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Permutation Statistics and q-Analogues

In combinatorics a statistic on a
finite set S is a mapping from S →
N given by an explicit combinato-
rial rule.
Ex. Given π = π1π2 · · ·πn ∈ Sn,
define

invπ = |{(i, j) : i < j and πi > πj}|
and

majπ =
∑

πi>πi+1

i.

If π = 31542,

invπ = 2 + 2 + 1 = 5

and

majπ = 1 + 3 + 4 = 8.



Let

(n)q = (1 − qn)/(1 − q)

= 1 + q + . . . + qn−1

and

(n!)q =
n∏

i=1

(i)q

= (1+q)(1+q+q2) · · · (1+q+. . .+qn−1)

be the q-analogues of n and n!.
Then
∑

π∈Sn

qinvπ = (n!)q =
∑

π∈Sn

qmajπ.



Partitions and the Gaussian Polynomials

Let λ = (λ1, λ2, . . . , λn), λi ∈ N

for 1 ≤ i ≤ n be a partition and
let |λ| =

∑
i λi. Define

(
n
k

)
q

=
(n!)q

(k!)q((n − k)!)q
.

Theorem. For n, k ∈ N ,
(

n + k
k

)
q

=
∑

(λ1,... ,λn)≤(k,k,... ,k)

q|λ|.

Note: We denote the conjugate
partition by λ′.
Example n = k = 2. The Fer-
rers shapes are
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The Catalan Numbers

Cn =
1

n + 1

(
2n

n

)

Recurrence:

Cn =
n∑

k=1

Ck−1Cn−k

Over 70 interpretations in Stan-
ley’s Enumerative Combinatorics
Volume 2, including



• The number of “standard tableaux”
of shape (n, n):

123
456

124
356

125
346

134
256

135
246

• The number of “Catalan words”,
i.e. mulitset permutations of {0n1n}
where in any initial segment, the
number of zeros is at least as big
as the number of ones.

000111 001011 001101 010011 010101

• The number of “Catalan paths”
from (0, 0) to (n, n), i.e. lattice
paths consisting of N and E steps
which never go below the main di-
agonal.



A Catalan Path



Theorem. (MacMahon)
∑

Catalan words σ

qmaj(σ) =
1

(n + 1)q

(
2n
n

)
q

.

The Carlitz-Riordan q-Catalan
Let Dn denote the set of Catalan
paths, and set

Cn(q) =
∑

σ∈Dn

qarea(σ)

where area(σ) is the number of
squares below the path and strictly
above the diagonal.

Proposition.

Cn(q) =
n∑

k=1

qk−1Ck−1(q)Cn−k(q).



Symmetric Functions

A symmetric function is a poly-
nomial f(x1, x2, . . . , xn) which sat-
isfies

f(xπ1
, . . . , xπn) = f(x1, . . . , xn),

i.e. πf = f , for all π ∈ Sn.
Examples
• The monomial symmetric func-
tions mλ(X)

m(2,1)(x1, x2, x3) = x2
1x2+x2

1x3

+ x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2.

• The elementary symmetric func-
tions ek(X)

e2(x1, x2, x3) = x1x2+x1x3+x2x3.

• The power-sums pk(X) =
∑

i xk
i .



• The Schur functions sλ(X), which
are important in the representa-
tion theory of the symmetric group:

sλ(X) =
∑
β`n

Kλ,β mβ(X)

where Kλ,β equals the number of
ways of filling the Ferrers shape
of λ with elements of the multi-
set {1β12β2 · · · }, weakly increas-
ing across rows and strictly in-
creasing down columns. For ex-
ample K(4,2),(2,2,1,1) = 3

1 1 2 4
2 3

1 1 2 3
2 4

1 1 2 2
3 4



Selberg’s Integral For k, a, b ∈
C ,

∫
(0,1)n

|
∏

1≤i<j≤n

(xi − xj)|2k

n∏
i=1

xa−1
i (1 − xi)b−1dx1 · · · dxn

=
n∏

i=1

Γ(a + (i − 1)k)Γ(b + (i − 1)k)
Γ(a + b + (n + i − 2)k)

× Γ(ik + 1)
Γ(k + 1)

.



Macdonald’s Generalization: There
exist symmetric functions Pλ(X; q, t)
such that

1
n!

