Symmetric Group Characters as Symmetric Functions Rosa Orellana and Mike Zabrocki

Lecture 6: Put it into context and Wrap-up
Mike: Unified Combinatorial descriptions for the following:

1) $h_{\mu} \tilde{s}_{\lambda}$
(2) $\tilde{h}_{\mu_{1}} \tilde{h}_{\mu_{2}} \cdots \tilde{h}_{\mu_{l}} \widetilde{S}_{\lambda}$
2) $\tilde{s} \tilde{s} \quad \tilde{s} \tilde{S}_{2} \quad$ Contains

$$
\begin{aligned}
& \text { 4) } \tilde{h}_{\mu} \widetilde{s}_{\lambda} \\
& \tilde{s}_{\mu_{1}} \cdots \widetilde{s}_{\mu_{l}} \tilde{s}_{\lambda} \leq \tilde{h}_{\mu} \cdots \tilde{h}_{\mu_{l}} \widetilde{s}_{\lambda} \leq h_{\mu} \tilde{s}_{\lambda} \\
& \tilde{S}_{\mu} \widetilde{S}_{\lambda} \leq \tilde{S}_{1} \leq \tilde{h}_{\mu} \tilde{S}_{\lambda} \leq S_{\mu} \widetilde{S}_{\lambda}
\end{aligned}
$$

Restriction Problem
Combinatorial objects: Multiset Tableaux.
letters: $T<\overline{2}<\cdots<1<2<\cdots$

Content:

- Barred $\alpha=(7,3,2)$
- unbarred $\beta=(12,4)$
- Boxes are filled w/ multiset and at most one barred entry.
- Column strict wot reverse lex order
- Shape of $T: \partial /(3)$ $(4,3,3,3,2,1) /(3)$
$M T_{\gamma}(\lambda, \mu)=$ Set of all these tableaux of Shape $\gamma=\operatorname{shape}(\bar{T})$ remove first row
Lattice Condition: (more i 's than $(i+1)$'s)

$$
\begin{aligned}
& \phi \leq\{\{1\}\} \leq\{\{1,1\}\} \leq\{\{2\}\} \leq\{\{1,2\} \\
& -\frac{1}{2} \frac{1}{3} T 1 \overline{2}=\frac{1}{2} \overline{3} T
\end{aligned}
$$

check if lattice

Combinatorial Interpretations
coif of $\widehat{S_{\gamma}}$

Example: $\mu=(2,1)$ and $\lambda=(2,2) \quad 1,1,2, \overline{1}, \overline{1}, \overline{2}, \overline{2}$

Main Theorem:
There exists a non-homogeneous basis $\left\{\tilde{S}_{\lambda}\right\}$ of symm. fris. Characterized by any of the following:
(i) $n \geq|\lambda|+\lambda_{1}$

$$
\begin{aligned}
& \widetilde{S}_{\lambda}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}{\underset{\substack{\text { eigenvalues } \\
\text { of perm. matrix } \\
\text { of cycle type }}}{(n-|\lambda|, \lambda \mid}(\mu)}_{\tau_{S_{n}}^{(t)}}
$$

(2) \mathbb{V}^{λ} is a poly rep of $G l_{n}$ (irred) then

$$
\text { if } \mathbb{V}^{\lambda} \downarrow_{S_{n}}^{G l_{n}} \cong \bigoplus_{\mu}\left(\mathbb{S}^{(n-j \mu, \mu)}\right)_{\substack{\text { restriction } \\ \text { coifs. }}}^{\oplus r_{\lambda \mu}}
$$

then

$$
s_{\lambda}=\sum_{\mu \mu} r_{\lambda \mu} \tilde{s}_{\lambda}
$$

(3)

$$
\begin{gathered}
S_{1 r}=\tilde{S}_{1 r}+\widetilde{S}_{1 r-1}\left(\Leftrightarrow \tilde{S}_{1 r}=\sum_{i=0}^{r}(-1)^{i} e_{r-i}\right) \\
r \geqslant 0 \quad \widetilde{S}_{\lambda} \widetilde{S}_{\mu}=\sum_{\nu} \tilde{g}_{\lambda \mu}^{\nu} \widetilde{S}_{\nu}
\end{gathered}
$$

