Jack characters as generating series of bipartite maps and proof of Lassalle's conjecture (Part 3)

Houcine Ben Dali
Université de Lorraine, IECL, France Université de Paris, IRIF, France

joint work with

Maciej Dołęga

- Lecture 1: Introduction and main result
- Lecture 2: Integrality in Lassalle's conjecture (Łukasiewicz paths)
- Lectures 3-5: Positivity in Lassalle's conjecture (maps)

Jack characters

Definition

Fix a partition μ.

$$
\theta_{\mu}^{(\alpha)}(\lambda):= \begin{cases}0, & \text { if }|\lambda|<|\mu| \\ \binom{|\lambda|-|\mu|+m_{1}(\mu)}{m_{1}(\mu)}\left[p_{\mu, 1|\lambda|-|\mu|}\right] J_{\lambda}^{(\alpha)}, & \text { if }|\lambda| \geq|\mu| .\end{cases}
$$

where $m_{1}(\mu)$ is the number of parts of size 1 in μ.
In particular,

$$
J_{\lambda}^{(\alpha)}=\sum_{|\mu|=|\lambda|} \theta_{\mu}^{(\alpha)}(\lambda) p_{\mu}
$$

Goal

Theorem (BD-Dołęga '23+)

$$
\theta_{\mu}^{(\alpha)}(\lambda)=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\alpha)}} \frac{b^{\eta(M)}}{2_{0}\left|V_{0}(M)\right|-c c(M) \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha \lambda_{i}\right)^{\left.\mid V_{0}^{(i)}\right)(M) \mid}}{z_{\nu:}^{(i)}(M)},
$$

- $\mathcal{M}_{\mu}^{(\infty)}$ is the set of layered maps of face type μ.
- η is a statistic on $\mathcal{M}_{\mu}^{(\infty)}$.
- $\left|\mathcal{V}_{\bullet}(M)\right|$ is the number of black vertices of M,
- $\left|\mathcal{V}_{\circ}^{(i)}(M)\right|$ is the number of white vertices of M labelled by i,
- $c c(M)$ is the number of connected components of M.
- For $\alpha=1$: Féray-Śniady formula for the characters of the symmetric group.
- For $\alpha=$ 2: Féray-Śniady formula for zonal characters.

Plan

(1) Recall: Characterization of Jack characters as shifted symmetric functions
(3) Statistics of non-orientability
(4) Condition 1: Top homogeneous part

Characterization theorem

A function $f\left(s_{1}, s_{2}, \ldots\right)$ is α-shifted symmetric if it is symmetric in the variables $s_{1}, s_{2}-1 / \alpha, s_{3}-2 / \alpha \ldots$.

$$
f(\lambda):=f\left(\lambda_{1}, \ldots, \lambda_{\ell(\lambda)}, 0, \ldots\right) .
$$

Characterization theorem

A function $f\left(s_{1}, s_{2}, \ldots\right)$ is α-shifted symmetric if it is symmetric in the variables $s_{1}, s_{2}-1 / \alpha, s_{3}-2 / \alpha \ldots$.

$$
f(\lambda):=f\left(\lambda_{1}, \ldots, \lambda_{\ell(\lambda)}, 0, \ldots\right) .
$$

This gives an identification between the space of shifted symmetric and a subspace of functions on Young diagram.

Characterization theorem

A function $f\left(s_{1}, s_{2}, \ldots\right)$ is α-shifted symmetric if it is symmetric in the variables $s_{1}, s_{2}-1 / \alpha, s_{3}-2 / \alpha \ldots$.

$$
f(\lambda):=f\left(\lambda_{1}, \ldots, \lambda_{\ell(\lambda)}, 0, \ldots\right)
$$

This gives an identification between the space of shifted symmetric and a subspace of functions on Young diagram.

