Jack characters as generating series of bipartite maps and proof of Lassalle's conjecture (Part 4)

Houcine Ben Dali

joint work with

Maciej Dołęga

Plan

- Lecture 3: Statistics of N.O./ Top homogeneous part in $F_{\mu}^{(k)}$.
- Lecture 4: Construction of $F_{\mu}^{(k)}$ with differential operators / Vanishing condition.

Example $\mu=[2]$

Theorem (BD-Dołęga '23+)

$$
\theta_{\mu}^{(\alpha)}\left(s_{1}, s_{2}, \ldots\right)=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\infty)}} \frac{b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}}
$$

$$
\theta_{[2]}^{(\alpha)}\left(s_{1}, s_{2} \ldots\right)=\sum_{i \geq 1} \frac{\alpha}{2} s_{i}\left(s_{i}-1\right)-\sum_{i \geq 1}(i-1) s_{i} .
$$

Example $\mu=[2]$

Theorem (BD-Dołęga '23+)

$$
\theta_{\mu}^{(\alpha)}\left(s_{1}, s_{2}, \ldots\right)=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\infty)}} \frac{b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}},
$$

$$
\theta_{[2]}^{(\alpha)}\left(s_{1}, s_{2} \ldots\right)=\sum_{i \geq 1} \frac{\alpha}{2} s_{i}\left(s_{i}-1\right)-\sum_{i \geq 1}(i-1) s_{i} .
$$

Example $\mu=[2]$

Theorem (BD-Dołęga '23+)

$$
\theta_{\mu}^{(\alpha)}\left(s_{1}, s_{2}, \ldots\right)=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\infty)}} \frac{b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}},
$$

$$
\theta_{[2]}^{(\alpha)}\left(s_{1}, s_{2} \ldots\right)=\sum_{i \geq 1} \frac{\alpha}{2} s_{i}\left(s_{i}-1\right)-\sum_{i \geq 1}(i-1) s_{i} .
$$

$\alpha^{2} s_{i}^{2}$

$-\frac{2 \alpha s_{i}}{4 \alpha}$

$$
-\frac{2 \alpha s_{i} \cdot(i-1)}{2 \alpha}
$$

$\frac{-\alpha s_{i}}{2 \alpha}$

Example $\mu=[2]$

Theorem (BD-Dołęga '23+)

$$
\theta_{\mu}^{(\alpha)}\left(s_{1}, s_{2}, \ldots\right)=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\infty)}} \frac{b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}}
$$

$$
\theta_{[2]}^{(\alpha)}\left(s_{1}, s_{2} \ldots\right)=\sum_{i \geq 1} \frac{\alpha}{2} s_{i}\left(s_{i}-1\right)-\sum_{i \geq 1}(i-1) s_{i}
$$

$$
\begin{array}{ll}
\alpha^{2} s_{i}^{2} & -\frac{2 \alpha s_{i}}{4 \alpha} \\
{ }^{\eta(M)}=1 & b^{\eta(M)}=1
\end{array}
$$

$$
-\frac{2 \alpha s_{i} \cdot(i-1)}{2 \alpha}
$$

$$
b^{\eta(M)}=1
$$

$\frac{-\alpha s_{i}}{2 \alpha}$
$b^{\eta(M)}=b$

Generating functions

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\mid \mathcal{V}}(M) \mid-c c(M)} \alpha^{c c(M)} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}} .
$$

Generating functions

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{0}^{(i)}(M)}} .
$$

Let t be a new parameter.

$$
\begin{array}{r}
F^{(k)}\left(t, \mathrm{p}, s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}^{(k)}} \frac{(-t)^{|M|} p_{\nu_{o}(M)} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(i)}(M)} \\
\in \mathbb{Q}(\alpha)\left[p_{1}, p_{2} \ldots, s_{1}, s_{2}, \ldots\right] \llbracket t \rrbracket
\end{array}
$$

Generating functions

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{0}^{(i)}(M)}} .
$$

Let t be a new parameter.

$$
\begin{array}{r}
F^{(k)}\left(t, \mathrm{p}, s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}^{(k)}} \frac{(-t)^{|M|} p_{\nu_{o}(M)} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\nu_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}(i)(M)}} \\
\in \mathbb{Q}(\alpha)\left[p_{1}, p_{2} \ldots, s_{1}, s_{2}, \ldots\right] \llbracket t \rrbracket
\end{array}
$$

We want to prove:

- Vanishing property: $\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=0$ if $n>|\lambda|$.
- Shifted symmetry property; $F^{(k)}$ is symmetric in $s_{i}-i / \alpha$.

Generating functions

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{0}^{(i)}(M)}} .
$$

Let t be a new parameter.

$$
\begin{array}{r}
F^{(k)}\left(t, \mathrm{p}, s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}^{(k)}} \frac{(-t)^{|M|} p_{\nu_{\circ}(M)} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\nu_{0}^{(i)}(M)\right|}}{z_{\nu_{0}^{(i)}(M)}} \\
\in \mathbb{Q}(\alpha)\left[p_{1}, p_{2} \ldots, s_{1}, s_{2}, \ldots\right] \llbracket t \rrbracket
\end{array}
$$

We want to prove:

- Vanishing property: $\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=0$ if $n>|\lambda|$. For $\alpha \in\{1,2\}$: Combinatorial proof by Féray-Śniady '11.
- Shifted symmetry property; $F^{(k)}$ is symmetric in $s_{i}-i / \alpha$.

