning to

look interesting.

Recall the dominance order on partitions. We can use this dominance order to form a Hasse diagram

for partitions. In a diagram of a partially ordered set, we say that x cover y if x > y in the partial

order, and there does not exist a z such that x > z > y. We can apply this to the ordering for

partition and the associated Hasse diagram. Suppose µ > ν and µ covers ν. When this is the case,

we have two possible scenarios. Suppose µ− ν = (i, j), then either:

1. ν − µ = (i− a, j + 1)
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2. ν − µ = (i− 1, j + a).

In our example, let µ = 5 and ν = (4, 1), then µ− ν = (5, 1) and ν−µ = (1, 2). Thus, we are in the

first case with a = 4. For a given covering as in this case, associate the term q−at. If the covering

falls into the second case, associate q−1ta. With this in mind, we have the following conjecture due

to Butler.

Conjecture 3.3.13 (Conjecture 2.7.1 Butler (1994)). Let λ, µ, ν ⊢ n and µ > ν such that µ covers

ν such that qatb is the monomial associated to the covering. Then exactly fλ2 coefficients change

from K̃λ,µ(q, t) to K̃λ,ν(q, t), and they change exactly by qatb, where fλ2 is the number of Standard

Young Tableau of shape λ with 2 in the first column.

We can actually extend this conjecture even further. Suppose we have a chain of partitions µ1 >

µ2 > · · · > µk where µi covers µi+1. Then we can calculate the change of the coefficients from

K̃λ,µ1(q, t) to K̃λ,µk(q, t) as the product of qaitbi for each covering µi > µi+1. Consider the following

example between hook shape partitions. In fact, the exact weight corresponding to the conjecture

is very much related to Bµ.

Example 3.3.14. Let µ = (n− k, 1k) and ν = (n− k− 1, 1k+1). We can calculate the total weight

in the conjecture as follows. Recall how we fill partitions to generate Bµ. The (q, t) filling from Bµ

for these partitions is as follows:

tk

tk−1

...
t2

t

1 q q2 · · ·qn−k−2qn−k−1

tk+1

tk

tk−1

...
t2

t

1 q q2 · · ·qn−k−2

Recall that Bµ is the sum of all the weights in these fillings. Note also that Bµ = Bν+q
n−k−1−tk+1.

Butler’s conjecture in this case says that the coefficients in Bµ will change by q−(n−k−1)tk+1.
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With the previous example in mind, to reformulate the conjecture, let µν be the square in µ but not

in ν and let νµ be the square in ν but not in µ. Associate the term qaµtbµ and qaν tbν as in Bµ and

Bν , respectively. Then, Butler’s conjecture says the terms that change in K̃λ,µ(q, t) to K̃λ,ν(q, t)

will change by qaν−aµtbν−bµ .

We now prove Butler’s conjecture for the hook shapes using two different formulas that we have

seen.

Example 3.3.15. Recall when λ = (n− k, 1k), we have

K̃(n−k,1k),µ(q, t) = ek[Bµ − 1].

Now, suppose we have µ and ν one square is moved from µ to ν. In particular, say that Bµ =

B+1+qaµtbµ and Bν = B+1+qaν tbν . Here we include the weight of 1 from the bottom left corner

outside of the B term for ease when considering the known formula for the q, t-Kostka. Thus, B

has exactly n − 2 terms. With Butler’s conjecture in mind, we can easily compute the number of

Standard Young tableaux of shape λ with 2 above 1. In particular, the first column must have 2

1
,

and the rest of the k − 1 entries in the first column can be any subset of the other n− 2 remaining

numbers. In particular, we have
(
n−2
k−1

)
such tableaux. Now, we need to compare the two formulas:

K̃(n−k,1k),µ(q, t) = ek[Bµ − 1] = ek[B + 1 + qaµtbµ − 1] = ek[B + qaµtbµ ]

and

K̃(n−k,1k),ν(q, t) = ek[Bν − 1] = ek[B + 1 + qaν tbν − 1] = ek[B + qaν tbν ].

Thus, in both cases, we are computing ek[−] of a sum of n− 1 terms, n− 2 of which are the same.

When doing this, our result is the sum of all products of k distinct elements in the sum. Now, if

the k terms are all from terms in B, we get the same result for µ and ν. Thus, our only difference

is when we have k − 1 terms from the B terms, and the kth term is qaµtbµ for µ and qaν tbν for ν.

This means we have a total of
(
n−2
k−1

)
terms that are multiplied by qaµtbµ for µ and the same number

48



of terms multiplied by qaν tbν . These
(
n−2
k−1

)
terms are the same because we are choosing size k − 1

subsets from the same B. Thus, the difference in these terms is from µ to ν is exactly qaν−aµtbν−bµ

as desired. Further, the number of terms matches the conjectured number of terms from Butler.

Unfortunately, the previous example does not give a nice combinatorial description of K̃(n−k,1k),µ.

However, the following example does.

Example 3.3.16. Let µ = (n − k, 1k), and recall the invµ and majµ statistics from the HHL

formula in Haglund (2007). Because we are considering fillings of a hook shape, these statistics are

easier to compute. In particular, if we fill µ with the word w, majµ(w) = maj(w1 · · ·wk+1), the

usual maj on words. In other words, maj for a hook is simply the maj of the column filling. Further,

when we compute invµ(w), we are simply computing the usual inversion number, inv(wk · · ·wn),

the row of the filling. Recall that we had the Foata map, ϕ, such that inv(w) = maj(ϕ(w)). With

this map, w1 is actually fixed. In this case, because majµ and invµ are both computed on w and the

only common term is wk, if we apply the Foata map to wk · · ·wn, we will not affect majµ because

wk is fixed. We now modify how we fill a hook shape diagram. Let w1 · · ·wn−k fill the first row

right to left, and let wn−k+1 · · ·wn fill the first column, starting from the second row and going up

(note wn−k is at the bottom of the first column). Because we are considering all possible words, we

will still obtain the same weights, but it is going to be easier after we note the following important

property about the RSK map. If wi > wi+1, then i+ 1 will be above i in the insertion Q tableaux

of RSK(w). Also note that maj(wn · · ·wn−k+1wk is the same as comaj(wk . . . wn). We obtain the

following which is a reformulation of the Stembridge formula for hook shapes. First, let

majµ(T ) :=
∑

1≤i≤n−k−1

iχi(T ) (3.2)

and

comajµ(T ) :=
∑

n−k≤i≤n−1

(n− i)χi(T ). (3.3)
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where χi(T ) is 1 if i+ 1 is above i in T , then

K̃λ,(n−k,1k)(q, t) =
∑

T∈SY T (λ)

qmajµ(T )tcomajµ(T ). (3.4)

Why were we interested in this in terms of Butler’s Conjecture? It is now easy to prove. Suppose

µ = (n− k, 1k) and ν = (n− k − 1, 1k+1). The above formula says that if n− k is above n− k − 1

in T , then χi(T ) is true and we get a contribution of n− k − 1 to majµ, but when we switch to ν,

we no longer have this contribution, and instead, we now get n− (n− k − 1) = k + 1 contributing

to comajν . Thus, for the same Standard Young tableau, the q, t- weight changes by q−(n−k−1)tk+1,

which is the exact amount conjectured by Butler. Further, the number of Standard Young Tableaux

of shape λ with 2 above 1 is the same as those with n − k above n − k − 1, hence the number of

terms that change is also the same as the conjecture. Thus, Butler’s conjecture is true for hook

shapes.

Now that we have covered all of the necessary background material on RSK, symmetric functions,

Schur expansions of Macdonald Polynomials, and Butler’s conjecture, it is now time to consider the

main result in this direction.
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CHAPTER 4

COMBINATORIAL SCHUR EXPANSION OF AUGMENTED HOOK MACDONALD

POLYNOMIALS

We now consider our main result concerning Macdonald polynomials and Butler’s conjecture. In

particular, we give a combinatorial formula for the Schur expansion of Macdonald polynomials

indexed by an "augmented hook." This formula is a summation over Standard Young tableaux with

statistics that strongly resemble maj and comaj. The proof of the formula is similar to the proof of

the HHL formula as found in Haglund et al. (2005b) or in Appendix A of Haglund (2007). We show

that the formula satisfies the same 3 uniqueness conditions that Macdonald Polynomials satisfy

via 2 sign-reversing involutions. After proving this formula, we will then show how the formula

immediately implies Butler’s conjecture is true when our two partitions are a hook shape and an

augmented hook shape.

4.1. Statement of Theorem

Let µ = (k − 1, 2, 1n−k−1) be an augmented hook. Let λ be a partition of n and SY T (λ) be the

set of standard Young tableaux of shape λ. We define two separate algebraic statistics on Standard

Young Tableaux. For T a Standard Young Tableaux, let χi(T ) to evaluate to 1 if i+1 is above i in

T, and 0 otherwise. Let χµ(T k) be defined according to jeu-de-taquin (jdt) of k − 2, k − 1, k, and

k + 1 in T and the chart in Table 4.1, then define

amajµ(T ) :=
∑

1≤i≤k−1

iχi(T )− (k − 2)χµ(T
k), (4.1)

and

acomajµ(T ) :=
∑

k≤i≤n−1

(n− i)χi(T ) + χµ(T
k). (4.2)
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Tableau, T χµ(T )

1 2 3 4 0
2

1 3 4
0

3

1 2 4
1

4

1 2 3
0

3

2

1 4

1

4

2

1 3

0

4

3

1 2

1

3 4

1 2
0

2 4

1 3
1

4

3

2

1

1

Table 4.1: Table of χµ(T )

Note that we use the terms amaj and acomaj because both statistics are nearly the same as maj

and comaj, but slightly modified for the augmented hook case. Let us compute the values of amaj

and acomaj in an example.

52



Example 4.1.1. Let µ = (5, 2, 12) and consider the following SYT of shape (4, 3, 2)

T = 5 9

3 4 7

1 2 6 8

them, we can compute amaj and acomaj as follows:

amajµ(T ) :=
∑

1≤i≤5

iχi(T )− (k − 2)χµ(T
6),

and

acomajµ(T ) :=
∑

6≤i≤8

(9− i)χi(T ) + χµ(T
6).

In T , χi(T ) = 1 for i ∈ {2, 4, 6, 8}. Now, we need to compute χµ(T 6). We compute this by first

evacuating 1, 2, and 3 from T . When we do this, we have the following tableau:

ev3(T ) =
9

5 7

4 6 8

and to find T k, we remove all numbers greater than k+1 and standardize k− 2, k− 1, k, and k+1

to 1, 2, 3, and 4 respectively. Thus we have:

T k = 2 4

1 3

and using Table 4.1, we have χµ(T k) = 1. Thus, our statistics on T are:

amajµ(T ) := 2 + 4− (6− 2) ∗ 1 = 2,

and

acomajµ(T ) := (9− 6) + (9− 8) + 1 = 5.

It turns out this tableau will contribute a weight of q2t5 to s4,3,2 in H̃(5,2,12)(X; q, t).
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Now, consider the following symmetric function:

Vµ(X; q, t) =
∑
λ⊢n

 ∑
T∈SY T (λ)

qamajµ(T )tacomajµ(T )

 sλ. (4.3)

This leads to our main result:

Theorem 4.1.2. For µ = (k − 1, 2, 1n−k−1) an augmented hook and Vµ(X; q, t) as defined above,

Vµ(X; q, t) = H̃µ(X; q, t).

4.2. Background Towards the Proof of 4.1.2

We will use tools tools developed in section 2 in order to prove the result. The most important

tools are the RSK algorithm and Jeu-de-Taquin. We begin by showing how we actually evaluated

χµ(T ) in Tablea 4.1.

4.2.1. Evaluating χµ(T )

We now describe how to evaluate χµ(T ) for a given tableau. Locate k− 2, k− 1, k, and k+1 in T.

Now, evacuate numbers 1 through k− 3 from T . This means to start with 1, convert it to a corner

square, relabel 2 through n with 1 through n − 1, and perform jdt on this skew tableau. Repeat

this process k − 4 more times. In the resulting tableau, k − 2, k − 1, k, and k + 1 will be relabeled

as 1, 2, 3, and 4 respectively. These four numbers will form a subtableau that is standard, call this

T k. We then define χµ(T ) on this subtableau of 4 numbers. We have all of the values for χµ in the

previously shown 4.1.

Now, for a standard Young tableau of size n, we can compute T k as above, which will be a standard

Young tableau of size 4. However, it will be natural to evaluate χµ on permutations. We will now

extend the definition of χµ(T ) to χµ(β) where β is a permutation in S4.
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β β−1 χ(β)

1234 1234 0
1243 1243 0
1324 1324 1
1342 1423 0
1423 1342 1
1432 1432 1
2134 2134 0
2143 2143 1
2314 3124 1
2341 4123 0
2413 3142 0
2431 4132 1
3124 2314 0
3142 2413 1
3214 3214 1
3241 4213 0
3412 3412 0
3421 4312 1
4123 2341 0
4132 2431 0
4213 3241 1
4231 4231 0
4312 3421 1
4321 4321 1

Table 4.2: Table of χµ(β)

In Table 4.2, we listed β−1 for a specific reason: χ(β) = χ(jdt(β−1)). This will be important as we

convert our Schur expansion from a sum over tableau to a sum over permutations.