Theorem (Féray '15)

Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

Characterization theorem

Theorem (Féray '15)
Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

Example

$$
\theta_{[2]}^{(\alpha)}(\lambda)=\sum_{i \geq 1} \frac{\alpha}{2} \lambda_{i}\left(\lambda_{i}-1\right)-\sum_{i \geq 1}(i-1) \lambda_{i} .
$$

Characterization theorem

Theorem (Féray '15)
Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

Example

$$
\theta_{[2]}^{(\alpha)}(\lambda)=\sum_{i \geq 1} \frac{\alpha}{2} \lambda_{i}\left(\lambda_{i}-1\right)-\sum_{i \geq 1}(i-1) \lambda_{i} .
$$

- Shifted symmetry. Let $s_{i}^{\prime}:=\lambda_{i}-\frac{i-1}{\alpha}$.

$$
\theta_{[2]}^{(\alpha)}(\lambda)=\frac{\alpha}{2} \sum_{i \geq 1}\left(\left(s_{i}^{\prime}\right)^{2}-\left(\frac{i-1}{\alpha}\right)^{2}-s_{i}^{\prime}+\frac{i-1}{\alpha}\right) .
$$

Characterization theorem

Theorem (Féray '15)
Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

Example

$$
\theta_{[2]}^{(\alpha)}(\lambda)=\sum_{i \geq 1} \frac{\alpha}{2} \lambda_{i}\left(\lambda_{i}-1\right)-\sum_{i \geq 1}(i-1) \lambda_{i} .
$$

- Shifted symmetry. Let $s_{i}^{\prime}:=\lambda_{i}-\frac{i-1}{\alpha}$.

$$
\theta_{[2]}^{(\alpha)}(\lambda)=\frac{\alpha}{2} \sum_{i \geq 1}\left(\left(s_{i}^{\prime}\right)^{2}-\left(\frac{i-1}{\alpha}\right)^{2}-s_{i}^{\prime}+\frac{i-1}{\alpha}\right) .
$$

- Vanishing condition. $\theta_{[2]}^{(\alpha)}(\emptyset)=0, \quad \theta_{[2]}^{(\alpha)}([1])=0$.

Characterization theorem

Theorem (Féray '15)
Fix a partition μ. The Jack character $\theta_{\mu}^{(\alpha)}$ is the unique α-shifted symmetric function of degree $|\mu|$ with top homogeneous part $\alpha^{|\mu|-\ell(\mu)} / z_{\mu} \cdot p_{\mu}$, such that $\theta_{\mu}^{(\alpha)}(\lambda)=0$ for any partition $|\lambda|<|\mu|$.

Example

$$
\theta_{[2]}^{(\alpha)}(\lambda)=\sum_{i \geq 1} \frac{\alpha}{2} \lambda_{i}\left(\lambda_{i}-1\right)-\sum_{i \geq 1}(i-1) \lambda_{i} .
$$

- Shifted symmetry. Let $s_{i}^{\prime}:=\lambda_{i}-\frac{i-1}{\alpha}$.

$$
\theta_{[2]}^{(\alpha)}(\lambda)=\frac{\alpha}{2} \sum_{i \geq 1}\left(\left(s_{i}^{\prime}\right)^{2}-\left(\frac{i-1}{\alpha}\right)^{2}-s_{i}^{\prime}+\frac{i-1}{\alpha}\right) .
$$

- Vanishing condition. $\theta_{[2]}^{(\alpha)}(\emptyset)=0, \quad \theta_{[2]}^{(\alpha)}([1])=0$.
- Top homogeneous part

$$
\left[\theta_{[2]}^{(\alpha)}\right]=\frac{\alpha}{2} \sum_{i \geq 1} \lambda_{i}^{2}=\frac{\alpha}{2} p_{2}\left(\lambda_{1}, \lambda_{2}, \ldots\right)
$$

Theorem (Knop-Sahi '96)

For any μ there exists a unique α-shifted symmetric function J_{μ}^{*} such that

- $\operatorname{deg}\left(J_{\mu}^{*}\right)=|\mu|$,
- $J_{\mu}^{*}(\lambda)=0$ if $|\lambda| \leq|\mu|$ and $|\lambda| \neq|\mu|$,
- $J_{\mu}^{*}(\mu)=\alpha^{-|\mu|}\left\langle J_{\mu}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}$.