Differential construction

- In order to prove these properties, we use a differential construction of the generating series of layered maps (Tutte decomposition):

$$
F^{(k+1)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k+1}\right)=\exp \left(\sum_{n \geq 1} \frac{(-t)^{n}}{n} \mathcal{B}_{n}\left(\mathbf{p},-\alpha s_{1}\right)\right) \cdot F^{(k)}\left(t, \mathbf{p}, s_{2}, \ldots, s_{k+1}\right),
$$

where $\mathcal{B}_{n}\left(\mathbf{p},-\alpha s_{1}\right)$ is an operator which adds a black vertex of degree n with label 1 , adding possibly new white vertices (necessarily in layer 1).

Differential construction

- In order to prove these properties, we use a differential construction of the generating series of layered maps (Tutte decomposition):

$$
F^{(k+1)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k+1}\right)=\exp \left(\sum_{n \geq 1} \frac{(-t)^{n}}{n} \mathcal{B}_{n}\left(\mathbf{p},-\alpha s_{1}\right)\right) \cdot F^{(k)}\left(t, \mathbf{p}, s_{2}, \ldots, s_{k+1}\right),
$$

where $\mathcal{B}_{n}\left(\mathbf{p},-\alpha s_{1}\right)$ is an operator which adds a black vertex of degree n with label 1 , adding possibly new white vertices (necessarily in layer 1).

Plan

(1) Differential operators and construction of maps

2 Tau function in two alphabets

3 Vanishing condition

Adding one edge

We consider bipartite maps (non-layered) counted with the weight $p_{\nu_{\diamond}(M)}$.

$$
p_{1} \cdot p_{\nu_{\diamond}(M)}=p_{\nu_{\diamond}(N)},
$$

N is the map obtained from M by adding an isolated edge.

Adding one edge

Fix a bipartite map M.

$$
\left(\sum_{i \geq 1} p_{i+1} \frac{i \partial}{\partial p_{i}}\right) p_{\nu_{\diamond}(M)}=\sum_{e} p_{\nu_{\diamond}(M \cup\{e\})}
$$

the sum is taken over all possible ways to add a white leaf e to a black corner of M.

M

$M \cup\{e\}$

Adding one edge

$$
\begin{array}{r}
\left(\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j-1) \partial}{\partial p_{i+j-1}}+\sum_{i \geq 1} p_{i+1} \frac{i \partial}{\partial p_{i}}+2 \sum_{i, j \geq 1} p_{i+j+1} \frac{i \partial}{\partial p_{i}} \frac{j \partial}{\partial p_{j}}\right) \cdot p_{\nu_{\diamond}(M)} \\
=\sum_{e} p_{\nu_{\diamond}(M \cup\{e\})}
\end{array}
$$

the sum is taken over all possible ways to add an edge e between two corners of M.

Adding one edge

$$
\begin{array}{r}
\left(\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j-1) \partial}{\partial p_{i+j-1}}+\sum_{i \geq 1} p_{i+1} \frac{i \partial}{\partial p_{i}}+2 \sum_{i, j \geq 1} p_{i+j+1} \frac{i \partial}{\partial p_{i}} \frac{j \partial}{\partial p_{j}}\right) \cdot p_{\nu_{\diamond}(M)} \\
=\sum_{e} p_{\nu_{\diamond}(M \cup\{e\})}
\end{array}
$$

the sum is taken over all possible ways to add an edge e between two corners of M.

Adding one edge

$$
\begin{aligned}
&\left(\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j-1) \partial}{\partial p_{i+j-1}}+b \sum_{i \geq 1} p_{i+1} \frac{i \partial}{\partial p_{i}}+(1+b) \sum_{i, j \geq 1} p_{i+j+1} \frac{i \partial}{\partial p_{i}} \frac{j \partial}{\partial p_{j}}\right) \cdot \frac{p_{\nu_{\diamond}(M)}}{\kappa(M)} \\
&=\sum_{e} b^{\vartheta(M \cup\{e\}, e)} \frac{p_{\nu_{\diamond}(M \cup\{e\})}}{\kappa(M \cup\{e\})}
\end{aligned}
$$

the sum is taken over all possible ways to add an edge e between two corners of M, and

$$
\kappa(M):=2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)} .
$$

$b^{\vartheta(M \cup\{e\}, e)}=1$

$b^{\vartheta(M \cup\{e\}, e)}=b$

$$
\begin{aligned}
& b^{\vartheta(M \cup\{e\}, e)}+b^{\vartheta(M \cup\{\tilde{e}\}, \tilde{e})}=1+b \\
& \text { or } b^{\vartheta(M \cup\{e\}, e)}=b^{\vartheta(M \cup\{\tilde{e}\}, \tilde{e})}=1
\end{aligned}
$$

Adding one edge

$$
\begin{aligned}
A_{1}^{(\alpha)} & =\frac{p_{1}}{\alpha} \quad \longrightarrow \text { isolated edge } \\
A_{2}^{(\alpha)} & =\left(\sum_{i \geq 1} p_{i+1} \frac{i \partial}{\partial p_{i}}\right) \quad \longrightarrow \text { white leaf edge } \\
A_{3}^{(\alpha)} & =\left(\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j-1) \partial}{\partial p_{i+j-1}}+b \sum_{i \geq 1} p_{i+1} \frac{i \partial}{\partial p_{i}}+(1+b) \sum_{i, j \geq 1} p_{i+j+1} \frac{i \partial}{\partial p_{i}} \frac{j \partial}{\partial p_{j}}\right)
\end{aligned}
$$

\longrightarrow edge without new vertices.

$$
A_{i+1}=\left[D^{(\alpha)}, A_{i}\right]
$$

where

$$
D^{(\alpha)}=\frac{1}{2}\left(\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j) \partial}{\partial p_{i+j}}+b \cdot \sum_{i \geq 1} p_{i} \frac{i(i-1) \partial}{\partial p_{i}}+(1+b) \sum_{i, j \geq 1} p_{i+j} \frac{i j \partial^{2}}{\partial p_{i} \partial p_{j}}\right)
$$

is the Laplace-Beltrami operator.

