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Jack characters

Definition
Fix a partition µ.

θ(α)µ (λ) :=

{
0, if |λ| < |µ|.(|λ|−|µ|+m1(µ)

m1(µ)

)
[pµ,1|λ|−|µ| ]J

(α)
λ , if |λ| ≥ |µ|.

where m1(µ) is the number of parts of size 1 in µ.
In particular,

J
(α)
λ =

∑
|µ|=|λ|

θ(α)µ (λ)pµ.
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Goal
Theorem (BD–Dołęga ’23+)

θ(α)µ (λ) = (−1)|µ|
∑

M∈M(∞)
µ

bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
i≥1

(−αλi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

,

M(∞)
µ is the set of layered maps of face type µ.

η is a statistic on M(∞)
µ .

|V•(M)| is the number of black vertices of M ,

|V(i)
◦ (M)| is the number of white vertices of M labelled by i,

cc(M) is the number of connected components of M .

For α = 1: Féray–Śniady formula for the characters of the symmetric
group.

For α = 2: Féray–Śniady formula for zonal characters.
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Plan

1 Recall: Characterization of Jack characters as shifted symmetric
functions

2 Maps

3 Statistics of non-orientability

4 Condition 1: Top homogeneous part
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Characterization theorem

A function f(s1, s2, . . . ) is α-shifted symmetric if it is symmetric in the
variables s1, s2 − 1/α, s3 − 2/α . . . .

f(λ) := f(λ1, . . . , λℓ(λ), 0, . . . ).

This gives an identification between the space of shifted symmetric and a
subspace of functions on Young diagram.

Theorem (Féray ’15)
Fix a partition µ. The Jack character θ

(α)
µ is the unique α-shifted symmetric

function of degree |µ| with top homogeneous part α|µ|−ℓ(µ)/zµ · pµ, such that
θ
(α)
µ (λ) = 0 for any partition |λ| < |µ|.
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Characterization theorem
Theorem (Féray ’15)
Fix a partition µ. The Jack character θ

(α)
µ is the unique α-shifted symmetric

function of degree |µ| with top homogeneous part α|µ|−ℓ(µ)/zµ · pµ, such that
θ
(α)
µ (λ) = 0 for any partition |λ| < |µ|.

Example θ
(α)
[2] (λ) =

∑
i≥1

α

2
λi(λi − 1)−

∑
i≥1

(i− 1)λi.

Shifted symmetry. Let s′i := λi − i−1
α .

θ
(α)
[2] (λ) =

α

2

∑
i≥1

(
(s′i)

2 −
(
i− 1

α

)2

− s′i +
i− 1

α

)
.

Vanishing condition. θ
(α)
[2] (∅) = 0, θ

(α)
[2] ([1]) = 0.

Top homogeneous part[
θ
(α)
[2]

]
=

α

2

∑
i≥1

λ2
i =

α

2
p2(λ1, λ2, . . . ).
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Theorem (Knop–Sahi ’96)
For any µ there exists a unique α-shifted symmetric function J∗

µ such that

deg(J∗
µ) = |µ|,

J∗
µ(λ) = 0 if |λ| ≤ |µ| and |λ| ̸= |µ|,

J∗
µ(µ) = α−|µ|⟨J(α)

µ , J
(α)
µ ⟩α.

Moreover, the top homogeneous part of J∗
µ is J

(α)
µ .

Theorem (Lassalle ’98)
For any µ and λ, such that m := |λ| − |µ| ≥ 0. Then,

J∗
µ(λ) =

〈
J
(α)
µ ,

∂m

∂pm1
J
(α)
λ

〉
.

Symmetric functions ∼−−→ Shifted symmetric functions

J
(α)
µ 7−→ J∗

µ

α|µ|−ℓ(µ)/zµpµ 7−→ θ
(α)
µ
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Characterization theorem
From now on, we will think of Jack characters as shifted symmetric
functions rather than functions on Young diagram.