4.2.2. Relation Between β and β−1 and RSK

We now discuss the relationship between a permutation and its inverse. Let β = β1β2 · · ·βn and

β−1 = β−1
1 β−1

2 · · ·β−1
n . Suppose βi = j > βi+1 = l, then i+1 is to the left of i in β−1. In particular,

β−1
j = i and β−1

l = i + 1, and l < j. We can extend this to βk−2, βk−1, βk, and βk+1. We can

map these values to a permutation in S4, say σ, and then if we compute σ−1, this will be the

relative order of k − 2, k − 1, k, and k + 1 in β−1. Now, recall the RSK algorithm and the fact

that Qβ = jdt(β−1). Now, if we want to compute χµ on Qβ , we have χµ(Qβ) = χµ(Q
k
β), where we
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evacuate 1 through k− 3 from Qβ and look at the subtableau formed by the newly labelled 1, 2, 3,

and 4. By the properties of jdt and the fact that k− 2, k− 1, k, and k+1 are consecutive numbers,

this subtableau is equivalent to jdt(σ−1). Thus, χµ(Qβ) = χµ(σ). Further, note that i+ 1 is above

i in Qβ if βi > βi+1. Thus, we can compute amajµ(Qβ) and comajµ(Qβ) completely in terms of β.

4.2.3. Gessel’s Fundamental Quasisymmetric Functions

Our goal now is to follow the framework of the proof for of HHL formula in Haglund et al. (2005b).

In order to do this we need to consider a few more symmetric function properties that we can find

in Haglund (2007). First, we define Gessel’s fundamental quasisymmetric function.

Definition 4.2.1. Consider two alphabets A+ = {1, 2, . . . , n} and A− = {1̄, 2̄, . . . , n̄} and A± =

A+∪A−, and a total order on these alphabets T O. Let σ be a word in the alphabet A±. We define

the standardization of σ as std(σ) = σ̃ where equal positive letters are increasing left to right, and

equal negative letters are decreasing left to right, and any unequal letters respect the total order.

Let D ⊆ [n− 1]. Then we define Gessel’s fundamental quasisymmetric function, Fn,D(X), as:

Fn,D(X) =
∑

a1≤a2≤···≤an
ai=ai+1 =⇒ i ̸∈D

xa1xa2 · · ·xan

where ai ∈ A+. We can extend this definition to the super fundamental quasisymmetric function:

F̃n,D(X,Y ) =
∑

a1≤a2≤···≤an
ai=ai+1∈A+ =⇒ i ̸∈D
ai=ai+1∈A− =⇒ i∈D

xa1xa2 · · ·xan

where if ā ∈ A−, then xā = ya.

We use this to give an equivalent definition of sλ. Let SY T (λ) be the set of standard Young tableau

of shape λ. Let T ∈ SY T (λ), then we define Des(T ) to be the set of i such that i+ 1 appears in a

row above i in T . Then, the following holds:

sλ(X) =
∑

T∈SY T (λ)

Fn,Des(T )(X)
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With the above preliminaries in mind, we will derive an equivalent formula for Vµ as a sum over

β ∈ Sn.

4.3. Proof of 4.1.2

We now prove the main theorem by showing the formula Vµ(X; q, t) satisfies the 3 Macdonald

polynomial conditions. First, we recall this theorem from Haglund et al. (2005b).

Theorem 4.3.1. The following 3 conditions uniquely determine a family H̃µ(X; q, t) of symmetric

functions:

• Condition 1 (C1):

H̃µ[X(q − 1); q, t] =
∑
ρ≤µ′

cρ,µ(q, t)mρ(X)

• Condition 2 (C2)

H̃µ[X(t− 1); q, t] =
∑
ρ≤µ

dρ,µ(q, t)mρ(X)

• Condition 3 (C3)

H̃µ(X; q, t)|xn1 = 1.

We will show that Vµ satisfies these 3 conditions, and is thus equal to H̃µ. First, note that by

definition, C3 is satisfied since xn1 only appears when λ = (n) since only one word has content 1n,

and this means the single row tableau is filled with all 1s. Further, for this tableau, amajµ and

acomajµ evaluate to 0. Hence, the coefficient of xn1 is 1. Now, the hard part is to prove C1 and C2.

We will now derive an equivalent expression for Vµ. From our description of Gessel’s fundamental

quasisymmetric function and expanding Schur functions in the previous section,

Vµ(X; q, t) =
∑
λ⊢n

 ∑
T∈SY T (λ)

qamajµ(T )tacomajµ(T )

 sλ

=
∑
λ⊢n

 ∑
T∈SY T (λ)

qamajµ(T )tacomajµ(T )

 ∑
T ′∈SY T (λ)

Fn,Des(T ′)(X)


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and we now note that if this product is expanded, we get a sum over pairs of standard Young

tableau of the same shape where the q and t powers depend on one, and the Gessel fundamental

quasisymmetric function depends on the other. I.e., we obtain:

Vµ(X; q, t) =
∑
λ⊢n

 ∑
T∈SY T (λ)

qamajµ(T )tacomajµ(T )

 ∑
T ′∈SY T (λ)

Fn,Des(T ′)(X)


=
∑
λ⊢n

 ∑
(T ′,T )∈SY T (λ)×SY T (λ)

qamajµ(T )tacomajµ(T )Fn,des(T ′)(X)


Suppose β → (T ′, T ) under RSK, then, this can be rewritten as

Vµ(X; q, t) =
∑

(T ′,T )∈SY T (λ)×SY T (λ)

qamajµ(T )tacomajµ(T )Fn,des(T ′)(X)

=
∑
β∈Sn

qamajµ(Qβ)tacomajµ(Qβ)Fn,des(Pβ)(X)

Computing amajµ(Qβ) and acomµ(Qβ) can be done with only knowing β. In particular, we already

showed how to compute χµ(β) which is consistent with Qβ , and computing χi(Qβ) is equivalent

to checking if βi > βi+1. Hence, we can write amajµ(Qβ) and acomajµ(Qβ) as amajµ(β) and

acomajµ(β), respectively. Further, des(Pβ) is the same as the set of i such that i+ 1 is to the left

of i in β. Equivalently, this is equal to des(β−1), which is the set of i such that β−1
i > β−1

i+1. With

this in mind, we have:

Vµ(X; q, t) =
∑
β∈Sn

qamajµ(β)tacomajµ(β)Fn,des(β−1)(X)

We will now convert this formula in a similar fashion to the Appendix in Haglund (2007). Using

equations (A.4) and (A.5) in Haglund (2007), the above formula can be rewritten as:

Vµ(X; q, t) =
∑

σ:µ→Z+

qamajµ(std(σ))tacomajµ(std(σ))xσ,

where σ is a filling of µ from left to right starting with the first row (the reason for viewing it like
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this will be clear later), and std(σ) is the standardization of σ with respect to the total order. Now,

using (A.5) and (6.25) (see (A.15) for comparison) in Haglund (2007), along with our formula for

Vµ in terms of permutations and Gessel fundamentals, we obtain:

ωY Vµ[X + Y ; q, t] =
∑
β∈Sn

qamajµ(β)tacomajµ(β)F̃n,des(β−1)(X,Y ).

Now, replace xi with αxi and yi by −xi, then the previous equation implies (see A.18 in Haglund

(2007) book for reference):

Vµ[Xα−X; q, t] =
∑

σ̃:µ→A±

qamajµ(std(σ̃))tacomajµ(std(σ̃))αpos(σ̃)(−1)neg(σ̃)x|σ̃|,

where |σ̃| is obtained by replacing each negative letter j̄ by j, pos and neg denote the number of

positive and negative letters in σ̃ respectively, and std(σ̃) is with respect to the total order on A±.

With this in mind, we can now prove C1 and C2 by utilizing two different sign-reversing involutions

and two different total orders.

4.3.1. Proof of C1

In order to prove C1, we will construct a sign-reversing involution on fillings of µ. We will use the

total order:

1 < 2 < · · · < n < n̄ < · · · < 2̄ < 1̄.

When α = q, we have:

Vµ[Xq −X; q, t] =
∑

σ̃:µ→A±

qamajµ(std(σ̃))tacomajµ(std(σ̃))qpos(σ̃)(−1)neg(σ̃)x|σ̃|,
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and we will convert this to a sum over nearly non-attacking fillings of µ, where we view a filling

starting in the first row, left to right, bottom to top. This is how we view the filling:

σn

σn−1

...

σk+2

σkσk+1

σ1 σ2 · · · σk−3σk−2σk−1,

Nearly-non-attacking means that within any row of the filling, there will be at most one element from

{i, ī}, with a few exceptions depending on σk−2, σk−1, σk, σk+1. We call σi and σj an attacking pair

if they are in the same row and |σi| = |σj |. We now construct the sign-reversing, weight-preserving

involution.

Case 1: Attacking 1′s in First Row

Consider the filling σ̃ of µ. Suppose there exist attacking 1’s in the first row. Further, of all such

possible attacking pairs of 1’s, consider the first pair (i.e., the two 1’s that are furthest left). Then,

|σi| = |σj | = 1, i < j, and i is minimal. Further, assume i < k− 2. We claim that changing the sign

(i.e. 1 changed to 1̄ and 1̄ changed to 1) of σi is a sign-reversing, weight-preserving involution, call

the new filling σ̃′. To see this, first note that the sign clearly changes and the x power stays the

same. Further, the value of χj will not change for any j besides possibly i − 1 and i since σj and

σj+1 are unchanged outside of those values for j. Additionally, since i < k− 2, χµ(σ̃) is unchanged

as well. Hence, acomajµ(std(σ̃) = acomajµ(std(σ̃′)), and the t weight is preserved.

Now, we show the q weight is preserved. First, suppose σi = 1, then upon standardization, σi will

be the smallest value, and hence χi−1(σ̃) = 1, and χi(σ̃) = 0. However, when switching the sign

σ′i = 1̄ is now the largest element after standardization, so χi−1(σ̃′) = 0, and χi(σ̃′) = 1. Thus,

amajµ(std(σ̃)) = amajµ(std(σ̃′)) − 1. However, pos(σ̃) = pos(σ̃) + 1, and thus, the q − weight
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is preserved. Hence, this is a sign-reversing involution. Note that the argument for if σi = 1̄ is

identical.

In fact, this same argument works if we have i = k − 2, but we have to be careful when checking

χµ(σ̃). When we have σk−2, σk−1, σk, σk+1 versus σ′k−2, σ
′
k−1, σ

′
k, σ

′
k+1, if σk−2 = 1, then it is the

smallest element of this set under standardization, and thus σ′k−2 = 1̄ is now the largest upon

standardization. As an example, if the relative order was 1324, it will be 4213 in σ̃′. We can check

that χµ(σ̃) = χµ(σ̃′) in all six of these cases using Table 4.2. Hence, all statistics are fixed, and this

is a sign-reversing, weight-preserving involution. Thus, we have eliminated all fillings where there is

a |σj | = 1 for j < k− 1, so there is at most one 1 or 1̄ in the first row. In fact, the above argument

actually used no knowledge of the position of the second 1 or 1̄, and can be used to show that we

can eliminate all fillings with a 1 or 1̄ in the first k − 2 values. Hence, if there is a 1 or 1̄ in one

of the first k − 2 positions, we have a second filling with the opposite weight and sign cancelling it

out. Thus, if there is a 1 or 1̄ in the first row, we can assume it is σk−1.

Case 2: Attacking 1’s in the Second Row

With the previous eliminated cases in mind, we now consider when |σk| = |σk+1| = 1. This leads to

our first allowed exception to non-attacking. If there are no 1′s or 1̄′s in the first row then this filling

will not violate the triangularity conditions with respect to the 1′s and 1̄′s because we are allowed

n−k+1 1′s and 1̄′s and if there are none in the first row, there can be a maximum of n−k+1 in the

filling. Now, if there is a 1 or 1̄ in the first row, then it must be σk−1 after eliminating fillings from

Case 1. We claim that switching the sign of σk−1 is a sign-reversing, weight-preserving involution.

As in Case 1, the only values of χi(σ̃)) that could change in χi(σ̃′) are i = k − 2 or k − 1, and

in fact, just as before, if σk−1 = 1, then σ′k−1 = 1̄, and we are switching from the smallest value

to largest value upon standardization, so χk−2 changes from 1 to 0, and χk−1 changes from 0 to

1. Now, I claim that χµ(σ̃) = χµ(σ̃′), and this would imply all statistics are preserved, ensuring a

sign-reversing involution. Again, this is a case by case basis that needs to be checked. There are

8 total possible cases. As an example, supposed σk−2 = X, σk−1 = 1, σk = 1̄, and σk+1 = 1, then

σ′k−2 = X, σ′k−1 = 1̄, σ′k = 1̄, and σ′k+1 = 1, and upon standardization the relative orders are 3142
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and 2431 respectively (note that X is not 1 or 1̄, so we can deduce its relative order). When we

check all 8 of these cases (really only 4 cases as they come in pairs), the value of χµ remains the

same. Thus, we can eliminate these fillings as well. Now, we either have a filling with no 1’s in the

first row, and zero, one, or two one’s in the second row, or a filling with one 1 in the first row (at

σk−1), and zero or one 1 in the second row.

With these cases in mind, it is now irrelevant what the value of σk+2, . . . , σn are, as we have at

most n − k + 1 1′s and 1̄′s regardless. Thus, all of our remaining fillings are nearly non-attacking

with respect to 1 and 1̄. Next, we take these cases and consider what happens with attacking 2’s.

