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Permutation Statistics and g-Analogues

In combinatorics a statistic on a
finite set S is a mapping from S —
N given by an explicit combinato-

rial rule.
Ex. Given m = mymg -+ -7, € Sy,
define
invr = [{(¢,7) : i <j and m > 7}
and
majm = Z 1.
T >Ti41
If m = 31542,
invr =2+24+1=95
and

majmr =1+3+4 =8.



Let

(n)g=01-¢")/(1—q)
=14+q+...+q¢"1

and

n

(nl)q = H(i)q

1=1
= (14+q)(14+q+¢°) - - - (1+q+. . Aq" 1)

be the g-analogues of n and nl.
Then

Z qinVﬂ' _ (n')q _ Z qmajw.

WESn WESn



Partitions and the Gaussian Polynomials

Let A = ()\1,)\2,... ,)\n), )\@ c N
for 1 < ¢ < n be a partition and
let |A| = ). A\i. Define

(@ - <k!>q<(<7z!)—q B))g

Theorem. Forn,k € N,

n + k o I\
(") - X
q ()\

Lo dn) <(k,k,... k)

Note: We denote the conjugate
partition by ).
Example n = k = 2. The Fer-
rers shapes are



The Catalan Numbers

c - 1 (2n>
n+1\n

Recurrence:

Cr =) Cro1Cni
k=1

Over 70 interpretations in Stan-
ley’s Enumerative Combinatorics
Volume 2, including



e The number of “standard tableaux”
of shape (n,n):

123 124 125 134 135
456 300 346 206 246

e The number of “Catalan words”,
i.e. mulitset permutations of {0"1™}
where in any initial segment, the
number of zeros is at least as big
as the number of ones.

000111 001011 001101 010011 010101

e The number of “Catalan paths”
from (0,0) to (n,n), i.e. lattice
paths consisting of N and E steps
which never go below the main di-
agonal.



A CATALAN PATH




Theorem. (MacMahon)

> e (),
(n+1)q n q

Catalan words o

The Carlitz-Riordan q-Catalan
Let D,, denote the set of Catalan
paths, and set

Ofn(Q): Z qarea(a)

O'GD/)’L

where area(c) is the number of
squares below the path and strictly
above the diagonal.

Proposition.

Cn(q) = Z qk_lck—l(Q)Cn—k(Q)-



Symmetric Functions

A symmetric function is a poly-
nomial f(x1,xs,...,x,) which sat-
isfies

f(xﬁl, oo T ) = f(X1, . X)),
i.e. mf = f, for all m € .5,,.
Examples
e The monomial symmetric func-
tions mx(X)

m(2,1) (le) L2, 553) — ZC%ZEZ_'_ZE%ZES
+ :13%:131 + x%xg + x%xl + :13%:132.

e The elementary symmetric func-
tions ey (X)

62($1, L2, 5133) = T1T2+T1T3+T2X3.

e The power-sums p(X) = >_. z¥.



e The Schur functions sy (X), which
are Important in the representa-
tion theory of the symmetric group:

sa(X) =) Ky pmp(X)
BkFn

where K g equals the number of
ways of filling the Ferrers shape
of A with elements of the multi-
set {1°1292... 1 weakly increas-
ing across rows and strictly in-
creasing down columns. For ex-
ample K(4,2),(2,2,1,1) =3

1 1 2 4
2 3

N =
TS
Lo =
TN



Selberg’s Integral For k,a,b €

C,
[T e
0,D)™ 1<ici<n
H ¢ (1 —z;)" tdxy - - - day,
1=1

B ﬁ T'(a+ (i —1D)E)T(b+ (i — 1)k)
B F'(a+b+ (n+1i—2)k)
ik + 1)
“Thkt1)




Macdonald’s Generalization: There
exist symmetric functions Py (X;q,t)

such that
1
n' (0 1)77,

H H —q"x;)(zi—q "z )

1<i1<9<n r=0

P\(X;q,t)

n
H Zﬁg_l(%‘; Q)b—ldqml " dqajn

1=1




where k € N,

F' = kn(A)
+kan(n—1)/24+k*n(n—1)(n—2)/3,
t=q",
Ly(2) = (1-0)' (¢ D)oo/ (075 @) oo

is the g-gamma function with

(@:9)00 = | [(1 = 2¢"),

i>0

and
| f@dga =3 @)=

is the g-integral.



Plethysm: If F'(X) is a symmet-
ric function, then F'[(1 — t)X] '
defined by expressing F'(X) a
polynomial in the pg(X) = ) _. azk’s
and then replacing each py (X)) by
(1 —t*)pr(X).

Macdonald expanded scalar mul-
tiples of his Py(q,t) in terms of
the basis s)[(1 — t)X] and called
the coefficients K ,,(q,t). He con-
jectured these coeflicients were in
N|g,t]. He proved K ,(1,1) =
K 1n and asked if

Kx.,.(q,t Z qa(u 1) (1, T)

for some statistics a,b on parti-
tions 1 and standard tableaux T



0,00 | (0,1)
(1,0) | (1.1
(2,0)
Yy 1 T1Y1
Yo To T2Y2
Yys I3 T3Y3
Yga T4 T4Ysg
Ys IT5 ITs5Ys




For - n let V(i) denote the
linear span over () of all partial
derivatives of all orders of A(u).