Adding one edge

We can define the operators A_{i} recursively

$$
\begin{gathered}
A_{1}:=\frac{p_{1}}{\alpha}, \quad \text { and } \quad A_{i+1}=\left[D^{(\alpha)}, A_{i}\right] . \\
D^{(\alpha)}=\frac{1}{2}\left(\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j) \partial}{\partial p_{i+j}}+b \cdot \sum_{i \geq 1} p_{i} \frac{i(i-1) \partial}{\partial p_{i}}+(1+b) \sum_{i, j \geq 1} p_{i+j} \frac{i j \partial^{2}}{\partial p_{i} \partial p_{j}}\right),
\end{gathered}
$$

Adding one edge

We can define the operators A_{i} recursively

$$
\begin{gathered}
A_{1}:=\frac{p_{1}}{\alpha}, \quad \text { and } A_{i+1}=\left[D^{(\alpha)}, A_{i}\right] . \\
D^{(\alpha)}=\frac{1}{2}\left(\sum_{i, j \geq 1} p_{i} p_{j} \frac{(i+j) \partial}{\partial p_{i+j}}+b \cdot \sum_{i \geq 1} p_{i} \frac{i(i-1) \partial}{\partial p_{i}}+(1+b) \sum_{i, j \geq 1} p_{i+j} \frac{i j \partial^{2}}{\partial p_{i} \partial p_{j}}\right),
\end{gathered}
$$

This operator is diagonal on Jack polynomials.

$$
D^{(\alpha)} J_{\lambda}^{(\alpha)}=\left(\frac{\alpha}{2} \sum_{i \geq 1} \lambda_{i}\left(\lambda_{i}-1\right)-\sum_{i \geq 1} \lambda_{i}(i-1)\right) \cdot J_{\lambda}^{(\alpha)} .
$$

Moreover, the action of p_{1} on Jack polynomials is given by the Pieri rule.
\longrightarrow We deduce the action of A_{i} on Jack polynomials.

Chapuy-Dołęga operators '22

A map M is rooted if it has a marked black corner c.

Chapuy-Dołęga operators '22

A map M is rooted if it has a marked black corner c.

We consider an additional alphabet $Y:=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$. We associate to the root face a weight y_{i} and to other faces a weight p_{i}.

Chapuy-Dołęga operators '22

A map M is rooted if it has a marked black corner c.

We consider an additional alphabet $Y:=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$. We associate to the root face a weight y_{i} and to other faces a weight p_{i}.

Chapuy-Dołęga operators '22

A map M is rooted if it has a marked black corner c.

We consider an additional alphabet $Y:=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$. We associate to the root face a weight y_{i} and to other faces a weight p_{i}.
$\mathcal{P}:=\operatorname{Span}_{\mathbb{Q}(b)}\left\{p_{\lambda}\right\}, \quad$ is the space spanned by the weights of unrooted maps.
$\mathcal{P}_{Y}:=\operatorname{Span}_{\mathbb{Q}(b)}\left\{y_{i} p_{\lambda}\right\} \quad$ is the space spanned by the weights of rooted maps.

Chapuy-Dołęga operators

$$
\frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P}_{Y} ; \quad \text { adds an isolated root black vertex. }
$$

Chapuy-Dołęga operators

$$
\begin{gathered}
\frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P}_{Y} ; \quad \text { adds an isolated root black vertex. } \\
Y_{+}=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}: \mathcal{P}_{Y} \rightarrow \mathcal{P}_{Y} \quad \text { adds a white leaf on the root corner. }
\end{gathered}
$$

Chapuy-Dołęga operators

$$
\begin{gathered}
\frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P}_{Y} ; \quad \text { adds an isolated root black vertex. } \\
Y_{+}=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}: \mathcal{P}_{Y} \rightarrow \mathcal{P}_{Y} \quad \text { adds a white leaf on the root corner. } \\
\Gamma_{Y}=\sum_{i, j \geq 1} y_{i} p_{j} \frac{\partial}{\partial y_{i+j-1}}+(1+b) \cdot \sum_{i, j \geq 1} y_{i+j} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+b \cdot \sum_{i \geq 1} y_{i+1} \frac{i \partial}{\partial y_{i}}: \mathcal{P}_{Y} \rightarrow \mathcal{P}_{Y}
\end{gathered}
$$

adds an edge between the root corner and a white corner of the map.

Chapuy-Dołęga operators

$$
\begin{gathered}
\frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P}_{Y} ; \quad \text { adds an isolated root black vertex. } \\
Y_{+}=\sum_{i \geq 0} y_{i+1} \frac{\partial}{\partial y_{i}}: \mathcal{P}_{Y} \rightarrow \mathcal{P}_{Y} \quad \text { adds a white leaf on the root corner. } \\
\Gamma_{Y}=\sum_{i, j \geq 1} y_{i} p_{j} \frac{\partial}{\partial y_{i+j-1}}+(1+b) \cdot \sum_{i, j \geq 1} y_{i+j} \frac{i \partial^{2}}{\partial p_{i} \partial y_{j-1}}+b \cdot \sum_{i \geq 1} y_{i+1} \frac{i \partial}{\partial y_{i}}: \mathcal{P}_{Y} \rightarrow \mathcal{P}_{Y}
\end{gathered}
$$

adds an edge between the root corner and a white corner of the map.

$$
\begin{gathered}
\Theta_{Y}:=\sum_{i \geq 1} p_{i} \frac{\partial}{\partial y_{i}} ; \mathcal{P}_{Y} \rightarrow \mathcal{P} \quad \text { "forgets" the root. } \\
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P}
\end{gathered}
$$

\longrightarrow adds a black vertex of degree n with a weight u for each added white vertex.