Theorem (Knop-Sahi '96)

For any μ there exists a unique α-shifted symmetric function J_{μ}^{*} such that

- $\operatorname{deg}\left(J_{\mu}^{*}\right)=|\mu|$,
- $J_{\mu}^{*}(\lambda)=0$ if $|\lambda| \leq|\mu|$ and $|\lambda| \neq|\mu|$,
- $J_{\mu}^{*}(\mu)=\alpha^{-|\mu|}\left\langle J_{\mu}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}$.

Moreover, the top homogeneous part of J_{μ}^{*} is $J_{\mu}^{(\alpha)}$.

Theorem (Knop-Sahi '96)

For any μ there exists a unique α-shifted symmetric function J_{μ}^{*} such that

- $\operatorname{deg}\left(J_{\mu}^{*}\right)=|\mu|$,
- $J_{\mu}^{*}(\lambda)=0$ if $|\lambda| \leq|\mu|$ and $|\lambda| \neq|\mu|$,
- $J_{\mu}^{*}(\mu)=\alpha^{-|\mu|}\left\langle J_{\mu}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}$.

Moreover, the top homogeneous part of J_{μ}^{*} is $J_{\mu}^{(\alpha)}$.

Theorem (Lassalle '98)

For any μ and λ, such that $m:=|\lambda|-|\mu| \geq 0$. Then,

$$
J_{\mu}^{*}(\lambda)=\left\langle J_{\mu}^{(\alpha)}, \frac{\partial^{m}}{\partial p_{1}^{m}} J_{\lambda}^{(\alpha)}\right\rangle .
$$

Theorem (Knop-Sahi '96)

For any μ there exists a unique α-shifted symmetric function J_{μ}^{*} such that

- $\operatorname{deg}\left(J_{\mu}^{*}\right)=|\mu|$,
- $J_{\mu}^{*}(\lambda)=0$ if $|\lambda| \leq|\mu|$ and $|\lambda| \neq|\mu|$,
- $J_{\mu}^{*}(\mu)=\alpha^{-|\mu|}\left\langle J_{\mu}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}$.

Moreover, the top homogeneous part of J_{μ}^{*} is $J_{\mu}^{(\alpha)}$.

Theorem (Lassalle '98)

For any μ and λ, such that $m:=|\lambda|-|\mu| \geq 0$. Then,

$$
J_{\mu}^{*}(\lambda)=\left\langle J_{\mu}^{(\alpha)}, \frac{\partial^{m}}{\partial p_{1}^{m}} J_{\lambda}^{(\alpha)}\right\rangle
$$

Symmetric functions $\xrightarrow{\sim}$ Shifted symmetric functions

$$
J_{\mu}^{(\alpha)} \longmapsto J_{\mu}^{*}
$$

Theorem (Knop-Sahi '96)

For any μ there exists a unique α-shifted symmetric function J_{μ}^{*} such that

- $\operatorname{deg}\left(J_{\mu}^{*}\right)=|\mu|$,
- $J_{\mu}^{*}(\lambda)=0$ if $|\lambda| \leq|\mu|$ and $|\lambda| \neq|\mu|$,
- $J_{\mu}^{*}(\mu)=\alpha^{-|\mu|}\left\langle J_{\mu}^{(\alpha)}, J_{\mu}^{(\alpha)}\right\rangle_{\alpha}$.

Moreover, the top homogeneous part of J_{μ}^{*} is $J_{\mu}^{(\alpha)}$.

Theorem (Lassalle '98)

For any μ and λ, such that $m:=|\lambda|-|\mu| \geq 0$. Then,

$$
J_{\mu}^{*}(\lambda)=\left\langle J_{\mu}^{(\alpha)}, \frac{\partial^{m}}{\partial p_{1}^{m}} J_{\lambda}^{(\alpha)}\right\rangle .
$$

Symmetric functions $\xrightarrow{\sim}$ Shifted symmetric functions

$$
\begin{aligned}
J_{\mu}^{(\alpha)} & \longmapsto J_{\mu}^{*} \\
\alpha^{|\mu|-\ell(\mu)} / z_{\mu} p_{\mu} & \longmapsto \theta_{\mu}^{(\alpha)}
\end{aligned}
$$

Characterization theorem

From now on, we will think of Jack characters as shifted symmetric functions rather than functions on Young diagram.

