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ABSTRACT

COMBINATORIAL EXPANSIONS OF MACDONALD AND LLT POLYNOMIALS

Alexander Vetter

Jim Haglund

In 1987, Ian Macdonald introduced a special family of symmetric polynomials H,(X;q,t).
These polynomials, now known as Macdonald polynomials, can be written as H,,(X;q,t) = >y, Kx (g, t)sx(X),
a sum over Schur functions s)(X), a basis for the ring of symmetric functions. Macondald con-
jectured that K ,(q,t) € N(q,t), ie., have positive coefficients. Shortly after, a more natural
form of these polynomials was introduced, JEI#(X; q,t). Written in the Schur basis, ﬁu(X; q,t) =
> en IN{A’H(q, t)sx(X) where K}\,u(q, t) = tn(m) K u(gq,1/t). In 2001, Mark Haiman showed K}\,u(q, t) €
N(g, t) using algebraic geometry. Since then, it has been a major open problem to find a combinato-
rial interpretation for f()w(q, t). We prove a new formula for R’)W(q, t) when p = (n—k—1,2,1¥1)
in terms of statistic on Standard Young Tableau. Using this formula, we then prove a special case
of a conjecture due to Lynne Butler in 1994 on the change of Schur coefficients from a hook shape

to an augmented hook shape.

In 1997, Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon introduced a new family of
symmetric polynomials, now known as LLT polynomials. In 2005, Jim Haglund, Mark Haiman, and
Nick Loehr showed how to write Macdonald polynomials as a sum of LLT polynomials. Thus, a
combinatorial formula for Macdonald polynomials can be derived from a combinatorial formula for
LLT polynomials. In 2020, Alex Abreu and Antonio Nigro showed that if G is an indifference graph,
then LLTG(q) = > y<m(q — 1)"_£()‘(U))qwtc(")e>\(a). Using this expansion of the LLT polynomials
into the e-basis, we prove a combinatorial formula for the coefficients of sy when A\ = (n — k, 1¥) or

A=(n—Fk—1,2151),
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CHAPTER 1

INTRODUCTION

Upon introducing Macdonald Polynomials in 1987, an enormous amount of new combinatorics
has ensued. It took over a decade to show the Schur coefficients of Macdonald polynomials are
positive, but the proof was not combinatorial. Because of the positivity of the Schur coefficients,
combinatorialists expect a set of mathematical objects and algebraic statistics to be associated
with these statistics. In recent years, a plethora of different objects have been used in Macdonald
combinatorics, but one has become the most common: fillings of Young tableau. We define a statistic
on Standard Young Tableau depending on an augmented hook shape = (n — k — 1,2,1¥71) and
use this statistic to prove a combinatorial formula for I:[“(X; q,t) when p = (n —k —1,2,1F1),
Using a known formula for fIM(X; q,t) when p = (n—k, 1%), we prove a special case of a conjecture

from 1994 due to Butler.

We then turn our study to LLT polynomials of a family of graphs. Haglund, Haimain, and Loehr
showed how to expand Macdonald polynomials into a sum of LLT polynomials in 2005. Since
then one approach to proving a combinatorial formula for Macdonald polynomials is to study LLT
polynomials. It is know that when G is a graph associated to a unit-interval order, then LLT(G)
is symmetric and Schur-positive. In 2020, Abreu and Nigro proved a formula for the e-expansion
of LLT(q). Using this formula, we can describe the Schur coefficients in a natural way using the
Pieri rules. We introduce a multivariate version of this formula for the LLT polynomials and prove
the coefficients of sy are related to inversions in Standard Young Tableau when A = (n — k, 1¥) or
A=(n—Fk—1,2,151),

1.1. Outline

This thesis is organized into three parts. The first part is Chapter 2 which provides extensive
background on symmetric functions and the developments of the theory of Macdonald Polynomials.

The second part is contained in Chapters 3 and 4. In chapter 3, we give details on various known

Schur expansions of Macdonald polynomials. In chapter 4, we prove our new formula for the



Schur expansion of the augmented hook shape Macdonald polynomial. The third part in contained
in chapters 5 and 6. In chapter 5, we provide extensive background on LLT polynomials and
recent formulas for their e-expansion. In chapter 6, we prove the new multivariate formula for the

coefficients of sy when A is a hook or an augmented hook shape.



CHAPTER 2

SYMMETRIC FUNCTION WORLD

We begin by covering the introductory notions in symmetric function theory. We also explore the
classical results in symmetric function theory along with other important results for this thesis.
Most of this material can be found in Haglund (2007), Macdonald (2015), Sagan (2013), Stanley

(2011), and Stanley (1997), among others.
2.1. Basic Symmetric Functions

Here, we will define important notation for symmetric functions.

Definition 2.1.1 (Symmetric Function). Let K be a field (often Q), o € S,, be a permutation, and

flxy,...,xp) € Klx1,...,2,]. We say fis a symmetric function if

for all o € 5,,.

Often, we will want f to be a function of countably many variables. In this case f = f(z1,x2,...)
and we can view f as a formal power series of each x;. In this case, f is symmetric if we permute
the variables in any way and still obtain the original f. We will also use the notation X, and X to

denote the set of variables {z1,...,x,} and {x1,z2,...} respectively.

Example 2.1.2. As an example, if n = 3, then the following are symmetric functions over Q :
1.z + 22+ 73
2. oF + 2k + 28 for any k € Q
3. (w1 + 2 + 23)F for any k € Q.

We may also have countably many variables.



Example 2.1.3. The following are examples of symmetric functions over Q :
LY
2. >0 aF forany k€ Q

3. 2 Z;il Lilj-
2.1.1. Bases For the Ring of Symmetric Functions

We let A be the ring of symmetric functions in X and A™ the sub-vectorspace of A consisting of the
homogeneous degree n functions. Next, we will consider various bases of A™ which will be important

throughout. We begin by considering partitions.

Definition 2.1.4 (Partitions). Let A = (A1, A2, ..., Ag) where Ay + Ao+ -+ g =nand \y > Ay >
-+« > A > 1. Then, we say A is a partition of n, denoted as A - n. We use the notation Par(n) to

denote the set of partitions of n
Example 2.1.5. The following is a complete list of partitions for n = 4, Par(4):
1. (4)
2. (3,1)
3. (2,2)
4. (2,1,1)
5. (1,1,1,1,1).

Often it is useful to compare two partitions A and p of the same n. Is there a way to decide when one

partition is bigger than the other in some way? Here is one widely used partial order on partitions.

Definition 2.1.6 (Dominance Order on Partitions). Let A\, uFn. We say A dominates i, denoted



A > p if the following is true:

min(i,l(\)) min(i,l(p))
A>p = > N> Y om
i=1 =1

We now consider a basis for A.

Definition 2.1.7 (Monomial Symmetric Functions). Let A = n, so A € Par(n). We define the
monomial symmetric function my = mx(X) = mx(X,) to be the sum of all monomials in the z;
(finite for X,, and infinite for X) where the multiset of exponents of a monomial is equal to the

multiset formed by the parts of A.
We will consider 3 examples of m.

Example 2.1.8. Here are examples with no variables given, a finite set of variables, and an infinite

set of variables.

— 2., 2
1. ma1 = Zi<j T T —l—xza;j

2. m321(X3) = 232323 + 23v0nd + 232323 + 2iw0nd + T2323 + 112503

3. m4(X) = Zoil a;4

3 (2

Now that we have defined m), we will consider 3 special families of symmetric functions that are

bases for A™.

Definition 2.1.9 (Elementary Symmetric Functions). For any n, let 1™ be the partition of n into

1’s. Then, define e,, = mi» to be the elementary symmetric functions.

Definition 2.1.10 (Power-Sum Symmetric Functions). For any n, let (n) be the partition of n into

exactly one part. Then, define p, = m,, to be the power-sum symmetric functions.



Definition 2.1.11 (Complete Homogeneous Symmetric Functions). For any n, let

hy, = Z my.

A€Par(n)

We call h,, the complete homogeneous symmetric functions.

Theorem 2.1.12 (Bases of A™). With the above 3 families of symmetric functions in mind, let

A n and consider:

1. e\ = Hz EN;
2. pa=1[len
3. h)\ = Hz EN;-

Then, {ex, A n}, {px, A n}, and {hy,\F n} are each individually bases for A™.
2.1.2. Schur Functions
With the above symmetric functions in mind, we will now develop an extremely important basis for

A"™. First, we must introduce Young Diagrams and their fillings.

Definition 2.1.13 (Young Diagram). Let A\ = (A1, Ae,...,A\x) F n, then we call Y\ a Young
Diagram of shape A\ where Y, is created by placing A\; boxes in the bottom row, Ay boxes in the

second row, up through A\; boxes in the kth row.

As an example, let A = (4,2,1), then Y) is:

[ ]

We now consider fillings of Y. For convenience, we will let Y = Y),

Definition 2.1.14 (Young Tableaux). Let Y be a Young Diagram of shape A, where |A| = n. We

say that a filling of Y with positive integers is a Standard Young Tableauzr if rows and columns



are strictly increasing. We call the filling a Semistandard Young Tableaux if the rows are weakly

increasing and the columns are strictly increasing.

Continuing with our example of A = (4,2,1) and Y), the following are Semistandard and Standard

fillings of Y}, respectively.

Example 2.1.15 (Semistandard Young Tableau of Shape (4,2,1)).

»—tl\D»lk‘

2[3]

Example 2.1.16 (Standard Young Tableau of Shape (4,2,1)).

HC&OOT‘

4[7]

Now that we understand two different types of fillings of Young Diagrams, we will now consider the

total number of fillings given a specific alphabet.

Definition 2.1.17 (Kostka Numbers). Let p = {1#1,2#2 ... n#n}. Let SSYT(A) be the set of

semistandard Young tableaux of shape A. Then, we define:

Ky, = #{T € SSYT(\)| content of T"is u}

and we call K , the Kostka Numbers.

In other words, K ,, count the total number of semistandard Young tableaux of shape A with content
. We note that counting the standard Young Tableaux of shape A (SYT())) is the special case
where p = (1"). In particular, [SYT(\)| = K (1n). In 1953, Frame, Robinson, and Thrall proved

a combinatorial formula for |SYT'(X\)|. To understand the formula, we need one more definition,



Definition 2.1.18 (Hook-length). Let u € Y}, i.e., u is a cell in the Young Diagram Y). Let h(u)
be the total number of cells in the same row and weakly to the right of v and the number of cells

in the same column and strictly above u. We call h(u) the hook-length of .

We can now state the famous Hook-Length Formula first proven by Frame, Robinson, and Thrall.

For a detailed history, see Sagan (2013):
Theorem 2.1.19 (Hook-Length Formula). Let A+ n. Then,

n!

UEY)

Though first proven in 1953, Greene et al. (1979) proved the formula using probabilistic methods
that is much more interesting and directly uses the hook content of cells. The Kostka Numbers
often appear when discussing symmetric functions. We will now see one such instance of great

importance.

Proposition 2.1.20. Let A = (A1, A2, ..., \g) b n be a partition, then an equivalent definition of

the monomial symmetric functions, my(X), is

mA(X) = 3 agt o

an~ A

where o ~ A means « rearranges to A with possibly extra 0s.

With this equivalent definition of the monomial symmetric functions in mind, we have our first

definition of the Schur functions.

Definition 2.1.21 (Schur Functions). For A F n, we can define the Schur functions, sx(X), as

sx(X) = ZHSE?Z

o, T 1

where « is a weak composition of n and T is a tableaux of shape A and content .



There are several other equivalent definitions of Schur functions. One stems from the Vandermonde

determinant.

Definition 2.1.22. Let A - n, then define the following determinant function:

A +n—1 A+n—1 >\1+n—1-
xl x2 “ e xn
xi\2+n72 x;\2+n72 . x22+n72
a()\1+n—1,>\2+n—2,...,>\n)(5513 L2y .- 7-73n) = det
xi‘” xg‘” mf‘l"

With the above determinant function, we can now list the equivalent definitions of Schur functions.

Each equivalent definition has use in its own right. Here are three of the important ones.

Proposition 2.1.23 (Equivalent Definitions of Schur Functions). The following are equivalent def-

initions of Schur Functions

1. Monomial Expansion: Let A = (A1, A2, ..., \x) F n be a partition, then

A (X) =D Ky umpu(X).
pukn

2. Jacobi’s Bialternant Formula: Let A = (A1, A2, ..., Ap) F n, then,

s (X a()\1+nfl,/\2+n72,...,)\n)(‘Th Zo,. .. 7:1:71)
A(X) = .
AUn—1,n-2,..,0)(T1, T2, .., Tn)

3. Jacobi-Trudi Identity: Let £(X) be the number of parts of A. Then,

sx(X) = det(hy,—i+7);5).

17]



2.2. RSK Algorithm

We now proceed to a discussion of the famous Robinson-Schensted-Knuth (RSK) Algorithm. For a
detailed account of the RSK Algorithm, see Stanley (1997) or Sagan (2013). We use this algorithm
to create a bijection between two line arrays of words and pairs of SSYT of the same shape. We start
with a word w = wj...w, where w; € [n]. We then construct a sequence of pairs of SSYT through
the RSK algorithm. We denote this sequence as RSK;(w) = (P!, Q) where P! is known as the
insertion tableau obtained from inserting w; into P: 1 and Q' is the tableau formed by recording
the location of the new box from Pi~! to P¢. Here is a complete description of the RSK algorithm

as found in Sagan (2013). Let 7 € S,, and suppose that 7 is the following in 2-line notation:

T T2 o Tp—1 Tn

We then construct the sequence of tableaux pairs RSK;(7) = (PL, QL) = (P!, Q"), starting with
(P°, Q%) = (0,0), and ending with (P™, Q") = (P, Q), the output of the RSK algorithm. The RSK
algorithm iterativley inserts 7 into m_1 so that P* is a partial tableaux- a tableaux where the
rows and columns are increasing. We then place k into Q*~! so that the shape of QF is the same

as the shape of P*. Here is the precise insertion algorithm:
1. Let R be the bottom row of P*~! and = = 7.

2. While x is less than some element in row R, let y be the smallest element in R that is greater
than x, and replace y by x in row R. Now, define x to be y and let R be the next row up in

pk-1,

3. After the previous step, x is now greater than every element in row R, so place = at the end
of this row. This gives us P¥. Construct Q* for Q*~! by placing k in the same position that

the last x was placed.

We note that this can be generalized so 7 is not a permutation and the recording value is not the

10



identity, but we begin with an example of this situation. We begin with an example where w is a

permutation in 5,, and the recording word value is 12...n.

Example 2.2.1. As an example, let w = 425163, then we compute RSK on the two line array:

1 23 45 6
4 2 5 1 6 3

We start by inserting 4 into the empty tableau, obtaining

(P2, Q%) = ( , ) o

4111 1 Hl
S [ES
where 1 is inserted into the newly inserted position in P,,. Next, we insert 2, obtaining:

(PLQL) = () =R

w
) =

Next, we insert 5, obtaining:

T 2 5
(PSMQQw) =\ — —
2 1
[4]

11



Next, we insert 1, obtaining:

(P,Q3) = [ 21|+
2[5(|[1]3]
4] [4]
== = [ = (20w
2 2
1]5][1]3]
Next, we insert 6, obtaining;:
P = |12 LA [
2 2
1]5][1]3]
ol = Rt - (P3.Q3)
2 2
1)5]6][1]3]5]
Finally, we insert 3, obtaining:
PLQ = —
2 2
1|5]6|[1]3]5]
4| 4|
= ) = (PwaQw)-
2 2
1 6][1 5 |

We now discuss important properties of the RSK algorithm. The first, is the main theorem due to

12



Robinson (1938) and Schensted (1961).

Theorem 2.2.2 (Robinson (1938) and Schensted (1961)). The RSK map is a bijection between
permutations in S, and pairs of Standard Young Tableaux of the same shape At n. In particular,

if A =|SYT()\)|, then

> (M =nl

AFn

The proof of this theorem uses the invertibility of the RSK map. One of the main motivations for
Schensted work on the RSK algorithm was finding the longest increasing or decreasing subsequence

of a permutation 7. He proved the following theorem in Schensted (1961):

Theorem 2.2.3 (Schensted (1961)). Let m € S, and let P(w) be the P-tableaux from the RSK
algorithm applied to w. Then, the longest increasing subsequence in 7 is the length of the first row

of P(m) and the longest decreasing subsequence is the length of the first column of P(r).

Another interesting aspect of the RSK algorithm is due to Knuth. Much of the material can be

found in Schensted (1970). We begin with some definition.

Definition 2.2.4 (P-equivalent and Knuth Relations). We give 3 different definitions due to Knuth’s

work.
1. Let m,0 € S,,. We say that m and o are P-equivalent if P(m) = P(0).

2. Let x < y < z and m,0 € S,,. We say 7 and o differ by a Knuth relation if either of the

following is true:
(a) T=m...2yz...mp and 0 =y ...yzx ... T,
(b) mr=m...x2y... 1y and 0 =7y ... 22Y . .. Tp.

(c) We say m,0 € S, are Knuth Equivalent if there is a sequence of Knuth relations trans-

forming 7 to o.

13



With these definitions in mind, we have an important theorem found in Schensted (1970).

Theorem 2.2.5 (Schensted (1970)). Let m,0 € Sy, then m and o are Knuth equivalent if and only

if they are P-equivalent.

The next interesting RSK result concerns the inverse of permutations. This work is due to Schiiten-

zerberger. The proof involves shadow diagrams. For complete details, see Sagan (2013).

Theorem 2.2.6. Let w € S, then

In particular, note that if 7 = 7!, then P(r) = Q(x). This also shows that the number of

involutions in S, is equal to the total number of Standard Young Tableaux for any n.

There are many other important properties of the RSK algorithm. We will see others later. For

now, we move consider a similar algorithm due to Schiitenzerberger, Jeu de Taquin.

2.2.1. Jeu de Taquin

We consider a new algorithm performed on skew tableaux.

Definition 2.2.7 (Skew-Diagram). Let p - n, and let v = k where £ <= n, {(v) <= {(u) and

v; <= p; for 1 < i < £(v). We call Y, v, the skew diagram of shape w/v, where we start with the

diagram Y, and remove the boxes corresponding to Y.

Here is an example of a skew diagram where p = (6,4, 3) and v = (3,1).

v = |

[ ]

We will now describe how to perform Jeu de Taquin on skew tableaux using our example for

14



n=(6,4,3) and v = (3,1). Consider the diagram with added bullets denoting the corner squares:

v = |

[ L[]

If we pick a corner square, we can perform the following jdt moves.

1. If z > y, then

2. If x <=y, then

Using our example, suppose we have the following filling:

\359

v =

o2 4|6\

and we move the top left corner square using jdt moves. We then obtain the tableaux:

3]5]9 it [3]5]09
° a 1|e]| 7
e[2]4]6] e 46|
Jdt TOT
157
. 46|
jdt 3
N 7
o|2]4]6]

We can now use this last tableau and perform jdt moves until no corner squares remain (i.e., we

15



obtain a standard tableaux):

3 Jit?) Jit3
718 115718 15718
o24|6\ e 2]el4]6 .24.@
Jgt 319 Jit 319
50718 50718
o |2 6\ 2] e 6\
gt 3109 jat 3109
15 8 15
214 e |6 o | 2
Jgt ‘39 Jgt 7
o|5]7 3|57
\124 1124
Jit?
3|57
1

We now have a standard Young Tableaux. We now discuss some important properties of Jeu de
Taquin. If P and @) are skew tableaux and there is some sequence of jdt moves transforming P to
Q, we say that P and @ are jdt-equivalent. The following theorem can be found in Sagan (2013),

originally due to Schiitenzerberger.