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P} .
$$

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}
$$

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}
$$

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}
$$

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}
$$

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}
$$

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b} .
$$

Examples

Layared maps: We act by $(-t)^{n} \mathcal{B}_{n}\left(\mathbf{p},-\alpha s_{1}\right)$ to add a black vertex of degree n in layer 1 .

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P} .
$$

Remark

The variables y_{i} are catalytic variables.

Examples

$$
\mathcal{B}_{n}(\mathbf{p}, u):=\Theta_{Y}\left(\Gamma_{Y}+u Y_{+}\right)^{n} \frac{y_{0}}{1+b}: \mathcal{P} \rightarrow \mathcal{P} .
$$

Remark

The variables y_{i} are catalytic variables.

$$
\begin{aligned}
& \mathcal{B}_{1}^{(\alpha)}(\mathbf{p}, u)=\frac{u p_{1}}{\alpha}+\sum_{i \geq 1} p_{i+1} \frac{i \partial}{\partial p_{i}}, \\
& \begin{aligned}
\mathcal{B}_{2}^{(\alpha)}(\mathbf{p}, u)=\frac{u^{2} p_{2}}{\alpha}+\sum_{i \geq 1}(& \left.(2 u+(i+1)(\alpha-1)) p_{i+2}+\sum_{\substack{j+k=i+2 \\
j, k \geq 1}} p_{j} p_{k}\right) \frac{i \partial}{\partial p_{i}} \\
& +\frac{u}{\alpha}\left((\alpha-1) p_{2}+p_{1,1}\right)+\alpha \sum_{i, j \geq 1} p_{i+j+2} \frac{i \partial}{\partial p_{i}} \frac{j \partial}{\partial p_{j}} .
\end{aligned}
\end{aligned}
$$

Recall: decomposition algorithm

A labelled 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Differential construction

$$
\begin{aligned}
F^{(k+1)}\left(s_{1}, \ldots, s_{k+1}\right) & =\sum_{\nu} \frac{1}{z_{\nu}} \\
& (-t)^{\nu_{1}} \mathcal{B}_{\nu_{1}}\left(\mathbf{p},-\alpha s_{1}\right) \ldots(-t)^{\nu_{\ell(\nu)}} \mathcal{B}_{\nu_{\ell(\nu)}}\left(\mathbf{p},-\alpha s_{1}\right) F^{(k)}\left(s_{2}, \ldots, s_{k+1}\right)
\end{aligned}
$$

Differential construction

$$
\begin{aligned}
& F^{(k+1)}\left(s_{1}, \ldots, s_{k+1}\right)=\sum_{\nu}\left(\prod_{j \geq 1} \frac{1}{m_{j}(\nu)!}\right) \\
& \quad \frac{(-t)^{\nu_{1}} \mathcal{B}_{\nu_{1}}\left(\mathbf{p},-\alpha s_{1}\right)}{\nu_{1}} \ldots \frac{(-t)^{\nu_{\ell(\nu)}} \mathcal{B}_{\nu_{\ell(\nu)}}\left(\mathbf{p},-\alpha s_{1}\right)}{\nu_{\ell(\nu)}} F^{(k)}\left(s_{2}, \ldots, s_{k+1}\right) .
\end{aligned}
$$

Fact: The operators \mathcal{B}_{n} commute.

$$
\begin{aligned}
& F^{(k+1)}\left(s_{1}, \ldots, s_{k+1}\right)=\sum_{\ell \geq 1} \sum_{n_{1}, \ldots n_{\ell} \geq 1}\left(\prod_{j \geq 1} \frac{1}{\ell!}\right) \\
& \frac{(-t)^{n_{1}} \mathcal{B}_{n_{1}}\left(\mathbf{p},-\alpha s_{1}\right)}{n_{1}} \ldots \frac{(-t)^{n_{\ell}} \mathcal{B}_{n_{\ell}}\left(\mathbf{p},-\alpha s_{1}\right)}{n_{\ell}} F^{(k)}\left(s_{2}, \ldots, s_{k+1}\right) \\
&=\exp \left(\sum_{n \geq 1} \frac{\mathcal{B}_{n}\left(\mathbf{p},-\alpha s_{1}\right)}{n}\right) \cdot F^{(k)}\left(s_{2}, \ldots, s_{k+1}\right) .
\end{aligned}
$$

Differential construction

$$
\begin{aligned}
F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right) & = \\
& \begin{cases}\mathcal{E}\left(t, \mathbf{p},-\alpha s_{1}\right) \cdot F^{(k-1)}\left(t, \mathbf{p}, s_{2}, \ldots, s_{k}\right) & \text { if } k \geq 1 \\
1 & \text { if } k=0\end{cases}
\end{aligned}
$$

where

$$
\mathcal{E}(t, \mathbf{p}, u):=\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right)
$$

the operator which adds a layer, with a weight $(-t)$ for each added edge, and a weight u for each new white vertex.