Characterization theorem

From now on, we will think of Jack characters as shifted symmetric functions rather than functions on Young diagram.

Theorem (BD-Dołega '23+)

$$
\begin{aligned}
& \theta_{\mu}^{(\alpha)}\left(s_{1}, s_{2}, \ldots\right) \\
& \quad=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\infty)}} \frac{b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{\circ}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}}
\end{aligned}
$$

Characterization theorem

From now on, we will think of Jack characters as shifted symmetric functions rather than functions on Young diagram.

Theorem (BD-Dołęga '23+)

$$
\begin{aligned}
& \theta_{\mu}^{(\alpha)}\left(s_{1}, s_{2}, \ldots\right) \\
& \quad=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\alpha)}} \frac{b^{\eta(M)}}{2^{\left|\mathcal{V}_{0}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|V_{0}^{(i)}(M)\right|}}{z_{\nu_{0}(i)}(M)},
\end{aligned}
$$

We want to prove that the generating function satisfies the 3 properties of the characterization theorem.

$$
F_{\mu}^{(\infty)}\left(s_{1}, s_{2} \ldots\right):=\sum_{M \in \mathcal{M}_{\mu}^{(\infty)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}}
$$

Plan

(1) Recall: Characterization of Jack characters as shifted symmetric functions
(2) Maps
(3) Statistics of non-orientability
(4) Condition 1: Top homogeneous part

Connected Maps

- A connected map is a cellular embedding of a connected graph in a surface, orientable or not.

Orientable connected maps

Connected Maps

- A connected map is a cellular embedding of a connected graph in a surface, orientable or not.

A non orientable connected map

Connected Maps

- A connected map is a cellular embedding of a connected graph in a surface, orientable or not.
Such representation of a non-orientable map is not unique.

A non orientable connected map

Figure 2: Two possible sides to represent a vertex.

Maps

- A map is a collection of connected maps. A map is orientable if its all connected components are embedded into orientable surfaces.

A non orientable map

Maps

- A map is a collection of connected maps. A map is orientable if its all connected components are embedded into orientable surfaces.
- All maps considered are bipartite.

A non orientable bipartite map

Maps

- The size of a map is its number of edges.

Maps

- The size of a map is its number of edges.
- The face type of a bipartite map M, denoted by $\nu_{\diamond}(M)$, is the partition given by the face degrees, divided by 2 .

A map of size 5 and face type $[2,2,1]$.

A map of size 5 and face type [5].

Layered maps

Let k be a positive integer. A map M is k-layered if

- each black vertex has a label in $1,2, \ldots, k$.

A 3-layered map

Layered maps

Let k be a positive integer. A map M is k-layered if

- each black vertex has a label in $1,2, \ldots, k$.
- each white vertex is labelled by the maximal label among the labels of its black neighbors.

A 3-layered map

Layered maps

Let k be a positive integer. A map M is k-layered if

- each black vertex has a label in $1,2, \ldots, k$.
- each white vertex is labelled by the maximal label among the labels of its black neighbors.

A map if layered if it is k-layered for some $k \geq 0$.

Layered maps

A layered map is labelled if

- each black vertex has a marked oriented corner.
- black vertices in the same layer i and with the same degree j are numbered $v_{1}^{(i, j)}, v_{2}^{(i, j)} \ldots$.

A labelled 3-layered map

Plan

(1) Recall: Characterization of Jack characters as shifted symmetric functions
(2) Maps
(3) Statistics of non-orientability
(4) Condition 1: Top homogeneous part

Recall: main result

Theorem (BD-Dołęga '23+)

$\theta_{\mu}^{(\alpha)}\left(s_{1}, s_{2}, \ldots\right)=(-1)^{|\mu|} \sum_{M \in \mathcal{M}_{\mu}^{(\infty)}} \frac{b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{0}(i)(M)}}$,

- $\mathcal{M}_{\mu}^{(\infty)}$ is the set of layered maps of face type μ.
- η is a statistic of non-orientability on $\mathcal{M}_{\mu}^{(\infty)}$.
- $\left|\mathcal{V}_{\bullet}(M)\right|$ is the number of black vertices of M,
- $\left|\mathcal{V}_{o}^{(i)}(M)\right|$ is the number of white vertices of M labelled by i,
- $c c(M)$ is the number of connected components of M.