Theorem 2.2.8. If P and Q) are standard skew tableau, then P and Q) are jdt-equivalent if and

only if they are Knuth equivalent.

Note that there are also dual version of Knuth relations, RSK and jdt that result in dual equivalence

relations. See Sagan (2013) for further details.

Another important characteristic about Jeu de Taquin and RSK corresponds to the reading word

of a tableau.

Definition 2.2.9. Let T be a tableau. We define the reading word of T, rw(T), to be the word

formed by the rows of numbers in tableau from top to bottom.

16



Example 2.2.10. If we have the tableau

)—tl\D»lk‘

then rw(T") = 425136.
Let jdt,(T) denote a Jeu de Taquin move of a in T. Then the following holds.

Lemma 2.2.11 (Stanley (1997)). A Jeu de Taquim slide converts the reading word of a tableau

mto a Knuth-equivalent word. In particular,

rw(jdte(T)) X rw(T).

Further, we obtain an important theorem on equivalence classes of tableau.

Theorem 2.2.12 (Stanley (1997)). Each Jeu de Taquin equivalence class contains exactly one

straight shape tableau.
We now consider another important property of jdt and RSK.

Definition 2.2.13 (Evacuation). Let @ be a partial skew tableau, and let m be the smallest number
in Q. Erase m from its cell, replace it with a bullet, and perform jdt moves on this bullet square.

This process is called evacuation.

Now, start with a standard tableau Q and a corresponding diagram Y of the same shape. Starting
with ¢ = 1, evacuate ) until empty. For each evacuation, there is now a cell that is in Y that is
no longer in the evacuated @) tableau. Place n — i 4+ 1 in this cell. The resulting tableau is the

evacuation of @), denoted evQ. Here is an example:
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Example 2.2.14 (Evacuation Tableau).

Q=16 e[ 6 | ()] 6 | ev®)| 6 |
305 35 5 | 5]
1[2]4]7] 2[4]7] 3[4]7] 47
2@[6] eq[6]7]=q[T]uq,
517]
P:— (| ] mﬁ))— 1@—
6 6
| ] 7] 7] 5[7]
MT mﬁQT mﬁ;T inj})T
6 306 3 3
5|7\ 5|7\ 5|7\ 1 5|7\
Thus, -
ev(Q):4
3
1 5|7\

We can now state an interesting theorem about the Q-tableau from RSK and evacuation tableau.

See Sagan (2013) for details.

Theorem 2.2.15. Let m € S, and let 7" be the permutation in S, where 7w} = 7p_;y1, t.e., the

reversed permutation. Then,

With the previous theorem in mind, we have an important, useful proposition. Recall that there is
exactly one unique standard, straight tableaux in each jdt equivalence class. For a given § € S,,

we can construct the insertion tableaux through a sequence of jdt moves.

Proposition 2.2.16. Let 3 € S, where 8 = B182--- B, and form a skew diagram, Tg, by placing
Bix1 below B; if Bi > Bit1, and to the right otherwise. Let jdt(B) be the tableau obtained by

performing jdt on Ty until we have a standard tableau. Then, jdt(B8) = Pz and jdt(B~') = Qg from
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RSK(B).

We will show an example obtaining Ps. Note that jdt(371) = Qg follows from jdt(3) = Ps and

the previously mentioned properties of RSK.

Example 2.2.17. As an example, let 8 = 425163, then the skew tableau associated to 5 would be:

Note that for a given skew tableau, there may be multiple corner squares, as is the case in this
example. It is known that the result of performing jdt is independent of which corner square we

start with. The following is the jdt algorithm performed on this skew tableau:

T jdt T Jdt T
215 215 21| e
° 1] e 115
[} [ ] [}
jat T jdt T jdi T
2| 2| 2|
1 6 1 ° 1
° 6 . 6
jat T jdt T jdt T
2| o | 4|
° 2 2
1 6 | 1 6 | 1 6
A = jdt(8)
2
1 6 |

Now, note that the final tableau, jdt(3) is precisely equal to P from RSK(B). If we were to

compute jdt(871), we would obtain Qg.
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With the above in mind, we see an important property of evacuation.

Proposition 2.2.18 (Schiitenzerberger Involution Stanley (1997)). The map Q — ev(Q) is an

mvolution.

With this background on basic symmetric functions and two important combinatorial algorithms,

we will now turn to the main symmetric functions under consideration, Macdonald Polynomials.
2.3. Development of Macdonald Polynomials

In this section, we will introduce many important properties of Macdonald Polynomials and the
goal of this thesis. Much of the background can be found in the classic text Macdonald (2015) with

new developments in Haglund (2007).

We begin by defining two important functions for a given partition A\. We use these notations

throughout.
Definition 2.3.1. Let AFn
Lon(A) =20 — 1A
2. zy =[], 1"n;!
where n; is the number of parts of A that are equal to 1.

We can now state the three fundamental identities concerning the infinite product:

H(l — 2iy;) !

i?j
where z}s and y.s are independent variables.

Theorem 2.3.2 (Macdonald (2015)). Let A = n be a partition, px, my, hy, and sy the symmetric
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functions defined previously. Then,

summed over all partitions .

With the above theorem in mind, we define a scalar product (-, -) on A such that

<h>\7 mu) = (5)\““

for all A\, u = n. This is known as the Hall Scalar Product. Note that d) , is 1 when A = pu, and
0 otherwise. We use an alternative notation that sometime appears in the literature. If P is a

statement, then we say x(P) =1 if P is a true statement, and x(P) = 0 otherwise. Hence, in this

case, 0y, = X(A = p).

We note two important properties of this scalar product. First,

(DX, Pu) = Oxp2n

giving an orthogonal basis for A. Second,

<S)\’ 8/1/> = 6)"“

giving an orthonormal basis for A, showing the importance of the Schur functions. Now, for any
f €A, and any basis by of A, let f|,, denote the coefficient of by when f is expressed in that basis.

As an example,

Flmy = (f, )
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by the above properties of the Hall Scalar product. Further, because the Schur basis is orthonormal

with respect to the inner product,

Flsy = (fi80)

2.3.1. Plethysm

The last notation we need before turning to Macdonald polynomials is for a plethystic substitution.
An abstract description of plethysm can be found in Macdonald (2015), but we will follow Haglund

(2007) for a more understandable definition.

Definition 2.3.3 (Plethystic Substitution). Let E(t1,t2,...) be a formal power series of rational

functions in the variables 1, to,.... Define the plethystic substitution of E into p; by

pi[E] = E(h ik, ).

In other words, the kth-plethystic substitution of a formal power series is computed by replacing
each variable with its kth power. We note for ease of notation, if we have the notation X inside of

plethystic brackets, we really mean

szl(X):$1+$2+£C3+"'.

We now remark on taking the negative inside of plethystic brackets. Let X = (x1,x2,...). Suppose
we want to consider the negative of each variable, namely Z = (—x1, —x2,...). From the definitition

of plethysm,

pe(Z) = (=1)Faf # pi]-X].

i

Because of this, we use a special notation for using negatives with plethysm. We let

prleX] = (=1)Faf.

)
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We only defined plethysm in terms of the power-symmetric function. However, for any f € A, we
can write f in the py basis, and then compute the plethysym. Thus, it makes sense to consider

plethsym on any symmetric function. Next, consider the important involution w defined as follows:

w(pk) = (1) 'py
and extend it to py by
w(py) = (=)= V.

Again, because p) is a basis for A, we can compute w(f) for any symmetric function by first writing

f in the py basis. Here are two interesting examples of the involution:
1. w(eA) = h)\
2. UJ(S)\) = S)-

With the definitions of plethysm, €, and w in mind, for any f € A

w(f(X)) = fl—eX].

We will now consider symmetric functions over Q(g,t) and introduce Macdonald polynomials.
2.3.2. Macdonald Polynomials

Here, we consider the symmetric functions developed by Macdonald in chapter 6 of Macdonald
(2015). Macdonald denotes these functions as Py(x;¢,t), a class of rational functions depending on
two parameters ¢ and ¢. This family of functions satisfies a modified Hall Scalar product that now

depends on the parameters ¢ and t.
Definition 2.3.4. Let A - n. Then, let:

1— g

‘)
(pxs Pt = Span [ [ T
=1
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Note that when g = ¢, we obtain the usual Hall Scalar product.

We now extend our definition of symmetric functions A. Let F' = Q(q,t), the field of rational
functions in ¢ and t. Then, define Ap = A ® F' to be the F' — algebra of symmetric functions
with coefficients in F'. In other words, we extend our ring of symmetric functions A so that the
coeflicients are no longer restricted to Q, but are in the field extension of Q by ¢ and t. Macdonald

proves the following:

Theorem 2.3.5 (Macdonald (2015) Chapter 6, Theorem 4.7). For each partition A, there is a

unique symmetric function P\ = Py(x;q,t) € Ap such that:

P, = E U My

n<A
where uy, € F and uy ) =1 and
(P)\, Pu)tz,t =0
if A\ # .
This family of symmetric functions contains a few important subfamilies. First, when ¢ = ¢,

Py(x;t,t) = sx(x), the usual Schur functions. When ¢ = 0, Py(z,;0,t) = P\(x;t), which are known
as Hall-Littlewood polynomials. Finally, let ¢ = t* and divide Py by (1 — )\l If we let t — 17,
then the Py are equal to another family of symmetric functions, the Jack polynomials. The Py are
now known as Macdonald Polynomials. Now that we have defined this special family of polynomials
and seen that they do in fact exist, we will discuss some of their properties and modifications that
have occurred over the years. Throughout, our goal is to reformulate Macdonald polynomials in
combinatorial terms. Often, we use various properties of tableaux to derive special formulas. We

will define various tableaux statistics.

Definition 2.3.6. Let Y) be the Young diagram of shape A. Let ¢ = (i,4) be a cell in Y) corre-

sponding to the square in the ith row and jth column. We define the following 4 quantities:
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1. Let arm(c) = a be the number of cells strictly to the right of ¢ and in Y).
2. Let coarm(c) = a’ be the number of cells strictly to the left of ¢ and in Y).
3. Let leg(c) = [ be the number of cells strictly above ¢ and in Y).

4. Let coleg(c) = I’ be the number of cells strictly below ¢ and in Y).

For instance, if we have the Young diagram

Yy =

[ ]

then the green square corresponds to the cell ¢ = (2,4) and has arm = 4, coarm = 3, leg = 2, and

coleg = 1.

With the definitions above, we can now consider a modification of the Macdonald polynomials,

known as the Macdonald Integral Form Polynomials where:

Tu(Xiq,t) = T (1 = " Pu(X; g, ).
cep

With these modified symmetric functions in mind, we consider the work of Mark Haiman in 2000,

proving a famous open problem posed by Macdonald. See Haiman (2000) for full details.

First, Macdonald showed that the plethystic form of the Schur functions are a basis for Ap. These
modified Schur functions are defined as s)[X (1 — t)], see Macdonald (2015) Chapter 3, 4.5 and
Chapter 6, 8.9 for more details. Because of this, we can express the J, in the s)[X (1 — )] basis,
obtaining:

Tu(X;q:8) = K ulg )sx[X (1 —1)]
A
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and our goal is to understand the K ,(q,t). When ¢ = 0, K ,(0,t) = K ,(t). The K} ,(t) were
introduced through the transition matrix from sy(z) to the Hall-Littlewood functions P,(X;t). A
famous conjecture in Foulkes (1974), says that there is some positive integer statistic ¢(T") associated

to semistandard Young tableaux such that:

Knut)= > 0,

TESSYT(A )

where SSYT(A, ) is the set of semistandard Young tableaux of shape A and weight p. A statistic
known as charge was discovered by Lascoux and Schiitenzerberger, proving the conjecture of Foulkes.
With this is mind, K ,(q,t) are now known as the q,t-Kostka-Foulkes polynomials. Macdonald

proved many special cases regarding K ,(¢,t) in Macdonald (2015) including:
Proposition 2.3.7. The following are true regarding Ky ,(q,t):

1. K),(0,0) =6y,

2. Kx,(0,1) =K,

3. Ky u(q,t) = Ky v(t,q)

e Kou(1,1) = 7755

However, the famous conjecture due to Macdonald is that K ,(q,t) € Ng,t], i.e., the coefficients
are non-negative integers. Garsia and Haiman modified the q,t-Kostka-Foulkes polynomials in the
following way:

Kyu(g,t) = t"WEK, (g, 1/1).

We will refer to the Macdonald polynomials with the modified q,t-Kostka-Foulkes polynomials
as the modified Macdonald polynomials, denoted H,(z;q,t). In Haiman (2000), Haiman showed
that K Au(a:t) € N[g,t], proving the conjecture of Macdonald. However, Haiman’s proof involved
deep algebraic geometry. It is our goal to discover some combinatorial formula for the K Au(a: ).

Macdonald’s open conjecture is the following:
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Conjecture 2.3.8. Let \,u b n, then there exist algebraic statistics, qstat(T,u) and tstat(T, p),
such that

R’,\,u(q,t): Z qqstat(T,u)ttstat(T,u).
TeSYT(T)

This conjecture has been solved in a few cases, but is largely open. We will solve one of the
open cases later. We now construct the famous combinatorial formula for Macdonald polynomials
first conjectured by Haglund in Haglund (2004) and proven by Haglund, Haiman, and Loehr in
Haglund et al. (2005b).

2.3.3. HHL Formula for Macdonald Polynomials

We now look at the famous combinatorial formula for Macdonald polynomials, now known as the
HHL Formula. Let pu = n, we define a filling of u to be a function o : Y, — Z,, i.e., we fill the
diagram of shape p with positive integers, and no other restrictions. For a given filling o, we define

the x-weight of the filling to be

z? = H Lo(c)

CEY,,
i.e., we take the product of z; for each ¢ in the filling of ¥,,. From Haglund (2004), we have
two algebraic statistics on fillings, inv,(c) and maj,(o). We say a descent in a filling is a cell
u = (i,j) € Y, such that o(u) > o(v) where v = (i+ 1, 7). In other words, a cell is a descent if it is
larger than the number in the cell directly below it. We defined Des(o) to be the set of cells that
are descents in a given filling. Next, we define an attack relation between cells. Let u,v € Y),, then

we say u attacks v if either of the following hold:
1. w and v are in the same row with u to the left of v
2. u and v are in consecutive rows,u in the higher row, and v is in the lower row and to the left.

Then, we say that u and v form an inversion pair if v attack v and o(u) > o(v). We denote the set

of inversions for a given filling as Inv(o). With these definitions in mind, we can now define the
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algebraic statistics formulated in Haglund (2004):

maju(o) = Z leg(u) +1

u€Des(o)

and

invy (o) = [Inv(o)| — Z arm(u).

u€Des(o)
Sometimes, we will simply write inv(o) or maj(o) when p is clear. Now, consider the following

function:

Culzsqty= Y ¢mor@pmanlae,

o:u—2Zy
The following is the famous theorem in Haglund et al. (2005b), giving rise to the HHL formula:

Theorem 2.3.9 (HHL Formula Haglund et al. (2005b) Theorem 2.2). For any pu,

Cu(z;q,t) = Hu(w; g, t).

Now that we have seen the famous HHL formula, we now present an important theorem regarding
the modified Macdonald polynomials, which is vital to the proof of the HHL Formula and also found
in Haglund et al. (2005b).

Theorem 2.3.10 (Macdonald Polynomial Triangularity). The following &8 conditions define a

unique family of symmetric functions:

1. Hy[X(q—1)];q,t] = Zpﬁp/ Cou(q )mp(X)
2. Hy[X(t=D]iq,t] = <) dp (g, tymp(X)
3. ﬁu(x;q,tﬂx? =1.

Later, we will use these 3 properties to show a conjectured combinatorial formula for the modified
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Macdonald Polynomials for the augmented hook shape is in fact equal to the Macdonald Polynomial.
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CHAPTER 3

SCHUR EXPANSION OF MACDONALD POLYNOMIALS

With the background information from Chapter 2, we now consider various combinatorial descrip-
tions of the Schur expansion of Macdonald polynomials. In particular if we write the modified

Macdonald polynomials in the Schur basis,
Hy(ziq,t) =Y K pulg, )sa(z),
A

our goal is to find a combinatorial description of Ky ,,(¢,t). Doing this for arbitrary 4 is an extremely
difficult challenge. Thus, we will consider various families of u that have been solved and describe
some of the combinatorics behind the proofs. Then, we will consider a conjecture due to Lynne
Butler in the early 1990s that gives us a possible approach to tackle the general problem, see Butler
(1994) for full details.

3.1. Combinatorial Formulas for Hook Shape Macdonald Polynomials

The first shape we consider is known as the hook shape. By a hook, we mean u = (k, 1"~%), so that
the first row has k boxes, and the first column has n — k 4+ 1 boxes. Here is a basic example of a

hook shape diagram:

L

Now define the function B, for any shape p as:

Blu — Z qal(c)tl/(c).
ceY),
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By slightly modifying a result from Macdonald in Macdonald (2015), we have the following result

Theorem 3.1.1. For any pu and X\ = (k,1"7%) a hook shape,

K)uu(qj) = en—k[B,u - 1].

Thus, we can express the Schur coeflicient associated to a hook shape for any Macdonald polynomial
indexed by p using this plethystic evaluation and the coarm and coleg of cells in a diagram. However,
it would be nice to have more concrete combinatorial expansions. We will see more of these, starting

with p a hook shape. Before describing this formula, we need to consider statistics on skew tableau.

Definition 3.1.2. Let T be a skew tableau, and let « = (a1,...,ax) be a composition of n into
k parts. Let T be the parts of the tableau T that contain the numbers «;_1 + 1 through o;
where ag = 0, where we standardize the numbers, i.e., the a; numbers are rewritten as 1 through
«; maintaining their order. Then, we call the set of 79 the a-sectionalization of T. Further, if
we have some statistics stat(T), then we can define stat(T,«) to be the a-sectionalization of the

statistic, evaluated as:

k
stat(T, o) = Z stat(T™).
i=1
Recall the previous definition of maj, dealing with descents and legs in a diagram. We will now
modify the maj statistic to match Stembridge.

Definition 3.1.3. Let 7' € SYT(\), then define the descent set, Des(T), to be the set of ¢ such
that 4 4+ 1 is in a row above ¢ in T'. With the descent set in mind, consider two different statistics

on T used by Stembridge:
L. maj(T) = Zz’EDes(T) i
2. comaj(T) =3 iapesry A —

With the above in mind, the following is a result in Stembridge (1994), a purely combinatorial
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formula for the hook shape Macdonald polynomial using statistic on tableau.

Theorem 3.1.4 (Stembridge (1994)). Let a = (a1, ..., ax) be a composition of n into k parts. Let

rev(a) = (o, . ..,a1) be the reverse composition of a. When p = (n — k, 1),
Ky, = Z qmod (Top) yeomag(Trev(u'))
TeSYT())

We will now show an example confirming the two formulas due to Macdonald and Stembridge, are

in fact equivalent.

