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In 1988 Macdonald [8],[9] introduced symmetric functions Pλ(X; q, t) which con-
tain most of the previously studied families of symmetric functions as special
cases. The Pλ(X; q, t) are multivariate orthogonal polynomials which have be-
come increasingly important in recent years. In 1995 Macdonald [10] introduced
a refinement of this theory involving polynomials Eα(X; q, t), now called nonsym-
metric Mcadonald polynomials, which also satisfy an orthogonality relation, and
which are a basis for the polynomial ring Q[x1, . . . , xn](q, t) whose coefficients are
rational functions in q, t. Here λ is a partition and α a weak composition. There
are versions of the Pλ and Eα for arbitrary affine root systems, and Cherednik
showed many of the properties of Macdonald polynomials have an interpretation
in terms of the representation theory of his double affine Hecke algebra.

The Pλ and Eα have “integral forms” Jλ and Eα associated to them, which are
just scalar multiples of them which clear all denominators, resulting in a polyno-
mial (i.e. an element of Q[x1, . . . , xn, q, t]). A few years ago Haiman, Loehr and
the speaker [2] proved a combinatorial formula for the Jλ, and in subsequent work
[3] obtained a corresponding combinatorial expression for the Eα. We will mostly
use the notational conventions occurring in the discussion of the Eα formula from
Appendix C of [1]. It involves nonattacking fillings, which are fillings of the di-
agram α′ whose ith column has height αi, with positive integers so that no two
entries in the same row are equal, and no two entries in successive rows, with the
entry in the upper row strictly to the right of the lower entry, are equal. Then

Eα(X; q, t) =
∑
σ

xσqmajtcoinv
∏
s∈α′

σ(s)6=σ(South(s))

(1− qleg+1tarm+1)
∏
s∈α′

σ(s)=σ(South(s))

(1− t),
(1)

where South(s) is the square right below s. The statistic maj is just the sum of
the major index of the columns, while the more intricate statistic coinv is a sum,
over pairs of squares in the same row, of a generalized concept of coinversion. Arm
and leg lengths for composition diagrams are the same as in work of Knop and
Sahi on Jack polynomials [6].

In (1) there is also a “basement” consisting of a row of squares below the
diagram, which are filled with the numbers (n, n − 1, . . . , 1), and which are used
in the computation of maj, coinv, and the description of nonattacking. To get the
Eα we need to use the diagram with column heights (αn, . . . , α1). A corresponding
formula for Jλ, where λ is the partition rearrangement of α, can be obtained
by simply changing the basement to (2n, 2n − 1, . . . , n + 1). Also, by changing
the basement to (1, 2, . . . , n) and letting the ith column have height αi, we get
the version of the nonsymmetric Macdonald polynomial studied by Marshall [11],
which we denote E ′α, which are essentially related to the Eα by reversing the order
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of the variables, reversing the order of the parts of α, and sending q → 1/q,
t→ 1/t.

Note that the Jλ version of (1) implies that for k ∈ N,

Jλ(X; q, qk)/(1− q)n|mλN[q],(2)

i.e. the coefficient of a monomial symmetric function in (2) is a positive polynomial
in q, since when t = qk, each of the factors (1 − qleg+1tarm+1) or (1 − t) becomes
(1− qm) for some m. There are n of these factors, and combining them with the
n powers of 1− q in the denominator of (2) we get a product of q-integers. Maple
calculations indicate a stronger condition holds, namely Schur positivity.

Conjecture 1 For k ∈ N,

Jλ(X; q, qk)/(1− q)n|sλ ∈ N[q].(3)

During the talk Arun Ram suggested that Conjecture 1 can be embedded in
a family of conjectures, where you expand Jλ(X; q, qm) in terms of the basis
Jµ(X; q, qm−1), with a positivity condition for each m. Since Pµ(X; q, q) = sµ,
Ram’s conjecture for m = 2, 3, ..., k implies Conjecture 1. (Since the Pµ are not
quite the Jµ, some slight modification in the statement of Ram’s conjecture is
needed.) After the talk Ram described some geometric heuristics involving Mac-
donald polynomials and quotients of determinants to the speaker which led Ram to
his conjecture. These heuristics suggest some version of this phenomenon should
hold for the Eα(X; q, t).

There is a lot of interesting combinatorics associated to the case q = t = 0 of
(1). It is known that the Demazure character, or key polynomial, Kα(x1, . . . , xn)
equals Eα(x1, . . . , xn; 0, 0), and furthermore the Demazure atom, or standard bases,
Aα(x1, . . . , xn) equals E ′α(x1, . . . , xn; 0, 0). Standard bases were introduced by Las-
coux and Schützenberger [7] in their study of Schubert varieties. They showed that
the Schubert polynomial is a positive sum of key polynomials, and that the key
polynomial is a positive sum of Demazure atoms. Further results on key poly-
nomials were obtained by Reiner and Shimozono [14]. Now if you start with an
identity of Macdonald which expresses Pλ as a sum, over compositions α whose
rearrangement α+ into partition order is λ, of E ′α(x1, . . . , xn; q, t), and then set
q = t = 0, we get

sλ =
∑
α

α+=λ

Aα(x1, . . . , xn).(4)

S. Mason [12], [13] has given a combinatorial proof of this identity by introducing
a generalization of the RSK algorithm.

Recently K. Luoto, S. Mason, S. van Willigenburg and the speaker [4], [5] have
introduced a new basis for the ring of quasisymmetric functions called quasisym-
metric Schur functions, denoted QSβ(x1, . . . , xn), where β is a (strong) compo-
sition of n. It is defined as the sum, over all (weak) compositions α which are
shuffles of the parts of β and n − `(β) zeros, of Aα. Properties of Mason’s RSK
algorithm are used to show these functions are quasisymmetric, and also to give a
decomposition of them into Gessel’s fundamental basis Fβ . (QSβ equals the sum,
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over all standard tableaux T of β+ which get mapped under Mason’s RSK to one
of the shapes α occurring in the decomposition of QSβ into atoms, of Fdes(T ).)
The QS functions satisfy a refinement of the Littlewood-Richardson rule, as well
as many other well-known properties of Schur functions. In a paper to be pre-
sented at the FPSAC 2010 conference this summer, A. Lauve and S. Mason have
used this refined Littlewood-Richardson rule and other properties of QS functions
to obtain an explicit basis of the quotient ring QSYMn/SYMn, where QSYMn

and SYMn are the rings of quasisymmetric functions and symmetric functions in
n variables, thus resolving a conjecture of F. Bergeron and C. Reutenauer.
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