Statistics of non-orientability

Definition (Goulden-Jackson '96)

A statistic of non-orientability (on layered maps) is a statistic which associates to each layered map M a non-negative integer such that $\eta(M)=0$ if and only if M is orientable.

Statistics of non-orientability

Definition (Goulden-Jackson '96)

A statistic of non-orientability (on layered maps) is a statistic which associates to each layered map M a non-negative integer such that $\eta(M)=0$ if and only if M is orientable.

Let b be the shifted parameter $b:=\alpha-1$. Maps will be counted with a non-orientablity weight $b^{\eta(M)}$.

Statistics of non-orientability

Definition (Goulden-Jackson '96)

A statistic of non-orientability (on layered maps) is a statistic which associates to each layered map M a non-negative integer such that $\eta(M)=0$ if and only if M is orientable.

Let b be the shifted parameter $b:=\alpha-1$. Maps will be counted with a non-orientablity weight $b^{\eta(M)}$.

When $\alpha=1$:

$$
b^{\eta(M)}=\left\{\begin{array}{cc}
1 & \text { if } M \text { is orientable } \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\text { When } \alpha=2 \text { : }
$$

$$
b^{\eta(M)}=1 \quad \text { for any } M
$$

$b=0$ in the main theorem:

Theorem (Féray-Śniady '11)

$$
\theta_{\mu}^{(1)}\left(s_{1}, s_{2}, \ldots\right)=\sum_{\substack{\text { orientable layered maps } M}} \frac{(-1)^{|\mu|}}{z_{\diamond(M)}} \prod_{i \geq 1}\left(-\lambda_{i}\right)^{\left|V_{0}^{(i)}(M)\right|} \text {. }
$$

$b=1$ in the main theorem:

Theorem (Féray-Śniady '11)

$$
\theta_{\mu}^{(2)}\left(s_{1}, s_{2}, \ldots\right)=\sum_{\substack{\text { layered maps } M \text { of face } \\ \text { type } \mu \text {, rorertabte or not }}} \frac{(-1)^{|\mu|}}{2^{\ell\left(\nu_{0}(M)\right)} z_{\odot}(M)} \prod_{i \geq 1}\left(-2 \lambda_{i}\right)^{\left|\nu_{0}^{(i)}(M)\right|} \text {. }
$$

How to construct statistics of non-orientability?

General method (La Croix '09, Dołęga-Féray-Śniady '14, Chapuy-Dołęga'22).
(1) Fix a map M of size n. We choose a decomposition algorithm, by fixing a total order on the edges of M : $e_{1}, e_{2}, \ldots, e_{n}$. We denote $M_{i}:=M \backslash\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\}$.

How to construct statistics of non-orientability?

General method (La Croix '09, Dołęga-Féray-Śniady '14, Chapuy-Dołęga'22).
(1) Fix a map M of size n. We choose a decomposition algorithm, by fixing a total order on the edges of M : $e_{1}, e_{2}, \ldots, e_{n}$. We denote $M_{i}:=M \backslash\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\}$.
(0) For any map M and edge e, we choose

$$
\vartheta(M, e) \in\{0,1\} .
$$

We then set

$$
\eta(M)=\sum_{1 \leq i \leq n} \vartheta\left(M_{i}, e_{i}\right)
$$

How to obtain a map of size $n+1$ from a map of size n

- We add an isolated edge.

an isolated edge

How to obtain a map of size $n+1$ from a map of size n

- We add an isolated edge.
- We add a black vertex on a white corner.

an isolated edge

a black leaf

How to obtain a map of size $n+1$ from a map of

 size n- We add an isolated edge.
- We add a black vertex on a white corner.
- We add a white vertex on a black corner.

an isolated edge

a black leaf

a white leaf

How to obtain a map of size $n+1$ from a map of

 size n- We add an isolated edge.
- We add a black vertex on a white corner.
- We add a white vertex on a black corner.
- We choose two corners of the map and we connect them by an edge; we always have two possibilities.