Example 3.1.5. As an example, consider 1 = (4,1) and A = (3,1, 1), then we can compute B3 ; 1)

as the sum of the coefficients in the following diagram:

1 q|q2|q3\

so B, = ¢*+q¢®+q+t+ 1. When computing K Au(q,t) from Macdonald’s plethystic formular, we

obtain:

f(,\,u(q,t) = ez[By, — 1]
e+ +q+1]

=¢ +¢" + ¢+ Pt + Pt + gt

We now compare this two Stembridge’s formula. Here, we need the following 6 standard tableau:

E 5] 4]
3 2 3
1 1 1

2[s] [1]2]a] [2]s]a] [2]2]s] [1]s]s] [1]4]5]

Because p = (4,1), when we compute the p-sectionalization, we are really just ignoring the entry
5. Hence, maj(T, p) for the above 6 tableau is 3,2,1,5,4,3 respectively. Next, p/ = (2,1,1,1),

and rev(y’) = (1,1,1,2). When computing coma;j(T,rev(')), we need only consider T™ from the
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rev(u')-sectionalization. Thus, comaj for the 6 tableau is 0,0,0,1,1,1. Thus, K , = e+ +qg+
¢t + ¢*t + ¢3t, and since

Kyu(g,t) = t"WK, (g, 1/t)

and n(p) =1,

Kaulg,t) =tq® + ¢ +q+ 1/t + ¢* 1/t + ¢°1/t)

=@t Ptra+ P+t + P

which matches the above plethystic formula as desired.
3.2. Combinatorial Formulas for Two Column Macdonald Polynomials
3.2.1. Fishel Two-Column Formula

Shortly after Macdonald’s conjecture, many people solved special cases of the ¢, t-Kostka Polynomi-
als. In 1995, Fishel worked on the case where 1 < 2, i.e., the two-column case. Here, we describe
her results. Her work begins with a formula from Stembridge on the two column case. In particular,

in Stembridge (1994), we have

Theorem 3.2.1 (Stembridge (1994)). Let = (27,1"72"), then

r

a1y [T
Kxu(g,t) :qu STt L] K (2ran-2n)(t).
5=0 t

From this formula involving Macdonald’s charge polynomial, in Fishel (1995), Fishel finds statistics

¢, and cut, such that

Kaulg,ty= Y. goutr@@Dyer(@©).L)
(a(0),L)eM]

where MJ is a set of rigged configurations of the tableaux of shape A, developed by Kirillov and
Reshetikhin in the 1980s. See Kerov et al. (1988) and Kirillov and Reshetikhin (1988) for full details
on rigged configurations. Though nice to have a combinatorial formula, it is quite difficult to state

and requires new combinatorial objects to prove it. So people continued to search for a more concise
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combinatorial formula.
3.2.2. Lapointe and Morse Two-Row Formula

First appearing on the arXiv in 1998 and then published in a book in 2003, Lapointe and Morse found
another formula that can be translated into a formula for the two-column Macdonald polynomial
in Lapointe and Morse (2003). Their work is deeply algebraic with a series of complex operators on

tableaux. They produce the following theorem:

Theorem 3.2.2 (Lapointe and Morse (2003) Theorem 27). Let = (2m + £+ a,?), then

HM(:C;(L t) = Z Stat(T)Ssh(zpe(T)-
|T|=]pl

Here, Lapointe and Morse found a statistic, stat(T), that is a ¢, ¢ statistic on tableaux computed
after finding something known as the domino vector of a tableaux. As stated, this is a result for
a two-row Macdonald polynomial. Through the transposition property of ¢, t-Kostka polynomials,
we can translate this into a result for the two-column Macdonald polynomials. Again, though it
is great that we have another result towards a combinatorial expression for the Schur expansion of

Macdonald polynomials, the complexity as stated leaves much to be desired.
3.2.3. Zabrocki Two-Column Formula

In 1998, Zabrocki worked on algebraic operators on Macdonald polynomials that led to a formula
for the two-column Macdonald polynomials in Zabrocki (1998). In particular, Zabrocki wanted to
find a vertex operator on Macdonald polynomials in the same spirit as the vertex operators on
other families of symmetric functions. In particular, on the homogeneous symmetric functions,
Schur functions, and Hall-Littlewood symmetric functions, there are vertex operators, Ay, Spm, H.,,

respectively, such that for m > uq,
L B [X] = hm, ) [X]

2. Smsu[X] = S(m [ X]
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3. HEHu[X;t) = Hp o[ X3 1)

Zabrocki’s goal was to find a vertex operator that extends to the Macdonald polynomials. In other

words, he wanted to find an operator H¥ such that

HEHLX;q,t] = Hip ) [X5 0 1]

m,p

For general partitions, this condition is not enough to show uniqueness. However, for special cases,

it is. In Zabrocki (1998), he proved the following theorem.

Theorem 3.2.3 (Zabrocki (1998) Theorem 2.6). The operator
HY" = H, + qu;/tth

gives the desired formula

HthH(Za,lb) [Xa q, t] = H(Qa-!—l’lb [X, q, t]

Using this result, Zabrocki then proves the following on the Schur expansion of two-column Mac-

donald polynomials.

Theorem 3.2.4 (Zabrocki (1998) Corollary 3.7). Let u = (2%,1%), then there are statistics a,(T)

and b, (T) such that:

H(2a71b) = Z qb”(T)taM(T)sshape(T) (.%')
TESYT(2a+b)

where a,(T) and b,(T') are defined from a series of tableaux operators Hy' where s; is either

or .

Understanding the full details requires lots of examples and is beyond the scope here. However,
each operator Hy' and the statistics a,(T") and b,(T") boils down to finding the relative locations
on sets of numbers depending on p and determining if they are of type or . Thus, the
combinatorics involved is quite interesting, though difficult. However, we continue our journey
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to finding simpler combinatorial formulas for the g, t-Kostka polynomials for two columns. Next, is

the best known result and by far the simplest.
3.2.4. Haglund, Haiman, and Loehr Two-Column Formula

We now consider the two-column formula derived in Haglund et al. (2005a). We consider this
the best two-column formula to date given its simple characterization in terms of filling of Young

diagrams. Further, the algebraic statistics are easy to state and compute.

Definition 3.2.5 (Yamanouchi Words). Let w be a word in Z'}. We say w satisfies the Yamanouchi
condition if for any k, the final part of w beginning at k,wiwgy1 ... w, has partition content. In
other words, the content of wy, ... w,, is {11, ... ,j’\’“i} where A\p, > Ag, > - > A, Let Yam(A)

be the set of Yamanouchi words with content {1*1,..., j4}.

Example 3.2.6. As an example, let us compute Yam(3,2). Now, the full set of words with content

{13,22} are
{11122,11212,11221,12112,12121,12211,21112,21121,21211,22111}.
From these words, the following satisfy the Yamanouchi condition:

{12121, 12211, 21121,21211, 22111}

We have the following theorem.

Theorem 3.2.7 (Haglund et al. (2005a) Proposition 9.2). Let u; < 2, then

f{)\’”(q’ t) — Z qim)(cr)tmaj(o)
o:u—7Zy
w(o)eYam(X)

where w(o) is the reading word of the filling o.

The proof of this theorem comes from a crystal structure on the set of fillings. In the construction
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of the crystal structure, the set of fillings, 3J,,, are partitioned into components where qm“(")tm“j (@)
is constant on each component. The authors hoped to extend the crystal structure and algebraic
statistics to other families, so far, such an extensions has been elusive, even for the case u; = 3. We

will continue with our previous example and compute K (3.2),(22,1)(¢, 1)

Example 3.2.8. Note that for A = (3,2), Yam(\) = {12121, 12211, 21121,21211,22111}. Hence,

there are five terms in I~((372)7(272’1)(q, t) corresponding to the following five fillings of u.

] 2] 2] 2]
21| [2]2] [1]1] [1]2] [2]1
211 |1 2 (1] |1 11

These five tableau have ¢, t weights ¢?t°, ¢°t3, ¢'t!, ¢'t?, ¢"t?, respectively. Thus,

K@y en(a.t) =+t +qt +qt* + 1*.

This formula is simple to compute compared to all other known formulas. Unfortunately, if we try
to extend this to larger shapes, it fails. Even in the simplest case p = (3, 3), the formula fails. The
hope is to modify the definition of Yamanouchi and find a formula when p; = 3. Though this has

been unsuccessful thus far, we do have a few other larger families that have been solved.
3.3. Other Combinatorial Formulas for Families of Macdonald Polynomials

In the last 10 years, several new combinatorial formulas have been proven. There are two very
different formulas concerning "doubly-augmented hook" Macdonald polynomials. These have po <
2, i.e. they are extended two-column Macdonald polynomials. The main work on these families
are found in Loehr (2017) and Assaf (2018). Additionally, the best known result can be found in
Blasiak (2016). Here, he solves the "three-column" case, i.e., u1 < 3. We now give an overview of

these three different combinatorial formulas.
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3.3.1. Loehr’s Combinatorial Formula Using RSK Variants

Here, we consider the modified Macdonald polynomial with p; < 3 and po < 2. The main new
results in Loehr (2017) concerns new modified RSK algorithms. With these modified RSK algo-
rithms, Loehr is able to translate Haglund’s combinatorial formula and algebraic statistics into a

Schur expansion. Recall the following algebraic statistics

maj,(o) = Z leg(u) +1

u€Des(o)

and

invy(o) = [Inv(o)| — Z arm(u)

u€Des(o)
where o is a filling of the diagram p and Inv(o) is the set of inversions pairs that are attacking in

p. We now describe and equivalent characterization of inv, (o). Consider any set of 3 cells in the

ol

Ferrer’s diagram of the form:

where we set b = oo if a and ¢ are in the bottom row. After standardization, we call the triple
(a,b,c) an inversion triple if and only if a < b < ¢, b < ¢ < a, or ¢ < a < b. Then, inv,(o) is
equal to the total number of inversion triples in the diagram. Now, consider any 7w € S, we will
associate 7 to a tableau T' by filling the diagram left to right, top to bottom with 7. In other words,
we sometimes associate a permutation 7 to a tableaux such that the reading word of the tableau,

rw(T") is equal to 7. With this in mind, we have the following theorem.

Theorem 3.3.1 (Loehr (2017) Theorem 5). For alln > 1 and p = n with py < 3 and pe < 2,

BXiat= 3 T g e | g (x).
XePar(n) \TeSYT(X)

Loehr notes that if we consider the simplest extension and let © = (4), the theorem fails to hold.

Thus, a different approach must be used for other cases. In order to prove this case, Loehr develops
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a series of new rules for the RSK algorithm. His new RSK algorithm is built on "p-row insertion"
which modifies the usual row insertion of RSK with a few special new rules depending on a parameter
p. Just like the usual row insertion of RSK, p-row insertion is invertible. With the modification in
mind, Loehr proves several properties of the modified RSK algorith, RSK,. Here is a summary of

the important properties found in Loehr (2017).

Theorem 3.3.2 (Properties of RSKP? in Loehr (2017)). Let RSK,(0) = (Py(0),Qp(0)), then
1. Theorem 14 RSK, is a bijection from Sy, to Ux-n SYT(X) x SYT(N).
2. Theorem 18 For all w € S, Des(w) = Des(Qp(w)).

3. Theorem 19 If w € S, is the reading word of a partial standard tableau, then P,(w) =

P(w) =w and Qp(w) = Q(w).

4. Theorem 22 By extending Knuth relations to a p-Knuth relation, ~,, for all partial permu-

tation w, w ~p, Py(w)
5. Theorem 24 For all w, Qp(w) = Q(w).

Many of these properties are identical to the usual RSK properties. Now, when p; < 3 and po < 2,

let m1(p) equal the total number parts of u equal to 1 and p(u) = mi(p) + 1. Now, define

RSK"(w) = (P"(w), Q" (w)) = (Qp(w™"), Py(w™")).

This definition may seem strange, but Loehr is able to show this definition of RSK* satisfy the

following extremely useful theorem.

Theorem 3.3.3 (Theorem 7 Loehr (2017)). Let pu - n, and suppose we can construct an RSK-like

algorithm RSKH = (P*, QM) that satisfies the following 3 conditions:
1. RSK" is a bijection from Sy, to Ux-pn SYT(X) x SYT(X).
2. For allw € S, IDes(w) = Des(P*(w).
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3. For allw € Sy, the values of inv,(w) and maj,(w) depend only on Q*(w) and not on P*(w).

Then, for all X

Bap= 3 gwDh®
TeSYT(N)

where
a4(T) = inu, (w)

and

b (T) = maj,(w)

for all w € Sy, such that Q*(w) = T. Or, equivalently,
a4, (Q) = inv, (RSK*)™H(P,Q))

and

bu(Q) = maj, (RSK*)™'(P,Q)).

Here, Loehr shows his definition of RSK* satisfies the above theorem, which then proves Theorem
51in Loehr (2017). Theorem 7 is of great interest because it provides a general framework for solving
the Schur expansion problem. If we can develop an RSK variant that satisfies those properties, then
we can find a Schur expansion for Macdonald polynomials. We will use this framework in the next

chapter to prove a new positive combinatorial Schur expansion.
3.3.2. Assaf’s Combinatorial Formula Using Dual Equivalence Graphs

Here, we give a combinatorial formula for Macdonald polynomials with restriction po < 2. This
work appears in Assaf (2018) and utilizes the theory of dual equivalence graphs. We consider a dual

equivalence relation on the set of permutations.

Definition 3.3.4. Let w € S;, and 1 < i < n. We define the ith elementary dual equivalence
relation d; the map such that if i is between 7 — 1 and i + 1 in w, then d;(w) = w. Otherwise, d;

interchanges ¢ with whichever of ¢ — 1 and ¢ + 1 is further away from ¢ in w.
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Now, suppose we consider all permutations in S,, with a fixed major index. Then, the d; partition
this set into equivalence classes, where two permutations are in the same equivalence class if there
is a sequence of the d; transforming one into the other. As an example, 2314 and 1423 are dual-
equivalent as d(2314) = 1324 and d3(1324) = 1423. It turns out that there are exactly two

equivalence classes for Sy with major index 2. They are {2314,1324,1423} and {2413, 3412}.

Definition 3.3.5. Let w € S,, and I Des(w) = {iy,49,...,ix}. We define the de-standardization of
w to be the word obtained by changing 1 through ¢; to 1, ¢; + 1 through 5 to 2, etc. We call the
weight of the de-standardization to be the composition whose ith part is the number of i's of the

word.

As an example, consider the permutation 381265974 € Sy with iDes = {2,4,5,7}. The de-
standardization is 251143542 with weight (2,2,1,2,2). Now let dsti(w) be the de-standardization
of the subword wy, - - - wy,. Suppose that for all k, dst;(w) has at least as many i —1’s as i’s. In other
words, every suffix of dst(w) has partition weight. Then, we call w a super-standard word. As an
example, let w = 518296734, then dst(w) = 213132211 with weight (4, 3,2), and for all k, dsty(w)
has partition weight and is thus a super-standard word. To demonstrate, dst4(w) = 132211 which

has weight (3,2,1). With this in mind, the following is shown in Assaf (2018).

Theorem 3.3.6 (Theorem 7 Assaf (2018)). Every permutation is dual-equivalent to a unique super-
standard permutation. Further, the quasi-symmetric generating function of a dual equivalence class

of a super-standard permutation is equal to the Schur function indezed by its weight.

With this theorem in mind and the previous knowledge about maj being preserved in dual-
equivalence classes, Assaf gives the following combinatorial formula for the single column Macdonald

polynomial:

Huny(X5q,t) =Y | Y ™™ ) sx(X)

AFn \ueSS(N)

where SS(A) is the set of super-words with weight A. Now, with the previous results about dual-
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equivalence in mind, Assaf considers a modification which will turn into a formula for other families

of Macdonald polynomials.

Definition 3.3.7. Let w € S,, and 1 < ¢ < n. We define the ith elementary twisted dual equivalence
relation d; the map such that if 7 is between ¢ — 1 and 7 4+ 1 in w, then ciz(w) = w. Otherwise, d;

cyclically rotates ¢ — 1,4,7 + 1 so that ¢ lies on the other side of ¢ — 1 and ¢ + 1.

The significance of these equivalence relations comes from preserving the number of inversions.
Notice that when the relative order of i — 1,4,7 + 1 satisfies the second part of the definition of
twisted dual equivalence, the cyclical rotation preserves the number of inversions. Now, for a
permutation w and w; and w; in w, we say w; and w; are potential u-descents or p-inversions if
they form possible descents or inversions in the filling of u by w. Finally, we have the following set

of involutions:

Definition 3.3.8. Let 1 < i < n, then define

. di(w) if both i — 1 and i 4 1 are potential y-descents or potential y-inversions with
D. =

di(w) otherwise.

(3.1)

As shown in Proposition 12 in Assaf (2018), maj, and inv, are fixed if we apply D!. Though not
appearing in the statements of any of the combinatorial formulas for Assaf, the D! involutions are
vital to the proofs. Assaf uses these involutions to build modified Foata maps. The Foata map is
a bijection on 5, where the major index of a permutation is equal to the inversion number of its
image. The Foata map is indexed by a number x at each step. We will let «, be the Foata map

relative to x. Assaf defines a family of maps ¢y (w) defined as

Pr(w) = w1 -+ Wy Yoy, (W1 + ~ Wn).

With this definition in mind and the previous comments on preserving inversions and major index,

Assaf shows the following combinatorial formula.
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Theorem 3.3.9 (Corollary 19 Assaf (2018)). Let u = (n—k,1¥) and 1, = ¢p110k42- dn_1, then

BuXia,t) =3[ 30 grmntmeintn) | 5 (x)
AFn \ueSS(X)

Now, we have seen similar combinatorial formulas for hook shape partitions. Assaf’s goal is to
extend this to partitions where p = (n — 2b — a,2°,1%). Her process is very similar in nature
developing the formula for the hook shape. She first defines a map called 5, that swaps certain
adjacent indices in a permutation. She then uses this map to create a family of bijections called
O(k,m) that applied by to wk41 -+ Wkym. This family of maps is then used to construct a recursive
family of maps ¢, that are very much in the spirit of the Foata map. The full details of these
various maps are beyond the scope, but the overall goal is to have a bijection similar to the bijection

for the hook shape that preserves inv and maj. The main result is now stated.

Theorem 3.3.10 (Corollary 23 Assaf (2018)). Let u = (n—2b—a,2°,1%) and Yy = Dlat2,p—1)Platah—2) " Plat26,0)P

then

E[N (X’ q, t) = Z Z qi””u(d’u(“))tmaju (Yu(w)) s (X)
AFn \ueSS(\)

This gives the first combinatorial formula for the family of Macondald polynomials indexed by
p = ((n —2b—a,2°1%). Later, we give a new combinatorial formula for the case where yu =
(n—2—a,2,1%) and it is interesting to note that these formulas are quite different. We now briefly

discuss the best known result for Schur expansions of Macdonald polynomials.
3.3.3. Blasiak’s Three-Column Formula

We now consider a conjecture due to Haglund in Haglund (2004) and proven by Blasiak in Blasiak
(2016). This formula depends on the expansion of Macdonald polynomials into a positive sum of

LLT polynomials. We will briefly define LLT polynomials in this section with much greater detail
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about LLT polynomials in Chapter 5. As defined in the proof of the HHL formula, consider

FD(X’q) = Z qinvﬂ(o)xo
o:u—7Zy
Des(o,u)=D

where D is a fixed descent set. We will see later that Fp is an LLT product of ribbons. Now, define

Lp = Zleg(s) +1

Ap = Z arm(s).

seD

With these definitions in mind, it is shown in Haglund et al. (2005b) that

H,(X;q,t) =Y t"Pq 4P Fp(X;q)
D

where D is any potential set of descents in a filling of u. Now, in Haglund (2004), this formula is

slightly modified so that we have:

H,(X;q,8) =Y Fp(X;q) [ ts
D

seD

which can be viewed as a multi-t-variate version of the modified Macdonald polynomials. If we set
ty = t'9()+1 we obtain the original formula. We now describe a weight associated to special fillings
that leads to Haglund’s conjecture. Let F} be the filling of © whose reading word is the identity, and
let F, be the filling of u whose reading word is the reverse of the identity. Now, for 1 < a < b < n,
let pu(a) = A and p(B) = B be the squares that a and b occupy in u respectively. Consider the

following weight contribution of a and b

q if (A,B) is an inversion in F
wi(p, a,b) =  g=orm@¢,if A s a descent in Fy with B = South(A)

1 otherwise.