$S_{1} r$ is the character of $\Lambda^{r}\left(\mathbb{C}^{n}\right)$

$$
\left.\Lambda^{r}(\mathbb{C})\right\rfloor_{S_{n}}^{G L_{n}} \cong S^{\left(n-r, 1^{r}\right)} \oplus S^{\left(n+1-1,1^{r-1}\right)}
$$

Symm. fins as characters of $G l_{n}$

Sym. Sics as characters of S_{n} cycle

Mornaghan-Nakayama Rule:
Classical Case:

$$
\overline{P_{\mu}}=\sum_{\lambda} X^{\lambda}(\mu) S_{\lambda}
$$

The: $P_{k} S_{\mu}=\sum_{\mu \subseteq \lambda_{\kappa}}(-1)^{h+(\lambda / \mu)-1} S_{\lambda}$
ex: $P_{4} s_{2,2}$

Thy: (Halverson, 0-z) add long first

$$
P_{k} \tilde{S}_{\lambda}=\sum_{|\nu|^{2} \leq k+|\lambda|}\left(\sum_{d \mid k} \sum_{\alpha}(-1)^{h+1}\left(\frac{k}{\alpha} /(\alpha)-2+h(t / 1 / \alpha)\right) \tilde{s}_{\nu}\right.
$$ $\lambda / / \alpha$ and $\nu / / \alpha$ are rim hooks

Example: $\quad P_{211}=P_{2} P_{1}$

$$
\begin{aligned}
& P_{1} \widetilde{S}_{\phi} \\
& d=1 \\
& h t=1 \\
& h t=1 \\
& \square \\
& h t=1 \\
& k=1 \\
& \Rightarrow P_{1}=\tilde{s}_{\phi}+\tilde{s}_{1} \\
& P_{2}\left(\tilde{S}_{\phi}+\widetilde{S}_{1}\right)=\underline{P}_{2} \tilde{S}_{\phi}+\vec{P}_{2} \widetilde{S}_{1} \\
& k=2 \quad P_{2} \widetilde{S}_{\phi} \\
& d=1 \\
& d=2 \\
& P_{2} \tilde{S}_{\phi}=2 \tilde{S}_{\phi}+\tilde{S}_{(1)}-\tilde{S}_{(1,1)}+\tilde{S}_{(2)} h t=2 \\
& P_{2} \widetilde{S}_{1}=\tilde{S}_{\phi}+3 \tilde{S}_{(1)}+\tilde{S}_{(2)}+\widetilde{S}_{(1,1)}+\tilde{S}_{(3)} \\
& -\widetilde{S}(1,1,1) \\
& P_{(2,1)}=3 \tilde{S}_{\phi}+4 \tilde{S}_{(1)}+2 \tilde{S}_{(2)}+\tilde{f}_{(3)}-\tilde{S}_{(1,1,1)}
\end{aligned}
$$

Character table of $P_{3}(n)$

	ϕ	(1)	(2)	$\left(1^{2}\right)$	(3)	$(2,1)$	$\left(1^{3}\right)$
ϕ	n^{3}	n^{2}	$2 n$	$2 n$	2	3	5
(1)	0	n^{2}	n	$3 n$	1	4	10
(2)	0	0	n	n	0	2	6
$(1,1)$	0	0	$-n$	n	0	0	6
(3)	0	0	0	0	1	1	1
$(2,1)$	0	0	0	0	-1	0	2
$\left(1^{3}\right)$	0	0	0	0	1	-1	1

- tableaux filled $w /$ sets size 1
- RSK

$$
v_{i_{1}} \otimes \cdots \otimes v_{i_{1}} \rightarrow i_{i_{2}} \rightarrow(\mathbb{P}, Q)
$$

- Litllewood-Richardsm Rule.

Restricted Picture

Combinaforics:

1) Tableaux are filled w/ multisets
2) RSK (COSSZ)
3) Pieri-Rule

To be continued...

$$
e_{\mu}=\sum \underbrace{N_{\lambda}}_{\tau \text { set filled tableaux }} \widetilde{S}_{\lambda}
$$

- Row strict on old sets
- column Strict on even sets

$$
e_{\mu}=\sum \tilde{K}_{\lambda \mu} S_{\lambda}
$$

filled $w / \#$'s (sis el see)

- Row strict.

$$
\begin{array}{llll}
e_{2,2} & 1 & 12 & 12 \\
1,1,2,2 & 1 & 1 & 12 \\
2 & 2 &
\end{array}
$$