How to obtain a map of size $n+1$ from a map of

 size n- We add an isolated edge.
- We add a black vertex on a white corner.
- We add a white vertex on a black corner.
- We choose two corners of the map and we connect them by an edge; we always have two possibilities.

What about symmetries?

How to obtain a map of size $n+1$ from a map of

 size n- We add an isolated edge.
- We add a black vertex on a white corner.
- We add a white vertex on a black corner.
- We choose two corners of the map and we connect them by an edge; we always have two possibilities.

What about symmetries?

Edge weights

Let M be a map. We fix two corners of M of different colors and we connect them by an edge. We distinguish many cases.
(1) the added edge is connected to a new vertex

$$
\longrightarrow \vartheta(M \cup\{e\}, e)=0 .
$$

an isolated edge

a black leaf

a white leaf

Edge weights

Let M be a map. We fix two corners of M of different colors and we connect them by an edge. We distinguish many cases.
(2) The two corners are in the same face of M

a border
$\vartheta(M \cup\{e\}, e)=0$

a twist
$\vartheta(M \cup\{e\}, e)=1$

Edge weights

Let M be a map. We fix two corners of M of different colors and we connect them by an edge. We distinguish many cases.
(3) The two corners are in two different faces of the same connected component.

a handle

- $\vartheta(M \cup\{e\}, e)+\vartheta(M \cup\{\widetilde{e}\}, \widetilde{e})=1$.
- if M is orientable then exactly one of the maps $(M \cup\{e\}, e)$ and $(M \cup\{\tilde{e}\}, \tilde{e})$ is orientable, we associate to it the weight 0 , and to the other map the weight 1 .

Edge weights

(1) The two corners are in two different connected components.

- $\vartheta(M \cup\{e\}, e)=\vartheta(M \cup\{\widetilde{e}\}, \widetilde{e})=0$.

How to decompose a layered map?

A labelled 3-layered map

How to decompose a layered map?

A labelled 3-layered map

Randomly (Dołęga-Féray-Śniady '14);

- works for $k=1$.
- does not work for $k \geq 3$.

Our decomposition algorithm

A labelled 3-layered map

Our decomposition algorithm

A labelled 3-layered map

- We decompose the map in an increasing order of the layers.

Our decomposition algorithm

A labelled 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.

Our decomposition algorithm

Decomposition of a 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Our decomposition algorithm

Decomposition of a 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Our decomposition algorithm

Decomposition of a 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Our decomposition algorithm

Decomposition of a 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Our decomposition algorithm

Decomposition of a 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Our decomposition algorithm

Decomposition of a 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Our decomposition algorithm

Decomposition of a 3-layered map

- We decompose the map in an increasing order of the layers.
- We start by decomposing the vertex of maximal degree and maximal number.
- We delete black vertices in layer 1 with respect to this order, and starting each time at the marked corner.

Plan

(1) Recall: Characterization of Jack characters as shifted symmetric functions
(3) Statistics of non-orientability
(4) Condition 1: Top homogeneous part

Condition 0: Stability property

Condition 0: Stability property

$$
\begin{aligned}
& F_{\mu}^{(\infty)}\left(s_{1}, s_{2} \ldots\right):=\sum_{M \in \mathcal{M}_{\mu}^{(\mu)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}} . \\
& F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}^{(M)}} . \\
& F_{\mu}^{(k+1)}\left(s_{1}, s_{2} \ldots, s_{k}, 0\right)=F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)
\end{aligned}
$$

Proof:

Condition 0: Stability property

$$
\begin{aligned}
& F_{\mu}^{(\infty)}\left(s_{1}, s_{2} \ldots\right):=\sum_{M \in \mathcal{M}_{\mu}^{(\mu)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}} . \\
& F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}^{(M)}} . \\
& F_{\mu}^{(k+1)}\left(s_{1}, s_{2} \ldots, s_{k}, 0\right)=F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)
\end{aligned}
$$

Proof:

Left hand-side : $k+1$-layered maps with no white vertices in layer $k+1$.

