Symmetric Group Characters as Symmetric Functions Rosa Orellana and Mike Zabrocki

ABSTRACT: Introduce non-homogeneous bases of Symmetric Functions st.
(1) They evaluate to characters of the symmetric group.
(2) Their structure coefficients correspond to the tronecceer product. under regular product of polynomials.
We will also give applications to finding special cases of these products.
Assumption: Familiarity with rep. Theory of S_{n}.
Thanks: Anna and Jim for organizing and inviting us.

Lect 1: Symmetric Polynomials as characters of $G L_{n}$
Goal for today: Motivation and Preliminaries.

1. Classical Scher-Weyl duality
2. Kronecker + Reduced Kronecker
3. Kronecker + Reduced Kronecker

$$
\underset{n \times n \text { matrices }}{G L_{n}} G L(V)_{\operatorname{dim} n}
$$

Polynomial Reps of $G l_{n}$

$$
\rho: G L_{n} \rightarrow G L_{N}
$$

homomorphism
or $\quad W$-vecto rspace $w /$ an action of $G l_{n}$

Examples: 1) $\rho: G L_{2} \rightarrow G L_{3}$

$$
\begin{aligned}
& \rho\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ccc}
a^{2} & a b & b^{2} \\
2 a c & a d+b c & 2 b d \\
c^{2} & c d & d^{2}
\end{array}\right] \\
& W=\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

2) Defining rep: $\varphi: G l_{n} \rightarrow G l_{n}$

$$
W=\mathbb{C}^{n} . \quad \varphi(A)=A
$$

A polynom. rep ρ is homos. of degree m if all entries in $\rho(A)$ are hom. of degree m.

Prop: $\rho: G l_{n} \rightarrow G L_{N}$ hom. poly of degree m. then there exist a multiset

$$
M_{\rho}=\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}: \alpha_{1}+\cdots+\alpha=m\right\}
$$

Containing exactly N monomials, s.t. if $A \in G l_{n}$ w) eigen values $\theta_{1}, \ldots, \theta_{n}$, then $\rho(A)$ has eigenvalues θ^{α}, for all $x^{\alpha} \in \mathcal{M}_{\rho}$.
Examples: 1) $\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)$

$$
M_{\rho}=\left\{x_{1}^{2}, x, x_{2}, x_{2}^{2}\right\}
$$

2) $V=\mathbb{C}^{n}$

$$
M_{\rho}=\left\{x,, \ldots, x_{n}\right\}
$$

Characters of $G l_{n}$:
Def: $\rho: G l_{n} \rightarrow G L_{N}, \quad X^{\rho}: G l_{n} \rightarrow \mathbb{C}$.

$$
\begin{aligned}
X^{\rho}(A) & =\operatorname{trace}(\rho(A) \\
& =\text { sum of the di agonal entries in } \rho(A) \\
& =\text { sum of the eigenvalues of } \rho(A) .
\end{aligned}
$$

Examples: 1) $\chi^{\rho}(A)=\theta_{1}^{2}+\theta_{1} \theta_{2}+\theta_{2}^{2}$
2) $\chi^{\varphi}(A)=\theta_{1}+\theta_{2}+\cdots+\theta_{n}$

In general,
(*) $X^{\rho}=\sum_{x^{\alpha} \in M_{\rho}} x^{\alpha} \quad$ homogeneous poly nomial.
Note: To find the character value of $A \in G l_{n}$ you evalute the polynomial (*) at the eigenvalues of A.

Thy: 1) Every poly. rep of $G l_{n}$ is the direct sum of ir reducibles.
2) Two poly. reps of $6 \ln$ are isom. iff their characters are the same.
3) The irred poly. rep. of $G l_{n}$ cure indexed by partitions of length $\leq n$
(*) 4) The character of an irred poly nomial ref of $G l_{n}$ is $\quad X^{\lambda}=S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$
How is this Theorem proved? SW-duality.
Idea:

- Let $V=\mathbb{C}^{n}, \quad V^{\otimes k} k$-fold tensor product.
(1) GIn acts diagonally on $V^{\theta K}$

$$
A \cdot\left(v_{1} \otimes \cdots \otimes v_{k}\right)=A v_{1} \otimes \cdots \otimes A v_{k}, A \in G l_{n}
$$