7( a basis element )

— linear combo. of basis elements.

7( a basis ) = matrix M (7).
M(m)« M(B) = M (7% [3).

The character y is the trace of
M (7), which is independent of the
basis. Furthermore d a basis for
which
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V(u) decomposes as a direct sum

of its bihomogeneous subspaces V7 ()
of degree 7 in the z-variables and

7 in the y-variables. There is an
S,-action on V%7 (i) given by

7Tf: f(xﬂ-17°°' ,Qfﬂ-n,yﬂ'17°°' 7y7'('fn,)

called the diagonal action. The
Frobenius Series is the symmetric
function

Z sx(X) Z gt mij,

AFn 1,720

where m;; is the multiplicity of
the irreducible S,,-character y* in
the diagonal action on V"7 (u).



Conjecture. (Garsia, Hatman; PNAS

1993) The Frobenius Series of V(1)
15 given by the modified Macdon-
ald polynomial

H,(X;q.t) =) t"™EKy,.(q,1/t)sx(X),
AFn

where n(p) = > . (1 — 1)A\;.
(Garsia and Haiman also pio-

neered the study of the space of
diagonal harmonics R,,, which is

{f:) 0x}oyff=0,Yh+k > 0}.
1=1

This 1s known to be isomorphic to
the quotient ring

@[‘/El?"’ 7xn7y17"° 7y’n]/‘[7



where [ is the ideal generated by
the set of all “polarized power sums”
St xhyf Vh+k > 0. The V(p)

are S,,-submodules of R,,.

Conjecture. (Haiman) The di-
mension of the space of diagonal
harmonics, as a vector space over

Q, s (n+ 1)1,

The space R,, decomposes as a di-
rect sum of subspaces of bihomo-
geneous degree (i,7); Rn = B, ; R}’
The Hilbert Series is the sum

Y ¢t dim(Ry).

%,J 20

Example: If n = 2, a basis for



the spaceis 1,29 — x1,y2 — y1, and
the Hilbert Series is 1 + g + ¢.

The Frobenius Series is the sum

D osa(X) Y q'tim

AFn i,7>0

where m; ; 1s the multiplicity of
x” in the character of R%J un-
der the diagonal action of 5,,. For

n = 2 this is
s2(X) + s2(X) (g +¢).

Let V be a linear operator on the
basis H,(X;q,t) given by

~

VH, (X;q,t) = t”(“)q”(“/)ﬁu(){; q,t).



Conjecture. (Garsia, Haiman)
The Frobenius Series of R,, is given

by Ve, (X).

A polynomial f is alternating it
nf = (=1)"™7f for all m € S,.
A special case of the above con-
jecture is that the coefficient of

Sin(X) in Ve, (X), correspond-
ing to the “sign” character y! , is
the Hilbert Series of the subspace
R¢ of alternates. When ¢,t — 1
in Ve, (X) they showed this co-
efficient equals the nth Catalan
number, which would then equal
dim(RS,). By results of Macdon-
ald, this coeflicient has an expres-

sion as a rational function in g, t.



Definition. (q,t-Catalan ) Let

Cn(q,t) = (1—q)(1—1t) Z t2n(u)q2n(ul)

uFn

H/(l B qa/tl/) Z qa/tl/

H(qa _ tl—l—l)(tl _ qa—l—l)’

where the products are over the
squares of 1, and the arm a, coarm
a’, leg I, and coleg I of a square
are as below.

X







Conjecture. (Garsia, Hatman; 1992)
Cr(q,t) is a polynomial in q and
t with nonnegative coefficients.

For n = 2 the terms in Cs(q,1)
are:

¢*(1—-t)(1—¢q)(1—q)(1+q)

S G | PR G Ty

, 21— t)1—q)1—t)(1+1)
T =)= =) (1 —g)
So




After simplification the terms
in C3(q,t) are

So
03 (Q7 t) —

¢®(t? — q) +t?¢>?(L + g+ t) (g — t) + t°(¢t — ¢?)

(¢> = t)(t? —q)(q — 1)

:q3—|—q2t—|—qt2—|—qt+t3.



Theorem. (Garsia, Haiman)

0(2)C,u(q,1/q) = (n +1 g <2n>q,

Theorem. (Garsia, Haiman)

Cn(q,l): Z qarea(a).

O'EDfn,

Problem: Is there a pair of sta-
tistics (gstat, tstat) on Catalan paths
such that

Cnh(q,t) = Z qqstat(a)ttstat(a)?

O'GDfn,



Theorem. (Haiman; JAMS 2001)
If w = n, the Frobenius Series of
V(w) is the modified Macdonald

polynomial ﬁM(X; q,t).

Pt: Algebraic Geometry and Com-
mutative Algebra.

Corollaries. For all A\, utn,
K ,.(q,t) € Nlg,t] and dim(V (1)) = n!.

So far no pair of statistics for the
K ,.(gq,t) have been proposed.