Differential construction

$$
\begin{aligned}
F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right) & = \\
& \begin{cases}\mathcal{E}\left(t, \mathbf{p},-\alpha s_{1}\right) \cdot F^{(k-1)}\left(t, \mathbf{p}, s_{2}, \ldots, s_{k}\right) & \text { if } k \geq 1 \\
1 & \text { if } k=0\end{cases}
\end{aligned}
$$

where

$$
\mathcal{E}(t, \mathbf{p}, u):=\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right)
$$

the operator which adds a layer, with a weight $(-t)$ for each added edge, and a weight u for each new white vertex.

$$
F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right)=\mathcal{E}\left(t, \mathbf{p},-\alpha s_{1}\right) \cdots \mathcal{E}\left(t, \mathbf{p},-\alpha s_{k}\right) \cdot 1
$$

Plan

- Differential operators and contruction of maps
(2) Tau function in two alphabets

Tau function [Chapuy-Dołęga '22]

$$
\tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}):=\sum_{\lambda} t^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\mathbf{q}) J_{\lambda}^{(\alpha)}(\underline{u})}{j_{\lambda}^{(\alpha)}} \in \mathbb{Q}(\alpha)[\mathbf{p}, \mathbf{q}, u] \llbracket t \rrbracket
$$

Tau function [Chapuy-Dołęga '22]

$$
\tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}):=\sum_{\lambda} t^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\mathbf{q}) J_{\lambda}^{(\alpha)}(\underline{u})}{j_{\lambda}^{(\alpha)}} \in \mathbb{Q}(\alpha)[\mathbf{p}, \mathbf{q}, u] \llbracket t \rrbracket
$$

Here

$$
J_{\lambda}^{(\alpha)}(\mathbf{p})=J_{\lambda}^{(\alpha)}\left(x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad J_{\lambda}^{(\alpha)}(\mathbf{q})=J_{\lambda}^{(\alpha)}\left(y_{1}, y_{2}, \ldots\right)
$$

$\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ are respectively power-sum symmetric functions in (x_{i}) and (y_{i}).

Tau function [Chapuy-Dołęga '22]

$$
\tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}):=\sum_{\lambda} t^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\mathbf{q}) J_{\lambda}^{(\alpha)}(\underline{u})}{j_{\lambda}^{(\alpha)}} \in \mathbb{Q}(\alpha)[\mathbf{p}, \mathbf{q}, u] \llbracket t \rrbracket,
$$

Here

$$
J_{\lambda}^{(\alpha)}(\mathbf{p})=J_{\lambda}^{(\alpha)}\left(x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad J_{\lambda}^{(\alpha)}(\mathbf{q})=J_{\lambda}^{(\alpha)}\left(y_{1}, y_{2}, \ldots\right),
$$

$\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and $\mathbf{q}=\left(q_{1}, q_{2}, \ldots\right)$ are respectively power-sum symmetric functions in $\left(x_{i}\right)$ and $\left(y_{i}\right)$. Moreover, $\underline{u}:=(u, u, \ldots)$

$$
J_{\lambda}^{(\alpha)}(\underline{u})=J_{\lambda}^{(\alpha)}(\mathbf{p})_{\mid p_{i}=u}
$$

Exmaple: For $\lambda=[2,2]$

$$
J_{[2,2]}^{(\alpha)}(\mathbf{p})=p_{1}^{4}+2(\alpha-1) p_{2} p_{1}^{2}-4 \alpha p_{3} p_{1}+\left(\alpha^{2}+\alpha+1\right) p_{2} p_{2}+\left(-\alpha^{2}+\alpha\right) p_{4} .
$$

Then

$$
J_{[2,2]}^{(\alpha)}(\underline{u})=u^{4}+2(\alpha-1) u^{3}+\left(\alpha^{2}-3 \alpha+1\right) u^{2}+\left(-\alpha^{2}+\alpha\right) u .
$$

Tau function

Theorem (Stanley '89)

For any λ,

$$
J_{\lambda}^{(\alpha)}(\underline{u})=\prod_{\square \in \lambda}\left(u+c_{\alpha}(\square)\right)
$$

with

$$
c_{\alpha}(\square):=\alpha a^{\prime}(\square)-\ell^{\prime}(\square) .
$$

Tau function

Theorem (Chapuy-Dołęga '22)

For any $m \geq 1$,

$$
t^{m} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})=\frac{\partial}{\partial q_{m}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})
$$

$$
\tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})=\exp \left(\sum_{m \geq 1} \frac{t^{m} q_{m}}{m} \mathcal{B}_{m}(\mathbf{p}, u)\right) \cdot 1 .
$$

Consequence : First commutation relation

$\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0$.

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0 .
$$

Proof:

$$
t^{m} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})=\frac{\partial}{\partial q_{m}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) .
$$

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0 .
$$

Proof:

$$
t^{m+n} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})=t^{n} \mathcal{B}_{n}(\mathbf{p}, u) \frac{\partial}{\partial q_{m}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) .
$$

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0 .
$$

Proof:

$$
t^{m+n} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})=\frac{\partial}{\partial q_{m}} \mathcal{B}_{n}(\mathbf{p}, u) \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) .
$$

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0 .
$$

Proof:

$$
t^{m+n} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})=\frac{\partial}{\partial q_{m}} \frac{\partial}{\partial q_{n}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) .
$$

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0
$$

Proof:

$$
\begin{aligned}
t^{m+n} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) & =\frac{\partial}{\partial q_{m}} \frac{\partial}{\partial q_{n}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =\frac{\partial}{\partial q_{n}} \frac{\partial}{\partial q_{m}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})
\end{aligned}
$$

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0 .
$$

Proof:

$$
\begin{aligned}
t^{m+n} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) & =\frac{\partial}{\partial q_{m}} \frac{\partial}{\partial q_{n}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =\frac{\partial}{\partial q_{n}} \frac{\partial}{\partial q_{m}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =t^{m+n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})
\end{aligned}
$$