(2) S_{k} acts on $V^{\otimes k}$ by permuting factors

$$
\sigma \cdot\left(v_{1} \otimes \cdots \otimes v_{k}\right)=v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)} \quad \sigma \in S_{k}
$$

Key: These two actions commute.
$\Rightarrow S_{k} \times G L_{n}$ acts on $V^{\otimes k}$
Critical idea: The actions "centralize" each other.

$$
\begin{aligned}
\text { End }_{G L_{n}}\left(V^{\otimes k}\right)= & \text { set of lin. Transf } f: V^{\otimes k} \rightarrow V^{\otimes k} \\
& \text { that commute with the action (diag) } \\
& \text { of } G L_{n} \text { on } V^{\otimes k} \\
\cong & \mathbb{C} S_{k} \quad \text { (Where lin. Transf. arising from) }
\end{aligned}
$$

End $S_{k}\left(V^{\otimes K}\right)=$ generated by diaforial action of $G \ln$ on Var.
We have $V^{\otimes K}$ is an $S_{k} \times G l_{n}$ rep.
$\frac{\text { Compute the character of } \vee *}{(\sigma, A) \in S_{k} \times} \times$

$$
(\sigma, A) \in S_{k} \stackrel{\times}{\times} G l_{n}
$$

$\operatorname{tr}(\sigma, A)=$ trace of lin. transf. resulting from the action of $\sigma \times A$ on $V \otimes R$.

$$
=\sum_{\substack{\lambda+c \\ e(\lambda) \leq n}} \chi_{S_{k}}^{\lambda}(\sigma) \operatorname{trace}\left(\rho^{\lambda}(A)\right)
$$

If Can be shown: σ has cycle type μ

$$
\text { trace }(\sigma, A)=P_{\mu}(\underbrace{\theta_{1}, \ldots, \theta_{n}}_{\text {eigenvalues of } A})
$$

Example: $n=k=2$

$$
\begin{aligned}
& \left((12),\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]\right) \in S_{2} \times G l_{2} \\
& V=\mathbb{C}^{2} \text { and } V^{\otimes 2}=\operatorname{Spn}\left\{e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}\right\} \\
& {\left[\begin{array}{cccc}
x_{1}^{2} & 0 & 0 & 0 \\
0 & 0 & x_{1} x_{2} & 0 \\
0 & x_{1} x_{2} & 0 & 0 \\
0 & 0 & 0 & x_{2}^{2}
\end{array}\right]} \\
& \text { trace }=x_{1}^{2}+x_{2}^{2}=P_{2}\left(x_{1}, x_{2}\right) \\
& P_{\mu}\left(\theta_{1}, \ldots, \theta_{n}\right)=\sum_{\lambda} x^{\lambda}(\sigma) \underline{\operatorname{trace}\left(\rho^{\lambda}(A)\right)} \\
& \text { MN-Rule } \\
& \operatorname{Pu}\left(\theta_{1}, \ldots, \theta_{n}\right)=\sum_{\lambda} x^{\lambda}(\sigma) S_{\lambda}\left(\theta_{1}, \ldots, \theta_{n}\right)
\end{aligned}
$$

$\left\{x^{\lambda}\right\}$: lin. independent from Rep. The of Symmetric group.
MAiNFACT 1: Irred. characters of $G l_{n}$ are Schuer polynom. evaluated at eigenvalues of $A \in G L_{n}$.