Case 3: Attacking 2’s

By assumption, we have narrowed it down to fillings that are nearly non-attacking with respect to

1’s. Suppose we have attacking 2’s in the first row. First, if there is a one in the first row, it must

be in position σk−1. Thus, if there are attacking 2’s, the left most must be in position at most k−3,

say σi with i ≤ k − 3. In particular, this means that after standardization, it will be either the

smallest, or largest element among the first k − 2 numbers. In this case, we claim the exact same

involution works as in Case 1. I.e., switch the sign of σi and all χj values are fixed besides χi−1

and χi, and both χi−1 and χi switch values using the same argument from Case 1. Further, by

assumption, i ≤ k − 3, so the value of χµ will be unchanged. Thus, the weights will be preserved,

and this is a sign-reversing, weight-preserving involution.

Now, suppose there are no 1’s in the first row, and there are attacking 2’s. If the leftmost 2 is σi and

i ≤ k − 3, the same argument applies, and we can reverse its sign, and the proof follows. However,

if i = k−2, we leave this filling and consider it nearly non-attacking with respect to 1’s and 2’s. We

can do this because we know there are at most n−k+1 1′s and 1̄′s above the first row, and at most

only 2 1′s, 1̄′s, 2′s, and 2̄′s in the first row. This gives us a total of at most n − k + 3 = µ′1 + µ′2,

satisfying triangularity with respect to 1’s and 2’s.

We now note that we need not consider attacking 2′s (and in case 4 any attacking j′s) in the second

row at this point. Since our case analysis shows we can assume no attacking 1’s or 2’s in the first
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row or just nearly non-attacking case of 2’s in the first row, if the filling does have attacking 2’s in

the second row, we cannot violate triangularity conditions with respect to 1’s and 2’s regardless of

the remaining filling (in fact we will not need to consider these cases for other j′s either) for the

same triangularity argument. Like in the previous case, suppose there is only a single 2 in the first

row. If it is in position σk−2 or σk−1, we do nothing. If it is in position i < k − 2, we can change

the sign and have a sign-reversing involution as before. We specified these conditions specifically to

avoid potential issues with evaluating χµ. However, this implies we have fillings with no 2′s before

position k − 2. Thus, we have triangularity with respect to 1’s and 2’s.

Case 4: Attacking j′s

The remaining case will be similar to the previous case. We are in the position with nearly non-

attacking fillings with respect to 1′s and 2′s. Consider the first pair of attacking 3′s in the first row

in positions i and j, with i < j. If j <= k − 2, then we can proceed directly as before and change

the sign of σi, as this will not change χ. Now, suppose j = k − 1, so we have exactly one pair of

attacking 3′s in the first row. If i < k − 3, then we can change the sign of σi and have the desired

sign-reversing involution. If i = k − 3, and |σk−2| = 2, then we leave this case and add it to the

nearly non-attacking category (note this case is possible after removing attacking 2’s in the previous

case). Similarly, if i = k − 2, we leave this case and add it to the nearly non-attacking category.

Why are we skipping these cases? If we try to change the sign of σk−2, we may change the value of

χµ, and if we try to change σ′is sign, we may not necessarily change the value of χi if |σi+1| < |σi|,

which means the statistics may not match. Similarly, if there is only one 3 in the first row, it is not

σk−2 or σk−1, and |σi| > |σi+1|, then we can change the sign of σi and obtain the correct statistics.

We continue with this procedure, and we are left with fillings of the following form after considering
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j′s and j̄′s:
σn

σn−1

...

σk+2

σkσk+1

σ1 σ2 · · · σk−3σk−2σk−1,

where the segment of σ from σi through σk−1 is of one of the following forms:

|σi| > |σi+1| > · · · > |σk−3| > |σk−2| = |σk−1|

|σi| > |σi+1| > · · · > |σk−3| > |σk−2| > |σk−1|

|σi| > |σi+1| > · · · > |σk−3| > |σk−2| < |σk−1|

In other words, in terms of absolute value, we have a strictly decreasing sequence, except possibly

σk−2 and σk−1. We can do this because any time we have |σl| < |σl+1| where the value of σl is

the first occurrence and |σp| > |σl| for p < l, we can switch its sign like above (aside from when

l = k − 2).

Our remaining cases are those that have a strictly decreasing sequence like the three possibilities

above. But this implies that we have either 1 or 2 a′s for |a| <= j in the row, where having two

a′s only occurs when |σk−1| = a. We allow this as a nearly non-attacking filling, and this satisfies

triangularity as we have at most n − k + j − 1 numbers from {1, 1̄, . . . , j, j̄}, and we are allowed

µ′1 + µ′2 + · · ·+ µ′j = n− k+ 1+ 2+ 1+ · · ·+ 1 = n− k+ j − 1. Thus, we are left with fillings that

are nearly non-attacking and satisfies C1.

Condensed and Easier Proof to Follow Showing C1

First, let σ̃ = σ1σ2 · · ·σn be the filling. Note that the first k − 1 terms correspond to the first row.

Find the smallest i < k − 1 where |σi| = 1, if it exists. This will either be the largest or smallest

element after standardizing. Change the sign of σi, and this is a sign-reversing involution as above.
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If no i exists, we next check to see if |σk−1| = |σk| = |σk+1| = 1. If this is true, change the sign on

σk−1, and this is a sign-reversing involution as above.

If none of this is true, we move on to finding the first i such that |σi| = 2 and i < k− 2. If such an i

exists, we change the sign of σi and note that by eliminating the previous cases, we are guaranteed

that σi is either the smallest or largest element after standardizing among the first i+ 1 elements,

and thus preserve the statistics.

If we still have not changed σ̃, we repeat this for 3, and find the first i < k−2 such that |σi| = 3. We

then check to see if |σi+1| >= 3. If this is the case, we change the sign of σi, and it is a sign-reversing

involution because we are guaranteed σi is the smallest or largest number after standardizing among

the first i + 1 elements. Further, note that the possible fringe cases only occur if |σi+1| = 1 or 2

which only happens if i = k − 3. Now repeat the process for 3 with all larger numbers.

With the above analysis, we will map σ̃ to a filling with the same weight but opposite sign in all

cases aside from the following:

|σ1| > |σ2| > · · · > |σk−3| > |σk−2|

and σk−1 is arbitrary. We already know that the number of 1’s and 1̄′s is at most µ′1. With the

remaining σ̃, because of the strictly decreasing sequence, we are checking for the maximum number

of elements from {1, 1̄, 2, 2̄, . . . , j, j̄}. We can have at most j in the first row (the final j), 2 in the

second row, and n − k − 1 above the second row. This gives a maximum of n − k − 1 + j + 2 =

n− k + j + 1 = µ′1 + · · ·µ′j , satisfying the triangularity for all j as desired. Thus, we are left with

nearly non-attacking fillings and have proven C1.

4.3.2. Proof of C2

This proof will be modelled after the proof for C1 in the previous section. We use the following

ordering, which is the opposite of the ordering for the C1 proof:

1̄ < 2̄ < · · · < n̄ < n < n− 1 < · · · < 2 < 1
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We also consider fillings of µ from bottom to top, right to left for easier understanding. If σ̃ =

σ1 · · ·σn, then the filling is:

σn

σn−1

...

σk+2

σk+1σk

σk−1σk−2σk−3 · · · σ2 σ1

Our goal is to find a sign-reversing, weight-preserving involution so that the remaining fillings are

those where all of the 1′s are in the first row, 2′s in the first two rows, and in general, j′s in the

first j rows. Here is the process.

If there is a 1 or 1̄ in position σi for i ≥ k + 1, pick the largest i. We change the sign of σi. If

σi = 1, then after standardizing, it is the largest element, hence χi−1(σ̃) = 0 and χi(σ̃) = 1. After

changing the sign, in σ̃′, χi−1(σ̃′) = 1 and χi(σ̃) = 0, as σ′i = 1̄ is now the smallest number after

standardizing. Hence, changing from 1 to 1̄ gains 1 t in acomajµ, but loses 1 t from pos(σ̃). Thus,

the t statistic is fixed. Note that the value of χµ is also fixed. There are six cases to check for the

possible relative orders of σk−2, σk−1, σk, σk+1 when |σk+1| = 1 as in the case for C1. For example, if

the relative order is 2314, then the involution changes the relative order to 3421, and χµ on these is

the same using Table 4.2. The q-statistic and x weight are also clearly fixed in this case. Thus, this

is a sign-reversing involution that preserves the statistics. This eliminates all cases for 1′s outside

the first row besides |σk| = 1.

To satisfy the triangularity condition, we are allowed k − 1 total 1′s in a filling. If either |σk−2| or

|σk−1| is not 1, we allow this as a permissible filling with respect to 1’s, and move this filling to the

next step. Otherwise, consider the fillings where |σk−2| = |σk−1| = |σk| = 1 and |σk+1| ̸= 1. We

claim that changing the sign of σk−1 is a weight preserving involution. The key observation is that
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in these cases, if σk−1 = 1, then χµ(σ̃) = 0, and if σk−1 = 1̄, then χµ(σ̃) = 1. Hence, changing the

sign changes the value of χµ. Thus, changing from 1 to 1̄ increases acomajµ by 1 and the number of

positive values decreases by 1, so the t statistic is preserved. Further, χk−2(σ̃) = 0, but χ(σ̃′) = 1,

and the value of χk−1(σ̃) is unchanged. Hence, χk−2 increases the q-power by k−2, but χµ decreases

the q-power by k−2. With this map the q-power is fixed. Thus, we have a sign-reversing involution

such that the remaining fillings have at most k − 1 1′s and 1̄, and, critical to the remaining of the

proof, the maximum i such that |σi| = 1 is k.

With the above fillings eliminated, we consider 2′s and 2̄′s. Find the last i such that |σi| = 2 and

i ≥ k + 2. If one exists, change the sign, which will change this from the smallest to largest or

largest to smallest upon standardization among all σj for j > k (this is guaranteed when i = k + 2

as the previous involution prevents |σk+1| = 1). Now, changing the sign preserves weights for the

same reason as with the 1′s and 1̄′s. Hence, after removing the fillings from this involution, this

guarantees all 2′s are in the bottom two rows.

The same logic applied for larger j′s. Consider the last j or j̄ above the first j rows in the filling.

If it is in position i, then upon standardization, σi is either the largest or smallest number among

σi−1, σi, . . . , σn (note because of the iterative process, we have guaranteed |σi−1| >= j). Thus,

changing the sign changes the values of χi−1 and χi, and the overall t weight will be unchanged.

The q-weight will also be fixed and value of χmu will also be fixed. Thus this is a sign-reversing

involution in total, and we have the desired triangularity from C2. This completes the proof of

Theorem 4.1.2.

4.4. Implications of the Combinatorial Formula for Augmented Hooks

Now that we have proven the main theorem, we can now consider an important corollary in regard

to Butler’s Conjecture.

Corollary 4.4.1. Let µ = (k, 1n−k) a hook shape and ν = (k − 1, 2, 1n−k−1) an augmented hook

shape. Then the Schur coefficients of H̃ν(X; q, t) and H̃µ(X; q, t) satisfy Butler’s conjecture.
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Proof. Recall the following Schur expansions for H̃ν(X; q, t) and H̃µ(X; q, t):

H̃µ(X; q, t) =
∑
λ⊢n

 ∑
T∈SY T (λ)

qmajµ(T )tcomajµ(T )

 sλ

and

H̃ν(X; q, t) =
∑
λ⊢n

 ∑
T∈SY T (λ)

qamajµ(T )tacomajµ(T )

 sλ.

We need to compare majµ with amajµ and comajµ with acomajµ. Recall the following four

formulas:

majµ(T ) =
∑

1≤i≤k−1

iχi(T )

comajµ(T ) =
∑

k≤i≤n−1

(n− i)χi(T )

amajν(T ) =
∑

1≤i≤k−1

iχi(T )− (k − 2)χν(T
k)

acomajν(T ) =
∑

k≤i≤n−1

(n− i)χi(T ) + χν(T
k).

In particular, these statistics are exactly the same unless χν(T k) = 1. In this case for the given

T , the weight of T changes by q−(k−2)t, the exact amount from Butler’s conjecture. Further, the

number that changes depend on the result of jdt on k − 2, k − 1, k, and k + 1 in a given T . The

number of such cases is exactly the same as the number of SY T (λ) with 2 above 1 because of the

definition of χν . In particular, if the result of jdt is not the shape 22, we check if k is above k− 1 in

jdt. If it is 22, then we check the exact opposite. This verifies the number conjectured by Butler,

proving the corollary.
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CHAPTER 5

e-EXPANSION OF LLT POLYNOMIALS

Our goal is to give a combinatorial interpretation of coefficients of a special family of LLT polyno-

mials. In 1997, Lascoux, Leclere, and Thibon introduced what are now known as LLT polynomials.

LLT polynomials are defined in terms of a tuple of skew partitions.

Here is an example of a tuple of 3 skew shapes in the 12× 12 grid.

Yλ = ,

In order to form a term in the LLT polynomial, we fill each skew shape so that we obtain a

semistandard Young tableaux. For a given filling, the x term is the product of all xkii where i occurs

ki times in the filling of the skew shapes. We also get a q weight from the filling. We define an

algebraic statistic called an inversion when two numbers i and j are on the same diagonal of the

grid, the smaller number is above and to the right of the bigger number, and the numbers are in

different skew shapes. We also have an inversion if two numbers i and j are on successive diagonals

and in different shapes of the diagram, and the bigger number is on higher diagonal and to the right

of the smaller number. For a given filling, we obtain the weight q|inv|.