44



The following is conjectured in Haglund (2004):

Conjecture 3.3.11 (Conjecture 3 Haglund (2004)). If uy < 3, then

]EI#(X;q,f) = Z Z H wt(p, a,b) | sx.

AFn \TeSYT(X) (a,b)eInv(T)

In Blasiak (2016), this conjecture is proven. This gives a positive combinatorial formula for the Schur
coefficients of the LLT product indexed by 3 partitions and gives the positive combinatorial formula
for the modified Macdonald polynomials with at most 3 columns. The full details of the proof
are beyond the scope here. It is important to see this formula because it is still the best known
result for LLT products to this day and gives a combinatorial formula for the largest family of
Macdonald polynomials. We now turn to an old conjecture from the 1990s on the Schur coefficients

of Macdonald polynomials.
3.3.4. Butler’s Conjecture

Our overarching goal is to find a new method of computing the Schur coeficients of Macdonald
polynomials. In Butler (1994), we find an interesting pattern in the coefficients for a fixed A, and

variable p. To illustrate this phenomenon, we consider two examples for n = 5.

i K291,(g, 1)
5 f+f+f+f+f
4,1 ¢+ gt +q* + Pt + g%t

372 q4 —|—q3t+q2t2 —|—q2t—|— qt2
3,1,1 Ot + ¢t + qt? + ¢°t + qt?
2,2,1 P2+ qt3 + 1+ Pt + qt?

2.1,1,1 qtt + 10 + qt3 +t* + qt?
1,1,1,1,1 BBt t0 45 2

Table 3.1: Table of values of f(gglhu(q, t)

Example 3.3.12. First, let us consider the coefficients in 3.1. Let us compare for 4 = 5 and
i =4, 1: the coefficients are ¢% + ¢" 4+ ¢® + ¢® + ¢* and ¢° + ¢*t + ¢* + ¢>t + ¢*t, respectively. Here
we see ¢° and ¢* occur in both, leaving ¢® + ¢” + ¢% and ¢*t + ¢>t + ¢°t, respectively. Notice that

(q8+q7+q6)q*4t = ¢*t+¢3t+q*t. This is just one example, but does this pattern persist. Let’s look
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1 Ks11,(q,t)

5 ¢+ +2¢°+ 1+
4,1 CHE+ Pt P+ Pt +qt
3,2 Gt + ¢+ 2¢% + gt + gt
3,1,1 PP+ + gt
2,21 qt® + Pt +2qt2 + 3+ qt

2,1,1,1 | £ +qtd +t+qt? + 3+ qt
1,1,1,1,1 T4+ t6 42t +t* 13

Table 3.2: Table of values of K311 ,,(q,t)

at the next two, = (4,1) and u = (3,2). Following the same steps, we have ¢ + ¢*t +¢* +¢3t + ¢*t
and ¢* 4 ¢t + ¢?t? + ¢*t + qt?, respectively. Here we see ¢*, ¢3t, and ¢t occur in both, which is a bit
more complex than the first case. However, if we ignore ¢* and ¢?t, we have (¢° + ¢*t + ¢3t)q =%t =
@>t+q*t> +qt%. We can actually continue in this way and find that for two partitions x and v, as long
as we only have to move one square to convert u into v, exactly two coefficients are fixed, and the
remaining are exactly ¢“t* away from the others. In our case, if u = (4,1) and v = (3,2), we have
a = —2and t = 1. One can check that if we let 4 = (4,1) and v = (3,1,1), then a = —3 and ¢t = 2.
Let’s now look at a slightly more complicated example with the coefficients in 3.2. Let u = (4,1)
and v = (3,2), so we are comparing ¢° + ¢* + ¢3t + ¢® + ¢*t + qt with ¢3t + ¢® + 2¢%t + qt* + qt. We
now have 6 coefficients to consider. Notice that ¢3t, ¢%, ¢*t, and ¢t all appear in both. However, if
we ignore ¢3, ¢°t, and qt, then (¢° +q¢* +¢®t)q %t = ¢>t +¢*t +qt%. Here, exactly 3 of the coefficients
are fixed, and the other 3 change. In our case, if u = (4,1) and v = (3,2), we have a = —2 and
b = 1. Comparing to the case above, we got the same values of @ and b. Now this is beginning to

look interesting.

Recall the dominance order on partitions. We can use this dominance order to form a Hasse diagram
for partitions. In a diagram of a partially ordered set, we say that x cover y if x > y in the partial
order, and there does not exist a z such that x > z > y. We can apply this to the ordering for
partition and the associated Hasse diagram. Suppose p > v and p covers v. When this is the case,

we have two possible scenarios. Suppose p — v = (i, j), then either:

l.v—p=(i—a,j+1)
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2. v—pu=(0(—-1,74+a).

In our example, let p =5 and v = (4,1), then p—v = (5,1) and v — p = (1,2). Thus, we are in the
first case with @ = 4. For a given covering as in this case, associate the term ¢~ %t. If the covering
flta

falls into the second case, associate ¢ . With this in mind, we have the following conjecture due

to Butler.

Conjecture 3.3.13 (Conjecture 2.7.1 Butler (1994)). Let A\, u,v = n and p > v such that p covers
v such that q*t® is the monomial associated to the covering. Then exactly f3 coefficients change
from I~('>\7u(q,t) to K, (g,t), and they change evactly by q*°, where f3 is the number of Standard

Young Tableau of shape \ with 2 in the first column.

We can actually extend this conjecture even further. Suppose we have a chain of partitions p; >
o > -+ > up where p; covers u;11. Then we can calculate the change of the coefficients from
f()\,m (g,t) to f{%uk (g,t) as the product of g% % for each covering p; > ;1. Consider the following
example between hook shape partitions. In fact, the exact weight corresponding to the conjecture

is very much related to B,,.

Example 3.3.14. Let = (n —k,1%) and v = (n — k — 1, 1¥+1). We can calculate the total weight
in the conjecture as follows. Recall how we fill partitions to generate B,,. The (g, ) filling from B,

for these partitions is as follows:

- =
= -
2 2
; g |2 ..q#—kq«izzk# j q ] "q2

Recall that B, is the sum of all the weights in these fillings. Note also that B, = B, 4 ¢V Rkt

Butler’s conjecture in this case says that the coefficients in B, will change by g (nh—Dgk+1
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With the previous example in mind, to reformulate the conjecture, let u, be the square in y but not

in v and let v, be the square in v but not in p. Associate the term g™t and ¢™t" as in B,, and
B,, respectively. Then, Butler’s conjecture says the terms that change in IE')W(q,t) to f(A’l,(q,t)

will change by ¢® = tbv~bu,

We now prove Butler’s conjecture for the hook shapes using two different formulas that we have

seen.

Example 3.3.15. Recall when A = (n — k, 1¥), we have

K(n—k,lk),u(qvt) - ek[Bu - 1]

Now, suppose we have p and v one square is moved from p to v. In particular, say that B, =
B+14q¢%t% and B, = B+1+¢™t%. Here we include the weight of 1 from the bottom left corner
outside of the B term for ease when considering the known formula for the ¢,t-Kostka. Thus, B
has exactly n — 2 terms. With Butler’s conjecture in mind, we can easily compute the number of
Standard Young tableaux of shape A with 2 above 1. In particular, the first column must have ,
and the rest of the k£ — 1 entries in the first column can be any subset of the other n — 2 remaig

n—2

numbers. In particular, we have ( b1

) such tableaux. Now, we need to compare the two formulas:

K(nfhlk)’u(q,t) = ek[BM - 1] = ek[B + 1+ q“*‘tb“ - 1] = Ck[B + q““tb“}

and

K k10, (0:1) = ex[By — 1] = ex[B + 1+ ¢™t" — 1] = ex[B + ¢™t™].

Thus, in both cases, we are computing ex[—] of a sum of n — 1 terms, n — 2 of which are the same.
When doing this, our result is the sum of all products of k distinct elements in the sum. Now, if
the k terms are all from terms in B, we get the same result for 4 and v. Thus, our only difference
is when we have k — 1 terms from the B terms, and the kth term is ¢®t% for pu and ¢q®t% for v.

This means we have a total of (Z:f) terms that are multiplied by ¢®t% for 1 and the same number
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of terms multiplied by ¢®t*. These (Z:%) terms are the same because we are choosing size k — 1

subsets from the same B. Thus, the difference in these terms is from p to v is exactly g% ~ %0 —bu

as desired. Further, the number of terms matches the conjectured number of terms from Butler.

Unfortunately, the previous example does not give a nice combinatorial description of K (n—k,1¥), -

However, the following example does.

Example 3.3.16. Let u = (n — k,1%), and recall the inv, and maj, statistics from the HHL
formula in Haglund (2007). Because we are considering fillings of a hook shape, these statistics are
easier to compute. In particular, if we fill 4 with the word w, maj,(w) = maj(w; - - - wgy1), the
usual maj on words. In other words, maj for a hook is simply the maj of the column filling. Further,
when we compute inv,(w), we are simply computing the usual inversion number, inv(wy - - - wy),
the row of the filling. Recall that we had the Foata map, ¢, such that inv(w) = maj(¢(w)). With
this map, wy is actually fixed. In this case, because maj, and inv, are both computed on w and the
only common term is wy, if we apply the Foata map to wy, - - - w,,, we will not affect maj, because
wg is fixed. We now modify how we fill a hook shape diagram. Let wy ---w,_j fill the first row
right to left, and let wy,_g41 - - - wy fill the first column, starting from the second row and going up
(note wy,_ is at the bottom of the first column). Because we are considering all possible words, we
will still obtain the same weights, but it is going to be easier after we note the following important
property about the RSK map. If w; > w;y1, then ¢ + 1 will be above 4 in the insertion ) tableaux
of RSK(w). Also note that maj(w,, - - - w,_gr1wg is the same as comaj(wy . .. wy). We obtain the

following which is a reformulation of the Stembridge formula for hook shapes. First, let

maj,(T) == Y ixi(T) (3.2)

1<i<n—k—1

and
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where x;(7") is 1 if i + 1 is above 4 in T, then

Kyoramy(@t) =Y qremDgeomain), (3.4)
TESYT(N)

Why were we interested in this in terms of Butler’s Conjecture? It is now easy to prove. Suppose
p=(n—k1¥) and v = (n — k — 1,1¥*1). The above formula says that if n — k is above n — k — 1
in T, then x;(T) is true and we get a contribution of n — k — 1 to mayj,, but when we switch to v,
we no longer have this contribution, and instead, we now get n — (n — k — 1) = k + 1 contributing
to comaj,. Thus, for the same Standard Young tableau, the ¢, t- weight changes by ¢~ (*—*=1¢k+1
which is the exact amount conjectured by Butler. Further, the number of Standard Young Tableaux
of shape A with 2 above 1 is the same as those with n — k& above n — k — 1, hence the number of

terms that change is also the same as the conjecture. Thus, Butler’s conjecture is true for hook

shapes.

Now that we have covered all of the necessary background material on RSK, symmetric functions,
Schur expansions of Macdonald Polynomials, and Butler’s conjecture, it is now time to consider the

main result in this direction.
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CHAPTER 4

COMBINATORIAL SCHUR EXPANSION OF AUGMENTED HOOK MACDONALD
POLYNOMIALS

We now consider our main result concerning Macdonald polynomials and Butler’s conjecture. In
particular, we give a combinatorial formula for the Schur expansion of Macdonald polynomials
indexed by an "augmented hook." This formula is a summation over Standard Young tableaux with
statistics that strongly resemble maj and comaj. The proof of the formula is similar to the proof of
the HHL formula as found in Haglund et al. (2005b) or in Appendix A of Haglund (2007). We show
that the formula satisfies the same 3 uniqueness conditions that Macdonald Polynomials satisfy
via 2 sign-reversing involutions. After proving this formula, we will then show how the formula
immediately implies Butler’s conjecture is true when our two partitions are a hook shape and an

augmented hook shape.
4.1. Statement of Theorem

Let = (k —1,2,1"%~1) be an augmented hook. Let A be a partition of n and SYT()) be the
set of standard Young tableaux of shape A. We define two separate algebraic statistics on Standard
Young Tableaux. For T" a Standard Young Tableaux, let x;(T") to evaluate to 1 if i + 1 is above 7 in
T, and 0 otherwise. Let x,(T*) be defined according to jeu-de-taquin (jdt) of k — 2, k — 1, k, and
k -+ 1in T and the chart in Table 4.1, then define

amaju(T) = 3 ixa(T) — (k — 2)xu(T), (1)
1<i<k—1
and
acomaj,(T) = Z (n —i)xi(T) + x,.(T"). (4.2)
k<i<n—1
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Tableau, T Xu(T)
L2]3[4]],
2 0
1 3|4\

3 1
1 2|4\

4 0
1]2]3]

13 1
2

1 4\

4 0
2

13|

4 1
3

1]2

3|4 0
1]2

2| 4 )
1]3

4] 1
3

2]

1]

Table 4.1: Table of x,(7T")

Note that we use the terms amaj and acomaj because both statistics are nearly the same as maj
and comaj, but slightly modified for the augmented hook case. Let us compute the values of amaj

and acomaj in an example.
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Example 4.1.1. Let = (5,2,12) and consider the following SYT of shape (4, 3,2)

T =

them, we can compute amaj and acomaj as follows:

amaj,(T) = Y ixi(T) = (k — 2)xu(T°),
1<i<5

and

acomaj,(T) = Z (9 —i)xi(T) + xu(T°).

6<i<8
In T, xi(T) =1 for i € {2,4,6,8}. Now, we need to compute x, (7). We compute this by first

evacuating 1, 2, and 3 from 7. When we do this, we have the following tableau:

ev3(T) =

B

and to find T*, we remove all numbers greater than k + 1 and standardize k — 2, k—1, k, and k+ 1

to 1, 2, 3, and 4 respectively. Thus we have:

TF =

and using Table 4.1, we have X“(T’“) = 1. Thus, our statistics on T are:
amaj,(T) :=2+4—-(6—-2)x1=2,
and

acomaj, (T) :=(9—-6)+(9—-8)+1=5.

It turns out this tableau will contribute a weight of ¢%t° to 5432 in I:I(5,2712)(X; q,t).
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Now, consider the following symmetric function:

Vu(X5q,t) =) > grmasDgacomagu(D) ) g, (4.3)
A \TeSYT())

This leads to our main result:

Theorem 4.1.2. For = (k —1,2,1""*1) an augmented hook and V,,(X;q,t) as defined above,

‘/;L(X; Q7t) = f{u(X; Q7t)-

4.2. Background Towards the Proof of 4.1.2

We will use tools tools developed in section 2 in order to prove the result. The most important
tools are the RSK algorithm and Jeu-de-Taquin. We begin by showing how we actually evaluated
Xu(T) in Tablea 4.1.

4.2.1. Evaluating x,(7T")

We now describe how to evaluate x,(T) for a given tableau. Locate k —2, k—1, k, and k+ 1 in T.
Now, evacuate numbers 1 through k£ — 3 from 7. This means to start with 1, convert it to a corner
square, relabel 2 through n with 1 through n — 1, and perform jdt on this skew tableau. Repeat
this process k — 4 more times. In the resulting tableau, ¥ — 2, k — 1, k, and k + 1 will be relabeled
as 1, 2, 3, and 4 respectively. These four numbers will form a subtableau that is standard, call this
T*. We then define Xu(T') on this subtableau of 4 numbers. We have all of the values for x, in the

previously shown 4.1.

Now, for a standard Young tableau of size n, we can compute T* as above, which will be a standard
Young tableau of size 4. However, it will be natural to evaluate x, on permutations. We will now

extend the definition of x,(T") to x,(8) where § is a permutation in Sy.
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B

,371

=

1234

1234

1243

1243

1324

1324

1342

1423

1423

1342

1432

1432

2134

2134

2143

2143

2314

3124

2341

4123

2413

3142

2431

4132

3124

2314

3142

2413

3214

3214

3241

4213

3412

3412

3421

4312

4123

2341

4132

2431

4213

3241

4231

4231

4312

3421

4321

4321

[l Bl K=l Rl K=l K= ol K==l el Bl B el I N ) Benl I N Nenl N N Nenl I Ren) el P

Table 4.2: Table of x,(8)

In Table 4.2, we listed 37! for a specific reason: x(8) = x(jdt(87!)). This will be important as we

convert our Schur expansion from a sum over tableau to a sum over permutations.
4.2.2. Relation Between 3 and ! and RSK

We now discuss the relationship between a permutation and its inverse. Let 8 = 182 --- B, and
gt = 5;1551 -+ 1. Suppose B; = j > Bir1 = [, then i +1 is to the left of 7 in 7. In particular,
ﬁj_l = 4 and 51—1 =i+ 1,and [ < j. We can extend this to Bix_2, Br—1, Bk, and Bry+1. We can
map these values to a permutation in Sy, say o, and then if we compute o', this will be the
relative order of k — 2, k — 1, k, and k+ 1 in 8.

that Qg = jdt(B~!). Now, if we want to compute x,, on Qg, we have x,(Qg) = X#(Qg), where we
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evacuate 1 through k£ — 3 from ()3 and look at the subtableau formed by the newly labelled 1, 2, 3,
and 4. By the properties of jdt and the fact that £ —2, k— 1, k, and k+ 1 are consecutive numbers,
this subtableau is equivalent to jdt(c~!). Thus, x,(Qs) = Xu(c). Further, note that i + 1 is above

i in Qg if B; > Biy1. Thus, we can compute amaj, (@) and comaj,(Qg) completely in terms of 3.
4.2.3. Gessel’s Fundamental Quasisymmetric Functions

Our goal now is to follow the framework of the proof for of HHL formula in Haglund et al. (2005b).
In order to do this we need to consider a few more symmetric function properties that we can find

in Haglund (2007). First, we define Gessel’s fundamental quasisymmetric function.

Definition 4.2.1. Consider two alphabets Ay = {1,2,...,n} and A_ = {1,2,...,n} and Ay =
A4 UA_, and a total order on these alphabets TO. Let ¢ be a word in the alphabet A.. We define
the standardization of o as std(c) = 6 where equal positive letters are increasing left to right, and
equal negative letters are decreasing left to right, and any unequal letters respect the total order.

Let D C [n — 1]. Then we define Gessel’s fundamental quasisymmetric function, Fy, p(X), as:

Fpp(X) = Z LarLay " Lap

a1<a2<-<an
a;=0;41 = lgD

where a; € Ay. We can extend this definition to the super fundamental quasisymmetric function:

F.p(X,Y)= E Ta,Tay *** Ta,
a1<a2<--<an
ai:ai+1€A+ = i¢ZD
ai:aH.leA, = i€D

where if @ € A_, then zz = y,.

