Recall from last time:

\[P \to \text{Graph} \to \text{DiGraph} \to \text{DiGraph} \]

\[\text{Shade}(x, y) = \sum_{x \in \text{Vertices}} x_i \quad \text{where} \quad x_i = \sum_{(x, y) \in E(G)} x \]

where \(x_i \) is a shaded path with \(n \) nodes.

How about other graphs instead of just graphs?

Recall the following we learned in previous lectures:

\[x_i \quad \text{is symmetric, then} \quad \sum_{(x, y) \in E(G)} x \]

Prop: If \(x_i \) is symmetric, then \(x_i \quad \text{shaded} \quad x_i \)

Hence \(x_i \) is path-connected and acc(\(x \)) can be replaced by acc(\(x \)), i.e., \(x_i = \sum_{(x, y) \in E(G)} x \)

Q: When is \(x_i \) symmetric?

We only know "natural" examples:

1. When \(G \) is a unit interval graph \(G(U, P) \) where \(P \) is a unit interval order, then \(x_i \) is symmetric (proven by Steenrod & Stone)

Choose a finite set of closed intervals \(S = \{S_i \} \) of length one on \(R \) and \(x_i \) is the union of these intervals.

2. The associated natural unit interval order \(P \) is a partial order in \(R \) and \(x_i \) is path-connected.

Q: When \(G \) is a naturally labeled cycle, then \(x_i \) is symmetric.

3. When \(G \) is a naturally labeled cycle, then \(x_i \) is symmetric (by Steenrod and Stone).

4. \(G \) has connected components of types (1) or (2), then \(x_i \) is symmetric.

We will focus on connected graphs.

Recall \(\sum_{(x, y) \in E(G)} x_i = \sum_{(x, y) \in E(G)} x \), we have:

- \(x_i \) is e-positive and e-unimodal (i.e., \(\text{flip} x_i \to x_i \): coeff of \(x_i \to \text{coeff} \) of \(x_i \) is e-positive)

- Problem: Characterize representations of \(S_n \) on cohomology of top-dimensional cycles with dual permutation is \(x_i \) (by Poincaré & Steenrod)

Conjecture 1: (Determination of e-positive functions)

If \(G \) is a natural unit interval graph, then \(x_i \) is e-positive and e-unimodal.

Conjecture 2: (Conjecture proposed by Brower, Crowe, and Ewing-Pragiat)

Connection with representation varieties.

Corrections: Conjecture 1 + Schur-positivity (c.f. proof in lecture 3 using P matrices).

Conjecture 2: Main conjecture: Characteristic \(x_i \) Schur-unimodality (Theorem)

Problem: Find a proof of the Schur-unimodality that uses P matrices

Conjecture 3: p-positivity and p-unimodality of \(x_i \) (c.f. paper by symmetric functions)}
Theorem (Shao, Zhang, 1976)

For all graphs G, $\chi(H,1) = \sum_{\text{edges } e} \frac{1}{d(e)}$.

p-positivity of $\chi(H[1])$.

Let P be a point on (i_1, i_2). A word $a_1a_2..a_n$ over $\{1,2,..,n\}$ has a P-accreted at i_j if $a_j = a$, and a left-to-right P-none at i_j if $a_j = a$, $a < a_i$. Define $P_{\text{left}} = \{ \forall \forall E : \forall \exists \in P \text{ -- skew or left-to-right P-none (in one-time assignment)} \}$.

Theorem (Shao, Zhang, 1976)

Let G be in P_{left} where P is a natural unit interval order.

Then coefficient of $\frac{1}{d(e)}$ in the power-series expansion of $\chi(H[1])$ is $\sum_{\text{edges } e} \frac{1}{d(e)}$ where $\chi(H[1]) = \chi(H[1])$.

Know about coeff. $\frac{1}{d(e)}$.

Given a point P on (i_1, i_2) and $\forall \forall E$.

Define P_{left} as the set of fittings of Young diagram λ with i_1, i_2 and once such (i.e., standard fitting). It must have an P_{left} skew and an left-to-right P_{none}.

Theorem (Corollary to Shao, Zhang, proved by K. Thaphaid).

Let G be P_{left} where P is a natural unit interval order, and $\forall \forall E$.

Then coefficient of P in the power-series expansion of $\chi(H)$ is $\sum_{\text{edges } e} \frac{1}{d(e)}$ where $\chi(H[1])$ is expanded by removing T from left to right starting from i_1 to i_2.

p-unimodularity of $\chi(H[1])$.

Note: This is $\frac{1}{d(e)}$. $\chi(H[1])$ is unimodal ($\forall \forall E$).