Here is the formal definition of LLT polynomials.
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Definition 5.0.1 (LLT Polynomials). Given a tuple of skew shapes γ = (λ(1)/µ(1), λ(2)/µ(2), . . . , λ(k)/µ(k)),

where λ(i) is a partition, and µ(i) is a subpartition of λ(i), define the LLT polynomial as:

LLTγ(X, q) =
∑

SSYT fillings σ
of shape γ

Xσqinv(σ,γ).

Note that in the previous chapter, we saw a similar characterization of LLTγ(X, q). In particular,

LLTγ(X, q) =
∑

T∈SY T (γ)

qinv(T )FDes(T )(x).

We will consider some special cases of LLT polynomials. First, if all parts of γ consists of single boxes,

we call this a unicellular LLT polynomials. Next, if each part of γ is a single column, we call this a

vertical strip LLT polynomial. With these definitions of LLT polynomials in mind, we will consider

some recent, interesting results found in Abreu and Nigro (2021), Alexandersson and Panova (2018),

Alexandersson and Sulzgruber (2022), and D’Adderio (2020).

5.1. Chromatic Polynomial and its Extensions

We now consider the chromatic polynomial of a graph and its extensions. Let G be a graph. We

say a coloring of G, denoted κ(G), is proper if whenever u and v are connected, the color of u is

not the same as the color of v. We us this to define the chromatic polynomial for a graph G. Let

χk(G) be the number of colorings of the graph G with exactly k colors. Then,

χ(G) =
∑
i=1

χG(k)x
k

is the classic chromatic polynomial. Stanley used this to define a new symmetric function in Stanley

(1995). Formally, let κ : V (G) → N be the map associated to a coloring of the vertices of G. Let

xκ =
∏
v∈V (G) xκ(v). Now, define the chromatic symmetric function of a graph G to be

XG(X) =
∑
κ

xκ
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where the sum is over all proper colorings κ of G. It turns out that this polynomial is in fact

symmetric, and a great deal of research concerning these polynomials has occurred over the years.

Eventually, in 2012, Shareshian and Wachs introduced a new extension that has spawned extensive

research in recent years. The full details are in Shareshian and Wachs (2016). We now define this

new extension. We will associate an algebraic statistic to a coloring of G. Let E be the set of edges

in G, and let κ be a coloring. Then, define

asc(κ) = |{(i, j) ∈ E, i < j, κ(i) < κ(j)}|,

we consider this to be the number of ascents of the coloring. Then, we have the following q-analogue

of the chromatic symmetric function:

XG(X, q) =
∑
κ

qasc(κ)xκ

the chromatic quasisymmetric function. These functions are not symmetric in general, hence the

’quasi’ designation. However, there is a large family of graphs such that the above is a symmetric

function. We will introduce a few key concepts to develop these special graphs.

Definition 5.1.1. Let P be a finite Poset with respect to some order. We form the incomparability

graph, inc(P), by letting the elements of P to be the vertices of the graph, and we have an edge

between any two elements that are incomparable with respect to the order.

With the above in mind, we will define a special order to form a Poset.

Definition 5.1.2. Let [ai + 1] for i ∈ [n] such that ai < aj be a set of n intervals of unit length in

R. We form the natural unit interval order Poset P on the set [n] by letting i <P j if ai + 1 < aj .

The above definition may seem strange and unmotivated, but it turns out that there is a bijection

between the set of the natural unit interval Posets and the set of regular semisimple Hessenberg

varieties of type An−1 Shareshian and Wachs (2016). We now define the concept of an inversion

with respect to a graph G.
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Definition 5.1.3. Let G = ([n], E) be a graph on [n] with edge set E. Let σ ∈ Sn. If (σ(i), σ(j)) ∈

E, then we say this is a G − inversion if i < j and σi > σj . We let invG(σ) be the number of

G− inversions of σ.

We can also define descents with respect to a Poset.

Definition 5.1.4. Let P be a Poset on [n] and σ ∈ Sn. We define a P−descent i of σ if σi >P σi+1.

We let desP (σ) be the set of P − descents of σ.

Both of these are extensions of the usual inversion and descent statistics on permutations. In

fact, if G is the complete graph, invG(σ) = inv(σ), and if P is the usual order on integers, then

desP (σ) = des(σ).

The following is a major theorem in Shareshian and Wachs (2016).

Theorem 5.1.5 (Theorem 4.5 Shareshian and Wachs (2016)). Let G be the incomparability graph

of a natural unit interval order Poset. Then, the chromatic quasisymmetric function XG(X, q) is

symmetric.

After proving this theorem and examining the expansions of these polynomials into different bases,

the authors conjectured the following.

Conjecture 5.1.6 (Conjecture 5.1 Shareshian and Wachs (2016)). Let G be the incomparability

graph of a natural unit interval order Poset. Then, the chromatic quasisymmetric function XG(X, q)

is e-positive.

We will also consider a special family of graphs whose chromatic quasisymmetric function is Schur

positive. To do this, we will use a Poset extension to fillings of tableau.

Definition 5.1.7. Let P be a Poset on [n] and λ ⊢ n. We consider fillings of the Young diagrams

of shape λ to be a P − tableau if

• Each element of [n] appears exactly once.
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• If y appears immediately to the right of x in the filling, then y >P x.

• If y appears immediately above x in the fillings, then y ≮P x.

We let TP to be the set of all P − tableau. For T ∈ TP and G = inc(P ), then we define the

G− inversion of T to be an edge in G such that i < j and i appears above j in T . We let invG(T )

to be the set of inversions in T and λ(T ) to be the shape of T .

With the above definition in mind, we have the following Schur expansion:

Theorem 5.1.8 (Theorem 6.4 Shareshian and Wachs (2016)). Let G be the incomparability graph

of a natural unit interval order Poset. Then, we have the following

XG(X, q) =
∑
T∈TP

qinvG(T )sλ(T ).

5.2. Dyck Paths and Unicellular LLT Polynomials

We now consider a combinatorial formulation of natural unit interval graphs and their connections

to chromatic quasisymmetric functions as found in Alexandersson and Panova (2018).

Definition 5.2.1. A circular unit arc digraph is a directed graph with vertices [n] and edge set:

(i− ai)→ i, (i− ai + 1)→ i, . . . , (i− ai + (ai + 1))→ i

for all i ∈ [n] and a = (a1, . . . , an) satisfies:

• 0 ≤ ai ≤ n− 1

• ai+1 ≤ ai + 1

where the indices are all taken mod n. Denote this graph as Γa.

It turns out that if a1 = 0, then Γa is the unit interval graph. Further, in this case, we call a the

area sequence of the graph. This allows us to naturally relate the graphs to Dyck Paths. Below is
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an example of an area sequence and its corresponding Dyck Path.

Example 5.2.2. Let a = (0, 1, 1, 0, 1, 2, 2). Then, the following is the corresponding Dyck Path.

Figure 5.1: Dyck Path for n = 7

Further, note that because of this bijection, the number of unit interval graphs on n vertices is the

nth Catalan number, Cn. See Haglund (2007) for more details on the Catalan numbers.

Above, it was claimed that Γa is the unit interval graph associated to a. We now show the how

this Poset arises from a as in Alexandersson and Panova (2018). For an area sequence a and its

corresponding Dyck Path, we construct a Poset Pa as follows. Put the identity permutation on the

diagonal of the Dyck Path. Using the path, if the cell in the column of i and the row j is above

the Dyck Path, then i < j in Pa. With this Poset in mind, inc(Pa) = Γa. With this in mind, the

authors in Alexandersson and Panova (2018) let

XΓa(X; q) =
∑

κ:Γa→N
xκq

asca(κ)

where the sum is over proper colorings of Γa. This agrees with the definition of the chromatic qua-

sisymmetric function in Shareshian and Wachs (2016). The authors in Alexandersson and Panova

(2018) extend this definition so the colorings are not necessarily proper. They denote this extension

Ga(X; q). Why is this case interesting? It turns out this is exactly the classic unicellular LLT poly-

nomial. With this in mind, we have the following interesting relationship between the unicellular

LLT polynomials and chromatic quasisymmetric functions.

Proposition 5.2.3 (Lemma 6.1 Alexandersson and Panova (2018)). Let a be an area sequence for
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a unit interval graph. Then

(q − 1)−nGa[X(q − 1); q] = XΓa(X; q).

This relationship has spawned extensive research. We will see some interesting results when we let

q → q + 1.

5.3. Schröeder Paths and Vertical Strip LLT Polynomials

With the previous section on Dyck Paths and the Unicellular LLT Polynomials in mind, the authors

in Alexandersson and Sulzgruber (2022) extend this to cover other cases.

Definition 5.3.1. Let n indicate the unit north path on a grid, e indicate the unit east path on a

grid, and d indicate a diagonal path from (i, j) to (i + 1, j + 1). We define a Schröeder Path from

(0, 0) to (n, n) as any sequence of n, e, and d as any path that stays above the main diagonal and

has no d step from (i, i) to (i+ 1, i+ 1)- i.e., along the main diagonal. We call the set of all these

possible paths SPn.

Notice that the set of Dyck paths is a subset of Schröeder Paths.

Definition 5.3.2. Let Γ = (V,E) be a unit interval graph and let S ⊆ E be a subset of the edges.

We call Γ∗ = (V,E, S) a decorated unit interval graph with strict edges S. Let P ∈ SPn be a

Schröeder Path. We associate a decorated unit interval graph ΓP to P as follows: if u, v ∈ [n] and

u < v, then there is a non-strict edge uv in ΓP if and only if there is a cell in column u and row v

below the path P . If the cell (u, v) is the endpoint of a d step, then uv is a strict edge in ΓP .

Now, we extend the definition of a coloring to these graphs.

Definition 5.3.3. If ΓP is a decorated unit interval graph of the Schröeder Path P , then a coloring

of ΓP is κ : [n] → N+ such that κ(u) < κ(v) for all U, v ∈ [n] such that u < v and uv is a strict

edge. We also have an ascent statistic where an ascent uv is a non-strict edge with is u < v and

κ(u) < κ(v). We let asc(κ) be the number of ascents of a coloring.
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Finally, we define the following functions for P ∈ SPn:

GP (X; q) =
∑
κ

qasc(κ)xκ

where the sum is over all coloring of ΓP . It turns out that this is exactly the same as vertical

strip LLT polynomials, shown in Alexandersson and Panova (2018). With this construction of the

vertical strip LLT polynomials, the authors in Alexandersson and Sulzgruber (2022) are able to

show a positive e-expansion of GP . First, we define an orientation of the graphs.

Definition 5.3.4. Let Γ = (V,E) be a graph. Then a function θ : E → V 2 is an orientation of Γ

where θ assigns a direction to each edge in E (i.e., either u⃗v or v⃗u). The natural orientation is the

orientation that assigns u⃗v when u < v. For a decorated unit interval graph ΓP = (V,E, S), we let

O(P ) be the set of orientations of ΓP such that the restriction of θ to S is the natural orientation.

Finally, for θ ∈ O(P ) and u⃗v ∈ θ, we have an ascent if u < v and uv ̸∈ S and asc(θ) is the number

of ascents for a given θ.

This gives us the following result in Alexandersson and Sulzgruber (2022).

Corollary 5.3.5 (Corollary 2.10 Alexandersson and Sulzgruber (2022)). Let P ∈ SPn and define

ĜP (X; q + 1) =
∑

θ∈O(P )

qasc(θ)eλ(θ)(X)

then, GP = ĜP , giving a positive, combinatorial e-expansion of GP (X; q + 1).

With this e-expansion in mind, the authors prove a new Schur expansion of the vertical strip LLT

polynomials as well. In particular,

Corollary 5.3.6 (Corollary 6.2 Alexandersson and Sulzgruber (2022)). Let P ∈ SPn and Kλ,µ the

usual Kostka number, then

GP (X; q) =
∑
µ⊢n

∑
θ∈O(P )

(q − 1)asc(θ)Kµ′,λ(θ)sµ(X).
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The previous corollaries hold for vertical strip LLT polynomials, and because unicellular LLT polyno-

mials are a subset of these, we also get the next result on the Chromatic Quasisymmetric Functions.

Corollary 5.3.7 (Corollary 6.19 Alexandersson and Sulzgruber (2022)). For all Dyck paths P ∈ D,

XP (X; q) =
∑

θ∈O(P )

(q − 1)asc(θ)−neλ(θ)[X(q − 1)].

The previously results from Alexandersson and Sulzgruber (2022) were mainly proven through var-

ious bijections on paths and showing special relations satisfied by the polynomials. A few years

prior D’Adderio actually proved the same result using the Dyck Path algebra and various algebraic

operators. See D’Adderio (2020) for full details of the proof.

5.4. Indifference Graphs and a Combinatorial Formula for LLT Polynomials

We now describe the results found in Abreu and Nigro (2021) concerning chromatic quasisymmetric

functions and LLT Polynomials. Their work deals with spanning forests of a graph, which is beyond

the scope of what we need. We will now define this family of graphs known as indifference graphs.

These graphs naturally relate to previous notions we have discussed.

Definition 5.4.1. Let V = [n] and G = (V,E). Then, G is an indifference graph if for any (i, j) ∈ E

with i < j, (i, k) and (k, j) are also edges in E for every i < k < j.

