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Plan

@ Lecture 3: Statistics of N.O./ Top homogeneous part in F,Sk).

@ Lecture 4: Construction of F, ,Sk) with differential operators / Vanishing
condition.
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Generating functions
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Generating functions
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Generating functions

_1)lelpn(an) (—as;)ve” ()]

) - (=1 \zasi) ™ 77

Fu (51, S2..., Sk) = Z 2| Ve (M) |—ce(M) o cc(M) ] '
MeM&k) 1<i<k

0 ()
Let t be a new parameter.

—t)1Mlp,, npy b7 M (—as;) Ve (M)l
F(k)(tpsl S9...,8E) = E ( o ~—
P EY =L ’ Ve (M ce(M) Hce(M .

NSt 21Ve (M)[—ce(M) oy cc(M) ik 2,0 (a1

S Q(a)[p1,p2.--,31732a~-][[t]]

We want to prove:

@ Vanishing property: [t"|F®)(t, A1,..., ) = 0 if n > |A.

@ Shifted symmetry property; F(*) is symmetric in s; — i/a.
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Generating functions

_1)lelpn() —as )V ()

(k) _ (=1)"b (—as;)
Fu (81,82 ...,8K) == Z SV —ech qeei) 1 -_
MemP) 1<i<

280 ()

Let t be a new parameter.

—t)Mlp, 1D (—as;) Ve (M)l

(k) L ( vo (M) i

FY(t,p,s1,82...,8) == Z Ve (M)|—cc(M) pec(M) H 2 @
MeMKF) 1<i<k ve" (M)

€ Q(a)[PhPQ ceey 81,52, ][[t]]
We want to prove:

@ Vanishing property: [t"|F®)(t, A1,..., ) = 0 if n > |A].
For a € {1,2}: Combinatorial proof by Féray-Sniady ’11.

@ Shifted symmetry property; F*) is symmetric in s; — i /.
e



Differential construction

@ In order to prove these properties, we use a differential construction of
the generating series of layered maps (Tutte decomposition):

FFHD (4,51, ..., sp41) = exp (Z (-t Bn(py —a51)> CF®) (t,p, 52,y Shg1)s

n>1

where B, (p, —as1) is an operator which adds a black vertex of degree n with
label 1, adding possibly new white vertices (necessarily in layer 1).
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Differential construction

@ In order to prove these properties, we use a differential construction of
the generating series of layered maps (Tutte decomposition):

—t)n
FHF (t,p,s1,..., sp41) = exp (Z ( n) By (p, —a81)> F®) (t,p,s2,.. ., 8541)
n>1

where B, (p, —as1) is an operator which adds a black vertex of degree n with
label 1, adding possibly new white vertices (necessarily in layer 1).
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Plan

0 Differential operators and construction of maps

Ben Dali Jack polynomials as map



Adding one edge

We consider bipartite maps (non-layered) counted with the weight
Pug(M)-
P1 - Pug(M) = Puy(N),

N is the map obtained from M by adding an isolated edge.
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Adding one edge
Fix a bipartite map M.
i
;mla—m Pro(i) = gpuowu{e})

the sum is taken over all possible ways to add a white leaf e to a black corner
of M.
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Adding one edge

Z PiPj—F— (Z - 1 sz—H + 2 Z Pitj+1 73— 9 3(9 *Pu (M)

P21 Opits1 P21 Op: Op;

= Zpuo(Mu{e})

the sum is taken over all possible ways to add an edge e between two corners
of M.
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Adding one edge

(i+7—-1)0 10 j8
Z Pipj sz+1 + 2 Z Pitj+1 75— “ Py (M)
i7>1 Opiki- i Opi Op;
= Puouuey)

the sum is taken over all possible ways to add an edge e between two corners

@& b aPe®
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Adding one edge

(i+J— i0 jO \ Puv.(M)
Pip; +b P+1 +(1+0) Pitj+1 =
S G TV Sy 000 3 mwsngy g |
_ Z p?(MU{e}e) DPuo(MU{e})
k(M U {e})

the sum is taken over all possible ways to add an edge e between two corners

of M, and
K(M) = 2|V.(]W)|—cc(M)acc(1W)'

pP(MU{e},e) 4 p9(MU{E}.&) _ 1 4
p9(MU{e},e) _ 4 pI(MU{e},e) _p or pP(MU{e},e) _ po(MU{e}.a) _
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Adding one edge