∫
(0,1)n

Pλ(X; q, t)

∏
1≤i<j≤n

k−1∏
r=0

(xi−qrxj)(xi−q−rxj)

n∏
i=1

xa−1
i (xi; q)b−1dqx1 · · · dqxn

= qF
n∏

i=1

Γq(λi + a + (i − 1)k)
Γq(λi + a + b + (n + i − 2)k)

× Γq(b + (i − 1)k)

×
∏

1≤i<j≤n

Γq(λi − λj + (j − i + 1)k)
Γq(λi − λj + (j − i)k)



where k ∈ N ,

F = kη(λ)

+kan(n−1)/2+k2n(n−1)(n−2)/3,

t = qk,

Γq(z) = (1−q)1−z(q; q)∞/(qz; q)∞

is the q-gamma function with

(x; q)∞ =
∏
i≥0

(1 − xqi),

and∫ 1

0

f(x)dqx =
∞∑

i=0

f(qi)(qi−qi+1)

is the q-integral.



Plethysm: If F (X) is a symmet-
ric function, then F [(1 − t)X] is
defined by expressing F (X) as a
polynomial in the pk(X) =

∑
i xk

i ’s
and then replacing each pk(X) by
(1 − tk)pk(X).

Macdonald expanded scalar mul-
tiples of his Pλ(q, t) in terms of
the basis sλ[(1 − t)X] and called
the coefficients Kλ,µ(q, t). He con-
jectured these coefficients were in
N [q, t]. He proved Kλ,µ(1, 1) =
Kλ,1n and asked if

Kλ,µ(q, t) =
∑
T

qa(µ,T )tb(µ,T )

for some statistics a, b on parti-
tions µ and standard tableaux T .



(1,0) (1,1)

(2,0)

(0,1)(0,0)

µ

∆(µ) =

∣∣∣∣∣∣∣∣∣

1 y1 x1 x1y1 x2
1

1 y2 x2 x2y2 x2
2

1 y3 x3 x3y3 x2
3

1 y4 x4 x4y4 x2
4

1 y5 x5 x5y5 x2
5

∣∣∣∣∣∣∣∣∣



For µ ` n let V (µ) denote the
linear span over Q of all partial
derivatives of all orders of ∆(µ).



π( a basis element )
= linear combo. of basis elements.

π( a basis ) = matrix M(π).

M(π) ∗ M(β) = M(π ∗ β).

The character χ is the trace of
M(π), which is independent of the
basis. Furthermore ∃ a basis for
which



******
******
******
******
******

****
****
********

0

0

0

0

0=Μ



V (µ) decomposes as a direct sum
of its bihomogeneous subspaces V i,j(µ)
of degree i in the x-variables and
j in the y-variables. There is an
Sn-action on V i,j(µ) given by

πf = f(xπ1
, . . . , xπn , yπ1

, . . . , yπn)

called the diagonal action. The
Frobenius Series is the symmetric
function

∑
λ`n

sλ(X)
∑
i,j≥0

qitjmij ,

where mij is the multiplicity of
the irreducible Sn-character χλ in
the diagonal action on V i,j(µ).



Conjecture. (Garsia, Haiman; PNAS
1993) The Frobenius Series of V (µ)
is given by the modified Macdon-
ald polynomial

H̃µ(X; q, t) =
∑
λ`n

tη(µ)Kλ,µ(q, 1/t)sλ(X),

where η(µ) =
∑

i(i − 1)λi.

Garsia and Haiman also pio-
neered the study of the space of
diagonal harmonics Rn, which is

{f :
n∑

i=1

∂xh
i ∂yk

i f = 0, ∀h+k > 0}.

This is known to be isomorphic to
the quotient ring

Q [x1, . . . , xn, y1, . . . , yn]/I,



where I is the ideal generated by
the set of all “polarized power sums”∑n

i=1 xh
i yk

i , ∀h+k > 0. The V (µ)
are Sn-submodules of Rn.

Conjecture. (Haiman) The di-
mension of the space of diagonal
harmonics, as a vector space over
Q , is (n + 1)n−1.

The space Rn decomposes as a di-
rect sum of subspaces of bihomo-
geneous degree (i, j); Rn =

⊕
i,j Ri,j

n .
The Hilbert Series is the sum

∑
i,j≥0

qitjdim(Ri,j
n ).

Example: If n = 2, a basis for



the space is 1, x2 − x1, y2 − y1, and
the Hilbert Series is 1 + q + t.

The Frobenius Series is the sum∑
λ`n

sλ(X)
∑
i,j≥0

qitjmi,j

where mi,j is the multiplicity of
χλ in the character of Ri,j

n un-
der the diagonal action of Sn. For
n = 2 this is

s2(X) + s12(X)(q + t).