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0
$$

Proof:

$$
\begin{aligned}
t^{m+n} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) & =\frac{\partial}{\partial q_{m}} \frac{\partial}{\partial q_{n}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =\frac{\partial}{\partial q_{n}} \frac{\partial}{\partial q_{m}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =t^{m+n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})
\end{aligned}
$$

By extracting the coefficient of $J_{\lambda}^{(\alpha)}(\mathbf{q})$, we get

$$
\begin{aligned}
\frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m}\left[J_{\lambda}^{(\alpha)}(\mathbf{q})\right] \tau^{(\alpha)} & (t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =\frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n}\left[J_{\lambda}^{(\alpha)}(\mathbf{q})\right] \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})
\end{aligned}
$$

Consequence : First commutation relation

$$
\left[\mathcal{B}_{n}(\mathbf{p}, u), \mathcal{B}_{m}(\mathbf{p}, u)\right]:=\mathcal{B}_{n}(\mathbf{p}, u) \cdot \mathcal{B}_{m}(\mathbf{p}, u)-\mathcal{B}_{m}(\mathbf{p}, u) \cdot \mathcal{B}_{n}(\mathbf{p}, u)=0
$$

Proof:

$$
\begin{aligned}
t^{m+n} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) & =\frac{\partial}{\partial q_{m}} \frac{\partial}{\partial q_{n}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =\frac{\partial}{\partial q_{n}} \frac{\partial}{\partial q_{m}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u}) \\
& =t^{m+n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{u})
\end{aligned}
$$

By extracting the coefficient of $J_{\lambda}^{(\alpha)}(\mathbf{q})$, we get

$$
\frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \cdot J_{\lambda}^{(\alpha)}(\mathbf{p})=\frac{\mathcal{B}_{m}(\mathbf{p}, u)}{m} \frac{\mathcal{B}_{n}(\mathbf{p}, u)}{n} \cdot J_{\lambda}^{(\alpha)}(\mathbf{p})
$$

Plan

(1) Differential operators and construction of maps

2 Tau function in two alphabets
(3) Vanishing condition

Vanishing condition

We want to prove that if $n>|\lambda|$ then $\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=0$.

Vanishing condition

We want to prove that if $n>|\lambda|$ then $\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=0$.

$$
F^{(k)}\left(t, \mathbf{p}, \lambda_{1}, \ldots, \lambda_{k}\right)=\mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{1}\right) \cdots \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{k}\right) \cdot 1
$$

with

$$
\mathcal{E}(t, \mathbf{p}, u):=\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right) .
$$

Vanishing condition

We want to prove that if $n>|\lambda|$ then $\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=0$.
Then

$$
\begin{aligned}
{\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=} & \sum_{\substack{n_{1}, \ldots, n_{k} \geq 0 \\
n_{1}+\ldots+n_{k}=n \\
+1}}\left(\left[t^{n_{1}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{1}\right)\right) \\
& \left(\left[t^{n_{2}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{2}\right)\right) \ldots\left(\left[t^{n_{k}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{k}\right)\right) \cdot 1
\end{aligned}
$$

There exists an i for which $n_{i}>\lambda_{i}$.

Vanishing condition

There exists an i for which $n_{i}>\lambda_{i}$.

$$
\begin{aligned}
{\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=} & \sum_{\substack{n_{1}, \ldots, n_{k} \geq 0 \\
n_{1}+\ldots+n_{k}=n \\
n_{k}}}\left(\left[t^{n_{1}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{1}\right)\right) \\
& \left(\left[t^{n_{i}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{i}\right)\right) \ldots\left(\left[t^{n_{k}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{k}\right)\right) \cdot 1
\end{aligned}
$$

There exists an i for which $n_{i}>\lambda_{i}$.

Vanishing condition

There exists an i for which $n_{i}>\lambda_{i}$.

$$
\begin{aligned}
{\left[t^{n}\right] F^{(k)}\left(t, \lambda_{1}, \ldots, \lambda_{k}\right)=} & \sum_{\substack{n_{1}, \ldots, n_{k} \geq 0 \\
n_{1}+\ldots+n_{k}=n \\
n_{k}}}\left(\left[t^{n_{1}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{1}\right)\right) \\
& \left(\left[t^{n_{i}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{i}\right)\right) \ldots\left(\left[t^{n_{k}}\right] \mathcal{E}\left(t, \mathbf{p},-\alpha \lambda_{k}\right)\right) \cdot 1
\end{aligned}
$$

There exists an i for which $n_{i}>\lambda_{i}$. We prove that there exists a sequence of subspaces of \mathcal{P}

$$
\mathbb{Q}(\alpha)=\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \mathcal{P}_{2} \subset \ldots
$$

such that

$$
\left\{\begin{array}{lll}
{\left[t^{n}\right] \mathcal{E}(t, \mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}} & \forall n, m ; & \text { (Stability), } \\
{\left[t^{n}\right] \mathcal{E}(t, \mathbf{p},-\alpha m) \cdot \mathcal{P}_{m}=\{0\}} & \forall n>m ; & \text { (Annihilation). }
\end{array}\right.
$$

The space \mathcal{P}_{m}

Fix a non-negative integer m. Let $\mathcal{P}_{m}:=\operatorname{Span}_{\mathbb{Q}(\alpha)}\left\{J_{\lambda}^{(\alpha)}(\mathbf{p})\right\}_{\lambda_{1} \leq m}$.