Ago‘) _p — isolated edge
o
A(a) (Z pz+1 B > — white leaf edge
i>1

ij>1 J—1 i>1 ij>1

+j (i+j—-1)0 i0 i0 jo
A = [ 3 pip & 03 P+ (140) 3 p;
3 pipj Pi+1 ops Pitj+1 7 — op 3}0]
— edge without new vertices.

Aip1 = [D(a),Ai] ,

where

ple) = 1 b- (1+b) 1jo?
9 Z + Z + Z Pitj Op:i0p; >

1,7>1 >1 i,j>1

is the Laplace-Beltrami operator.
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Adding one edge

‘We can define the operators A; recursively

A==, and A;41 = [D(O‘),Ai] .

“ 1
D<>:2(z a +Z

ij>1 i>1
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Adding one edge

We can define the operators A; recursively

A==, and A;41 = [D(O‘),Ai] .

1 (i+45)0 i(i —1)0 ijO?
D) = = pipj-——— +tb- ) pi——F——+(1+b Pitj )
2 ; " oy ; o )1,%1 " opiop;

This operator is diagonal on Jack polynomials.

D@ = [ 2SN -1 =S NG -1 | a8
2= i>1

Moreover, the action of p; on Jack polynomials is given by the Pieri rule.
— We deduce the action of A; on Jack polynomials.
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Chapuy—Dotega operators '22

A map M is rooted if it has a marked black corner c.
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Chapuy—Dotega operators '22

A map M is rooted if it has a marked black corner c.

We consider an additional alphabet Y := (yo,y1,¥2,...). We associate to the
root face a weight y; and to other faces a weight p;.
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Chapuy—Dotega operators '22

A map M is rooted if it has a marked black corner c.

Y2P3P3P2

We consider an additional alphabet Y := (yo,y1,¥2,...). We associate to the
root face a weight y; and to other faces a weight p;.

P = SpanQ(b) {p»}, is the space spanned by the weights of unrooted maps.
Py := Spang, {yipr} is the space spanned by the weights of rooted maps.
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Chapuy-Dotega operators

1y_ﬁ 5 :P — Py; adds an isolated root black vertex.
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Chapuy-Dotega operators

1y_ﬁ 5 :P — Py; adds an isolated root black vertex.

0
Yy = Z Yitlg —: Py — Py adds a white leaf on the root corner.
i>0 4
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Chapuy-Dotega operators

:P — Py; adds an isolated root black vertex.

1+b6
Y, = Z yH_l : Py — Py adds a white leaf on the root corner.
>0
1o}
Ty = Zynga -+ (1+0) Zylﬂa 8 -+ Zym : Py = Py
7,7>1 i,j>1 Pi0Y;—

adds an edge between the root corner and a white corner of the map.
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Chapuy-Dotega operators

:P — Py; adds an isolated root black vertex.

140
Yy = Z yz+1 : Py — Py adds a white leaf on the root corner.
>0
o
Iy = Zywpaa +(1+b) Zyzﬂa 8 + Zszrl : Py = Py
7,7>1 i,j>1 PiOY;5—

adds an edge between the root corner and a white corner of the map.

@Y = sz

i>1 Yi
Bn(p,u) := Oy (T'y +uY3)"

; Py — P "forgets" the root.

Yo
P —=P.
b —

— adds a black vertex of degree n with a weight u for each added white vertex.
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Examples

Yo
1+b.73—>73.

B,(p,u) =0y (Ty +uY,)"
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Examples

Yo
1+0b

B,(p,u) := Oy (Ty +uY,)"
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Examples

n Y0

Bn(p,u) := Oy (I'y +uY.)
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Examples

n Y0

Bn(p,u) := Oy (I'y +uY.)
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Examples

n Y0

Bn(p,u) := Oy (I'y +uY.)
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Examples

n Y0

Bn(p, u) = @y(ry + UY_;,_)
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Examples

B,(p,u) := Oy Ty +uY,)"

140
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Examples

Layared maps: We act by (—t)"B,,(p, —«s1) to add a black vertex of degree
n in layer 1.
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Examples

N_.pp.