Indifference graphs are directly related to Dyck paths and Hessenberg functions.

Definition 5.4.2. A Hessenberg Function m : [n] → [n] is a non-decreasing function such that

m(i) ≥ i for all i. TO each Hessenberg function m, we associate an indifference graph Gm where

V = [n] and E = {(i, j) : i < j ≤m(i)}.

Note that these are directly related to Dyck paths. In particular, in the n×n grid, let the height of

the ith column be m(i), then we get a Dyck path. Further, if a cell in column i and row j is below

the corresponding Dyck path and above the main diagonal (so i < j), then (i, j) is an edge in Gm.

In other words, the edges in Gm correspond to the cells below the Dyck path and above the main
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diagonal. Now, let σ be a permutation. We let σ ≤ m if σ(i) ≤ m(i) for all i. Let Sn,m be the set

of permutations in Sn such that σ ≤m.

Suppose a permutation is written in cycle notation. We use the convention that the beginning of

each cycle is the smallest number in the cycle. Further, we order the cycles from smallest first

number to largest first number. With this in mind, we let σc be the permutation formed by first

writing σ in cycle notation and then removing the parentheses. We now define an inversion in σ

associated to a graph G.

Definition 5.4.3. Let σ ∈ Sn and let G = ([n], E) be a graph. We say (i, j) is a G-inversion if

i < j, σ(i) > σ(j) and (σ(j), σ(i)) ∈ E(G). Let invG be the number of G-inversions.

We can also reinterpret this in terms of a Hessenberg function m. Let σ ∈ Sn,m and σc its

corresponding permutation from the process above. Now, let invm(σ) be the number of m-inversions

of σ, i.e.

invm(σ) = |{(i, j) : i < j ≤m(i);σ−1(i) > σ−1(j)}|.

Then we let the m-weight of a permutation be defined as

wtm(σ) = invm(σc)

This leads to a main result in Abreu and Nigro (2021).

Theorem 5.4.4 (Theorem 1.2 Abreu and Nigro (2021)). If Gm is an indifference graph associated

to Hessenberg function m, then

LLTGm(X; q) =
∑
σ≤m

(q − 1)n−ℓ(λ(σ))qinvGm (σ)eλ(σ).

As a corollary, LLTGm(X; q + 1) is e-positive. Now, this is just a different way of showing the e-

positivity of unicellular LLT polynomials as we have previously seen in Alexandersson and Panova
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(2018), Alexandersson and Sulzgruber (2022), and D’Adderio (2020). In the next section, we will

use this theorem and the m-inversions of permutations to prove a multivariate expansion of certain

coefficients of LLT polynomials.
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CHAPTER 6

SCHUR COEFFICIENTS OF MULTIVARIATE LLT POLYNOMIALS

In this chapter, we will define a multivariate version of LLT polynomials for certain graphs. To

begin, we will assume our graph G = Kn, the complete graph. Note that the complete graph

has corresponding Dyck path equal to n north steps followed by n east steps. The corresponding

Hessenberg function is m(i) = n. In this case, if σ ∈ Sn in cycle notation, then σ ≤ m and invKn

is the usual inversion statistic on permutations not in cycle notation. Noting this, Theorem 1.2 in

Abreu and Nigro (2021) says

LLTKn(X; q) =
∑
σ∈Sn

(q − 1)n−ℓ(λ(σ))qinv(σ
c)eλ(σ).

6.1. A Determinant Formula for the LLT Expansion

We will now derive a modified version of the formula of Abreu and Nigro. First, we consider a

subset of permutations in cycle notation. Take any permutation not written in cycle notation with

first element equal to 1. Starting from the right side of the permutation and scanning left, find

all numbers that are the smallest number encountered to that point. This set will define the first

element of every cycle. As an example, consider the permutation 18254367. This permutation is

mapped to (18)(254)(3)(6)(7) in cycle notation. We will call these primary cycle permutations,

denoted Ŝn. We will now convert the LLT formula from a sum over all permutations to a sum over

primary cycle permutations. To do this, we will first describe a process for assigning weights to any

permutation with its cycles written so the first elements are in ascending order.

Suppose σ = (1σ2 · · ·σk) . . . (σj · · ·σn−1)(σn). Note that σn is always in its own cycle. We will now

assign a weight to each σi. First, if σi is the first number in a cycle, it gets a weight of 1. If σi is not

the first number in a cycle, it gets a weight of (q−1)qinv(σi) where inv(σi) is the total number of σj

to the right of σi with σi > σj . To the permutation σ, its weight is the product of all the σi weights,

denoted wt(σ). Using the previous example which is a primary permutation, (18)(254)(3)(6)(7), its

80



weight is (q − 1)3q9. If instead we consider the non-primary cycle permutation (18)(254)(367), its

weight is (q − 1)5q9. Thus, going from the primary to non-primary simply increases the power of

(q−1). With this in mind, we now convert the LLT expansion into a sum over primary permutations.

To do this, we will associate a determinant to a primary cycle permutation.

Definition 6.1.1. Suppose σ = (1σ2 · · ·σk) . . . (σj · · ·σn−1)(σn) is a primary cycle permutation

with cycles structure α = (α1, . . . , αj , 1). We define det(σ) as follows:

det



eα1 (−1)(q − 1)eα1+α2 (−1)2(q − 1)2eα1+α2+α3 · · · (−1)ℓ(λ(σ))−1(q − 1)ℓ(λ(σ))−1en

1 eα2 (−1)(q − 1)eα2+α3 · · · (−1)n−2(q − 1)n−2en−α1

0 1 eα3 · · · (−1)ℓ(λ(σ))−3(q − 1)ℓ(λ(σ))−3en−α1−α2

...
...

. . .
...

0 0 · · · · · · (−1)(q − 1)eαj+1

0 0 · · · · · · e1


i.e. place the eαi on the main diagonal, 1’s below the main diagonal, and then for row i and column

j with i < j, we have (−1)j−i(q − 1)j−ieαi+···+αj .

With this definition of weights in mind, we have the following result.

Proposition 6.1.2. For all G = Kn, we have the following LLT formula:

LLTKn(X; q) =
∑
σ∈Ŝn

wt(σ)det(σ)

where Ŝn is the set of primary cycle permutations.

Proof. The proof follows from the definition of the determinant and the entries in the σ matrix.

For ease of notation, consider our primary cycle permutation from before (18)(254)(3)(6)(7) whose
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corresponding matrix is:

det



e2 (−1)(q − 1)e5 (−1)2(q − 1)2e6 (−1)3(q − 1)3e7 (−1)4−1(q − 1)4e8

1 e3 (−1)(q − 1)e4 (−1)2(q − 1)2e5 (−1)3(q − 1)3e6

0 1 e1 (−1)(q − 1)e2 (−1)2(q − 1)2e3

0 0 1 e1 (−1)(q − 1)e2

0 0 0 1 e1


.

When computing terms in the matrix, the nonzero terms correspond precisely to combining certain

cycles of (18)(254)(3)(6)(7). For instance, if we want to compute the weight of (18)(254)(367)

from the weight of (18)(254)(3)(6)(7), we replace e1e1e1 by e3(q − 1)2. Looking at out matrix, this

correspond to the entry in row 3 and column 5. Now to obtain a nonzero weight from this, we must

have the 1 in row 5, column 4, which then implies we need the 1 in row 4, column 3 term. Now, we

still need terms from the first 2 rows and first 2 columns. We either get e2 and e3, or we get 1 and

(−1)(q − 1)e5. The first corresponds to the weight for (18)(254)(367), and the second corresponds

to the weight for (18254)(367). Thus, each term in this matrix corresponds to combining certain

adjacent cycles and then accounting for extra (q − 1)’s and modified e terms. Finally, the (−1)j

offsets the sign of the permutation in the determinant product.

Our goal now is to convert the LLT formula into a sum over Schur functions. In particular, we want

to find some combinatorial object and algebraic statistics that correspond to the Schur coefficients.

Our first observation is about expressing Schur coefficients in the product of elementary symmetric

functions. Using the Pieri rules, if we are multiplying eα1 , eα2 , . . . , eαj , we obtain sλ if we are able to

place a vertical strip of size α1, then of size α2 up until αj so that the resulting diagram is of shape

λ. Consider our example permutation (18)(254)(3)(6)(7), when multiplying e2e3e1e1e1, we place a

vertical strip of size 2, then 3, then 1, then 1, and then 1 so we always have a Young diagram. For
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instance, we could have the following diagrams and more:

2 4

1 2

1 2 3 5

2

2 5

1 4

1 2 3

3

2

2

1 4

1 2 5

(6.1)

where the 1’s correspond to the vertical strip of size 2, the 2’s correspond to the vertical strip of

size 3, and the 3, 4, and 5 correspond to the vertical strips of size 1. The first gives a term of s4,2,2,

the second a term of s3,2,2,1, and the last a term of s3,2,1,1,1. We will now use this idea to associate

a Standard Young Tableaux to multiplication of cycles of permutations.

6.1.1. Multivariate LLT Formula

We are going to create a multivariate version of this LLT formula. In particular, we will replace q

with zij for certain i, j. When we do this, if we specialize each zij to q, we will recover the original

LLT formula. Now, recall the above formula

LLTKn(X; q) =
∑
σ∈Sn

(q − 1)n−ℓ(λ(σ))qinv(σ
c)eλ(σ).

We will replace this formula with the following:

LLTKn(X; q) =
∑
λ⊢n

 ∑
T∈SY T (λ)

∑
σ∈ΣT

wt(σ)

 sλ

where ΣT is the set of permutations that can multiply and sort to the standard Young Tableau

T . This formula comes from the Pieri rules. In other words, a given permutation can multiply

to multiple different tableau shapes like our example for (18)(254)(3)(6)(7), and for each of these

possible tableau shapes, we get the corresponding weight (q − 1)n−ℓ(λ(σ))qinv(σ
c). We now refine

this formula further. For each shape, we will create a multivariate version of this weight such that

if we specialize each zij to q, we get the original formula. A full solution to this problem is still

open. We present weighting systems and sorting standardizing algorithms for λ = (n − k, 1k) and
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λ = (n− k − 2, 2, 1k−1).

6.2. Multivariate Hook Shape Schur Coefficients

In this section, we derive a formula for the Schur coefficients of the multivariate LLT formula for

hook shapes. We begin by describing a weighting system and sorting algorithm. In other words, we

will find a concise formula for each λ = (n− k, 1k) in

∑
T∈SY T (λ)

∑
σ∈ΣT

wt(σ)

 sλ.

6.2.1. Hook Shape Weights

For any hook shape λ = (n − k, 1k), let Σλ be the multiset of permutations that multiply to a

tableau of shape λ. We note that this is in fact a multiset as the same permutation may multiply to

many different tableau of the same shape. As an example, consider (13)(2)(4)(5). This permutation

may multiply to a tableau of shape (2, 1, 1, 1) as either

5

4

3

1 2

or 4

2

3

1 5

or 5

2

3

1 4

and all 3 appear as terms when expanding e2e1e1e1 into Schur functions. When this happens, the

weight associated to the permutation will be the same. So, let σ ∈ Σλ = (1σ2 · · ·σk) . . . (σj · · ·σn)

such that, we assign a weight to each σi. First, if σi is the first number in a cycle, it has a weight

of 1. Next, if σi is in a cycle and σj is any number to the right of σi with σi > σj we assign zσiσj .

Additionally, find the first σk to the left of σi in the same cycle such that σk < σi, and assign a

weight of (zσiσk − 1). To σi, its weight is the product of all of these terms. To the permutation σ,

its weight is the product of all the σi weights.
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Continuing with the example σ = (18)(254)(3)(6)(7), we have

wtz(σ) = z82z85z84z83z86z87(z81 − 1)z54z53(z52 − 1)z43(z42 − 1)

Here is the important observation: if we let all zij = q, then

wtz(σ) = (q − 1)n−ℓ(λ(σ))qinv(σ
c)eλ(σ)

as in the LLT formula.

6.2.2. Hook Shape Sorting

Our goal is to use this formula to compute certain Schur coefficient associated to hook shapes λ.

Now suppose σ ∈ Σλ with cycle structure (α1, . . . , αj). When this permutation multiplies to the

shape λ, we have j vertical strips of size α1 through αj . Fill these vertical strips so that within

each cycle, the numbers are sorted. After doing this, we likely have a non-standard tableau. If it is

non-standard, it will be because the first column is not sorted. If we sort the first column, we now

have a standard tableau. Here is an example.

Example 6.2.1. Let σ = (18)(254)(3)(6)(7) and let λ = (3, 15). Then, we multiply the vertical

strips of size 2, 3, 1, 1, and 1. First, we sort (254) to (245). Then, one possible way to get (3, 15) is:

7

3

5

4

8

1 2 6
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which then sorts to:
8

7

5

4

3

1 2 6

As before, This permutation contributes a weight of

z81z82z85z84z83(z81 − 1)z54z53(z52 − 1)z43(z42 − 1).

6.2.3. Hook Inversions

Here, we define inversions on a hook-shape tableau. Let T be a hook shape tableau of shape λ. We

say (i, j) form an inversion pair if i > j and i is in a row above j in T . The total number of these

inversions is denoted invλ(T ).

Example 6.2.2. Let λ = (3, 15) and let

T = 8

7

5

4

3

1 2 6

.

Then, invλ(T ) = 7 + 6 + 4 + 3 + 2 = 22.