The space \mathcal{P}_{m}

Fix a non-negative integer m. Let $\mathcal{P}_{m}:=\operatorname{Span}_{\mathbb{Q}(\alpha)}\left\{J_{\lambda}^{(\alpha)}(\mathbf{p})\right\}_{\lambda_{1} \leq m}$.

$$
\tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}):=\sum_{\lambda} t^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\mathbf{q}) J_{\lambda}^{(\alpha)}(\underline{-\alpha m})}{j_{\lambda}^{(\alpha)}}
$$

m

The space \mathcal{P}_{m}

Fix a non-negative integer m. Let $\mathcal{P}_{m}:=\operatorname{Span}_{\mathbb{Q}(\alpha)}\left\{J_{\lambda}^{(\alpha)}(\mathbf{p})\right\}_{\lambda_{1} \leq m}$.

$$
\tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}):=\sum_{\lambda} t^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\mathbf{q}) J_{\lambda}^{(\alpha)}(\underline{-\alpha m})}{j_{\lambda}^{(\alpha)}}
$$

Observation: $\quad\left[J_{\lambda}^{(\alpha)}(\mathbf{p})\right] \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}) \neq 0 \Longleftrightarrow \lambda_{1} \leq m$

Proof: $\quad J_{\lambda}^{(\alpha)}(\underline{-\alpha m})=\prod_{\square \in \lambda}\left(c_{\alpha}(\square)-\alpha m\right) \neq 0 \Longleftrightarrow \lambda \leq m$

m

The space \mathcal{P}_{m}

Fix a non-negative integer m. Let $\mathcal{P}_{m}:=\operatorname{Span}_{\mathbb{Q}(\alpha)}\left\{J_{\lambda}^{(\alpha)}(\mathbf{p})\right\}_{\lambda_{1} \leq m}$.

$$
\tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}):=\sum_{\lambda} t^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\mathbf{q}) J_{\lambda}^{(\alpha)}(\underline{-\alpha m})}{j_{\lambda}^{(\alpha)}},
$$

Observation: $\quad\left[J_{\lambda}^{(\alpha)}(\mathbf{p})\right] \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}) \neq 0 \Longleftrightarrow \lambda_{1} \leq m$

$$
\mathcal{O}(\mathbf{p}) \cdot \mathcal{P}_{m}=0 \quad \Longleftrightarrow \mathcal{O}(\mathbf{p}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})=0
$$

Annihilation property

$$
\begin{aligned}
\mathcal{O}(\mathbf{p}) \cdot \mathcal{P}_{m}=0 & \Longleftrightarrow \mathcal{O}(\mathbf{p}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q},-\alpha m \\
\mathcal{E}(z, \mathbf{p}, u) & :=\exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right)
\end{aligned}
$$

Fix $n>m$.

$$
\left[z^{n}\right] \mathcal{E}(z, \mathbf{p}, \underline{-\alpha m}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})
$$

Annihilation property

$$
\begin{aligned}
\mathcal{O}(\mathbf{p}) \cdot \mathcal{P}_{m}=0 & \Longleftrightarrow \mathcal{O}(\mathbf{p}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q},-\alpha m)=0 . \\
\mathcal{E}(z, \mathbf{p}, u) & :=\exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right) .
\end{aligned}
$$

Fix $n>m$.

$$
\begin{aligned}
& {\left[z^{n}\right] \mathcal{E}(z, \mathbf{p}, \underline{-\alpha m}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})} \\
& \quad=\left[z^{n}\right] \exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot \exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{m} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot 1
\end{aligned}
$$

Annihilation property

$$
\begin{aligned}
\mathcal{O}(\mathbf{p}) \cdot \mathcal{P}_{m}=0 & \Longleftrightarrow \mathcal{O}(\mathbf{p}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})=0 . \\
\mathcal{E}(z, \mathbf{p}, u) & :=\exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right) .
\end{aligned}
$$

Fix $n>m$.

$$
\begin{aligned}
& {\left[z^{n}\right] \mathcal{E}(z, \mathbf{p}, \underline{-\alpha m}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})} \\
& \quad=\left[z^{n}\right] \exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot \exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{m} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot 1 \\
& \quad=\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{m} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot\left[z^{n}\right] \exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot 1
\end{aligned}
$$

Annihilation property

$$
\begin{aligned}
\mathcal{O}(\mathbf{p}) \cdot \mathcal{P}_{m}=0 & \Longleftrightarrow \mathcal{O}(\mathbf{p}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})=0 . \\
\mathcal{E}(z, \mathbf{p}, u) & :=\exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right) .
\end{aligned}
$$

Fix $n>m$.

$$
\begin{aligned}
{\left[z^{n}\right] } & \mathcal{E}(z, \mathbf{p}, \underline{-\alpha m}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}) \\
& =\left[z^{n}\right] \exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot \exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{j} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot 1 \\
& =\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{m} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot\left[z^{n}\right] \exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot 1 \\
& =\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{j} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot\left[z^{n}\right] \tau^{(\alpha)}(z, \mathbf{p}, \underline{1}, \underline{-\alpha m})
\end{aligned}
$$

Annihilation property

$$
\begin{aligned}
& {\left[z^{n}\right] \mathcal{E}(z, \mathbf{p}, \underline{-\alpha m}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})} \\
& =\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{m} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot\left[z^{n}\right] \tau^{(\alpha)}(z, \mathbf{p}, \underline{1}, \underline{-\alpha m}) . \\
& \tau^{(\alpha)}(z, \mathbf{p}, \underline{1}, \underline{-\alpha m})=\sum_{\lambda} z^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\underline{1}) J_{\lambda}^{(\alpha)}(\underline{-\alpha m})}{j_{\lambda}^{(\alpha)}},
\end{aligned}
$$