B,(p,u) == Oy (Ty +uY,)" T3

Remark J

The variables y; are catalytic variables.
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Examples

n Yo
B, (p,u) := 6y (T’ Y.
(p,u) vy Oy +u¥y)" :77
Remark
The variables y; are catalytic variables.
Bia) (pv + sz-l—l
>1

i0

2
[e% U -
B (pu) = = 2+ 30 | Qut (4 D= Dpieat Do pomk | 5

i>1 J+k=i+2
= Jk21

u 10 ga
+2 ((a=Dp2+pi1) +a Z Pitj+27

i,j>1
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Recall: decomposition algorithm

A labelled 3-layered map

@ We decompose the map in an increasing order of the layers.

e We start by decomposing the vertex of maximal degree and
maximal number.

o We delete black vertices in layer 1 with respect to this order,
and starting each time at the marked corner.

Houcine Ben Dali Jack polynomials as map series 16 /31



Differential construction

1
F(k+1)(51, C s Skt1) = Z P
v

(—t)ulByl (p, —081) .. ( )ya”)Bw( )( asl)F(k)(SQ, Ceey 8k+1).
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Differential construction

F(k+1)(517 ey Skyl) = Z (H ﬁ)

v szl '
(_t)U1BD1 (pa _a31) (_t)yl(u)Bl/g(l,) (p7 _Ol31)

F®) (s, ... :
" l/g(,,) (52a ) Sk+1)

Fact: The operators ,, commute.

F(k+l)(31, ey Sky1) = Z Z (H %)

>1ny,..m>1 \j>1

(=8)"' By, (P, —51) (=) B, (P, _a81)F(k)(327...73k+1)

ni T
B, (p, —as
= exp Z¥ ~F(k)(52,...,sk+1).
n>1
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Differential construction

F®) (t,p,S1,...,8K) =
{ E(t,p,—as1) - FED (t,p,so,...,s) ifk>1
1

if k=0.

where

E(t,p,u) :=exp Z (_—?)jl’)’j(p,u) )

Jj=1

the operator which adds a layer, with a weight (—¢) for each added edge, and a

weight v for each new white vertex.

Houcine Ben Dali
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Differential construction

F®) (t,p,S1,...,8K) =
{ E(t,p,—as1) - FED (t,p,so,...,s) ifk>1
1

if k=0.

where

E(t,p,u) :=exp Z (_—?)jl’)’j(p,u) )

Jj=1

the operator which adds a layer, with a weight (—¢) for each added edge, and a

weight v for each new white vertex.

F®) (t,p,S1,...,8k) = E(t,p,—as1) - E(t, p, —asg) - 1.

Houcine Ben Dali
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Plan

e Tau function in two alphabets

Jack polynomials



Tau function [Chapuy—Dotega 22|

thf” J<°°< )74 ()

(a) ) € Q(OZ) [pa q, U] [[t]]a
J,\

)p)q?
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Tau function [Chapuy—Dotega 22|

I (p) T (q) ]
#Otpaw = 3 ®M) DA ¢ ga)ip,q,ull,
Here

J ) = J @y, 00,...)  and  J(q) = T (1, v ),

p = (p1,p2,...) and q = (¢1, gz, . . . ) are respectively power-sum symmetric
functions in (z;) and (y;).
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Tau function [Chapuy—Dotega 22|

) o) u
(e, p.qu z)wa )ﬁgﬁﬁ(Jemmmqmm,
A

Here
J a) — J(a) d J(a) — J(a)
A (p) A (1‘171'2"") an A (q) A (ylay27~")7

p = (p1,p2,...) and q = (q1, ¢z, - . . ) are respectively power-sum symmetric
functions in (z;) and (y;). Moreover, u := (u,u,...)