Let ∇ be a linear operator on the
basis H̃µ(X; q, t) given by

∇H̃µ(X; q, t) = tη(µ)qη(µ′)H̃µ(X; q, t).



Conjecture. (Garsia, Haiman)
The Frobenius Series of Rn is given
by ∇en(X).

A polynomial f is alternating if
πf = (−1)invπf for all π ∈ Sn.
A special case of the above con-
jecture is that the coefficient of
S1n(X) in ∇en(X), correspond-
ing to the “sign” character χ1n

, is
the Hilbert Series of the subspace
Rε

n of alternates. When q, t → 1
in ∇en(X) they showed this co-
efficient equals the nth Catalan
number, which would then equal
dim(Rε

n). By results of Macdon-
ald, this coefficient has an expres-
sion as a rational function in q, t.



Definition. (q, t-Catalan ) Let

Cn(q, t) = (1−q)(1−t)
∑
µ`n

t2η(µ)q2η(µ′)

×
∏′(1 − qa′tl

′
)
∑

qa′tl
′

∏
(qa − tl+1)(tl − qa+1)

,

where the products are over the
squares of µ, and the arm a, coarm
a′, leg l, and coleg l′ of a square
are as below.



l a

la



Conjecture. (Garsia, Haiman; 1992)
Cn(q, t) is a polynomial in q and
t with nonnegative coefficients.

For n = 2 the terms in C2(q, t)
are:

µ = 2;
q2(1 − t)(1 − q)(1 − q)(1 + q)
(1 − q2)(q − t)(1 − q)(1 − t)

µ = 12;
t2(1 − t)(1 − q)(1 − t)(1 + t)
(1 − t2)(t − q)(1 − t)(1 − q)

So

C2(q, t) =
t2

t − q
+

q2

q − t
=

t2 − q2

t − q
= t+q.



After simplification the terms
in C3(q, t) are

µ = 3;
q6

q2 − t)

µ = 21;
t2q2(1 + q + t)
(q − t2)(t − q2)

µ = 13;
t6

(t2 − q)(t − q)

So
C3(q, t) =

q6(t2 − q) + t2q2(1 + q + t)(q − t) + t6(t − q2)

(q2 − t)(t2 − q)(q − t)

= q3 + q2t + qt2 + qt + t3.



Theorem. (Garsia, Haiman)

q(
n
2)Cn(q, 1/q) =

1
(n + 1)q

(
2n
n

)
q

.

Theorem. (Garsia, Haiman)

Cn(q, 1) =
∑

σ∈Dn

qarea(σ).

Problem: Is there a pair of sta-
tistics (qstat, tstat) on Catalan paths
such that

Cn(q, t) =
∑

σ∈Dn

qqstat(σ)ttstat(σ)?



Theorem. (Haiman; JAMS 2001)
If µ ` n, the Frobenius Series of
V (µ) is the modified Macdonald
polynomial H̃µ(X; q, t).

Pf: Algebraic Geometry and Com-
mutative Algebra.

Corollaries. For all λ, µ ` n,

Kλ,µ(q, t) ∈ N [q, t] and dim(V (µ)) = n!.

So far no pair of statistics for the
Kλ,µ(q, t) have been proposed.

Theorem. (Garsia, H.; PNAS 2001)

Cn(q, t) ∈ N [q, t].

Pf: Intricate application of plethys-
tic identities involving ∇ after an
empirical discovery of a recurrence.



4

2

7

The circles form the bounce path.
The bounce statistic is 2 + 4 + 7 = 13.



Definition.

Fn(q, t) =
∑

σ∈Dn

qarea(σ)tbounce(σ).

Conjecture. (H.; To appear in
Adv. in Math.) For all n ∈ N ,

Fn(q, t) = Cn(q, t).

(Verified in Maple for n ≤ 14).



Definition. Say σ ends in end(σ)
E steps. For n, s ∈ N , set

Fn,s(q, t) =
∑

σ∈Dn
end(σ)=s

qarea(σ)tbounce(σ).

Theorem.

Fn,s(q, t) =
n−s∑
r=0

q(
s
2)tn−s

× Fn−s,r(q, t)
(

r + s − 1
r

)
q

.

Corollary.

q(
n
2)Fn(q, q−1) =

1
(n + 1)q

(
2n
n

)
q

.