We use this to give an equivalent definition of sy. Let SYT'(\) be the set of standard Young tableau
of shape A. Let T' € SYT'()\), then we define Des(T) to be the set of ¢ such that ¢ + 1 appears in a

row above ¢ in T'. Then, the following holds:

S)\(X> = Z Fn,Des(T)(X)
TeSYT(N)
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With the above preliminaries in mind, we will derive an equivalent formula for V,, as a sum over

B € S,.
4.3. Proof of 4.1.2

We now prove the main theorem by showing the formula V,(X;q,t) satisfies the 3 Macdonald

polynomial conditions. First, we recall this theorem from Haglund et al. (2005b).

Theorem 4.3.1. The following 3 conditions uniquely determine a family fIM(X; q,t) of symmetric

functions:

e Condition 1 (C1):

E[M[X(q - 1)7 q, t] = Z cﬂvﬂ(% t)mﬂ(X)
p<p/

e Condition 2 (C2)

ﬁ#[X(t —1);q,t] = de,u(Qat)mp(X)
p<p

e Condition 3 (C3)

Hy(X5q,t)|on = 1.

We will show that V), satisfies these 3 conditions, and is thus equal to H u- First, note that by
definition, C3 is satisfied since z}' only appears when A = (n) since only one word has content 1",
and this means the single row tableau is filled with all 1s. Further, for this tableau, amaj, and
acomayj, evaluate to 0. Hence, the coefficient of z7 is 1. Now, the hard part is to prove C1 and C2.
We will now derive an equivalent expression for V},. From our description of Gessel’s fundamental

quasisymmetric function and expanding Schur functions in the previous section,

VM(X; q, t) _ Z Z qamajH(T)tacomaju(T) s
An \TeSYT(N)

_ Z Z qamaj# (T)tacomaj# (T) Fn,Des(T’) (X)
AFn \TeSYT(X) T'eSYT(N)
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and we now note that if this product is expanded, we get a sum over pairs of standard Young
tableau of the same shape where the q and t powers depend on one, and the Gessel fundamental

quasisymmetric function depends on the other. L.e., we obtain:

VaXig ) =3 | 3 g @eomen® 2 Fupear(X)
An \TeSYT(\) e
o D S e e

Aen \ (T, T)eSYT(A\) xSYT(N)

Suppose 8 — (T’,T) under RSK, then, this can be rewritten as

V,LL(X; q, t) - Z qamaju (T)tacomajM (1) Fn,des(T’) (X)
(T, T)eSYT(A)xSYT(X)

- Z qamaju(Qﬁ)tacomaju(Qﬁ)andes(PB) (X)
BESH
Computing amaj, (@) and acom,(Qs) can be done with only knowing . In particular, we already
showed how to compute x,(3) which is consistent with (g, and computing x;(Q3) is equivalent
to checking if 8; > B;41. Hence, we can write amaj,(Qg) and acomaj,(Qg) as amaj,(B8) and
acomaj,(B), respectively. Further, des(Pg) is the same as the set of ¢ such that i 4+ 1 is to the left
of i in 8. Equivalently, this is equal to des(37!), which is the set of i such that 3; LS Bijrll. With

this in mind, we have:

VN(X; q, t) _ Z qamaj“(ﬁ)tacomaj'u('B)Fn,des(ﬁ_l)(X)
BESR

We will now convert this formula in a similar fashion to the Appendix in Haglund (2007). Using

equations (A.4) and (A.5) in Haglund (2007), the above formula can be rewritten as:

Vu(X; q, t) _ Z qamaju(std(a))tacomaju(std(a)):EU’

o:pu—Zt

where o is a filling of u from left to right starting with the first row (the reason for viewing it like
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this will be clear later), and std(o) is the standardization of o with respect to the total order. Now,
using (A.5) and (6.25) (see (A.15) for comparison) in Haglund (2007), along with our formula for

V,, in terms of permutations and Gessel fundamentals, we obtain:

GVVIX +Yiq, 1 = Y qmesn@acomein®F, oo (X,Y).
BESH

Now, replace x; with ax; and y; by —x;, then the previous equation implies (see A.18 in Haglund

(2007) book for reference):

VN [Xa — X:q, t] _ Z qamaju(std(&))tacomaju(std(&))apos(&)(_1)neg(&)l,|&|’
G:u—A4
where |G| is obtained by replacing each negative letter j by j, pos and neg denote the number of
positive and negative letters in & respectively, and std(¢) is with respect to the total order on A.
With this in mind, we can now prove C'1 and C2 by utilizing two different sign-reversing involutions

and two different total orders.
4.3.1. Proof of C1

In order to prove C1, we will construct a sign-reversing involution on fillings of . We will use the
total order:

1<2<--<n<n< --<2<1.

When o = g, we have:

V,u [Xq o X; q, t] _ Z qamzzju(std(&))tacomzzju(std(&))qpos([r) (71)1169(5')1,‘5'"
Fg:u—Ay
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and we will convert this to a sum over nearly non-attacking fillings of u, where we view a filling

starting in the first row, left to right, bottom to top. This is how we view the filling:

=

Vk+2

Ok¥k+1

Nearly-non-attacking means that within any row of the filling, there will be at most one element from
{i,i}, with a few exceptions depending on o%_9,0%_1, 0%, 0x+1. We call o; and o; an attacking pair
if they are in the same row and |o;| = |oj|. We now construct the sign-reversing, weight-preserving

involution.
Case 1: Attacking 1's in First Row

Consider the filling & of u. Suppose there exist attacking 1’s in the first row. Further, of all such
possible attacking pairs of 1’s, consider the first pair (i.e., the two 1’s that are furthest left). Then,
loi| = |oj| =1, i < j, and ¢ is minimal. Further, assume ¢ < k —2. We claim that changing the sign
(i.e. 1 changed to 1 and 1 changed to 1) of o; is a sign-reversing, weight-preserving involution, call
the new filling o’. To see this, first note that the sign clearly changes and the x power stays the
same. Further, the value of x; will not change for any j besides possibly 7 — 1 and ¢ since o; and
0j+1 are unchanged outside of those values for j. Additionally, since i < k — 2, x,(&) is unchanged

as well. Hence, acomaj,(std(c) = acomaju(std(z;’ )), and the t weight is preserved.

Now, we show the g weight is preserved. First, suppose o; = 1, then upon standardization, o; will
be the smallest value, and hence x;—1(¢) = 1, and x;(¢) = 0. However, when switching the sign
o) = 1 is now the largest element after standardization, so x;_1(¢’) = 0, and x;(c’) = 1. Thus,

amagy,(std(5)) = amag,(std(c’)) — 1. However, pos(5) = pos() + 1, and thus, the ¢ — weight
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is preserved. Hence, this is a sign-reversing involution. Note that the argument for if o; = 1 is

identical.

In fact, this same argument works if we have ¢ = k — 2, but we have to be careful when checking
Xu(G). When we have o_2,0%_1,0%, 011 Versus o;_,,05_1,0%,0}, 1, if op_2 = 1, then it is the
smallest element of this set under standardization, and thus o}_, = 1 is now the largest upon
standardization. As an example, if the relative order was 1324, it will be 4213 in /. We can check
that x,(0) = Xu(t;’ ) in all six of these cases using Table 4.2. Hence, all statistics are fixed, and this
is a sign-reversing, weight-preserving involution. Thus, we have eliminated all fillings where there is
a |o;| =1 for j < k — 1, so there is at most one 1 or 1 in the first row. In fact, the above argument
actually used no knowledge of the position of the second 1 or 1, and can be used to show that we
can eliminate all fillings with a 1 or 1 in the first ¥ — 2 values. Hence, if there is a 1 or 1 in one

of the first k — 2 positions, we have a second filling with the opposite weight and sign cancelling it

out. Thus, if there is a 1 or 1 in the first row, we can assume it is oj_1.
Case 2: Attacking 1’s in the Second Row

With the previous eliminated cases in mind, we now consider when |o%| = |ox+1] = 1. This leads to
our first allowed exception to non-attacking. If there are no 1’s or 1’s in the first row then this filling
will not violate the triangularity conditions with respect to the 1’s and 1’s because we are allowed
n—k-+11's and 1’s and if there are none in the first row, there can be a maximum of n —k+1 in the
filling. Now, if there is a 1 or 1 in the first row, then it must be oj_; after eliminating fillings from
Case 1. We claim that switching the sign of o, is a sign-reversing, weight-preserving involution.
As in Case 1, the only values of Xl(a~)) that could change in y;(o’) are i = k — 2 or k — 1, and
in fact, just as before, if o1 = 1, then o}_, = 1, and we are switching from the smallest value
to largest value upon standardization, so xr_s changes from 1 to 0, and xx_1 changes from 0 to
1. Now, I claim that x,(d) = Xu(‘;/ ), and this would imply all statistics are preserved, ensuring a
sign-reversing involution. Again, this is a case by case basis that needs to be checked. There are
8 total possible cases. As an example, supposed oo = X, ox_1 = 1, 0, = 1, and oy, 1 = 1, then

0,_o =X, 0,1 =1,0;, =1, and 0}, = 1, and upon standardization the relative orders are 3142
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and 2431 respectively (note that X is not 1 or 1, so we can deduce its relative order). When we
check all 8 of these cases (really only 4 cases as they come in pairs), the value of x, remains the
same. Thus, we can eliminate these fillings as well. Now, we either have a filling with no 1’s in the
first row, and zero, one, or two one’s in the second row, or a filling with one 1 in the first row (at

ok—1), and zero or one 1 in the second row.

With these cases in mind, it is now irrelevant what the value of op49,...,0, are, as we have at
most n —k + 1 1's and 1’s regardless. Thus, all of our remaining fillings are nearly non-attacking

with respect to 1 and 1. Next, we take these cases and consider what happens with attacking 2’s.
Case 3: Attacking 2’s

By assumption, we have narrowed it down to fillings that are nearly non-attacking with respect to
1’s. Suppose we have attacking 2’s in the first row. First, if there is a one in the first row, it must
be in position o;_1. Thus, if there are attacking 2’s, the left most must be in position at most k& — 3,
say o; with ¢« < k — 3. In particular, this means that after standardization, it will be either the
smallest, or largest element among the first £ — 2 numbers. In this case, we claim the exact same
involution works as in Case 1. Le., switch the sign of o; and all x; values are fixed besides x;_1
and y;, and both y;_1 and x; switch values using the same argument from Case 1. Further, by
assumption, ¢ < k — 3, so the value of x, will be unchanged. Thus, the weights will be preserved,

and this is a sign-reversing, weight-preserving involution.

Now, suppose there are no 1’s in the first row, and there are attacking 2’s. If the leftmost 2 is o; and
1 < k — 3, the same argument applies, and we can reverse its sign, and the proof follows. However,
if i = k— 2, we leave this filling and consider it nearly non-attacking with respect to 1’s and 2’s. We
can do this because we know there are at most n —k+1 1’s and 1’s above the first row, and at most
only 2 1's, 1’s, 2’s, and 2's in the first row. This gives us a total of at most n — k + 3 = p} + pb,

satisfying triangularity with respect to 1’s and 2’s.

We now note that we need not consider attacking 2's (and in case 4 any attacking j's) in the second

row at this point. Since our case analysis shows we can assume no attacking 1’s or 2’s in the first
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row or just nearly non-attacking case of 2’s in the first row, if the filling does have attacking 2’s in
the second row, we cannot violate triangularity conditions with respect to 1’s and 2’s regardless of
the remaining filling (in fact we will not need to consider these cases for other j's either) for the
same triangularity argument. Like in the previous case, suppose there is only a single 2 in the first
row. If it is in position o;_s or ox_1, we do nothing. If it is in position ¢ < k — 2, we can change
the sign and have a sign-reversing involution as before. We specified these conditions specifically to
avoid potential issues with evaluating x,. However, this implies we have fillings with no 2’s before

position £ — 2. Thus, we have triangularity with respect to 1’s and 2’s.
Case 4: Attacking j's

The remaining case will be similar to the previous case. We are in the position with nearly non-
attacking fillings with respect to 1’s and 2’s. Consider the first pair of attacking 3’s in the first row
in positions ¢ and j, with i < j. If j <= k — 2, then we can proceed directly as before and change
the sign of o;, as this will not change x. Now, suppose 7 = k — 1, so we have exactly one pair of
attacking 3's in the first row. If 7 < k — 3, then we can change the sign of ¢; and have the desired
sign-reversing involution. If ¢ = k — 3, and |oj_2| = 2, then we leave this case and add it to the
nearly non-attacking category (note this case is possible after removing attacking 2’s in the previous
case). Similarly, if i« = k — 2, we leave this case and add it to the nearly non-attacking category.
Why are we skipping these cases? If we try to change the sign of o_5, we may change the value of
X, and if we try to change o}s sign, we may not necessarily change the value of x; if |oi41| < |03,
which means the statistics may not match. Similarly, if there is only one 3 in the first row, it is not
O)—2 Or 0)_1, and |o;| > |oi+1|, then we can change the sign of o; and obtain the correct statistics.

We continue with this procedure, and we are left with fillings of the following form after considering
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j's and j's:

VE+2

OkGk+]

where the segment of ¢ from o; through o;_1 is of one of the following forms:

|03 > |oia]| >+ > |op—3| > |ok—2| = [ok-1]
loi| > |oig1| > - > |og—s| > |ok—2| > |oh_1]

|oi| > |oit1] > -+ > |og—3| > |ok—2| < |o)-1]|

In other words, in terms of absolute value, we have a strictly decreasing sequence, except possibly
ok—2 and o;_1. We can do this because any time we have |o;| < |o;41| where the value of oy is
the first occurrence and |o,| > |oy| for p < I, we can switch its sign like above (aside from when

l=Fk—2).

Our remaining cases are those that have a strictly decreasing sequence like the three possibilities
above. But this implies that we have either 1 or 2 a’s for |a| <= j in the row, where having two
a’'s only occurs when |o;_1| = a. We allow this as a nearly non-attacking filling, and this satisfies
triangularity as we have at most n — k + j — 1 numbers from {1,1,...,75,7}, and we are allowed
py+pyt s =n—k+14+2+1+4--+1=n—k+j— 1. Thus, we are left with fillings that

are nearly non-attacking and satisfies C'1.
Condensed and Easier Proof to Follow Showing C1

First, let 6 = o109 - - - 0, be the filling. Note that the first £ — 1 terms correspond to the first row.
Find the smallest i < k — 1 where |o;| = 1, if it exists. This will either be the largest or smallest

element after standardizing. Change the sign of ¢;, and this is a sign-reversing involution as above.
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If no 7 exists, we next check to see if |ox_1| = |og| = |ok41| = 1. If this is true, change the sign on

ok—1, and this is a sign-reversing involution as above.

If none of this is true, we move on to finding the first ¢ such that |o;| =2 and i < k—2. If such an 4
exists, we change the sign of o; and note that by eliminating the previous cases, we are guaranteed
that o; is either the smallest or largest element after standardizing among the first ¢ + 1 elements,

and thus preserve the statistics.

If we still have not changed &, we repeat this for 3, and find the first i < k—2 such that |o;| = 3. We
then check to see if |o;41| >= 3. If this is the case, we change the sign of 0;, and it is a sign-reversing
involution because we are guaranteed o; is the smallest or largest number after standardizing among
the first 7 + 1 elements. Further, note that the possible fringe cases only occur if |o;41] = 1 or 2

which only happens if i = k — 3. Now repeat the process for 3 with all larger numbers.

With the above analysis, we will map & to a filling with the same weight but opposite sign in all

cases aside from the following:

lo1] > |oo| > -+ > |og—3| > |ok—2

and oy_1 is arbitrary. We already know that the number of 1’s and 1’s is at most p}. With the
remaining &, because of the strictly decreasing sequence, we are checking for the maximum number
of elements from {1,1,2,2,...,7,5}. We can have at most j in the first row (the final j), 2 in the
second row, and n — k — 1 above the second row. This gives a maximum of n —k —1+j+2 =
n—k+j+1l=pj+ - u;, satisfying the triangularity for all j as desired. Thus, we are left with

nearly non-attacking fillings and have proven C1.
4.3.2. Proof of C2

This proof will be modelled after the proof for C'1 in the previous section. We use the following

ordering, which is the opposite of the ordering for the C'1 proof:

1<2<---<n<n<n—-1<---<2<1
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We also consider fillings of p from bottom to top, right to left for easier understanding. If ¢ =

01 - -+ Oy, then the filling is:

=

Tk+2

Vk+10k

Our goal is to find a sign-reversing, weight-preserving involution so that the remaining fillings are

those where all of the 1’s are in the first row, 2's in the first two rows, and in general, j's in the

first j rows. Here is the process.

If there is a 1 or 1 in position o; for i > k + 1, pick the largest i. We change the sign of ;. If
o; = 1, then after standardizing, it is the largest element, hence x;_1(¢) = 0 and x;(6) = 1. After
changing the sign, in o/, yi—1(¢’) = 1 and x;(6) = 0, as o/ =1 is now the smallest number after
standardizing. Hence, changing from 1 to 1 gains 1 ¢ in acomayj,, but loses 1 ¢ from pos(¢). Thus,
the t statistic is fixed. Note that the value of X, is also fixed. There are six cases to check for the
possible relative orders of o;_o, 0_1, 0, 0x+1 When |ox11| = 1 as in the case for C1. For example, if
the relative order is 2314, then the involution changes the relative order to 3421, and X, on these is
the same using Table 4.2. The g-statistic and x weight are also clearly fixed in this case. Thus, this
is a sign-reversing involution that preserves the statistics. This eliminates all cases for 1’s outside

the first row besides |oj| = 1.

To satisfy the triangularity condition, we are allowed k — 1 total 1’s in a filling. If either |o}_s]| or
|ok—1| is not 1, we allow this as a permissible filling with respect to 1’s, and move this filling to the
next step. Otherwise, consider the fillings where |og_o| = |ox—1| = o] = 1 and |ok41| # 1. We

claim that changing the sign of 031 is a weight preserving involution. The key observation is that
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in these cases, if o1 = 1, then x,(d) = 0, and if 05,1 = 1, then x,(¢) = 1. Hence, changing the
sign changes the value of y,,. Thus, changing from 1 to 1 increases acomagj, by 1 and the number of
positive values decreases by 1, so the ¢ statistic is preserved. Further, x;_2(6) = 0, but X(U~’ ) =1,
and the value of x,_1(7) is unchanged. Hence, xj_2 increases the g-power by k—2, but x, decreases
the g-power by k —2. With this map the g-power is fixed. Thus, we have a sign-reversing involution
such that the remaining fillings have at most k¥ — 1 1’s and 1, and, critical to the remaining of the

proof, the maximum ¢ such that |o;| = 1 is k.

With the above fillings eliminated, we consider 2’s and 2's. Find the last ¢ such that |o;| = 2 and
i > k + 2. If one exists, change the sign, which will change this from the smallest to largest or
largest to smallest upon standardization among all o; for j > k (this is guaranteed when i = k + 2
as the previous involution prevents |ox1| = 1). Now, changing the sign preserves weights for the
same reason as with the 1’s and 1’s. Hence, after removing the fillings from this involution, this

guarantees all 2’s are in the bottom two rows.

The same logic applied for larger j’s. Consider the last j or j above the first j rows in the filling.
If it is in position %, then upon standardization, o; is either the largest or smallest number among
0i—1,04,...,0n (note because of the iterative process, we have guaranteed |o;_i| >= j). Thus,
changing the sign changes the values of y;_1 and Yx;, and the overall ¢ weight will be unchanged.
The g-weight will also be fixed and value of X, will also be fixed. Thus this is a sign-reversing
involution in total, and we have the desired triangularity from C2. This completes the proof of

Theorem 4.1.2.
4.4. Implications of the Combinatorial Formula for Augmented Hooks

Now that we have proven the main theorem, we can now consider an important corollary in regard

to Butler’s Conjecture.