6.2.4. Multivariate Hook Coefficient Theorem

We now state the main theorem for the multivariate hook coefficients.

Theorem 6.2.3. Let λ = (n−k, 1k), let T ∈ SY T (λ), and let ΣT be the permutations that multiply
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to T . Then, ∑
σ∈ΣT

wtz(σ) =
∏
i,j

(i,j) an inversion pair in T

zij .

An immediate corollary is

Corollary 6.2.4. If λ = (n− k, 1k), the multivariate LLT Schur coefficient is:

∑
T∈SY T (λ)

∏
i,j

(i,j) an inversion pair in T

zij .

Proof. We will prove this theorem using induction. We first prove some simple base cases.

First, if λ = (n), the only permutation that multiplies to this shape is the identity (1) · · · (n), which

has a weight of 1. This coincides with the formula of Abreu and Nigro.

Second, we will prove the case λ = (1n). Note that the conjectured formula for this coefficient is:

∏
1≤j<i≤n

zij

i.e., the product of all possible inversions. Further, for any σ, we can multiply to (1n) simply by

stacking vertical strips on top of each other. We now prove this case by induction. Let T/(n) be

the single column standard tableau for 1 through n. Let ΣT/(n) be the set of permutations of n− 1

that multiply and sort to the single column tablea (note as above that this is all of Sn−1. Then, we

have ∑
σ∈ΣT/(n)

wtz(σ) =
∏

1≤j<i≤n−1

zij

. For any σ ∈ ΣT/(n), we can insert n into any position as follows. Suppose σ = (1 · · ·σi1) · · · (σj · · ·σn−1).
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Then, for this given permutation, we can place n as follows:

(1 · · ·σi1) · · · (σj · · ·σn−1)(n)

(1 · · ·σi1) · · · (σj · · ·σn−1n)

(1 · · ·σi1) · · · (σj · · ·nσn−1)

...

(1n · · ·σi1) · · · (σj · · ·nσn−1)

Inserting n in this way gives the following weights:

wtz(σ) + wtz(σ)(znσn−1 − 1) + wtz(σ)znσn−1(znσn−2 − 1) + · · ·+ wtz(σ)(
∏

1<i<n

zni)(zn1 − 1)

Let us denote this sum using the shuffle notation σ̃ ∈ σ ⊔ n. Then,

∑
σ̃∈σ⊔n

wtz(σ̃) = wtz(σ)
∏

1≤i≤n−1

zni.

Summing over all permutations in ΣT/(n), we get:

∑
σ∈ΣT/(n)

( ∑
σ̃∈σ⊔n

wtz(σ̃)

)
= wtz(T/(n))

∏
1≤i≤n−1

zni.

Thus, we get: ∑
σ∈ΣT

=
∏

1≤j<i≤n−1

zij
∏

1≤i≤n−1

zni =
∏

1≤j<i≤n
zij

as desired. We now prove the formula for a general hook shape using an almost identical proof as

the single column formula.

There are two cases we must consider. The first case is trivial. Let λ = (n − k, 1k) and let

T ∈ SY T (λ). Either n is at the end of the first row or at the top of the first column. In the

former case, if σ ∈ ΣT , then σ = (1 · · ·σi) · · · (σj · · ·σn−1)(n). This is because the only way for this

permutation to sort n to the end of the first row is if it starts there. These are the only permutations
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where this is true. Thus, ∑
σ∈ΣT

wtz(σ) =
∑

σ̃∈ΣT/(n)

= wt(T/(n)),

and since n forms no inversion in T , we have wtz(T ) = wtz(T/(n)) and the formula holds by

induction.

For the case where n is in the first column, we will use the same proof as the single column case. In

particular, start with σ ∈ ΣT/(n) and shuffle n into these permutations. For each shuffle, n is placed

in the first column which will then sort it to the top. Nothing else changes when sorting. Thus,

∑
σ̃∈σ⊔n

wtz(σ̃) = wtz(σ)
∏

1≤i≤n−1

zni.

and summing over all permutations in ΣT/(n), we get:

∑
σ∈ΣT/(n)

( ∑
σ̃∈σ⊔n

wtz(σ̃)

)
= wtz(T/(n))

∏
1≤i≤n−1

zni.

This is precisely wtz(T ) as desired.

We will now turn to a formula for augmented hook shapes and a slightly altered weighting system

and sorting algorithm.

6.3. Multivariate Augmented Hook Shape Schur Coefficients

In this section, we derive a formula for the Schur coefficients of the multivariate LLT formula for

augmented hooks. The weighting system will be nearly identical to the hook case and depend on

the sorting algorithm. We also must define inversions for an augmented hook shape.

6.3.1. Augmented Hook Inversions

6.3.2. Hook Inversions

Here, we define inversions on an augmented hook-shape tableau. Let T be am augmented hook

shape tableau of shape λ = (n− k − 1, 2, 1k−1). We say (i, j) form an inversion pair if i > j and j
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is weakly southeast of i in T , or j = 1, i is in the (2, 2) square, and 2 is in the first row. The total

number of these inversions is denoted invλ(T ).

Example 6.3.1. Let λ = (3, 2, 13) and let

T = 8

7

4

3 5

1 2 6

.

Then, invλ(T ) = 7 + 6 + 2 + 3 + 2 = 20, where (5, 1) is an inversion since 2 is in the first row.

6.3.3. Augmented Hook Sorting Algorithm

When multiplying permutations, for numbers in the same vertical strip, we sort the numbers from

smallest to largest. When finished with the multiplication of vertical strips, we want to get a

standard young tableau. We use Jeu-De-Taquin starting with the smallest number and ending with

the largest. Here are two examples of the sorting algorithm. We will see that the sorting is highly

dependent on the location of n.

Example 6.3.2. Consider the permutation (18)(254)(3)(6)(7) and its multiplication and cycle

sorting to:
7

3

5

8 4

1 2 6

.

This tableau is then sorted to:
8

7

5

3 4

1 2 6

which only really depended on 3 being above the 8. Here, 3 was not included in the cycle (254).
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If instead it was included and the permutation was (18)(2543)(6)(7), the multiplication and cycle

sorting would give:
7

5

4

8 3

1 2 6

which then sorts to:
7

5

4

3 8

1 2 6

.

We note a few things. First, the bottom row will always be sorted. In particular, and element in the

bottom row is the smallest number in its cycle, and these are already sorted left to right. Further,

At no point will a number in the bottom row move upwards, since 1 is always in the bottom left

corner, and any number in the (2, 2) position is bigger than the leading number of any cycle before

it.

Let σ = (1 · · ·σi) · · · (σj) · · ·σn). The largest number in a permutation n can be in 3 different

locations in a sorted tableau:

• The end of the first row, which means σn = n and is in its own cylce.

• The (2, 2) position, which means n is in a 2-cycle or σn = n is in its own cycle.

• The top of the first column.

Lemma 6.3.3. Let σ multiply to an unsorted tableau T . Then, if n is in the bottom row, it is at

the end and will not move during the sorting algorithm. If n is in the (2, 2) position, it will also

remain in its position. If n is above the second row, then it will sort to the top of the first column.

Finally, if n is in the (2, 1) position and i is in the (2, 2) position, then n sorts to the (2, 2) position
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if and only if i is the smallest number above the first row, else n sorts to the top of the first column.

Proof. The first 3 cases are obvious by the definition of the sorting algorithm. What remains to be

shown is the scenario where:
...
j
...
n i

1 a · · ·

. If i is minimal among elements above the first row, then i and n switch places during the first

step of the algorithm (note that i > a as well). If i is not minimal, then there is an element j in the

first column that is. The first step of the algorithm will continually move j down the first column

until it is in the 3rd row and then switches with n. Once n is in the third row, it is guaranteed to

move to the top of the first column.

6.3.4. Assigning Weights

Let T be a filling of a partition λ ⊢ n where λ is an augmented hook. Let ΣT be the set of

all permutations such that σ ∈ ΣT multiplies and sorts to T . We assign a weight to σ in the

following way. First, if we have a cycle (x1x2 · · ·xk) in σ, note that x1 is the smallest number in

the cycle and smaller than all numbers in cycles to the right. We assign a weight of 1 to x1. For

xi for i ∈ {2, . . . , k}, scan to the left of xi for the first number smaller than xi, say it is xj . This

contributes a factor of (zxixj − 1). Now, scan to the right of xi in the rest of σ. For any number m

to the right of xi that is smaller than xi, we get a factor of zxim. However, suppose (xi,m) is not

an inversion in T , then we switch zxim to zmx1 .

Lemma 6.3.4. In the scenario, where we need to switch zxim to zmx1 if (xi,m) is not an inversion

pair in T, then (m,x1) is an inversion pair in T.

Proof. First, we are considering a standard Young tableau of an augmented hook and xi is part

of a cycle and not the smallest number. Thus, it is guaranteed to be above the first row after

multiplication. Further, m < xi, so in T, if xi and m are in the same column, this is an inversion.
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Thus, if it is not an inversion, xi and m must be in separate columns, and in particular, xi must be

in the (2, 2) square. As m is to the left and potentially above xi, m is in the first column above the

first row. But this implies (m,x1) is an inversion since x1 < m and must be in T below xi.

Now, for σ ∈ ΣT , we say wtz(σ) =
∏
i∈σ wt(i), i.e. the product of the weights assigned to each

number in sigma.

6.3.5. Augmented Hook Theorem

With this algorithm and weight assignment, we have:

Theorem 6.3.5. Let λ ⊢ n be an augmented hook, T a standard young tableau of shape λ, and ΣT

the permutations that multiply and sort to T . We have:

∑
σ∈ΣT

wt(σ) =
∏
i,j

(i,j) an inversion pair in T

zij . (6.2)

Before the details of the proof, here are a few notes and observations. All cases contained inside of

the (3, 2, 1) shape were verified by hand or by computer and represent base cases. If the tableau,

T , under consideration has the largest number n at the end of the first row, then the statement

follows by induction. In particular, n forms no inversions and the algorithm maps a permutation to

the tableau if and only if n is the last number in the permutation and not part of a cycle. In this

case, n contributes no weight, and there is a weight preserving bijection sending permutations that

map to T to permutations that map to T\(n). Now, the proof is broken into several cases. First,

we prove the 2-row augmented hook case (λ = (n− 2, 1)), then we prove the 2-column augmented

hook case (λ = (22, 1n−4)), and finally we prove the general statement.

Case 1: 2-row Augmented Hook

For the proof of this shape, we consider 3 separate cases.
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2 n

1 3 4 · · · n-1
Case a

3 n

1 2 4 · · · n-1
Case b

j n

1 2 3 · · · n-1
Case c, 4 ≤ j ≤ n− 1

For case a, note that any permutation mapped to this tableau must be of the form (1)(2)σ̃ or (12)σ̃,

where σ̃ is some permutation that maps to the tableau:

n

3 4 · · · n-1

We note that any such σ̃ is in bijection with a σ in Sn−2 that maps to the tableau:

n-2
1 2 · · · n-3

and by hook case, summing over all such σ̃ gives us the weight of the hook shape, which is

∏
3≤i≤n−1

zni. (6.3)

Further since each permutation starts with (1)(2) or (12), we get a weight of (1 + (z21 − 1)) = z21.

Hence, the total weight is:

z21
∏

3≤i≤n−1

zni (6.4)

as desired.

Now, for case b, we have 6 different ways a permutation can begin. They are (1)(2)(3)σ̃, (1)(23)σ̃,

(13)σ̃, (1)(2n)(3)σ̃, (1n)(2)(3)σ̃, or (1n)(23)σ̃. For the first two permutations, σ̃ must fill the

remaining portion of the diagram:
3

1 2 · · ·
,

with n in the second row. In other words, we must get the skew tableau:

n

4 · · · n-1
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from σ̃. Any such σ̃ is in bijection with a permutation in Sn−3 that gives the tableau:

n-3
1 2 3 · · · n-4

,

and thus by the hook case, summing over all such σ̃ gives us the weight of the hook shape, which is

∏
4≤i≤n−1

zni. (6.5)

Further since each permutation starts with (1)(2)(3) or (1)(23), we get a weight of 1+(z32−1) = z32.

Hence, the total weight is:

z32
∏

4≤i≤n−1

zni (6.6)

from the first two cases. The second set of permutations is very similar, but now σ̃ must fill the

remaining portion of the diagram:
3

1 · · ·
,

with n in the second row. In other words, we must get the skew tableau:

n

2 4 · · · n-1

from σ̃. Any such σ̃ is in bijection with a permutation in Sn−2 that gives the tableau:

n-2
1 2 3 · · · n-3

,

and thus by the hook case, summing over all such σ̃ gives us the weight of the hook shape, which is

zn2
∏

4≤i≤n−1

zni. (6.7)
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Further since each permutation starts with (13), we get a weight of (z31 − 1)z32. Hence, the total

weight is:

(z31 − 1)z32zn2
∏

4≤i≤n−1

zni (6.8)

from this set of permutations. The next set of permutations is very simple. Now σ̃ must fill the

remaining portion of the diagram:
n 3

1 2 · · ·
,

in other words, we must get the skew tableau:

4 · · · n-1

from σ̃. However, there is only one way to do this, and it gives a weight of 1. Since the permutation

began with (1)(2n)(3), we get a weight of

(zn2 − 1)z32
∏

4≤i≤n−1

zni (6.9)

from this case- note that zn3 was replaced by z32 because (n, 3) is not an inversion pair in T . The

final case and two sets of permutations is again very simple. Now σ̃ must fill the remaining portion

of the diagram:
n 3

1 2 · · ·
,

in other words, we must get the skew tableau:

4 · · · n-1

from σ̃. However, there is only one way to do this, and it gives a weight of 1. Since the permutation

began with (1n)(2)(3) or (1n)(23), we get a weight of

((zn1 − 1)zn2z31 + (zn1 − 1)zn2z31(z32 − 1))
∏

4≤i≤n−1

zni = (zn1 − 1)zn2z31z32
∏

4≤i≤n−1

zni (6.10)
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from this case. Hence, in total we get a weight of:

z32
∏

4≤i≤n−1

zni

+ (z31 − 1)z32zn2
∏

4≤i≤n−1

zni

+ (zn2 − 1)z32
∏

4≤i≤n−1

zni

+ (zn1 − 1)zn2z32z31
∏

4≤i≤n−1

zni

= zn1zn2z32z31
∏

4≤i≤n−1

zni

(6.11)

which is the desired weight.