T\ W) = 1 () =

Exmaple: For A = [2,2]

J[(;f%] (p) = pi + 2(a — 1)pop? — dapapr + (@ + a + 1)paps + (—a + a)ps
Then
J[(2a% (w) = u* +2(a — 1)’ + (® = 3a + 1)u” + (—a® + Q)u.
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Tau function

Theorem (Stanley ’89)
For any A,

IO W) = [ (u+ ca(D)),

Oex

with

co(0) = ad'(O) — £'(O).

Y
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Tau function

Theorem (Chapuy-Dotega '22)

For anym > 1,

B 8
e Bn) @y . g,u) = 2 (¢, p,q,w).
m Om

o t"q
7(t,p,q,u) = exp (Z — m(p,u)) -1

m>1
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Consequence : First commutation relation

(B (P, 1), B (ps )] = Bp(p, u) - By (P, u) — Bin (P, u) - Ba(psu) = 0.

Houcine Ben Dali Jack polynomials as map series



Consequence : First commutation relation

[Bn(pa ’LL), Bm(pa u)] = Bn(p7 U) : Bm(pa ’Ll,) - Bm(pa ’LL) : Bn(p7 U) = U

Proof:

B 8
e B oy g, u) = 7)1, p.q, )
m Om

Houcine Ben Dali Jack polynomials as map series
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Consequence : First commutation relation

Proof:

B, (p,u) By (p,u) 0
m+n J W (a) _n (o) _
t - - Tt p,q,u) =t"B,(p,u) aan” (t,p,q,u)
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Consequence : First commutation relation

Proof:

B, (p,u) Bn(p,u o 0 a
tm+n (p ) (p ) 'T( )(t7p7q7u) = _Bn(pau)T( )(tapaq7u)
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Consequence : First commutation relation

Proof:

Bn(p u) Bm(p U) o 0
m+n ’ ) () - Y () q
t n m 4 (t7 P4 H) 0qm 8%7 (t’ P, 72).

Houcine Ben Dali Jack polynomials as map series
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Consequence : First commutation relation

[Bn(pa ’LL), Bm(pa 'LL)] = Bn(p7 U) . BWL(pa 'LL) - Bm(pa ’LL) : Bn(pa U) =0.
Proof:

B.(p,u) By (p, u) 0 0
m+4n (@) t —_ (o) t
t n - T (t,p,q,u) 0. 90" (t,p,q,u)
g 0
= = gy )
90, 0a. " (t,p,q,u)
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Consequence : First commutation relation

Proof:

B, (p,u) B (p,u) o 0
men ’ U (a) - 9 9 (
t " - 7Y (t,p,q,u) B0 90, (t,p,q,u)

o 0

9 9

aqn aqu (t7p7qﬂ H)

_ gmn B (P, 1) Bu(pw) 7@ (t,p, q,u)
m n
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Consequence : First commutation relation

[Bn(pau)a Bm(PaU)] = Bn(pau) ) Bm(pa u) - Bm(p’u) ! Bn(pvu) =0.
Proof:
B,.(p,u) B (p,u) g 0
m+n ’ . (@) = 7
¢ " - Y (t,p,q,u) B0, 9. (t,p,q,u)
o 0
27 ()
6qn 8 mT (t’p’q’ /I;L)

— thrn Bm(p’ 'U,) Bn(p7 ’LL)

m n

! T(a) (tv P;q, ﬂ)

By extracting the coefficient of .J ;‘l)(q)7 we get

B,.(p, w) Bin(p, u)

I\ (@)t p,a,w)

n m
B p,u B p,u «
_ m( ) n( ) [J/(\w)(q)]T(a)(t’ p. q7u)
m n

23 /31



Consequence : First commutation relation

[Bn(pv u)a Bm(p’ u)] = Bn(pv u) : Bm(p’ u) - Bm(pv u) : Bn(pv u) = v
Proof:

B (p, u) B (p, u) 00
gmtn ) ’ () t - ) t
- - T ( ,p,q,ﬂ) IGm 8Qn7— ( ,p,q’U)
0
= 2 2 jlgy
9gn, 0 mT (tp-a2)
_ tm+n Bm(p, u) Bn(pa u) . T(a) (t’ P, q,u)
m n