Corollary 4.4.1. Let = (k,1"7%) a hook shape and v = (k — 1,2,1"%~1) an augmented hook

shape. Then the Schur coefficients of H,(X;q,t) and fIM(X; q,t) satisfy Butler’s conjecture.
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Proof. Recall the following Schur expansions for ﬁ,,(X ;q,t) and H uw(X5q,t):

Hy(X;q.t) =) | D gmn@geomen ),
AFn \TeSYT(\)

and

IZL,(X; q, t) _ Z Z qamaju(T)tacomajM(T) 5.
Arn \TeSYT(N)

We need to compare maj, with amaj, and comaj, with acomayj,. Recall the following four

formulas:

1<i<k—1
comaj,(T) = (n—1)x:(T)
k<i<n—1
amaj,(T) = ixi(T) — (k — Q)X,,(Tk)
1<i<k—1
acomaj, (T) = (n —i)xi(T) + xu(T")
k<i<n—1

In particular, these statistics are exactly the same unless x,(T%) = 1. In this case for the given
T, the weight of T' changes by ¢~ *~2)¢, the exact amount from Butler’s conjecture. Further, the
number that changes depend on the result of jdt on k —2, k — 1, k, and k+ 1 in a given T. The
number of such cases is exactly the same as the number of SYT'(\) with 2 above 1 because of the
definition of x,. In particular, if the result of jdt is not the shape 22, we check if k is above £ —1 in
jdt. If it is 22, then we check the exact opposite. This verifies the number conjectured by Butler,

proving the corollary. O
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CHAPTER 5

e-EXPANSION OF LLT POLYNOMIALS

Our goal is to give a combinatorial interpretation of coefficients of a special family of LLT polyno-
mials. In 1997, Lascoux, Leclere, and Thibon introduced what are now known as LLT polynomials.

LLT polynomials are defined in terms of a tuple of skew partitions.

Here is an example of a tuple of 3 skew shapes in the 12 x 12 grid.

Y\ =

In order to form a term in the LLT polynomial, we fill each skew shape so that we obtain a
semistandard Young tableaux. For a given filling, the x term is the product of all wfl where ¢ occurs
k; times in the filling of the skew shapes. We also get a ¢ weight from the filling. We define an
algebraic statistic called an inversion when two numbers ¢ and j are on the same diagonal of the
grid, the smaller number is above and to the right of the bigger number, and the numbers are in
different skew shapes. We also have an inversion if two numbers ¢ and j are on successive diagonals
and in different shapes of the diagram, and the bigger number is on higher diagonal and to the right

of the smaller number. For a given filling, we obtain the weight ¢/,

Here is the formal definition of LLT polynomials.
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Definition 5.0.1 (LLT Polynomials). Given a tuple of skew shapes v = (A /u(M A@) /2 \E) 7, k)y

where \(¥) is a partition, and p(? is a subpartition of A#), define the LLT polynomial as:

LX) = Y Xgre),

SSYT fillings o
of shape

Note that in the previous chapter, we saw a similar characterization of LLT, (X, ¢). In particular,

LLT’Y (X, q) = Z qmv(T)FDes(T) (x)
TeSYT(v)

We will consider some special cases of LLT polynomials. First, if all parts of v consists of single boxes,
we call this a unicellular LLT polynomials. Next, if each part of v is a single column, we call this a
vertical strip LLT polynomial. With these definitions of LLT polynomials in mind, we will consider
some recent, interesting results found in Abreu and Nigro (2021), Alexandersson and Panova (2018),

Alexandersson and Sulzgruber (2022), and D’Adderio (2020).
5.1. Chromatic Polynomial and its Extensions

We now consider the chromatic polynomial of a graph and its extensions. Let G be a graph. We
say a coloring of G, denoted k(G), is proper if whenever u and v are connected, the color of w is
not the same as the color of v. We us this to define the chromatic polynomial for a graph G. Let

Xx(G) be the number of colorings of the graph G with exactly k colors. Then,

X(@) =) xa(k)z"
=1

is the classic chromatic polynomial. Stanley used this to define a new symmetric function in Stanley
(1995). Formally, let x : V(G) — N be the map associated to a coloring of the vertices of G. Let

Ty = HveV(G) Ty (v). Now, define the chromatic symmetric function of a graph G to be

XG(X) = prn
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where the sum is over all proper colorings x of GG. It turns out that this polynomial is in fact
symmetric, and a great deal of research concerning these polynomials has occurred over the years.
Eventually, in 2012, Shareshian and Wachs introduced a new extension that has spawned extensive
research in recent years. The full details are in Shareshian and Wachs (2016). We now define this
new extension. We will associate an algebraic statistic to a coloring of G. Let E be the set of edges

in G, and let k be a coloring. Then, define

asc(r) = [{(i,4) € E,i < j, (i) < rw(5)};

we consider this to be the number of ascents of the coloring. Then, we have the following g-analogue

of the chromatic symmetric function:

Xo(X,q) =Y ¢,

the chromatic quasisymmetric function. These functions are not symmetric in general, hence the
‘quasi’ designation. However, there is a large family of graphs such that the above is a symmetric

function. We will introduce a few key concepts to develop these special graphs.

Definition 5.1.1. Let P be a finite Poset with respect to some order. We form the incomparability
graph, inc(P), by letting the elements of P to be the vertices of the graph, and we have an edge

between any two elements that are incomparable with respect to the order.
With the above in mind, we will define a special order to form a Poset.

Definition 5.1.2. Let [a; + 1] for i € [n] such that a; < a; be a set of n intervals of unit length in

R. We form the natural unit interval order Poset P on the set [n] by letting i <p j if a; + 1 < a;.

The above definition may seem strange and unmotivated, but it turns out that there is a bijection
between the set of the natural unit interval Posets and the set of regular semisimple Hessenberg
varieties of type A,_1 Shareshian and Wachs (2016). We now define the concept of an inversion

with respect to a graph G.

71



Definition 5.1.3. Let G = ([n], E') be a graph on [n] with edge set E. Let o € Sy,. If (0(i),0(5)) €
E, then we say this is a G — inversion if i < j and o; > ;. We let invg(o) be the number of

G — inversions of o.
We can also define descents with respect to a Poset.

Definition 5.1.4. Let P be a Poset on [n] and o € S,,. We define a P —descent i of o if 0y >p 041.

We let desp(o) be the set of P — descents of o.

Both of these are extensions of the usual inversion and descent statistics on permutations. In
fact, if G is the complete graph, invg (o) = inv(o), and if P is the usual order on integers, then

desp(o) = des(o).
The following is a major theorem in Shareshian and Wachs (2016).

Theorem 5.1.5 (Theorem 4.5 Shareshian and Wachs (2016)). Let G be the incomparability graph
of a natural unit interval order Poset. Then, the chromatic quasisymmetric function Xg(X,q) is

symmetric.

After proving this theorem and examining the expansions of these polynomials into different bases,

the authors conjectured the following.

Conjecture 5.1.6 (Conjecture 5.1 Shareshian and Wachs (2016)). Let G be the incomparability
graph of a natural unit interval order Poset. Then, the chromatic quasisymmetric function Xg(X, q)

1S e-positive.

We will also consider a special family of graphs whose chromatic quasisymmetric function is Schur

positive. To do this, we will use a Poset extension to fillings of tableau.

Definition 5.1.7. Let P be a Poset on [n] and A - n. We consider fillings of the Young diagrams

of shape X to be a P — tableau if

e Each element of [n] appears exactly once.
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e [f y appears immediately to the right of = in the filling, then y >p x.
o If y appears immediately above x in the fillings, then y £p x.

We let Tp to be the set of all P — tableau. For T' € Tp and G = inc(P), then we define the
G —inversion of T to be an edge in G such that i < j and i appears above j in T. We let invg(T)

to be the set of inversions in 7" and A\(T") to be the shape of T'.
With the above definition in mind, we have the following Schur expansion:

Theorem 5.1.8 (Theorem 6.4 Shareshian and Wachs (2016)). Let G be the incomparability graph

of a natural unit interval order Poset. Then, we have the following

Xa(X,q)= ) g™ Dsy o).
TeTp

5.2. Dyck Paths and Unicellular LLT Polynomials

We now consider a combinatorial formulation of natural unit interval graphs and their connections

to chromatic quasisymmetric functions as found in Alexandersson and Panova (2018).

Definition 5.2.1. A circular unit arc digraph is a directed graph with vertices [n] and edge set:
(i—ai)—>’i, (i—ai+1)—>i, el (i—ai—l—(ai—i—l))%i

for all i € [n] and a = (a4, ..., ay) satisfies:
e 0<a; <n—1
® ai41 <a;+1
where the indices are all taken mod n. Denote this graph as I';.

It turns out that if a; = 0, then I'y is the unit interval graph. Further, in this case, we call a the

area sequence of the graph. This allows us to naturally relate the graphs to Dyck Paths. Below is
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an example of an area sequence and its corresponding Dyck Path.

Example 5.2.2. Let a=(0,1,1,0,1,2,2). Then, the following is the corresponding Dyck Path.

Figure 5.1: Dyck Path for n =7

Further, note that because of this bijection, the number of unit interval graphs on n vertices is the

nth Catalan number, C,,. See Haglund (2007) for more details on the Catalan numbers.

Above, it was claimed that I', is the unit interval graph associated to a. We now show the how
this Poset arises from a as in Alexandersson and Panova (2018). For an area sequence a and its
corresponding Dyck Path, we construct a Poset P, as follows. Put the identity permutation on the
diagonal of the Dyck Path. Using the path, if the cell in the column of ¢ and the row j is above
the Dyck Path, then ¢ < j in P,. With this Poset in mind, inc(P,) = I',. With this in mind, the

authors in Alexandersson and Panova (2018) let

Xr,(Xiq) = ) weq*et

rk:I'g—N

where the sum is over proper colorings of I',. This agrees with the definition of the chromatic qua-
sisymmetric function in Shareshian and Wachs (2016). The authors in Alexandersson and Panova
(2018) extend this definition so the colorings are not necessarily proper. They denote this extension
Go(X;q). Why is this case interesting? It turns out this is exactly the classic unicellular LLT poly-
nomial. With this in mind, we have the following interesting relationship between the unicellular

LLT polynomials and chromatic quasisymmetric functions.

Proposition 5.2.3 (Lemma 6.1 Alexandersson and Panova (2018)). Let a be an area sequence for
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a unit interval graph. Then

(¢ —1)7"Ga[X (g — 1);9] = Xr,(X;9).

This relationship has spawned extensive research. We will see some interesting results when we let

qg—q+1.
5.3. Schroeder Paths and Vertical Strip LLT Polynomials

With the previous section on Dyck Paths and the Unicellular LLT Polynomials in mind, the authors

in Alexandersson and Sulzgruber (2022) extend this to cover other cases.

Definition 5.3.1. Let n indicate the unit north path on a grid, e indicate the unit east path on a
grid, and d indicate a diagonal path from (i, j) to (i + 1,7 + 1). We define a Schréeder Path from
(0,0) to (n,n) as any sequence of n, e, and d as any path that stays above the main diagonal and
has no d step from (i,i) to (i + 1,7 + 1)- i.e., along the main diagonal. We call the set of all these

possible paths SP,.
Notice that the set of Dyck paths is a subset of Schréeder Paths.

Definition 5.3.2. Let I' = (V| E) be a unit interval graph and let S C E be a subset of the edges.
We call T's = (V| E,S) a decorated unit interval graph with strict edges S. Let P € SP, be a
Schroeder Path. We associate a decorated unit interval graph I'p to P as follows: if u,v € [n] and
u < v, then there is a non-strict edge uv in I'p if and only if there is a cell in column u and row v

below the path P. If the cell (u,v) is the endpoint of a d step, then uv is a strict edge in I'p.
Now, we extend the definition of a coloring to these graphs.

Definition 5.3.3. If I'p is a decorated unit interval graph of the Schréeder Path P, then a coloring
of T'p is k : [n] — NT such that k(u) < k(v) for all U,v € [n] such that u < v and wv is a strict
edge. We also have an ascent statistic where an ascent wv is a non-strict edge with is « < v and

k(u) < k(v). We let asc(k) be the number of ascents of a coloring.
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Finally, we define the following functions for P € SP,:

_ Z qasc(n)x

where the sum is over all coloring of I'p. It turns out that this is exactly the same as vertical
strip LLT polynomials, shown in Alexandersson and Panova (2018). With this construction of the
vertical strip LLT polynomials, the authors in Alexandersson and Sulzgruber (2022) are able to

show a positive e-expansion of Gp. First, we define an orientation of the graphs.

Definition 5.3.4. Let I' = (V, E) be a graph. Then a function § : E — V2 is an orientation of T
where 6 assigns a direction to each edge in E (i.e., either wb or vt). The natural orientation is the
orientation that assigns ub when u < v. For a decorated unit interval graph I'p = (V, E, S), we let
O(P) be the set of orientations of I'p such that the restriction of € to S is the natural orientation.
Finally, for § € O(P) and ut € 6, we have an ascent if u < v and wv ¢ S and asc(f) is the number

of ascents for a given 6.
This gives us the following result in Alexandersson and Sulzgruber (2022).

Corollary 5.3.5 (Corollary 2.10 Alexandersson and Sulzgruber (2022)). Let P € SP,, and define

Gp(X;q+1) = Z ¢ Pey ) (X)
0e0(P

then, Gp = Gp, giving a positive, combinatorial e-expansion of Gp(X;q+1).

With this e-expansion in mind, the authors prove a new Schur expansion of the vertical strip LLT

polynomials as well. In particular,

Corollary 5.3.6 (Corollary 6.2 Alexandersson and Sulzgruber (2022)). Let P € SP, and K ,, the

usual Kostka number, then

Z Z asc Ku’,/\(ﬂ) su(X).

uEn 0eO(P
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The previous corollaries hold for vertical strip LLT polynomials, and because unicellular LLT polyno-

mials are a subset of these, we also get the next result on the Chromatic Quasisymmetric Functions.

Corollary 5.3.7 (Corollary 6.19 Alexandersson and Sulzgruber (2022)). For all Dyck paths P € D,

Xp(X;q)= Y (g 1) ey [X(g—1)].
0cO(P)

The previously results from Alexandersson and Sulzgruber (2022) were mainly proven through var-
ious bijections on paths and showing special relations satisfied by the polynomials. A few years
prior D’Adderio actually proved the same result using the Dyck Path algebra and various algebraic

operators. See D’Adderio (2020) for full details of the proof.
5.4. Indifference Graphs and a Combinatorial Formula for LLT Polynomials

We now describe the results found in Abreu and Nigro (2021) concerning chromatic quasisymmetric
functions and LLT Polynomials. Their work deals with spanning forests of a graph, which is beyond
the scope of what we need. We will now define this family of graphs known as indifference graphs.

These graphs naturally relate to previous notions we have discussed.

Definition 5.4.1. Let V = [n] and G = (V, E). Then, G is an indifference graph if for any (i,j) € E

with i < 7, (i, k) and (k,j) are also edges in E for every i < k < j.
Indifference graphs are directly related to Dyck paths and Hessenberg functions.

Definition 5.4.2. A Hessenberg Function m : [n] — [n] is a non-decreasing function such that
m(i) > i for all i. TO each Hessenberg function m, we associate an indifference graph Gy, where

V=[n]and E={(i,7) :i<j<m(i)}.

Note that these are directly related to Dyck paths. In particular, in the n x n grid, let the height of
the ith column be m(7), then we get a Dyck path. Further, if a cell in column ¢ and row j is below
the corresponding Dyck path and above the main diagonal (so i < j), then (7, ) is an edge in Gyy.

In other words, the edges in Gy, correspond to the cells below the Dyck path and above the main
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diagonal. Now, let o be a permutation. We let o < m if o(i) < m(7) for all i. Let S, m be the set

of permutations in .S, such that ¢ < m.

Suppose a permutation is written in cycle notation. We use the convention that the beginning of
each cycle is the smallest number in the cycle. Further, we order the cycles from smallest first
number to largest first number. With this in mind, we let ¢ be the permutation formed by first
writing ¢ in cycle notation and then removing the parentheses. We now define an inversion in o

associated to a graph G.

Definition 5.4.3. Let 0 € S, and let G = ([n], E) be a graph. We say (4,7) is a G-inversion if

i<j,o(i)>0o(j)and (c(j),o(i)) € E(G). Let invg be the number of G-inversions.

We can also reinterpret this in terms of a Hessenberg function m. Let o € S, m and ¢ its
corresponding permutation from the process above. Now, let invy, (o) be the number of m-inversions
of o, i.e.

invm(0) = {(i,7) i < j <m(i);0 7 (i) > o7 (j)}].

Then we let the m-weight of a permutation be defined as

Wtm (o) = invm(0°)

This leads to a main result in Abreu and Nigro (2021).

Theorem 5.4.4 (Theorem 1.2 Abreu and Nigro (2021)). If Gy, is an indifference graph associated

to Hessenberg function m, then

LLTg, (X;q) = Z (¢ — 1)n4(A(a))qinvcm(o)eA(U)_

o<m

As a corollary, LLTg, (X;q + 1) is e-positive. Now, this is just a different way of showing the e-

positivity of unicellular LLT polynomials as we have previously seen in Alexandersson and Panova
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(2018), Alexandersson and Sulzgruber (2022), and D’Adderio (2020). In the next section, we will
use this theorem and the m-inversions of permutations to prove a multivariate expansion of certain

coefficients of LLT polynomials.
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CHAPTER 6

SCHUR COEFFICIENTS OF MULTIVARIATE LLT POLYNOMIALS

In this chapter, we will define a multivariate version of LLT polynomials for certain graphs. To
begin, we will assume our graph G = K, the complete graph. Note that the complete graph
has corresponding Dyck path equal to n north steps followed by n east steps. The corresponding
Hessenberg function is m(i) = n. In this case, if o € S,, in cycle notation, then o < m and invg,
is the usual inversion statistic on permutations not in cycle notation. Noting this, Theorem 1.2 in

Abreu and Nigro (2021) says

LLTxk,(X:q) = Y _ (q— 1) @)gmv@ey .
gESy

6.1. A Determinant Formula for the LLT Expansion

We will now derive a modified version of the formula of Abreu and Nigro. First, we consider a
subset of permutations in cycle notation. Take any permutation not written in cycle notation with
first element equal to 1. Starting from the right side of the permutation and scanning left, find
all numbers that are the smallest number encountered to that point. This set will define the first
element of every cycle. As an example, consider the permutation 18254367. This permutation is
mapped to (18)(254)(3)(6)(7) in cycle notation. We will call these primary cycle permutations,
denoted S,,. We will now convert the LLT formula from a sum over all permutations to a sum over
primary cycle permutations. To do this, we will first describe a process for assigning weights to any

permutation with its cycles written so the first elements are in ascending order.

Suppose 0 = (log---0})...(0; -+ 0n—1)(0n). Note that o, is always in its own cycle. We will now
assign a weight to each o;. First, if o; is the first number in a cycle, it gets a weight of 1. If o; is not
the first number in a cycle, it gets a weight of (g — 1)¢™*(?) where inv(o;) is the total number of of
to the right of o; with o; > 0. To the permutation o, its weight is the product of all the o; weights,

denoted wt (o). Using the previous example which is a primary permutation, (18)(254)(3)(6)(7), its
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weight is (¢ — 1)3¢”. If instead we consider the non-primary cycle permutation (18)(254)(367), its
weight is (¢ — 1)%¢”. Thus, going from the primary to non-primary simply increases the power of
(¢—1). With this in mind, we now convert the LLT expansion into a sum over primary permutations.