Tensor Products: $\mathbb{V}^{\lambda}, \mathbb{V}^{\mu}$ are irred poly. reps of $G l_{n}$ $\mathbb{V}^{\lambda} \otimes \mathbb{V}^{\mu}$ w/ diagonal action.
Character of this representation

$$
\begin{aligned}
& S_{\lambda}\left(\theta_{1}, \ldots, \theta_{n}\right) S_{\mu}\left(\theta, \ldots, \theta_{n}\right) \\
& V^{\lambda} \otimes \mathbb{V}^{\mu}=\bigoplus_{\nu}^{\bigoplus}\left(\mathbb{V}^{\nu}\right) \underbrace{}_{\tau_{\text {Littlewood-Richardson }}^{C_{\lambda \mu}^{\gamma}}} \\
& \text { coefficients. }
\end{aligned}
$$

Main Fact 2: De composing tensors of ply pred reps of $G l_{n}$ \uparrow corresp.
products of schur functions.
Kronecker Coefficients for $S_{n} g_{n \lambda \mu}^{\nu}$

$$
{\underset{D}{\lambda, \mu, \nu \vdash n}}_{\Phi^{\lambda} \otimes \mathbb{D}^{\mu}=\bigoplus_{\nu}\left(\mathbb{S}^{\nu}\right)^{\oplus} \underbrace{g(\lambda, \mu, \nu)}_{\substack{\text { Kronecker } \\ \text { Coefficients }}}}
$$

Example: $S^{(2,2)} \otimes S^{2,2)}=S^{(4)} \oplus \mathbb{S}^{(1,1,1,1)} \oplus \mathbb{S}^{(2,2)}$

	$(1)(2)(3)(4)$	$(12)(3)(4)$	$(123)(4)$	$(12)(34)$	(1234)
\square					
χ^{\square}	1	-1	1	1	-1
χ^{\square}	3	-1	0	-1	1
χ^{\square}	2	0	-1	2	0
χ^{\square}	3	1	0	-1	-1
$\chi^{\square \square}$	1	1	1	1	1

$$
\begin{aligned}
& x^{(2,2)}=\langle 2,0,-1,2,0\rangle \\
& x^{(2,2)} x^{(2,2)}=\langle 4,0,1,4,0\rangle \\
&=\langle 1,1,1,1,1\rangle+\langle 1,-1,1,1,-1\rangle \\
&+\langle 2,0,-1,2,0\rangle
\end{aligned}
$$

Murnagham-Stability:

$$
\begin{aligned}
& g\left(\left(\lambda_{1}, \lambda_{2}, \ldots\right),\left(\mu_{1}, \mu_{2}, \ldots\right),\left(\nu_{1}, \nu_{2}, \ldots\right)\right) \\
& \leqslant g\left(\lambda_{1}+1, \lambda_{2}\right),\left(\mu_{1}+1, \mu_{2}, \ldots\right),\left(\nu_{1}+1, \nu_{2}, \ldots\right)
\end{aligned}
$$

Eventually it becomes constant.

$$
x^{\lambda} x^{\mu}
$$

Example:
[BOR] $|\bar{\lambda}|+|\bar{\mu}|+\lambda_{2}+\mu_{2}$

$$
\begin{aligned}
& \chi^{2,2} \chi^{2,2}=\chi^{4}+\chi^{1,1,1,1}+\chi^{2,2} \\
& \chi^{3,2} \chi^{3,2}=\chi^{5}+\chi^{2,1,1,1}+\chi^{3,2}+\chi^{4,1}+\chi^{3,1,1}+\chi^{2,2,1} \\
& \chi^{4,2} \chi^{4,2}=\chi^{6}+\chi^{3,1,1,1}+2 \chi^{4,2}+\chi^{5,1}+\chi^{4,1,1}+2 \chi^{3,2,1}+\chi^{2,2,2} \\
& \chi^{5,2} \chi^{5,2}=\chi^{7}+\chi^{4,1,1,1}+2 \chi^{5,2}+\chi^{6,1}+\chi^{5,1,1}+2 \chi^{4,2,1}+\chi^{3,2,2}+\chi^{4,3}+\chi^{3,3,1} \\
& \chi^{6,2} \chi^{6,2}=\chi^{8}+\chi^{5,1,1,1}+2 \chi^{6,2}+\chi^{7,1}+\chi^{6,1,1}+2 \chi^{5,2,1}+\chi^{4,2,2}+\chi^{5,3}+\chi^{4,3,1}+\chi^{4,4} \\
& \chi^{7,2} \chi^{7,2}=\chi^{9}+\chi^{6,1,1,1}+2 \chi^{7,2}+\chi^{8,1}+\chi^{7,1,1}+2 \chi^{6,2,1}+\chi^{5,2,2}+\chi^{6,3}+\chi^{5,3,1}+\chi^{5,4} \\
& \chi^{\bullet}, 2 \chi^{\bullet, 2}=\chi^{\bullet}+\chi^{\bullet, 1,1,1}+2 \chi^{\bullet}, 2+\chi^{\bullet, 1}+\chi^{\bullet}, 1,1+2 \chi^{\bullet}, 2,1+\chi^{\bullet, 2,2}+\chi^{\bullet}, 3+\chi^{\bullet}, 3,1+\chi^{\bullet, 4}
\end{aligned}
$$