Annihilation property

$$
\begin{gathered}
{\left[z^{n}\right] \mathcal{E}(z, \mathbf{p}, \underline{-\alpha m}) \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})} \\
=\exp \left(\sum_{j \geq 1} \frac{(-t)^{j}}{m} q_{j} \mathcal{B}_{j}(\mathbf{p},-\alpha m)\right) \cdot\left[z^{n}\right] \tau^{(\alpha)}(z, \mathbf{p}, \underline{1}, \underline{-\alpha m}) . \\
\tau^{(\alpha)}(z, \mathbf{p}, \underline{1}, \underline{-\alpha m})=\sum_{\lambda} z^{|\lambda|} \frac{J_{\lambda}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\underline{1}) J_{\lambda}^{(\alpha)}(\underline{-\alpha m})}{j_{\lambda}^{(\alpha)}},
\end{gathered}
$$

Recall

$$
J_{\lambda}^{(\alpha)}(\underline{u})=\prod_{\square \in \lambda}\left(u+c_{\alpha}(\square)\right),
$$

Stability property

We want to prove that for any $n \geq 0$

$$
\left[z^{n}\right] \mathcal{E}(z, \mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}
$$

with

$$
\mathcal{E}(z, \mathbf{p}, u):=\exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right) .
$$

Stability property

We want to prove that for any $n \geq 0$

$$
\left[z^{n}\right] \mathcal{E}(z, \mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}
$$

with

$$
\mathcal{E}(z, \mathbf{p}, u):=\exp \left(\sum_{j \geq 1} \frac{(-z)^{j}}{j} \mathcal{B}_{j}(\mathbf{p}, u)\right) .
$$

It is enough to prove that, for any $n \geq 1$

$$
\mathcal{B}_{n}(\mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m} .
$$

Stability property

We want to prove that for any $n \geq 0$

$$
\left[z^{n}\right] \mathcal{E}(z, \mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}
$$

It is enough to prove that, for any $n \geq 1$

$$
\mathcal{B}_{n}(\mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}
$$

In other terms that for any λ and ξ such that $\lambda_{1} \leq m$ and $\xi_{1}>m$,

$$
\left[J_{\xi}^{(\alpha)}(\mathbf{p})\right] \mathcal{B}_{n}(\mathbf{p},-\alpha m) \cdot J_{\lambda}^{(\alpha)}(\mathbf{p})=0
$$

Stability property

We want to prove that for any $n \geq 0$

$$
\left[z^{n}\right] \mathcal{E}(z, \mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}
$$

It is enough to prove that, for any $n \geq 1$

$$
\mathcal{B}_{n}(\mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}
$$

In other terms that for any λ and ξ such that $\lambda_{1} \leq m$ and $\xi_{1}>m$,

$$
\left[J_{\xi}^{(\alpha)}(\mathbf{p})\right] \mathcal{B}_{n}(\mathbf{p},-\alpha m) \cdot J_{\lambda}^{(\alpha)}(\mathbf{p})=0
$$

We know that for any $n \geq 1$,

$$
t^{n} \frac{\mathcal{B}_{n}(\mathbf{p},-\alpha m)}{n} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})=\frac{\partial}{\partial q_{n}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}) .
$$

Stability property

We want to prove that for any $n \geq 0$

$$
\left[z^{n}\right] \mathcal{E}(z, \mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m}
$$

It is enough to prove that, for any $n \geq 1$

$$
\mathcal{B}_{n}(\mathbf{p},-\alpha m) \cdot \mathcal{P}_{m} \subseteq \mathcal{P}_{m} .
$$

In other terms that for any λ and ξ such that $\lambda_{1} \leq m$ and $\xi_{1}>m$,

$$
\left[J_{\xi}^{(\alpha)}(\mathbf{p})\right] \mathcal{B}_{n}(\mathbf{p},-\alpha m) \cdot J_{\lambda}^{(\alpha)}(\mathbf{p})=0 .
$$

We know that for any $n \geq 1$,

$$
t^{n} \frac{\mathcal{B}_{n}(\mathbf{p},-\alpha m)}{n} \cdot \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})=\frac{\partial}{\partial q_{n}} \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}) .
$$

We extract the coefficient of $J_{\xi}^{(\alpha)}(\mathbf{p}) J_{\lambda}^{(\alpha)}(\mathbf{q})$

$$
\begin{aligned}
{\left[J_{\xi}^{(\alpha)}(\mathbf{p})\right] t^{n} \frac{\mathcal{B}_{n}(\mathbf{p},-\alpha m)}{n} \cdot\left[J_{\lambda}^{(\alpha)}(\mathbf{q})\right] \tau^{(\alpha)} } & (t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m}) \\
& =\left[J_{\lambda}^{(\alpha)}(\mathbf{q})\right] \frac{\partial}{\partial q_{n}}\left[J_{\xi}^{(\alpha)}(\mathbf{p})\right] \tau^{(\alpha)}(t, \mathbf{p}, \mathbf{q}, \underline{-\alpha m})=0
\end{aligned}
$$

Next lecture

$$
F^{(k)}\left(t, \mathbf{p}, s_{1}, \ldots, s_{k}\right)=\mathcal{E}\left(t, \mathbf{p},-\alpha s_{1}\right) \cdots \mathcal{E}\left(t, \mathbf{p},-\alpha s_{k}\right) \cdot 1
$$

In order to obtain the shifted symmetry property, we should understand

$$
[\mathcal{E}(t, \mathbf{p}, u), \mathcal{E}(t, \mathbf{p}, v)] \neq 0
$$