Theorem (BD–Dołęga ’23+)

θ(α)µ (s1, s2, . . . )

= (−1)|µ|
∑

M∈M(∞)
µ

bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
i≥1

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

,

We want to prove that the generating function satisfies the 3 properties of the
characterization theorem.

F (∞)
µ (s1, s2 . . . ) :=

∑
M∈M(∞)

µ

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
i≥1

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

.
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Connected Maps

A connected map is a cellular embedding of a connected graph
in a surface, orientable or not.

e1

e3

e2
vv

e3
e1

e2

e1

v

Orientable connected maps
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A connected map is a cellular embedding of a connected graph
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Connected Maps
A connected map is a cellular embedding of a connected graph
in a surface, orientable or not.

Such representation of a non-orientable map is not unique.

e3

e2

e1

v

e3
e1

e2

e1

v

A non orientable connected map

v

e1

e2

e3

side 1

side 2

Figure 2: Two possible sides to represent a vertex.
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Maps
A map is a collection of connected maps. A map is orientable
if its all connected components are embedded into orientable
surfaces.

All maps considered are bipartite.

A non orientable map
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Maps

A map is a collection of connected maps. A map is orientable
if its all connected components are embedded into orientable
surfaces.
All maps considered are bipartite.

A non orientable bipartite map
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Maps

The size of a map is its number of edges.

The face type of a bipartite map M , denoted by ν⋄(M), is the
partition given by the face degrees, divided by 2.

F1

F2

F3

A map of size 5 and face type [2, 2, 1]. A map of size 5 and face type [5].
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Layered maps
Let k be a positive integer. A map M is k-layered if

each black vertex has a label in 1, 2, . . . , k.

each white vertex is labelled by the maximal label among the
labels of its black neighbors.

1

1

3
2

1

A 3-layered map
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Layered maps

Let k be a positive integer. A map M is k-layered if

each black vertex has a label in 1, 2, . . . , k.
each white vertex is labelled by the maximal label among the
labels of its black neighbors.

A map if layered if it is k-layered for some k ≥ 0.
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Layered maps
A layered map is labelled if

each black vertex has a marked oriented corner.
black vertices in the same layer i and with the same degree j
are numbered v

(i,j)
1 , v

(i,j)
2 . . . .

1

1

3
2

3

3

1
2

1
v
(1,3)
2

v
(1,3)
1

v
(2,3)
1

v
(3,2)
1

A labelled 3-layered map
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Recall: main result

Theorem (BD–Dołęga ’23+)

θ(α)µ (s1, s2, . . . ) = (−1)|µ|
∑

M∈M(∞)
µ

bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
i≥1

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

,

M(∞)
µ is the set of layered maps of face type µ.

η is a statistic of non-orientability on M(∞)
µ .

|V•(M)| is the number of black vertices of M ,

|V(i)
◦ (M)| is the number of white vertices of M labelled by i,

cc(M) is the number of connected components of M .
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Statistics of non-orientability

Definition (Goulden–Jackson ’96)
A statistic of non-orientability (on layered maps) is a statistic which associates
to each layered map M a non-negative integer such that η(M) = 0 if and only
if M is orientable.

Let b be the shifted parameter b := α− 1.
Maps will be counted with a non-orientablity weight bη(M).

When α = 1:

bη(M) =

{
1 if M is orientable
0 otherwise.

When α = 2:

bη(M) = 1 for any M .
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b = 0 in the main theorem:

Theorem (Féray–Śniady ’11)

θ(1)µ (s1, s2, . . . ) =
∑

orientable layered maps M
of face type µ

(−1)|µ|

z⋄(M)

∏
i≥1

(−λi)
|V(i)

◦ (M)|.

b = 1 in the main theorem:

Theorem (Féray–Śniady ’11)

θ(2)µ (s1, s2, . . . ) =
∑

layered maps M of face
type µ, orientable or not

(−1)|µ|

2ℓ(ν⋄(M))z⋄(M)

∏
i≥1

(−2λi)
|V(i)

◦ (M)|.
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How to construct statistics of non-orientability?