Condition 0: Stability property

$$
\begin{aligned}
& F_{\mu}^{(\infty)}\left(s_{1}, s_{2} \ldots\right):=\sum_{M \in \mathcal{M}_{\mu}^{(\mu)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{i \geq 1} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}} . \\
& F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right):=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}^{(M)}} . \\
& F_{\mu}^{(k+1)}\left(s_{1}, s_{2} \ldots, s_{k}, 0\right)=F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)
\end{aligned}
$$

Proof:

Left hand-side : $k+1$-layered maps with no white vertices in layer $k+1$. If v is a black vertex in layer $k+1$, all its neighbours should be in layer $k+1$. \longrightarrow The layer $k+1$ is empty.

Condition 1: Top homogeneous part

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}^{(M)}}
$$

Condition 1: Top homogeneous part

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}}
$$

The top homogeneous part corresponds to maps with maximal number of white vertices.

The star map for $\mu=[3,2,2]$

Condition 1: Top homogeneous part

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{0}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}}
$$

The top homogeneous part corresponds to maps with maximal number of white vertices.

For such maps:

- $\nu_{\bullet}(M)=\nu_{\diamond}(M)=\mu$.

$$
\longrightarrow \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}}=(-1)^{|\mu|} \alpha^{-\ell(\mu)} .
$$

- $\left|\mathcal{V}_{\bullet}(M)\right|=c c(M)=\ell(\mu)$

The star map for $\mu=[3,2,2]$

Condition 1: Top homogeneous part

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\mathcal{V}_{\circ}^{(i)}(M)\right|}}{z_{\nu_{\bullet}^{(i)}(M)}^{(M)}}
$$

The top homogeneous part corresponds to maps with maximal number of white vertices.

$$
\frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\mid \mathcal{V}}(M) \mid-c c(M)} \alpha^{c c(M)}=(-1)^{|\mu|} \alpha^{-\ell(\mu)}
$$

We choose independently a layer for each star; we multiply by $(-\alpha)^{|\mu|} p_{\mu}\left(s_{1}, \ldots, s_{k}\right)$.

$(-\alpha)^{3}\left(s_{1}^{3}+\ldots+s_{k}^{3}\right) \quad(-\alpha)^{2}\left(s_{1}^{2}+\ldots+s_{k}^{2}\right) \quad(-\alpha)^{2}\left(s_{1}^{2}+\ldots+s_{k}^{2}\right)$

Condition 1: Top homogeneous part

$$
F_{\mu}^{(k)}\left(s_{1}, s_{2} \ldots, s_{k}\right)=\sum_{M \in \mathcal{M}_{\mu}^{(k)}} \frac{\left(-\left.\left.1\right|^{(\mu)}\right|^{(k)(M)}\right.}{2^{\left[V_{0}(M) \mid-c c(M)\right.} \alpha^{c c(M)}} \prod_{1 \leq i \leq k} \frac{\left(-\alpha s_{i}\right)^{\left|\nu_{0}^{(i)}(M)\right|}}{z_{\nu(i)}^{(i)}(M)} .
$$

The top homogeneous part corresponds to maps with maximal number of white vertices.

$$
\frac{(-1)^{|\mu|} b^{\eta(M)}}{2^{\left|\mathcal{V}_{\bullet}(M)\right|-c c(M)} \alpha^{c c(M)}}=(-1)^{|\mu|} \alpha^{-\ell(\mu)} .
$$

We choose independently a layer for each star; we multiply by $(-\alpha)^{|\mu|} p_{\mu}\left(s_{1}, \ldots, s_{k}\right)$.

We multiply by $\frac{1}{z_{\mu}} \prod_{1 \leq i \leq k} z_{\nu_{\bullet}^{(i)}(M)}$ to obtain labelled layered map.

$$
\Longrightarrow\left[F_{\mu}^{(k)}\left(s_{1}, \ldots, s_{k}\right)\right]=\frac{\alpha^{|\mu|-\ell(\mu)}}{z_{\mu}} p_{\mu}\left(s_{1}, \ldots, s_{k}\right)
$$