By extracting the coefficient of J /(\O‘)(q), we get

By.(p, u) B (P, v) . Jia)(p) _ By (p; u) Bu(p, u)

. J(a)
n m m n A (p)
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Plan

@ Vanishing condition

Jack polynomials



Vanishing condition

We want to prove that if n > |A| then [t"]F®) (¢, Ay, ..., \y) = 0.
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Vanishing condition

We want to prove that if n > || then [t"]F®) (¢, Ay, ..., \x) = 0.

F® (£p, A1, ) = E(E,p, —ady) - E(t, P, —ad;) - 1

with

-ty

Bj (pa u)

E(t,p,u)i=exp [ >

Jj=1
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Vanishing condition

We want to prove that if n > |A| then [t"]F®*) (£, Ay,...,\;) = 0.
Then

EIEE (A, ) = Y ([EME( P, —aA))

(1€t p, —ads)) ... ([I"™]E(, p, —ady)) - 1

There exists an ¢ for which n; > ;.
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Vanishing condition

There exists an ¢ for which n; > ;.

[tn]F(k)(ta )‘1)"'?)‘]6) = Z ([tnl]g(tapa —(1)\1))

(18t —0n) .. (E]E(E p, —ade)) - 1

There exists an ¢ for which n; > A;.
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Vanishing condition

There exists an ¢ for which n; > ;.

[tn]F(k)(ta )‘1)"'?)‘16) = Z ([tnl]g(tapa _a)‘l))

(118D, —0A)) . (EHE(E B, —akk) - 1

There exists an ¢ for which n; > A;. We prove that there exists a sequence of
subspaces of P

Q(a)zPo CPiCPyC...
such that

[tn]g(ta P, —ozm) : Pm g Pm Vn m; (SIL(LbLlLfy),
={0} Vn>m; (Annihilation).
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The space Py,

Fix a non-negative integer m. Let Pp, := Spang,, {J( (p)})\ o
1<m
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The space Py,

Fix a non-negative integer m. Let Py, := Spang,) {J>(\a) (p)})\ .
15Sm

)

T () (@) T (—am
Tt p,q, —am) =Y A=A (p)J) .((03 L (zam)
A Ix
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The space Py,

Fix a non-negative integer m. Let Py, := Spangq {J/(\a) (p)}

() (@) (@)
T(a)(t’p’q7_am) = th\\J)\ (p)JA (q)J)\ (—oﬁn)7
i

A

Observation: [Jia)(p)} 7@t p,q, —am) #0 <= X\ <m

Proof: I (=am) = ] (ca(D) —am) £0 <= A <m
Oex

Houcine Ben Dali Jack polynomials as map series
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The space Py,

Fix a non-negative integer m. Let Py, := Spangq {J/(\a) (p)}

() (@) (@)
T(a)(t’p’q7_am) = th\\J)\ (p)JA (q)J)\ (—oﬁn)7
i

A
Observation: [J/(\")(p)} @t p,q, —am) #0 < A\ <m

O(P) . 7)'m =0 — O(p> : T(a) <ta p, qvﬂ) =0

m

Houcine Ben Dali Jack polynomials as map series
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Annihilation property

O(p) “Pm =0 — O(p) : 7_(04) (ta P, q; —am) =0.

E(z,p,u) = exp (Z (_jz)] Bj(P:“)) .

Jj=1

Fix n > m.

[2"]E (2, p, —am) - () (t, p, q, —am)
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Annihilation property

Op) Pm=0 <= O(p) 79t p,q —am)=0.

E(z,p,u) := exp (Z (_jZ)J B;(p, u)) .

jz1

Fix n > m.

[Zn]g(z, p, —ozm) : 7_(04) (tv p;q, _am)

= [z"] exp (Z (—jZ)J Bj(P,am)) - exp (Z %%Bj(]?, am)) -1

Jjz1 jz1
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Annihilation property

O(p) *Pm =0 — O(p) : T(a) (ta p,q, —ozm) =0.