For case c, we have a fairly similar argument to case b. We have 3 different ways a permutation

can begin and obtain the desired tableau. They are (1)σ̃, (1j)σ̃, and (1n)σ̃. For the first set of

permutations, σ̃ must fill the remaining portion of the diagram:

1 · · ·
,

in other words, we must get the skew tableau:

j n

2 3 · · · n-1

from σ̃. Any such σ̃ is in bijection with a permutation in Sn−1 that gives the tableau:

j − 1n-1
1 2 3 · · · n-2

,

and thus by induction, summing over all such σ̃ gives us the weight of the augmented hook shape,

which is ∏
2≤i≤j−1

zji
∏

2≤i≤n−1
i ̸=j

zni, (6.12)
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the total weight from this first case. The second set of permutations is very similar, but now σ̃ must

fill the remaining portion of the diagram:

j

1 · · ·
,

in other words, we must get the skew tableau:

n

2 3 · · · n-1

from σ̃. Any such σ̃ is in bijection with a permutation in Sn−2 that gives the tableau:

n-2
1 2 3 · · · n-3

,

and thus by the hook case, summing over all such σ̃ gives us the weight of the hook shape, which is

∏
2≤i≤n−1

i ̸=j

zni. (6.13)

Further since each permutation starts with (1j), we get a weight of (zj1 − 1)
∏j−1
i=2 zji. Hence, the

total weight is:

(zj1 − 1)

j−1∏
i=2

zji ×
∏

2≤i≤n−1
i ̸=j

zni (6.14)

from the second case. For the third set of permutations, σ̃ must fill the remaining portion of the

diagram:
n

1 · · ·
,

with j in the second row. In other words, we must get the skew tableau:

j

2 3 · · · n-1
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from σ̃. Any such σ̃ is in bijection with a permutation in Sn−2 that gives the tableau:

j-1
1 2 3 · · · n-2

,

and thus by the hook case, summing over all such σ̃ gives us the weight of the hook shape, which is

∏
2≤i≤j−1

zji. (6.15)

Further since each permutation starts with (1n), we get a factor of

(zn1 − 1)zj1
∏

2≤i≤n−1
i ̸=j

zni. (6.16)

Thus, for this case, we get a weight of

(zn1 − 1)zj1
∏

2≤i≤n−1
i ̸=j

zni ×
∏

2≤i≤j−1

zji. (6.17)

Hence, for case c, we get a total weight of:

∏
2≤i≤j−1

zji
∏

2≤i≤n−1
i ̸=j

zni

+ (zj1 − 1)
∏

2≤i≤j−1

zji ×
∏

2≤i≤n−1
i ̸=j

zni

+ (zn1 − 1)zj1
∏

2≤i≤n−1
i ̸=j

zni ×
∏

2≤i≤j−1

zji

=
∏

1≤i≤n−1
i ̸=j

zni ×
∏

1≤i≤j−1

zji

(6.18)

which is the desired weight. This completes the proof for the two row augmented hook case.
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Case 2: 2-column Augmented Hook

This case will reflect the general proof more fully. We will consider 3 separate cases which are:

n
...
a b

1 c

Case a

a
...
2 n

1 j

Case b

n-1
...
3 n

1 2

Case c

For case a, let T be the given tableau. We argue by induction and shuffling n into each of the

permutations that gives T/(n). Note a few observations. If a permutation multiplies to the shape

(22, 1n−4), then we get T in the following scenarios: first if the second column contains b and c (note

b will necessarily be on top of c), or if a > c, and the bottom (2, 2) tableau is of the form

b a

1 c

before sorting. Note, this second case only happens when c = 2, a = 3, and b ̸= n. Now, suppose

σ multiplies to T/(n). Then, observe that σ = (1 · · ·σi) · · · (σj · · ·σn−1). Now, consider σ̃ = σ(n)

or σ̃ = (1 · · ·σi) · · · (σj · · ·σn−1n) such that σ̃ multiplies to T . In particular, we have that these two

cases of σ̃ contribute a weight of wtz(σ)znσn−1 and n sorts to the top of the first column.

Suppose σ has k cycles, and the numbers that begin each cycle are 1, j2, j3,. . . , jk = σj . Now, we

shuffle n into σ, and we claim for each shuffle, there is exactly one way to multiply the permutation

to get the tableau T . Suppose n is now in a cycle of length m, then in the multiplication, we can

always have the last box in the vertical strip occur in the first column. Then, when we sort the

vertical strip from smallest element to largest element, n is guaranteed to be in the first column.

Thus, for the first shuffle, σ̃ has a weight of wtz(σ)(znσn−2 − 1)zσn−1 .

Now, suppose n shuffles within a cycle from (· · ·xyn · · · ) to (· · ·xny · · · ). Note that from the

weight assignment as we shuffle, n replaces (zny − 1) with (znx − 1)zny and the rest of the weight

is unchanged. Thus, as we shuffle n, we get wtz(σ) as a constant factor, and also get a factor of
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(zni − 1)
∏
l to right of n znl where i immediately precedes n.

Now, we may have an issue when n is multiplied and ends up in the second row. First, if n is

multiplied and ends in the second row and second column, then n will not be sorted to the top

of the first column. Thus, our main concern is when n is multiplied and is the second number in

the first column. Assuming a is the smallest number besides 1 in the first column, we have two

possibilities. First, in σ, a is in the first column before sorting. In this case, before sorting, we have

the following from σ:
cn−4

cn−5
...
ci
...
c2

c1 b

1 c

where ci = a. Then in σ̃, we have:
cn−4

cn−5
...
ci
...
c2

c1

n b

1 c

and since ci = a is the smallest number in the first column and less than b, a will sort to position

(2, 1) and n will sort to the top of the first column. The other case is if, in σ, a is in the second

101



column before sorting. In this case, before sorting, we have the following from σ:

cn−4

cn−5
...
c1

b a

1 c

.

In this case, c must be 2. This follows because b is bigger than a, and if a is 2, then it cannot be in

the second row of the second column from any permutation. This then implies that a = 3. Further,

we also know that we either have σ = (1b · · · )σ̃ or σ = (1)(2b · · · )σ̃. If σ = (1b · · · )σ̃, then when we

shuffle n, since cycles are sorted, n will never appear in the second row of the first column. Thus, n

will be above the second row, and the sorting algorithm will map n to the top of the first column

and the rest of the tableau will be the same as σ.

However, we have the case (1n)(2b · · · )(3 · · · ) from shuffling to consider. In this case, σ̃ maps to T

after sorting from the following tableau:
cn−4

cn−5
...
ci
...
c2

c1

n b

1 2

where ci = 3 and n will sort to the top of the first row. Thus, from shuffling n into σ that maps to

T/(n), each shuffle give exactly one permutation that maps to T . Further, if we take the sum over

all of the shuffles for a given σ, the weight is now

∑
σ̃: n shuffled into σ

wtz(σ̃) = wtz(σ)

n−1∏
i=1

zni. (6.19)
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Thus, when we sum over all permutations that map to T , we get :

∑
σ̃ map to T

wtz(σ̃) =
∑

σ map to T/(n)

∑
σ̃: n shuffled into σ

wtz(σ̃) = wtz(T/(n))
n−1∏
i=1

zni (6.20)

as desired for case a.

Now, we consider case b. We note the following possibilities for the permutations that multiply

and are sorted to T . First, any permutation σ̃ that multiplies to T/(n) also gives a permutation

that multiplies to T by attaching n at the end, giving σ = σ̃(n) or σ̃ = (1 · · ·σi) · · · (σj · · ·σn−1n).

Further, the weight of such a permutation is either wtz(σ̃) or wtz(σ̃)(znσn−1 − 1).

Let J = {j + 1, . . . , n − 1}, and let ∅ ⊊ I ⊆ J . Then, any permutation that multiplies to T is of

the form σ1(j · · · i)σ2(n) where (j · · · i)σ2 only contains numbers from I, or σ1(jn)σ2 where σ2 only

contains numbers from I. Consider all (j · · · i)σ2 for a fixed σ1. The sum over all (j · · · )σ2 gives the

weight of the tableau, TI,j :
ik
...
i2

i1

j

where {i1, . . . , ik} = I. In other words, we know that all (j · · · )σ2 multiply to a tableau of this

form, and any such suffix to σ1 gives the proper T . Similarly, consider all (jn)σ2 for a fixed σ1 that

multiplies to T . The sum over all (jn)σ2 gives the weight of the tableau, TI :

ik
...
i2

i1

where {i1, . . . , ik} = I, multiplied by (znj − 1)
∏k
l=1 zilj from the weight of (jn) and n to the right

of all the il, replacing znil with zilj . Thus, for a fixed σ1 and I, we get a total contribution of weight
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equal to

wt(σ1)(wtz(TI,j) + wtz(TI)(znj − 1)
k∏
l=1

zikj)

= wtz(σ1)wtz(TI,j)znj .

(6.21)

However, note that the above analysis also tells us that for a fixed σ1 and a suffix that multiplies

to T/(n), the weight is wtz(σ1)wtz(TI,j). Thus, by summing over all σ1, we get:

∑
σ1

wtz(σ)wtz(TI,j)znj

= znj
∑
σ1

wtz(σ)wt(TI,j)

= znjwtz(T/(n)),

(6.22)

and this is precisely the weight of T as desired.

Now, case c is very similar to case b, but now we have to factor in all permutations of the form

σ = (1n)σ̃, where σ̃ multiplies and sorts the vertical strips so that 3 is in the augmented square

before sorting, i.e., we have the skew tableau:

cn−4
...
c2

c1

n 3

1 2

after sorting vertical strips. However, we note that this is equivalent to multiplying and sorting to
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the vertical strip tableau:
cn−4

...
c2

c1

3

2

.

This is true because if 2 and 3 are in the same cycle, then the augmented square must be in the

vertical strip containing them, else 3 is not sorted to the correct square, and if 2 and 3 are not in

the same cycle, the augmented square is not part of the vertical strip containing 2, and the next

cycle begins with (3 . . . ) and there is a one to one correspondence with placing 3 in the augmented

square with placing 3 on top of the strip containing 2. Then, summing over all σ̃ gives the weight

of

T2 =
n-1
...
5

4

3

2

multiplied by a factor of: (zn1 − 1)zn2
∏n−1
i=3 zi1. Hence, in total, we get:

zn2wtz(T/(n))

+ (zn1 − 1)zn2

n−1∏
i=3

zi1wtz(T2)

= zn1zn2wtz(T/(n)),

(6.23)

and this is precisely the weight of T as desired. This proves the two-column augmented hook case,

and now we show the general augmented hook case. We will use inductive arguments that rely on

the two-column and two-row augmented hooks, and (3, 2, 1) augmented hooks as the base cases.
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Case 3: General Augmented Hook

We will consider multiple cases for the general theorem. They are:

n

ck
...
c1 a

1 r1 r2 · · · rj
Case a

ck
...
c1

2 n

1 r1 r2 · · · rj
Case b

ck
...
c2

c1 n

1 2 r1 · · · rj
Case c

where we note that the case where n is the last number in the first row immediately follows by

induction.

For case a, we shuffle n into all of the permutations that multiply to T/(n). We claim for each

shuffle, there is exactly one way to multiply and sort to T . In fact, it is an identical argument

to the two column augmented hook case. In particular, If σ multiplies to T/(n) and σ̃ = σ1nσ2

where σ1σ2 = σ and n is contained in the last cycle of σ1, we can always have the last box in the

vertical strip containing n to be in the first column. In fact, if the last box in the vertical strip

containing n does not end in the first column, then this permutation is not mapped to T by the

sorting algorithm. If n is above the (2, 1) square in the first column, then the sorting gives T . If

n is in the (2, 1) square, then we need to know what happens to c1 and a when σ̃ is multiplied.

This argument is identical to the one in the (2, 2, 1n−4) case. This shows that n can be shuffled into

every permutation that multiplies to T/(n) in a unique way. Thus, we get a weight of:

∑
σ∈ΣT/(n)

∑
σ̃

n shuffled into σ

wtz(σ̃)

=
∑

σ∈ΣT/(n)

wtz(σ)
n−1∏
i=1

zni

= wtz(T/(n))

n−1∏
i=1

zni,

which is the desired weight.
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For case b, we again have a similar argument to the (2, 2, 1n−4) case. Note that if we take any

permutation that multiplies to T/(n) and insert n into the permutation to obtain T , the only

places we can do this are (rin) where ri was in a cycle by itself, or at the end of the permuta-

tion. Take any σ = σ1σ2 that multiplies to T/(n), where σ2 starts with r1 and has the numbers

r1, . . . , rj , ci1 , ci2 , . . . , cil such that ci1 < · · · < cil and cip = ci for some i = 1, . . . , k. For a fixed σ1,

consider all of the σ2 that multiply to T/(n). In particular, since σ2 starts with r1, it multiplies to

the skew shape:

...