To do this, we will associate a determinant to a primary cycle permutation.

Definition 6.1.1. Suppose ¢ = (loy---0%)...(0j - 0p—1)(0y) is a primary cycle permutation

with cycles structure o = (o, ..., @;,1). We define det(o) as follows:
a; (—1)(¢—Deastar (—=1)*(¢ = 1)%€ar+artas = (_1)6(/\(0))71@ — 1)) te,
1 €as (=1)(g — Deagtas T (_1)n_2(q - 1)n_26n—a1
0 1 Cas coe (=DM (g — 1M B,
det
0 0 - (~1){g ~ Deas1
0 0 . . e

i.e. place the ey, on the main diagonal, 1’s below the main diagonal, and then for row i and column

j with ¢ < j, we have (—1)77%(q — 1)’ eq;4-ta,-
With this definition of weights in mind, we have the following result.

Proposition 6.1.2. For all G = K,,, we have the following LLT formula:

LLTk,(X;q) = Z wt(o)det(o)

O—ESTL

where Sy, is the set of primary cycle permutations.

Proof. The proof follows from the definition of the determinant and the entries in the ¢ matrix.

For ease of notation, consider our primary cycle permutation from before (18)(254)(3)(6)(7) whose
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corresponding matrix is:

ea (=1)(g—1es (=1)*(¢—1)%e (=1)*(g—1)%7 (=1)""(g—1)es

1 e3 (—D(g—Des  (=1)*(g—1)%s  (=1)*(g—1)%s

det | 0 1 e1 (=1)(g—1)e2  (=1)*(g —1)%s
0 0 | e (—1)(q — e
0 0 0 1 el

When computing terms in the matrix, the nonzero terms correspond precisely to combining certain
cycles of (18)(254)(3)(6)(7). For instance, if we want to compute the weight of (18)(254)(367)
from the weight of (18)(254)(3)(6)(7), we replace ejeie; by es(q — 1)%. Looking at out matrix, this
correspond to the entry in row 3 and column 5. Now to obtain a nonzero weight from this, we must
have the 1 in row 5, column 4, which then implies we need the 1 in row 4, column 3 term. Now, we
still need terms from the first 2 rows and first 2 columns. We either get es and e3, or we get 1 and
(—=1)(g — 1)es. The first corresponds to the weight for (18)(254)(367), and the second corresponds
to the weight for (18254)(367). Thus, each term in this matrix corresponds to combining certain
adjacent cycles and then accounting for extra (¢ — 1)’s and modified e terms. Finally, the (—1)/

offsets the sign of the permutation in the determinant product. O

Our goal now is to convert the LLT formula into a sum over Schur functions. In particular, we want
to find some combinatorial object and algebraic statistics that correspond to the Schur coefficients.
Our first observation is about expressing Schur coefficients in the product of elementary symmetric
functions. Using the Pieri rules, if we are multiplying €q,, €ay; - - - ; €a;, We obtain s if we are able to
place a vertical strip of size a1, then of size a up until ; so that the resulting diagram is of shape
A. Consider our example permutation (18)(254)(3)(6)(7), when multiplying esesejeier, we place a

vertical strip of size 2, then 3, then 1, then 1, and then 1 so we always have a Young diagram. For
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instance, we could have the following diagrams and more:

(6.1)

[\V]
== DN I\D‘
ot

1]2 3|5\

where the 1’s correspond to the vertical strip of size 2, the 2’s correspond to the vertical strip of
size 3, and the 3, 4, and 5 correspond to the vertical strips of size 1. The first gives a term of s42 2,
the second a term of s322 1, and the last a term of s321,1,1. We will now use this idea to associate

a Standard Young Tableaux to multiplication of cycles of permutations.
6.1.1. Multivariate LLT Formula

We are going to create a multivariate version of this LLT formula. In particular, we will replace ¢
with z; for certain ¢, j. When we do this, if we specialize each z;; to ¢, we will recover the original

LLT formula. Now, recall the above formula

LLTk, (X;q) = Y (g— )" XDgmv@ey .
ogESy

We will replace this formula with the following:

LLTk,(X;iq)=>_| > > wt(o) | | sa

AFn \TeSYT(\) \o€Xr

where X7 is the set of permutations that can multiply and sort to the standard Young Tableau
T. This formula comes from the Pieri rules. In other words, a given permutation can multiply
to multiple different tableau shapes like our example for (18)(254)(3)(6)(7), and for each of these
possible tableau shapes, we get the corresponding weight (¢ — 1)”*€(A(U))qi"”("c). We now refine
this formula further. For each shape, we will create a multivariate version of this weight such that
if we specialize each z;; to ¢, we get the original formula. A full solution to this problem is still

open. We present weighting systems and sorting standardizing algorithms for A = (n — k, 1¥) and
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A=(n—Fk—2211),
6.2. Multivariate Hook Shape Schur Coefficients
In this section, we derive a formula for the Schur coefficients of the multivariate LLT formula for

hook shapes. We begin by describing a weighting system and sorting algorithm. In other words, we

will find a concise formula for each A = (n — k, 1¥) in

Z Z wt(o) | Sa.

TeSYT(N) \o€Tr

6.2.1. Hook Shape Weights

For any hook shape A = (n — k,1¥), let ¥\ be the multiset of permutations that multiply to a
tableau of shape A\. We note that this is in fact a multiset as the same permutation may multiply to
many different tableau of the same shape. As an example, consider (13)(2)(4)(5). This permutation

may multiply to a tableau of shape (2,1,1,1) as either

or or

— w|w|cn‘

4]

and all 3 appear as terms when expanding esejeje; into Schur functions. When this happens, the
weight associated to the permutation will be the same. So, let 0 € ¥\ = (log---0%)...(0j---0p)
such that, we assign a weight to each ¢;. First, if o; is the first number in a cycle, it has a weight
of 1. Next, if 0; is in a cycle and o} is any number to the right of o; with o; > 0; we assign Zoi0;-
Additionally, find the first o} to the left of o; in the same cycle such that o < o;, and assign a
weight of (24,6, — 1). To oy, its weight is the product of all of these terms. To the permutation o,

its weight is the product of all the o; weights.
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Continuing with the example o = (18)(254)(3)(6)(7), we have
wt,(0) = 2go285284283286287(281 — 1)254253(252 — 1)243(242 — 1)
Here is the important observation: if we let all z;; = ¢, then
wh. (o) = (q — 1>n—€()\(a))qinv(06)e)\(a)

as in the LLT formula.
6.2.2. Hook Shape Sorting

Our goal is to use this formula to compute certain Schur coefficient associated to hook shapes A.
Now suppose o € X with cycle structure (o,...,a;). When this permutation multiplies to the
shape A, we have j vertical strips of size o through ;. Fill these vertical strips so that within
each cycle, the numbers are sorted. After doing this, we likely have a non-standard tableau. If it is
non-standard, it will be because the first column is not sorted. If we sort the first column, we now

have a standard tableau. Here is an example.

Example 6.2.1. Let 0 = (18)(254)(3)(6)(7) and let A = (3,1°). Then, we multiply the vertical

strips of size 2, 3, 1, 1, and 1. First, we sort (254) to (245). Then, one possible way to get (3, 1°) is:

= || =[] ] ]

2 6]
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which then sorts to:

=[] el

2] 6]

As before, This permutation contributes a weight of

281282285284283 (281 — 1) 254253 (252 — 1) 243(242 — 1).

6.2.3. Hook Inversions

Here, we define inversions on a hook-shape tableau. Let T be a hook shape tableau of shape A\. We
say (i,7) form an inversion pair if ¢ > j and ¢ is in a row above j in T. The total number of these

inversions is denoted invy (7).

Example 6.2.2. Let A\ = (3,15) and let

s EIRIE

2] 6]

Then, invy(T) =74+6+4+3+2=22.
6.2.4. Multivariate Hook Coefficient Theorem

We now state the main theorem for the multivariate hook coefficients.

Theorem 6.2.3. Let A = (n—k, 1%), let T € SYT()), and let ©1 be the permutations that multiply
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toT. Then,

Z wt, (o) = H Zij.

oSy i
(3,7) an inversion pair in T

An immediate corollary is

Corollary 6.2.4. If A\ = (n — k, 1¥), the multivariate LLT Schur coefficient is:

> 11 2
TeSYT(N) i,J
(3,7) an inversion pair in T

Proof. We will prove this theorem using induction. We first prove some simple base cases.

First, if A = (n), the only permutation that multiplies to this shape is the identity (1) - - - (n), which

has a weight of 1. This coincides with the formula of Abreu and Nigro.

Second, we will prove the case A = (1™). Note that the conjectured formula for this coefficient is:

II =

1<j<i<n

i.e., the product of all possible inversions. Further, for any o, we can multiply to (1) simply by
stacking vertical strips on top of each other. We now prove this case by induction. Let 7/(n) be
the single column standard tableau for 1 through n. Let X7/(,) be the set of permutations of n — 1
that multiply and sort to the single column tablea (note as above that this is all of S;,_1. Then, we

have

Z wt, (o) = H 24j

0EXT/(n) 1<j<i<n—1

. For any o € X7/(,,), we can insert n into any position as follows. Suppose o = (1---04,) - (0j - opn—1).
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Then, for this given permutation, we can place n as follows:

(1’,’L. . -O'zl) o oee (O’J .. ‘no-nfl)
Inserting n in this way gives the following weights:
wt(0) + wtz(0)(2no,—, — 1) + wt2(0)2no, 1 (2no, o — 1) + -+ + witz(0)( H zni)(2n1 — 1)
1<i<n
Let us denote this sum using the shuffle notation ¢ € o Lin. Then,
> wt(6) =wt(o) ] 2w
Feolin 1<i<n—1
Summing over all permutations in Y¥7p/(,, we get:

> <Z wtz(&)>:wtz(T/(n)) II 2

G’GET/(n) gETlin

Thus, we get:

> = II = II == 1II =

cexp  1<j<i<n—1  1<i<n—1 1<j<i<n
as desired. We now prove the formula for a general hook shape using an almost identical proof as

the single column formula.

There are two cases we must consider. The first case is trivial. Let A = (n — k, 1) and let
T € SYT()N). Either n is at the end of the first row or at the top of the first column. In the
former case, if 0 € ¥p, then o = (1---0;) -+ (0j--- 0pp—1)(n). This is because the only way for this

permutation to sort n to the end of the first row is if it starts there. These are the only permutations
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where this is true. Thus,

S owto)= Y = wt(T/(n),

O'EET &EET/(H)
and since n forms no inversion in 7', we have wt,(T) = wt,(T/(n)) and the formula holds by

induction.

For the case where n is in the first column, we will use the same proof as the single column case. In
particular, start with o € X7/(,) and shuffle n into these permutations. For each shuffle, n is placed

in the first column which will then sort it to the top. Nothing else changes when sorting. Thus,
Z wt,(6) = wt, (o) H Zni-
gEolin 1<i<n—1
and summing over all permutations in X7 (,), we get:

> <Z wtz(&)>:wtz(T/(n)) I =

O'GET/(H) GEolin

This is precisely wt,(T') as desired. O

We will now turn to a formula for augmented hook shapes and a slightly altered weighting system

and sorting algorithm.
6.3. Multivariate Augmented Hook Shape Schur Coefficients

In this section, we derive a formula for the Schur coefficients of the multivariate LLT formula for
augmented hooks. The weighting system will be nearly identical to the hook case and depend on

the sorting algorithm. We also must define inversions for an augmented hook shape.
6.3.1. Augmented Hook Inversions
6.3.2. Hook Inversions

Here, we define inversions on an augmented hook-shape tableau. Let T' be am augmented hook

shape tableau of shape A = (n — k — 1,2, 1¥~1). We say (4,7) form an inversion pair if i > j and j
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is weakly southeast of ¢ in T, or j = 1, ¢ is in the (2,2) square, and 2 is in the first row. The total

number of these inversions is denoted invy (7).

Example 6.3.1. Let A\ = (3,2,13) and let

T:

6|

Then, invy(T) =746 + 2+ 3+ 2 = 20, where (5, 1) is an inversion since 2 is in the first row.
6.3.3. Augmented Hook Sorting Algorithm

When multiplying permutations, for numbers in the same vertical strip, we sort the numbers from
smallest to largest. When finished with the multiplication of vertical strips, we want to get a
standard young tableau. We use Jeu-De-Taquin starting with the smallest number and ending with
the largest. Here are two examples of the sorting algorithm. We will see that the sorting is highly

dependent on the location of n.

Example 6.3.2. Consider the permutation (18)(254)(3)(6)(7) and its multiplication and cycle

sorting to:
7]
3]
5]
8
11216
This tableau is then sorted to:
8]
7]
5|
3|4
1 6

which only really depended on 3 being above the 8. Here, 3 was not included in the cycle (254).
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If instead it was included and the permutation was (18)(2543)(6)(7), the multiplication and cycle

sorting would give:

7]
5|
4|
8
1 6
which then sorts to:
7]
5]
4|
3
1 6

We note a few things. First, the bottom row will always be sorted. In particular, and element in the
bottom row is the smallest number in its cycle, and these are already sorted left to right. Further,
At no point will a number in the bottom row move upwards, since 1 is always in the bottom left
corner, and any number in the (2,2) position is bigger than the leading number of any cycle before

it.

Let 0 = (1---0y)---(0j)---0n). The largest number in a permutation n can be in 3 different

locations in a sorted tableau:
e The end of the first row, which means o, = n and is in its own cylce.
e The (2,2) position, which means n is in a 2-cycle or 0, = n is in its own cycle.
e The top of the first column.

Lemma 6.3.3. Let o multiply to an unsorted tableau T. Then, if n is in the bottom row, it is at
the end and will not move during the sorting algorithm. If n is in the (2,2) position, it will also
remain in its position. If n is above the second row, then it will sort to the top of the first column.

Finally, if n is in the (2,1) position and i is in the (2,2) position, then n sorts to the (2,2) position
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if and only if i is the smallest number above the first row, else n sorts to the top of the first column.

Proof. The first 3 cases are obvious by the definition of the sorting algorithm. What remains to be

shown is the scenario where:

L
n|
11al---

. If 7 is minimal among elements above the first row, then ¢ and n switch places during the first
step of the algorithm (note that i > a as well). If ¢ is not minimal, then there is an element j in the
first column that is. The first step of the algorithm will continually move j down the first column
until it is in the 3rd row and then switches with n. Once n is in the third row, it is guaranteed to

move to the top of the first column. O

6.3.4. Assigning Weights

Let T be a filling of a partition A - n where X\ is an augmented hook. Let ¥p be the set of
all permutations such that ¢ € ¥p multiplies and sorts to T'. We assign a weight to ¢ in the
following way. First, if we have a cycle (z1z2---xp) in o, note that 1 is the smallest number in
the cycle and smaller than all numbers in cycles to the right. We assign a weight of 1 to ;. For
x; for i € {2,...,k}, scan to the left of x; for the first number smaller than x;, say it is ;. This
contributes a factor of (2., —1). Now, scan to the right of x; in the rest of o. For any number m
to the right of x; that is smaller than z;, we get a factor of z,,. However, suppose (z;,m) is not

an inversion in 7', then we switch 2z, to z2mg, .

Lemma 6.3.4. In the scenario, where we need to switch zgy;m to Zmaz, if (i, m) is not an inversion

pair in T, then (m,x1) is an inversion pair in T.

Proof. First, we are considering a standard Young tableau of an augmented hook and x; is part
of a cycle and not the smallest number. Thus, it is guaranteed to be above the first row after

multiplication. Further, m < z;, so in T, if z; and m are in the same column, this is an inversion.
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Thus, if it is not an inversion, z; and m must be in separate columns, and in particular, x; must be
in the (2,2) square. As m is to the left and potentially above x;, m is in the first column above the

first row. But this implies (m,x1) is an inversion since 1 < m and must be in T below z;. O

Now, for 0 € X, we say wt,(0) = [[;-, wt(i), i.e. the product of the weights assigned to each

1€0

number in sigma.
6.3.5. Augmented Hook Theorem

With this algorithm and weight assignment, we have:

Theorem 6.3.5. Let A+ n be an augmented hook, T a standard young tableau of shape \, and X7

the permutations that multiply and sort to T'. We have:

Z wt(o) = H Zij. (6.2)

oEYXT 4,7
(3,7) an inversion pair in T

Before the details of the proof, here are a few notes and observations. All cases contained inside of
the (3,2, 1) shape were verified by hand or by computer and represent base cases. If the tableau,
T, under consideration has the largest number n at the end of the first row, then the statement
follows by induction. In particular, n forms no inversions and the algorithm maps a permutation to
the tableau if and only if n is the last number in the permutation and not part of a cycle. In this
case, n contributes no weight, and there is a weight preserving bijection sending permutations that
map to T to permutations that map to T'\(n). Now, the proof is broken into several cases. First,
we prove the 2-row augmented hook case (A = (n — 2,1)), then we prove the 2-column augmented

hook case (A = (22,1"7%)), and finally we prove the general statement.
Case 1: 2-row Augmented Hook

For the proof of this shape, we consider 3 separate cases.
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2|n 3|n J
34 -] 1]2]4][n1 1] 2]3] |
Case a Case b Casec,4<j<n—-1

For case a, note that any permutation mapped to this tableau must be of the form (1)(2)é or (12)5,

where ¢ is some permutation that maps to the tableau:

3[4] - [n1]

We note that any such & is in bijection with a ¢ in S,,_o that maps to the tableau:

n-2
1]2] |3

and by hook case, summing over all such & gives us the weight of the hook shape, which is

II 2 (6.3)

Further since each permutation starts with (1)(2) or (12), we get a weight of (1 + (221 — 1)) = 2z91.

Hence, the total weight is:

221 H Zni (6.4)

3<i<n—1
as desired.
Now, for case b, we have 6 different ways a permutation can begin. They are (1)(2)(3)a, (1)(23)a,
(13)a, (1)(2n)(3)a, (1n)(2)(3)a, or (1n)(23)6. For the first two permutations, ¢ must fill the

remaining portion of the diagram:

o] ]

with n in the second row. In other words, we must get the skew tableau:

]
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from 6. Any such & is in bijection with a permutation in S, _3 that gives the tableau:

n-3
1]2]3 |.--|n-4\’

and thus by the hook case, summing over all such ¢ gives us the weight of the hook shape, which is

II = (6.5)

Further since each permutation starts with (1)(2)(3) or (1)(23), we get a weight of 14 (232 —1) = z32.