General method (La Croix ’09, Dołęga–Féray–Śniady ’14,
Chapuy–Dołęga’22).

1 Fix a map M of size n. We choose a decomposition
algorithm, by fixing a total order on the edges of M :
e1, e2, . . . , en. We denote Mi := M\{e1, e2, . . . , ei−1}.

2 For any map M and edge e, we choose

ϑ(M, e) ∈ {0, 1}.

We then set
η(M) =

∑
1≤i≤n

ϑ(Mi, ei).
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How to obtain a map of size n + 1 from a map of
size n

We add an isolated edge.

We add a black vertex on a white corner.
We add a white vertex on a black corner.
We choose two corners of the map and we connect them by an
edge; we always have two possibilities.

an isolated edge
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How to obtain a map of size n + 1 from a map of
size n

We add an isolated edge.
We add a black vertex on a white corner.
We add a white vertex on a black corner.
We choose two corners of the map and we connect them by an
edge; we always have two possibilities.

c2

e

c1

c2

c1
ẽ
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What about symmetries?

c2

e
c1

c2

c1
ẽ
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edge; we always have two possibilities.
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Edge weights

Let M be a map. We fix two corners of M of different colors and
we connect them by an edge. We distinguish many cases.

1 the added edge is connected to a new vertex
−→ ϑ(M ∪ {e}, e) = 0.

an isolated edge a black leaf a white leaf
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Edge weights

Let M be a map. We fix two corners of M of different colors and
we connect them by an edge. We distinguish many cases.

2 The two corners are in the same face of M

e

a border
ϑ(M ∪ {e}, e) = 0

ẽ

a twist
ϑ(M ∪ {e}, e) = 1
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Edge weights
Let M be a map. We fix two corners of M of different colors and
we connect them by an edge. We distinguish many cases.

3 The two corners are in two different faces of the same
connected component.

eF1

F2

ẽ
F1

F2

a handle

▶ ϑ(M ∪ {e}, e) + ϑ(M ∪ {ẽ}, ẽ) = 1.
▶ if M is orientable then exactly one of the maps (M ∪ {e}, e) and

(M ∪ {ẽ}, ẽ) is orientable, we associate to it the weight 0, and to the
other map the weight 1.
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Edge weights

4 The two corners are in two different connected components.

eF1

F2

ẽ
F1

F2

a bridge

▶ ϑ(M ∪ {e}, e) = ϑ(M ∪ {ẽ}, ẽ) = 0.
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How to decompose a layered map?

1

1

3
2

3

3

1
2

1
v
(1,3)
2

v
(1,3)
1

v
(2,3)
1

v
(3,2)
1

A labelled 3-layered map
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How to decompose a layered map?

1

1

3
2

3

3

1
2

1
v
(1,3)
2

v
(1,3)
1

v
(2,3)
1

v
(3,2)
1

A labelled 3-layered map

Randomly (Dołęga–Féray–Śniady ’14);

works for k = 1.

does not work for k ≥ 3.
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Our decomposition algorithm

1

1

3
2

3

3

1
2

1
v
(1,3)
2

v
(1,3)
1

v
(2,3)
1

v
(3,2)
1

A labelled 3-layered map

We decompose the map in an increasing order of the layers.
We start by decomposing the vertex of maximal degree and
maximal number.
We delete black vertices in layer 1 with respect to this order,
and starting each time at the marked corner.
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Our decomposition algorithm

1

1

3
2

3

3

1
2

c1

c21

Decomposition of a 3-layered map

We decompose the map in an increasing order of the layers.
We start by decomposing the vertex of maximal degree and
maximal number.
We delete black vertices in layer 1 with respect to this order,
and starting each time at the marked corner.
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Our decomposition algorithm
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Decomposition of a 3-layered map
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We start by decomposing the vertex of maximal degree and
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We delete black vertices in layer 1 with respect to this order,
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Our decomposition algorithm
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Our decomposition algorithm

3
2

3

3

2

Decomposition of a 3-layered map

We decompose the map in an increasing order of the layers.
We start by decomposing the vertex of maximal degree and
maximal number.
We delete black vertices in layer 1 with respect to this order,
and starting each time at the marked corner.
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Plan

1 Recall: Characterization of Jack characters as shifted symmetric
functions

2 Maps

3 Statistics of non-orientability

4 Condition 1: Top homogeneous part
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Condition 0: Stability property

F (∞)
µ (s1, s2 . . . ) :=

∑
M∈M(∞)

µ

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
i≥1

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

.