· · ·

where |σ1| boxes have been removed from the first column (note that if |σ1| = 1, then the boxes

in the first column begins in the second row). Further, note that if we want to obtain T from this

permutation, n does not appear in σ1. Hence, for the tableau T , we are interested in all permutations

σ1σ̃2 that multiply to T where tildeσ2 is obtained from σ2 by inserting n. In particular, all σ̃2 that

multiply and are sorted to
cil...
ci1

n

r1 r2 · · · rj

We have two cases to consider. First, consider any permutation that begins with (r1n). Then, the

remaining σ̃2 multiplies and sorts to the skew tableau:

cil...
ci1

r2 · · · rj

Now, suppose ci1 < r2. Then, we claim that all such permutations are in bijection with permutations
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that multiply and sort to the tableau

Tci1 = cil...
ci2

ci1 r2 · · · rj

which is straightforward to verify. By the hook case, and summing over all σ̃2, we get a total weight

of:

(znr1 − 1)

j∏
v=2

znrv

l∏
w=1

zciw r1wtz(Tci1 ).

If the permutation does not begin with (r1n), and ci1 < r2, then we claim all permutations are in

bijection with a permutation that multiplies and sorts to

cil...
ci1 n

r1 r2 · · · rj

, which follows because at least 2 numbers appear in the first column before n. Now, by induction

on the augmented hook case, the total weight here is the weight of this augmented hook, which

is the same as the weight of the augmented hook without n, call it Tr1 multiplied by all of the

inversions with n, which is:

wtz(Tr1)

j∏
w=2

znrw .

Thus, for ci1 < r2, and a fixed σ1, and summing over all σ̃2, we get a weight of:

(znr1 − 1)

j∏
v=2

znrv

l∏
w=1

zciw r1wtz(Tci1 )

+ wtz(Tr1)

j∏
w=2

znrw

=

j∏
v=1

znrvwtz(Tr1).

(6.24)
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In particular, this means that for a fixed σ1, when we sum over all σ2 and insert n into all of its

possible spots, we get a factor of
∏j
i=1 znri multiplied by the weight of the hook case. This is exactly

the factor that we want, i.e.:

∑
σ1

wtz(σ1)
∑
σ̃2

wtz(σ̃2)

=
∑
σ1

wtz(σ1)

j∏
i=1

znri
∑
σ2

wtz(σ2)

=

j∏
i=1

znri
∑
σ1

wtz(σ1)
∑
σ2

wtz(σ2)

=

j∏
i=1

znriwtz(T/(n))

which is exactly the weight of T as claimed. Now, this was assuming ci1 < r2. If not, then any

permutation σ̃ is now in bijection with a permutation that multiplies to:

cil...
ci1 n

r1 r2 · · · rj

.

This follows from the sorting algorithm. In particular, it is clear that this is true if any number in

the first column appears before n. If n appears first, then the only way this tableau sorts to the

correct one is if ci1 is multiplied to the augmented square. For each permutation, there is only one

way for this to happen, and there is always one way as ci1 is either sorted to the first number in its

cycle or sorted to the second number. The first case happens if only c′s are in its cycle, and the

second case happens if the first number in the cycle is an r. Thus, we always have one way for this

to happen. Now, by induction, the weight of this augmented hook is equal to the weight of the hook
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Tr1 multiplied by the factor from n, namely
∏j
i=1 znri . Thus, for this case we also get the equation:

∑
σ1

wtz(σ1)
∑
σ̃2

wtz(σ̃2)

=
∑
σ1

wtz(σ1)

j∏
i=1

znri
∑
σ2

wtz(σ2)

=

j∏
i=1

znri
∑
σ1

wtz(σ1)
∑
σ2

wtz((r1σ2)

=

j∏
i=1

znriwtz(T/(n))

as desired. This finishes case b. The argument for case c will be extremely similar but involve an

extra factor (as was true for the two column augmented hook).

For case c, we get the previous weight from b:

j∏
i=1

znriwt(T/(n))

plus the weight of all permutations that start with (1n) and are sorted to the tableau in case c. In

particular, we are filling the skew tableau:

...

· · ·

.

Now, note that if c1 is not in the augmented square after multiplication and sorting vertical strips,

then we do not obtain T. Thus, c1 must be placed in the augmented square. We claim this means
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the total weight contribution of all σ in (1n)σ is equal to the weight of the tableau:

T2 =
ck
...
c1

2 r1 · · · rj

.

This is exactly the same a previous argument. Any σ that multiplies to the skew shape must have

c1 in a cycle that includes the augmented square in the multiplication. Thus, if we consider any

permutation that multiplies and sorts to T2, this can be mapped to a σ since we can always place c1

in the augmented square. Conversely, for a given σ, instead of using the augmented square, we place

c1 in the first column, and we sort to T2 as desired. Thus, the total weight from these permutations

is:

(zn1 − 1)

j∏
i=1

znri

k∏
i=1

zci1wtz(T2).

Hence, in total from Case c, we obtain:

j∏
i=1

znriwtz(T/(n))

+ (zn1 − 1)

j∏
i=1

znri

k∏
i=1

zci1wtz(T2)

= zn1

j∏
i=1

znriwtz(T/(n))

as desired. This completes the proof of the augmented hook case.

6.4. Consequence of the Multivariate Formulas

The work in this section needs some motivation to justify the extensive computations and proofs.

We studied this formula for the following reason: it allows us to track inversions. In particular, we

assumed the graph we were working with was Kn, which corresponds to the Dyck path that covers

the entire n × n grid. But what if we want to study the formula of Abreu and Nigro for other
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graphs? Recall their formula for indifference graphs:

LLTGm(X; q) =
∑
σ≤m

(q − 1)n−ℓ(λ(σ))qinvGm (σ)eλ(σ).

Then with our results, we can compute the multivariate Schur coefficient for the complete graph as:

Theorem 6.4.1. Let λ = (n − k, 1k) or λ = (n − k − 1, 2, 1k−1), then in LLTKn(X; zij), the

coefficient of sλ is ∑
T∈SY T (λ)

∏
i,j

(i,j) an inversion pair in T

zij .

We now observe something very curious. Suppose we have an indifference graph Gm, if σ ∈ ΣT

where T is a hook or an augmented hook, but σ ̸≤m, then there is some cycle in σ with σi = j and

σi+1 = k with k > m(i). In other words, we have some number that is mapped to another number

that violates the Hessenberg function. Here is the important observation: this permutation σ has a

factor of (zkj − 1). This means if we let zkj = 1, this permutation actually gives a weight of zero.

This leads to the following Corollary.

Corollary 6.4.2. Let λ = (n− k, 1k) or λ = (n− k − 1, 2, 1k−1), let m be the Hessenberg function

with corresponding Dyck path D. Let and (i, j) under the path D be a potential inversion pair, then

in LLTGm(X; zij), the coefficient of sλ is

∑
T∈SY T (λ)

∏
i,j

(i,j) an inversion pair in T

zij

where an inversion pair in T must also be a potential inversion corresponding to D.

Proof. Using the theorem for the complete graph, if we take any (i, j) that is no longer a potential

inversion corresponding to the path D and evaluate zij = 1, we are left with the above formula.

In other words, we can write the sum over all possible permutations that multiply to a hook or an

augmented hook, evaluate zij = 1 for the now invalid inversions, and we are left with the only valid
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inversions. Thus, we can evaluate formula for the coefficients for Kn

∑
T∈SY T (λ)

∏
i,j

(i,j) an inversion pair in T

zij

at zij = 1 for any non-potential inversion and obtain the formula as desired.

This corollary gives us an easy way to compute the Schur coefficients for these multivariate LLT

polynomials in an easy way. This method also may provide a potential path to finding a com-

binatorial interpretation for all of the Schur coefficients of unicellular LLT polynomials. There is

an intimate connection between the inversions in SYT and the Schur coefficients. Finding similar

weighting methods and sorting algorithms like those for the hook and augmented hook shapes may

be a path towards solving more general cases.

113



BIBLIOGRAPHY

Alex Abreu and Antonio Nigro. A symmetric function of increasing forests. Forum of Mathematics,
Sigma, 9:1–21, 2021.

Per Alexandersson and Greta Panova. Llt polynomials, chromatic quasisymmetric functions and
graphs with cycles. Discrete Mathematics, 341(12):3453–3482, 2018.

Per Alexandersson and Robin Sulzgruber. A combinatorial expansion of vertical-strip llt polynomials
in the basis of elementary symmetric functions. Advances in Mathematics, 400:108256, 2022.

Sami Assaf. Toward the schur expansion of macdonald polynomials. Electronic Journal of Combi-
natorics, 25:1–20, 2018.

Jonah Blasiak. Haglund’s conjecture on 3-column macdonald polynomials. Mathematische
Zeitschrift, 283:601–628, 2016.

Lynne Butler. Subgroup Lattices and Symmetric Functions. Memoirs of the American Mathematical
Society; no 539. American Mathematical Society, 1994.

Michele D’Adderio. e-positivity of vertical strip llt polynomials. Journal of Combinatorial Theory,
Series A, 172:105212, 2020.

Susanna Fishel. Statistics for special q,t-kostka polynomials. Proceedings of the American Mathe-
matical Society, 125:2961–2969, 1995.

H.O. Foulkes. A survey of some combinatorial aspects of symmetric functions. Permutations, 1974.

Curtis Greene, Albert Nijenhuis, and Herbert Wilf. A probabilistic proof of a formula for the number
of young tableaux of a given shape. Advances in Mathematics, 31:104–109, 1979.

Jim Haglund. A combinatorial model for the macdonald polynomials. Proceedings of the National
Academy of Sciences, 101:16127–16131, 2004.

Jim Haglund. The q, t-catalan numbers and the space of diagonal harmonics : with an appendix
on the combinatorics of macdonald polynomials. American Mathematical Society, 2007.

Jim Haglund, Mark Haiman, and Nicholas Loehr. A combinatorial formula for macdonald polyno-
mials. Journal of the American Mathematical Society, 18:735–761, 2005a.

Jim Haglund, Mark Haiman, and Nick Loehr. A combinatorial formula for macdonald polynomials.
Journal of the American Mathematical Society, 18:735–761, 2005b.

Mark Haiman. Hilbert schemes, polygraphs, and the macdonald positivity conjecture. Journal of

114



the American Mathematical Society, 14, 2000.

S.V. Kerov, A.N. Kirillov, and N.Y. Reshetikhin. Combinatorics, bethe ansatz, and representations
of the symmetric group. Journal of Soviet Mathematics, 41:916–924, 1988.

A.N. Kirillov and N.Y. Reshetikhin. Bethe ansatz and combinatorics of young tableaux. Journal of
Soviet Mathematics, 41:65–115, 1988.

Luc Lapointe and Jennifer Morse. Tableaux statistics for two part Macdonald polynomials. World
Scientific Publishing, River Edge, NJ, 2003.

Nicholas Loehr. Variants of the rsk algorithm adapted tocombinatorial macdonald polynomials.
Journal of Combinatorial Theory, Series A, 146:129–164, 2017.

Ian Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, 2nd edition,
2015.

Gilbert de Beauregard Robinson. On representations of the symmetric group. American Journal of
Mathematics, 60:745–760, 1938.

Bruce Sagan. The Symmetric Group : Representations, Combinatorial Algorithms, and Symmetric
Functions. Springer Science+Business Media, 2nd edition, 2013.

Craige Schensted. Longest increasing and decreasing subsequences. Canadian Journal of Mathe-
matics, 13:179–191, 1961.

Craige Schensted. Permutations, matrices, and generalized young tableaux. Pacific Journal of
Mathematics, 34:709–727, 1970.

John Shareshian and Michelle Wachs. Chromatic quasisymmetric functions. Advances in Mathe-
matics, 295:497–551, 2016.

Richard Stanley. A symmetric function generalization of the chromatic polynomial of a graph.
Advances in Mathematics, 111(1):166–194, 1995.

Richard Stanley. Enumerative Combinatorics: Volume 2. Cambridge University Press, USA, 1st
edition, 1997.

Richard Stanley. Enumerative Combinatorics: Volume 1. Cambridge University Press, USA, 2nd
edition, 2011.

John Stembridge. Some particular entries of the two-parameter kostka matrix. Proceedings of the
American Mathematical Society, 121:469–490, 1994.

Mike Zabrocki. A macdonald vertex operator and standard tableaux statistics for the two-column

115



(q;t)-kostka coeficients. Electronic Journal of Combinatorics, 5:1–46, 1998.

116


	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	INTRODUCTION
	SYMMETRIC FUNCTION WORLD
	SCHUR EXPANSION OF MACDONALD POLYNOMIALS
	COMBINATORIAL SCHUR EXPANSION OF AUGMENTED HOOK MACDONALD POLYNOMIALS
	e-EXPANSION OF LLT POLYNOMIALS
	SCHUR COEFFICIENTS OF MULTIVARIATE LLT POLYNOMIALS
	BIBLIOGRAPHY