E(z,p,u) := exp (Z (_;)J B;(p, u)) .

Jj=1

Fix n > m.

[2"]€(z, p, —am) - 7Y (t, p,q, —am)

— [Zn] exp (Z (_jz)]

Jj=1 Jj=1

— exp (Z O 45850, —am)> [ exp (Z 00, —am)) .

Jj=1

Houcine Ben Dali Jack polynomials as map series
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Annihilation property

Op) Pm=0 <= O(p) 7 (tp,q,—am)=0.

E(z,p,u) := exp (Z (—jz)] B;(p, u)) .

Jjz1

Fix n > m.

[zn]g(z p, —am) ) T(a) (t7 p;q, _am)

= [¢"] exp (Z (=) p,_am)) - exp (Z (737%)]%83‘(1), —am)

i>1 i>1

— exp (Z 05,0, —am>> e (Z L0, —am>) 1

j=1

= e (Z oo —am>> [ (2, p, 1, —am).

Jj=1
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Annihilation property

[Zn]g(z7 o) ﬂ) ' T(a) (tv p,q, __am)

= exp (Z %qjﬁj(p, —am)) [z (2, p,1, —am).

Jj=1

(04) (oc) (@)
7 (z,p,1, —am) = Z ()3 (1), (—am)

5
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Annihilation property

[Zn]€<z7 P, ﬂ) : T(a) (t, p,q, _am)

= exp (Z (_Tt)j%'Bj(p» —am)) [z (2, p,1, —am).

Jj=1

(a) () 1 J(a) _
T(a)('za p,l,—am) = Z PR I\ (p)‘])\ ((_a)) A (=am) ,
A ‘7>\

Recall
I w) = [T (u+ca(@)),

e

co=—1
! Co = M
S I ‘. ¢
m
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Stability property

We want to prove that for any n > 0

[z"E€(z, p, —am) - Pm C Pm,

- Bj<p,u>> .

with

E(z,p,u) := exp (Z

i>1
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Stability property

We want to prove that for any n > 0

[zn]g(zv p; _O‘m) *Pm C Pm,

with

E(z,p,u) := exp Z (=2) Bj(p,u)

Jj=1

It is enough to prove that, for any n > 1

Bn(p7 7am) *Pm € Pm.

Houcine Ben Dali

Jack polynomials as map series
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Stability property

‘We want to prove that for any n > 0
[z"]€(z, p, —am) - Pm C Pm,
It is enough to prove that, for any n > 1

Bn(p,—am) - Pm, C Puy.

In other terms that for any A and £ such that Ay < m and & > m,

[7{*) (9)]Bn(p, —am) - J\) (p) = 0.
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Stability property

‘We want to prove that for any n > 0
[2"]1€(z, p, —am) - P C Prm,
It is enough to prove that, for any n > 1

Bn(p,—am) - Pm, C Puy.

In other terms that for any A and £ such that Ay < m and & > m,
[7$) (9)]Bn (p, —am) - J\ (p) = 0.
We know that for any n > 1,

pBo®=am) @)y b g —am) = aiT(a)(t’ P, q, —am).

n dn
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Stability property

We want to prove that for any n > 0
[zn]g(z’ 1) _am) : Pm g Pma
It is enough to prove that, for any n > 1

Bn(p, —am) - Pm C Pm.

In other terms that for any A and £ such that Ay < m and & > m,

[7{*) (9)]Bn(p, —am) - J\ (p) = 0.

We know that for any n > 1,

tnM 7 (t,p,q, —am) = iT(oz)(t’p7 a, —am).
n - Ogn E—

We extract the coefficient of Jg(“) (p).]i(y) (q)

[-]é(” (p)}tn M . [']i(Y) (q)}‘l‘(a) (t, P.q, _am)
= U4 @] 5= (0] 1.y, —am) = .
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Next lecture

F(k) (ta | ST P 75k) = g(tv | oF —0681) e g(t7 P, —OéSk) - 1.

In order to obtain the shifted symmetry property, we should
understand

[E(t,p,u), E(t,p,v)] # 0.
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