F (k)
µ (s1, s2 . . . , sk) :=

∑
M∈M(k)

µ

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
1≤i≤k

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

.

F (k+1)
µ (s1, s2 . . . , sk, 0) = F (k)

µ (s1, s2 . . . , sk)

Proof:
Left hand-side : k + 1-layered maps with no white vertices in layer k + 1.
If v is a black vertex in layer k + 1, all its neighbours should be in layer k + 1.
−→ The layer k + 1 is empty.
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Condition 1: Top homogeneous part

F (k)
µ (s1, s2 . . . , sk) =

∑
M∈M(k)

µ

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
1≤i≤k

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

.

The top homogeneous part corresponds to maps with maximal number of
white vertices.

=⇒
[
F (k)
µ (s1, . . . , sk)

]
=

α|µ|−ℓ(µ)

zµ
pµ(s1, . . . , sk).
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.

The top homogeneous part corresponds to maps with maximal number of
white vertices.

v
(.,3)
1

v
(.,2)
1 v

(.,2)
2

The star map for µ = [3, 2, 2]

=⇒
[
F (k)
µ (s1, . . . , sk)

]
=

α|µ|−ℓ(µ)

zµ
pµ(s1, . . . , sk).

Houcine Ben Dali Jack polynomials as maps series 26 / 26



Condition 1: Top homogeneous part

F (k)
µ (s1, s2 . . . , sk) =

∑
M∈M(k)

µ

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)
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1≤i≤k

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
• (M)

.

The top homogeneous part corresponds to maps with maximal number of
white vertices.

For such maps:

ν•(M) = ν⋄(M) = µ.

η(M) = 0.

|V•(M)| = cc(M) = ℓ(µ)

−→
(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)
= (−1)|µ|α−ℓ(µ).

v
(.,3)
1

v
(.,2)
1 v

(.,2)
2
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=⇒
[
F (k)
µ (s1, . . . , sk)

]
=

α|µ|−ℓ(µ)

zµ
pµ(s1, . . . , sk).

Houcine Ben Dali Jack polynomials as maps series 26 / 26



Condition 1: Top homogeneous part

F (k)
µ (s1, s2 . . . , sk) =

∑
M∈M(k)

µ

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)

∏
1≤i≤k

(−αsi)
|V(i)

◦ (M)|

z
ν
(i)
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.

The top homogeneous part corresponds to maps with maximal number of
white vertices.

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)
= (−1)|µ|α−ℓ(µ).

We choose independently a layer for each star; we multiply by
(−α)|µ|pµ(s1, . . . , sk).

v
(.,3)
1

v
(.,2)
1 v

(.,2)
2

(−α)3(s31 + . . .+ s3k) (−α)2(s21 + . . .+ s2k) (−α)2(s21 + . . .+ s2k)

The star maps for µ = [3, 2, 2]

=⇒
[
F (k)
µ (s1, . . . , sk)

]
=

α|µ|−ℓ(µ)

zµ
pµ(s1, . . . , sk).
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.

The top homogeneous part corresponds to maps with maximal number of
white vertices.

(−1)|µ|bη(M)

2|V•(M)|−cc(M)αcc(M)
= (−1)|µ|α−ℓ(µ).

We choose independently a layer for each star; we multiply by
(−α)|µ|pµ(s1, . . . , sk).

We multiply by 1
zµ

∏
1≤i≤k zν(i)

• (M)
to obtain labelled layered map.

=⇒
[
F (k)
µ (s1, . . . , sk)

]
=

α|µ|−ℓ(µ)

zµ
pµ(s1, . . . , sk).
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