Theorem. (Garsia, H.; PNAS 2001)
Cn(g,t) € Nlg, t].

Pt: Intricate application of plethys-
tic identities involving V after an
empirical discovery of a recurrence.



o—0O
~

N

T'he circles form the bounce path.
I'he bounce statisticis2 +4 + 7 = 13.




Definition.

Fn(q’ If) _ Z qarea(a)tbounce(a).
ocEDp

Conjecture. (H.; To appear in
Adv. in Math.)  For alln € N,

Fn(q,t) = Cn(g,1).

(Verified in Maple for n < 14).



Definition. Say o ends in end(o)
E steps. Forn,s € N, set

Fn,s (q’ t) _ Z qarea(a)tbounce(a) .

O'EDTL
end(o)=s
Theorem.
Fn,s(‘]» t) — Z q(g)tn—s
r=0
X Fn_s.r(q,1) (T e 1) -
r
q
Corollary.

(B FE(g0 ) = — <2n>q -



Theorem. (Garsia, H.; PNAS 2001)
For all n,s € N,

n—s (5 1 - qs
t q(Q)VGR—S[X 1 . q Hsln—s(x)
— Fn,s(Qa t)

Corollary.
Crlg,t) = Fu(q, 1),
Corollary.

F,s=(1-¢° Z tn(u)qn(u’)
uEn

[1'(1— g t)hs[(1 =) S g ']

[1(g* —t"+) (" — go+?)

Corollary. F,(q,t) = F,(t,q).

X




Haiman discovered another pair
of statistics for the g, t-Catalan.

Conjecture. (Haiman)

Cn((],t) _ Z qarea(a)tdinv(a).

O'EDTL

Proposition.

Z qarea(a) tdinv(a) _

O'GDfn,
Z qbounce(a)tarea(a) .

O'EDn

Corollary. Haiman’s conjecture
above s true.



O P P O FP N P N WODN

14 13

The statistic dinv is the # of pairs
(i,9),i < 5 with the lengths r; and
r; of rows ¢, j satistying r; — r; € {0,1}.



Corollary. F,(q,1) = F,(1,q).

Open Question. Ffind a bijec-
tive proof that F,(q,t) = F,(t,q).

Theorem. (Haiman; Invent. Math.
2002) Ve, (X) is the Frobenius Se-
ries of R,,.

Corollary. The (q,t)-Catalan C,(q,1t)
1s the Hilbert Series of the space
of alternates R, .

Corollary. dim(R,) = (n+1)""1.

The number (n+1)""1 is the num-
ber of rooted, labeled trees on n+
1 vertices, with root node labeled
0, and also the number of parking
functions on n cars.



8 2

7 3

2

2 1

2

1

0

10 1

9 1

6 0
t6 q13

dinv = #(Z,]),Z < ] . Ty =Ty and

car; > car; Orr; =r; — 1 and car; < carj.



Conjecture. (H., Loehr) The Hilbert
Series of R, s given by

Wn(q, t) _ Z qarea(a)tdinv(a),

where the sum 1s over all parking
functions on n cars.

Using Maple, we have verified our
conjecture for n < 7. We can’t
prove, by any method, that W,,(q,t) =
W, (t,q), nor can we prove that

(W, (q,1/q) = (1+q+. . +¢")" ",

which is the value for the Hilbert
Series at ¢ = 1/q conjectured by
Stanley and now proven by Haiman.
Loehr has a proof that W, (q,1) =
Wn(1,q).



Garsia and Haiman define
Cgl(q,t):vmen(X)’Sln(X), m € N.

Note Cl(q,t) = C,(q,t). These
are connected to lattice paths from
(0,0) to (nm,n) which never go
below the diagonal, and also have
an algebraic description.

Conjecture. (Haiman, Loehr)

N gereal)gmedinv(o) — cm(g )
oceD]?
_ Z g2rea(o) pm-bounce(a).
occD)’
Loehr obtains recurrences involv-

ing the parameter m which ex-
tend the recurrence for Fj, 5(q,1).



Lapointe, Lascoux and Morse
have introduced a generalization
of Schur functions they call “Atoms”,
which depend on X, ¢, a positive
integer k, and a partition A\ sat-
istying Ay < k. The coefficients
in the expansion of the Atoms in
terms of Schur functions are in
N|t], and they conjecture that if
11 < k, the coefficients in the ex-
pansion of the ﬁ[u (X;q,t)in terms
of the Atoms are in Nlg,t|. This
conjecture thus implies K ,,(q,t) €
Nlg,t]. Hear more about this in
the special session on Algebraic
and Enumerative Combinatorics.
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The bounce path for the case
m = 2. Go up distance a; to the
path, then over a;, then up dis-
tance ag, then over a1 + as, then
up as, then over as + as, etc.



o r P N P O B, O

Start with the path above. Form
the bounce path (circles, next page)
whose top step is the # of rows
length zero, etc. Then start at
corner of top step, and look at
subword of 0’s and 1’s on previ-
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(area. dinv) —® (bounce. area)

ous page, starting at bottom. For
each 0 go down, for each 1 go lett.
Then iterate with subword of 1’s
and 2’s.