Hence, the total weight is:

Z32 H Zng (66)

4<i<n—1
from the first two cases. The second set of permutations is very similar, but now ¢ must fill the

remaining portion of the diagram:

with n in the second row. In other words, we must get the skew tableau:

214 ||n1‘

from &. Any such & is in bijection with a permutation in S, _o that gives the tableau:

n-2
1]2]3] g

and thus by the hook case, summing over all such & gives us the weight of the hook shape, which is

Zn2 H Zni- (6 . 7)

4<i<n—1
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Further since each permutation starts with (13), we get a weight of (z3; — 1)2z32. Hence, the total
weight is:

(231 — 1)2322n2 H Zni (6.8)
4<i<n—1

from this set of permutations. The next set of permutations is very simple. Now & must fill the

remaining portion of the diagram:

n|3
2] [ |

in other words, we must get the skew tableau:

(4]
from &. However, there is only one way to do this, and it gives a weight of 1. Since the permutation

began with (1)(2n)(3), we get a weight of

(an — 1)232 H Zni (6.9)

4<i<n—1

from this case- note that z,3 was replaced by z32 because (n,3) is not an inversion pair in 7. The
final case and two sets of permutations is again very simple. Now ¢ must fill the remaining portion

of the diagram:

n|3
119 || ‘

in other words, we must get the skew tableau:

(4]
from 6. However, there is only one way to do this, and it gives a weight of 1. Since the permutation

began with (1n)(2)(3) or (1n)(23), we get a weight of

((zn1 — 1)zn2z31 + (zn1 — 1)2zn2231(232 — 1)) H Zni = (2n1 — 1)2n2231232 H Zni  (6.10)
4<i<n—1 4<i<n—1
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from this case. Hence, in total we get a weight of:

232 H Zni

4<i<n—1
+ (231 = Dasazme | 2w
4<i<n—1
+ (2 — Dz [ 2w (6.11)
4<i<n—1

+ (201 — 1)2n2232231 H Zni
4<i<n—1

= Zn1”n2<32%231 H Zni
4<i<n—1

which is the desired weight.
For case c, we have a fairly similar argument to case b. We have 3 different ways a permutation
can begin and obtain the desired tableau. They are (1)&, (1j)&, and (1n)d. For the first set of

permutations, & must fill the remaining portion of the diagram:

]

in other words, we must get the skew tableau:

23 ||n1‘

from 6. Any such & is in bijection with a permutation in S, _; that gives the tableau:

71— k-1
1213 ||n2\

and thus by induction, summing over all such & gives us the weight of the augmented hook shape,

which is

H Zji H Znis (6.12)

2<i<j—1  2<i<n—1
i#£]

97



the total weight from this first case. The second set of permutations is very similar, but now ¢ must

fill the remaining portion of the diagram:

in other words, we must get the skew tableau:

213 ||n1‘

from . Any such & is in bijection with a permutation in S,,_o that gives the tableau:

n-2
1] 2]3] g

and thus by the hook case, summing over all such & gives us the weight of the hook shape, which is

IT 2w (6.13)
2<i<n—1
=

Further since each permutation starts with (15), we get a weight of (z;; — 1) ]_[3;21 zj;. Hence, the

total weight is:

j—1

(Zjl — 1) H Zji X H Zni (6.14)

=2 2<i<n—1
1#]

from the second case. For the third set of permutations, & must fill the remaining portion of the

diagram:

n

with j in the second row. In other words, we must get the skew tableau:

213 ||n1\
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from 6. Any such & is in bijection with a permutation in S, _o that gives the tableau:

i1
1]2]3 ||n2\

and thus by the hook case, summing over all such ¢ gives us the weight of the hook shape, which is

H Zj5i- (615)
2<i<j—1
Further since each permutation starts with (1n), we get a factor of
(zn1 —1)zj1 H Zni- (6.16)

2<i<n—1
]

Thus, for this case, we get a weight of

(an — 1)2’]‘1 H Zni X H Zji- (6.17)

2<i<n—1 2<i<j—1
i#]

Hence, for case c, we get a total weight of:

I = I =

2<i<j—1  2<i<n—1

i#]j
+ (Zjl — 1) H Zj; X H Zni

2<i<j—1 2<i<n—1

i#]
(6.18)
+ (zn1 — 1)zj1 H Zni X H Zj;
a<i<n—1  2<i<j-1
i#]
S e I
1<i<n-1 1<i<j—1

i#]

which is the desired weight. This completes the proof for the two row augmented hook case.
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Case 2: 2-column Augmented Hook

This case will reflect the general proof more fully. We will consider 3 separate cases which are:

<]

al|b 2|n 3| n
1]|ec 113 112
Case a Case b Case ¢

For case a, let T be the given tableau. We argue by induction and shuffling n into each of the
permutations that gives 7//(n). Note a few observations. If a permutation multiplies to the shape
(22,17%), then we get T in the following scenarios: first if the second column contains b and ¢ (note

b will necessarily be on top of ¢), or if a > ¢, and the bottom (2, 2) tableau is of the form

before sorting. Note, this second case only happens when ¢ = 2, a = 3, and b # n. Now, suppose
o multiplies to T'/(n). Then, observe that ¢ = (1---0;)---(0;---0on—1). Now, consider & = o(n)
org=(1---04)--(0j--op_1n) such that & multiplies to T". In particular, we have that these two

cases of & contribute a weight of wt,(0)znes, , and n sorts to the top of the first column.

Suppose o has k cycles, and the numbers that begin each cycle are 1, j2, j3,..., jx = 0. Now, we
shuffle n into o, and we claim for each shuffle, there is exactly one way to multiply the permutation
to get the tableau T'. Suppose n is now in a cycle of length m, then in the multiplication, we can
always have the last box in the vertical strip occur in the first column. Then, when we sort the
vertical strip from smallest element to largest element, n is guaranteed to be in the first column.

Thus, for the first shuffle, 6 has a weight of wt,(0)(zns,_» — 1)20, ;-

Now, suppose n shuffles within a cycle from (---zyn---) to (---any---). Note that from the
weight assignment as we shuffle, n replaces (zpy — 1) with (z,, — 1)2py and the rest of the weight

is unchanged. Thus, as we shuffle n, we get wt,(0) as a constant factor, and also get a factor of
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(zni — 1) 11 4o right of n Znl where ¢ immediately precedes n.

Now, we may have an issue when n is multiplied and ends up in the second row. First, if n is
multiplied and ends in the second row and second column, then n will not be sorted to the top
of the first column. Thus, our main concern is when n is multiplied and is the second number in
the first column. Assuming a is the smallest number besides 1 in the first column, we have two
possibilities. First, in o, a is in the first column before sorting. In this case, before sorting, we have

the following from o

C2
C1 b
1]|c
where ¢; = a. Then in &, we have:
-
i

C2
e |
n|b
1]c

and since ¢; = a is the smallest number in the first column and less than b, a will sort to position

(2,1) and n will sort to the top of the first column. The other case is if, in o, a is in the second
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column before sorting. In this case, before sorting, we have the following from o:

In this case, ¢ must be 2. This follows because b is bigger than a, and if a is 2, then it cannot be in
the second row of the second column from any permutation. This then implies that a = 3. Further,
we also know that we either have o = (1b---)d or 0 = (1)(2b---)é. If 0 = (1b---)&, then when we
shuffle n, since cycles are sorted, n will never appear in the second row of the first column. Thus, n
will be above the second row, and the sorting algorithm will map n to the top of the first column

and the rest of the tableau will be the same as o.

However, we have the case (1n)(2b---)(3---) from shuffling to consider. In this case, & maps to T’

after sorting from the following tableau:

112

where ¢; = 3 and n will sort to the top of the first row. Thus, from shuffling n into ¢ that maps to
T/(n), each shuffle give exactly one permutation that maps to T'. Further, if we take the sum over

all of the shuffles for a given o, the weight is now

n—1
> wt.(5) = wtz (o) [ ] zni- (6.19)
&: n shuffled into o i=1
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Thus, when we sum over all permutations that map to T', we get :

Yooowt(6)= > > wtz(&)—th(T/(n))ﬁzm- (6.20)

& map to T o map to T'/(n) 6: n shuffled into o

as desired for case a.

Now, we consider case b. We note the following possibilities for the permutations that multiply
and are sorted to T. First, any permutation & that multiplies to T'/(n) also gives a permutation
that multiplies to T" by attaching n at the end, giving o0 =&(n) or 6 = (1---03) -+ (0j -+ op—1n).

Further, the weight of such a permutation is either wt,(¢) or wt,(6)(znes, , — 1).

Let J={j+1,...,n—1},and let ) C I C J. Then, any permutation that multiplies to T" is of

the form o1 (j - -4)o2(n) where (j---i)o2 only contains numbers from I, or o1(jn)os where oy only

contains numbers from I. Consider all (j---4)o2 for a fixed ;. The sum over all (j---)o2 gives the

weight of the tableau, 77 ;:

where {i1,...,ix} = I. In other words, we know that all (j---)os multiply to a tableau of this
form, and any such suffix to o1 gives the proper T'. Similarly, consider all (jn)os for a fixed o that

multiplies to T. The sum over all (jn)oy gives the weight of the tableau, T7:

where {i1,...,i;} = I, multiplied by (z,; — 1) Hle z;,; from the weight of (jn) and n to the right

of all the 7;, replacing z,; with z;;. Thus, for a fixed o1 and I, we get a total contribution of weight
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equal to

E?r

wt(o1)(wt,(Tr;) + wt(T7)(2n; —

Zixj)
1:1 (6.21)
= wt,(or)wt,(T1 ;) 2nj-

However, note that the above analysis also tells us that for a fixed o1 and a suffix that multiplies

to T'/(n), the weight is wt,(o1)wt.(T7 ;). Thus, by summing over all o1, we get:

Zwtz Ywt (T j)2n;
= Znj Zwtz Jwt(Ty ;) (6.22)
= znjwt=(T/(n)),
and this is precisely the weight of T" as desired.

Now, case c is very similar to case b, but now we have to factor in all permutations of the form
o = (1n)d, where ¢ multiplies and sorts the vertical strips so that 3 is in the augmented square

before sorting, i.e., we have the skew tableau:

after sorting vertical strips. However, we note that this is equivalent to multiplying and sorting to
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the vertical strip tableau:

This is true because if 2 and 3 are in the same cycle, then the augmented square must be in the
vertical strip containing them, else 3 is not sorted to the correct square, and if 2 and 3 are not in
the same cycle, the augmented square is not part of the vertical strip containing 2, and the next
cycle begins with (3...) and there is a one to one correspondence with placing 3 in the augmented

square with placing 3 on top of the strip containing 2. Then, summing over all & gives the weight

1, =1

of

multiplied by a factor of: (2,1 — 1)zp2 H:.L:_?)l z;1. Hence, in total, we get:

znawt(T'/(n))

+ (Zn1 — 1) zn2 H zipwt,(T3) (6.23)
=3

= Zp12n2Wt, (T/ (n) ) ’

and this is precisely the weight of T as desired. This proves the two-column augmented hook case,
and now we show the general augmented hook case. We will use inductive arguments that rely on

the two-column and two-row augmented hooks, and (3,2, 1) augmented hooks as the base cases.
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Case 3: General Augmented Hook

We will consider multiple cases for the general theorem. They are:

]

E : :

T o] ]

cla 2|n ciln

1 1 7‘2"" 1 1 ’I“Q"-- 112 7‘1‘---
Case a Case b Case ¢

where we note that the case where n is the last number in the first row immediately follows by

induction.

For case a, we shuffle n into all of the permutations that multiply to 7'/(n). We claim for each
shuflle, there is exactly one way to multiply and sort to 7. In fact, it is an identical argument
to the two column augmented hook case. In particular, If o multiplies to T/(n) and & = o1nos
where 0109 = ¢ and n is contained in the last cycle of o1, we can always have the last box in the
vertical strip containing n to be in the first column. In fact, if the last box in the vertical strip
containing n does not end in the first column, then this permutation is not mapped to 7" by the
sorting algorithm. If n is above the (2,1) square in the first column, then the sorting gives 7. If
n is in the (2,1) square, then we need to know what happens to ¢; and a when & is multiplied.
This argument is identical to the one in the (2,2, 1"~%) case. This shows that n can be shuffled into

every permutation that multiplies to 7'/(n) in a unique way. Thus, we get a weight of:

> > wt(s)

oeY o
/() n shuffled into o

n—1
= Z th(O')HZm'
i=1

O—EZT/(TL)
n—1
= wt,(T/(n)) [] 2ni-
=1

which is the desired weight.
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For case b, we again have a similar argument to the (2,2,1""%) case. Note that if we take any
permutation that multiplies to 7'/(n) and insert n into the permutation to obtain 7', the only
places we can do this are (r;n) where r; was in a cycle by itself, or at the end of the permuta-
tion. Take any o = o109 that multiplies to T'/(n), where o9 starts with r; and has the numbers
T1y-+ 75 Ciyy Cigs - - - Gy SUch that ¢;; < -+ <¢; and ¢;, = ¢; for some @ = 1,..., k. For a fixed o7,

consider all of the oy that multiply to T'/(n). In particular, since oo starts with 71, it multiplies to

u
]
EENE

where |o1| boxes have been removed from the first column (note that if |o1| = 1, then the boxes

the skew shape:

in the first column begins in the second row). Further, note that if we want to obtain 7" from this
permutation, n does not appear in o1. Hence, for the tableau T, we are interested in all permutations
0102 that multiply to T" where tildeos is obtained from o9 by inserting n. In particular, all &9 that

multiply and are sorted to

n

We have two cases to consider. First, consider any permutation that begins with (r1n). Then, the

remaining o multiplies and sorts to the skew tableau:
Ci,
Ciy

Now, suppose ¢;; < 2. Then, we claim that all such permutations are in bijection with permutations
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that multiply and sort to the tableau

~
I
o

C'Ll

which is straightforward to verify. By the hook case, and summing over all 69, we get a total weight

of:
J l
(znr — 1) H Znry H Zeg,m Wz (Tcl-l)‘
v=2 w=1

If the permutation does not begin with (rin), and ¢;; < ra, then we claim all permutations are in

bijection with a permutation that multiplies and sorts to

Cq;

Cip|

, which follows because at least 2 numbers appear in the first column before n. Now, by induction

on the augmented hook case, the total weight here is the weight of this augmented hook, which
is the same as the weight of the augmented hook without n, call it 7,,, multiplied by all of the

inversions with n, which is:

J
wtz (Trl) H znrw'
w=2
Thus, for ¢;; < 7, and a fixed oy, and summing over all 62, we get a weight of:
J l
(2nr, — 1) H Znry H ZCiwrlth(TCil)
v=2 w=1
J
+wto(Tn,) ] 2nr (6.24)

w=2

J
= H Znry Wty (Try ).
v=1
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In particular, this means that for a fixed o1, when we sum over all o9 and insert n into all of its
possible spots, we get a factor of H{Zl Znr; multiplied by the weight of the hook case. This is exactly

the factor that we want, i.e.:

; wt, (o) Z wt;(&2)

- ; wts (o) ]j[1 s ; wt(02)
_ }jl o ; wt. (o) ; wt(02)
zé%wmw

which is exactly the weight of T' as claimed. Now, this was assuming ¢;; < r2. If not, then any

permutation ¢ is now in bijection with a permutation that multiplies to:

Ci;

Cip|

This follows from the sorting algorithm. In particular, it is clear that this is true if any number in

the first column appears before n. If n appears first, then the only way this tableau sorts to the
correct one is if ¢;, is multiplied to the augmented square. For each permutation, there is only one
way for this to happen, and there is always one way as ¢;, is either sorted to the first number in its
cycle or sorted to the second number. The first case happens if only ¢’s are in its cycle, and the
second case happens if the first number in the cycle is an r. Thus, we always have one way for this

to happen. Now, by induction, the weight of this augmented hook is equal to the weight of the hook
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T, multiplied by the factor from n, namely ]_[g:1 Znr;- Thus, for this case we also get the equation:
> wti(o1) Y wt.(52)
o1 092
J
=> wt(o0) [[ znr > _ witz(02)
o1 i=1 o2
J
= H Znr; Z wt,(o1) Z wt,((r102)
=1 o1 o2
J
= H znr,wtz(T'/(n))
i=1

as desired. This finishes case b. The argument for case ¢ will be extremely similar but involve an

extra factor (as was true for the two column augmented hook).

For case ¢, we get the previous weight from b:

H 2, wt(T'/ (1)
i=1

plus the weight of all permutations that start with (1n) and are sorted to the tableau in case c. In

particular, we are filling the skew tableau:

L]

Now, note that if ¢; is not in the augmented square after multiplication and sorting vertical strips,

then we do not obtain T. Thus, ¢; must be placed in the augmented square. We claim this means
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the total weight contribution of all o in (1n)o is equal to the weight of the tableau:

7, =]

C1

9 7«1‘...

This is exactly the same a previous argument. Any o that multiplies to the skew shape must have

c1 in a cycle that includes the augmented square in the multiplication. Thus, if we consider any
permutation that multiplies and sorts to 75, this can be mapped to a ¢ since we can always place c;
in the augmented square. Conversely, for a given o, instead of using the augmented square, we place
c1 in the first column, and we sort to 75 as desired. Thus, the total weight from these permutations
is:

J

k
(an - 1) H Znr; H ZCZ'IU)tz(TQ)-
=1 i=1

Hence, in total from Case ¢, we obtain:

H znrwtz(T'/ (1))
i=1

J

k
+ (an - 1) H Znr; H Zcilwtz(TZ)
i=1 =1

J
= Znl H znr¢WtZ(T/(n)>

i=1
as desired. This completes the proof of the augmented hook case.
6.4. Consequence of the Multivariate Formulas

The work in this section needs some motivation to justify the extensive computations and proofs.
We studied this formula for the following reason: it allows us to track inversions. In particular, we
assumed the graph we were working with was K, which corresponds to the Dyck path that covers

the entire n x n grid. But what if we want to study the formula of Abreu and Nigro for other
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graphs? Recall their formula for indifference graphs:

LLTg (X;q) = Z (q— 1)n—f(A(a))qz‘nvcm(o)eA(U)_

oc<m

Then with our results, we can compute the multivariate Schur coefficient for the complete graph as:

Theorem 6.4.1. Let A = (n — k,1¥) or A = (n — k — 1,2, 1% 1), then in LLTk, (X;z2;), the

coefficient of sy is

2. 11 24
TeSYT(N) .J
(4,7) an inversion pair in T

We now observe something very curious. Suppose we have an indifference graph Gu,, if 0 € Xp
where T is a hook or an augmented hook, but ¢ £ m, then there is some cycle in ¢ with o; = j and
oi+1 = k with £ > m(7). In other words, we have some number that is mapped to another number
that violates the Hessenberg function. Here is the important observation: this permutation o has a
factor of (21; — 1). This means if we let z,; = 1, this permutation actually gives a weight of zero.

This leads to the following Corollary.

Corollary 6.4.2. Let A = (n —k,1¥) or A = (n — k — 1,2,1%71) let m be the Hessenberg function
with corresponding Dyck path D. Let and (i,j) under the path D be a potential inversion pair, then
in LLTg,,(X; 2j), the coefficient of sy is

> 11 %
TeSYT(N) i,J
(4,7) an inversion pair in T

where an tnversion pair in T must also be a potential inversion corresponding to D.

Proof. Using the theorem for the complete graph, if we take any (7, j) that is no longer a potential
inversion corresponding to the path D and evaluate z;; = 1, we are left with the above formula.
In other words, we can write the sum over all possible permutations that multiply to a hook or an

augmented hook, evaluate z;; = 1 for the now invalid inversions, and we are left with the only valid
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inversions. Thus, we can evaluate formula for the coefficients for K,

> 11 %
TeSYT(N) 1,j
(4,7) an inversion pair in T

at z;; = 1 for any non-potential inversion and obtain the formula as desired. O

This corollary gives us an easy way to compute the Schur coefficients for these multivariate LLT
polynomials in an easy way. This method also may provide a potential path to finding a com-
binatorial interpretation for all of the Schur coefficients of unicellular LLT polynomials. There is
an intimate connection between the inversions in SYT and the Schur coefficients. Finding similar
weighting methods and sorting algorithms like those for the hook and augmented hook shapes may

be a path towards solving more general cases.
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