Theorem. (Garsia, H.; PNAS 2001)
For all n, s ∈ N ,

tn−sq(
s
2)∇en−s[X

1 − qs

1 − q
]|s

1n−s (X)

= Fn,s(q, t).

Corollary.

Cn(q, t) = Fn(q, t).

Corollary.

Fn,s = (1 − qs)
∑
µ`n

tη(µ)qη(µ′)

×
∏′(1 − qa′tl

′
)hs[(1 − t)

∑
qa′tl

′
]∏

(qa − tl+1)(tl − qa+1)
.

Corollary. Fn(q, t) = Fn(t, q).



Haiman discovered another pair
of statistics for the q, t-Catalan.

Conjecture. (Haiman)

Cn(q, t) =
∑

σ∈Dn

qarea(σ)tdinv(σ).

Proposition.
∑

σ∈Dn

qarea(σ)tdinv(σ) =

∑
σ∈Dn

qbounce(σ)tarea(σ).

Corollary. Haiman’s conjecture
above is true.



2

3

2

1

2

1

0

1

1

0

q
13

t
14

The statistic dinv is the # of pairs
(i, j), i < j with the lengths ri and
rj of rows i, j satisfying rj − ri ∈ {0, 1}.



Corollary. Fn(q, 1) = Fn(1, q).

Open Question. Find a bijec-
tive proof that Fn(q, t) = Fn(t, q).

Theorem. (Haiman; Invent. Math.
2002) ∇en(X) is the Frobenius Se-
ries of Rn.

Corollary. The (q, t)-Catalan Cn(q, t)
is the Hilbert Series of the space
of alternates Rε

n.

Corollary. dim(Rn) = (n+1)n−1.

The number (n+1)n−1 is the num-
ber of rooted, labeled trees on n+
1 vertices, with root node labeled
0, and also the number of parking
functions on n cars.



6

9

10

1

3

5

2

3

2

1

2

1

0

1

1

0

8

7

4

2

t
6

q
13

dinv = #(i, j), i < j : ri = rj and
cari > carj or ri = rj − 1 and cari < carj.



Conjecture. (H., Loehr) The Hilbert
Series of Rn is given by

Wn(q, t) =
∑

σ

qarea(σ)tdinv(σ),

where the sum is over all parking
functions on n cars.

Using Maple, we have verified our
conjecture for n ≤ 7. We can’t
prove, by any method, that Wn(q, t) =
Wn(t, q), nor can we prove that

q(
n
2)Wn(q, 1/q) = (1+q+. . .+qn)n−1,

which is the value for the Hilbert
Series at t = 1/q conjectured by
Stanley and now proven by Haiman.
Loehr has a proof that Wn(q, 1) =
Wn(1, q).



Garsia and Haiman define

Cm
n (q, t) = ∇men(X)|s1n (X), m ∈ N .

Note C1
n(q, t) = Cn(q, t). These

are connected to lattice paths from
(0, 0) to (nm, n) which never go
below the diagonal, and also have
an algebraic description.

Conjecture. (Haiman, Loehr)∑
σ∈Dm

n

qarea(σ)tm-dinv(σ) = Cm
n (q, t)

=
∑

σ∈Dm
n

qarea(σ)tm-bounce(σ).

Loehr obtains recurrences involv-
ing the parameter m which ex-
tend the recurrence for Fn,s(q, t).



Lapointe, Lascoux and Morse
have introduced a generalization
of Schur functions they call “Atoms”,
which depend on X, t, a positive
integer k, and a partition λ sat-
isfying λ1 ≤ k. The coefficients
in the expansion of the Atoms in
terms of Schur functions are in
N [t], and they conjecture that if
µ1 ≤ k, the coefficients in the ex-
pansion of the H̃µ(X; q, t) in terms
of the Atoms are in N [q, t]. This
conjecture thus implies Kλ,µ(q, t) ∈
N [q, t]. Hear more about this in
the special session on Algebraic
and Enumerative Combinatorics.



The bounce path for the case
m = 2. Go up distance a1 to the
path, then over a1, then up dis-
tance a2, then over a1 + a2, then
up a3, then over a2 + a3, etc.



0

1

2

1

1

0

1

0

Start with the path above. Form
the bounce path (circles, next page)
whose top step is the # of rows
length zero, etc. Then start at
corner of top step, and look at
subword of 0’s and 1’s on previ-



(area, dinv) (bounce, area)

ous page, starting at bottom. For
each 0 go down, for each 1 go left.
Then iterate with subword of 1’s
and 2’s.