$\bar{g}_{\alpha, \beta}^{\gamma}$ stable limits of the sequences.
"reduced" (stable) Kronecker coefficients.
The: [BOR]

$$
\begin{aligned}
& \therefore \text { [BOR] } g_{\lambda \mu}^{\nu}=\sum_{i=1}^{l(\lambda) \ell(\mu)}(-1)^{i+1} \bar{g}_{\bar{\lambda} \bar{\mu}}^{\nu+i} \quad \bar{\lambda}=\left(\lambda_{2}, \ldots\right) \\
& u=\left(u_{1}, u_{2}, \ldots\right) \\
& u^{+i}=\left(u_{1}+1, \ldots, u_{i-1}+1, \hat{u}_{i}^{\text {remove }}, u_{i+1}, \ldots\right)
\end{aligned}
$$

Main Problem: Find a combinatorial formulation for $g_{\lambda \mu}^{\nu}$ or $\bar{g}_{x \beta}^{r}$.
IDEA: Think $S_{n} \subseteq G L_{n}$ \uparrow $n \times n$ permutation matrices. "replicate" what worked for Gin.

Restriction Approach:

1) Restrict $S W$ Duality. $S_{n} \subseteq G l_{n}$

- S_{n} acts diagonally on $V^{0 K}$

$$
\sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sigma \cdot v_{1} \otimes \cdots \otimes \sigma\left(u_{k}\right)
$$

What commutes with this action?
$(1,2) e_{1} \otimes e_{1}=e_{2} \otimes e_{2}$

Lemma: $A \in E n d_{s_{n}}\left(V^{\otimes k}\right) \Longleftrightarrow A_{\vec{\jmath}}^{\vec{\tau}}=A_{\sigma(\vec{\jmath})}^{\sigma\left(\tau^{\prime}\right)}$

$$
\sigma(\vec{i})=\left(\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \ldots\right)
$$

Example:

$$
\begin{aligned}
& n=k=2
\end{aligned}
$$

$$
\begin{aligned}
& A_{11}^{11}=A_{22}^{22}, A_{12}^{12}=A_{21}^{22}, A_{11}^{12}=A_{22}^{21} \text {, etc. } \\
& \{1,2, \bar{T}, \bar{i}\} \quad\{\bar{T}, 1\}\{2, \bar{i}\} \quad\{\bar{i}, \overline{2}\}\{2\}
\end{aligned}
$$

The set partitions of $[k] \cup[\bar{k}]$ index the lin. ind. linear transf. that commute $w /$ the cliagonal action of S_{n}

$$
P_{k}(n)=\mathbb{C}(n)-\text { Span }\{\text { set partitions of }[k] \cup[\bar{k}]\}
$$

Connectivity,

$$
\begin{gathered}
n=2 \\
f\left(v_{1} \otimes v_{2} \otimes v_{1} \otimes v_{2}\right)=0 \\
f\left(u_{1} \otimes v_{1} \otimes v_{1} \otimes v_{2}\right) \\
=u_{1} \otimes v_{1} \otimes v_{1} \otimes v, \\
+v_{1} \otimes v_{1} \otimes v_{2} \otimes v_{2}
\end{gathered}
$$

Product: a 0 a as o

$$
d_{1} d_{2}=
$$

d_{1}

ASSOC., $\operatorname{dim} P_{k}(n)=B(2 k)$, identity $q \% \ldots i$
SW-duality for $S_{n}-P_{k}(n)$

- Both act on $V^{\otimes K}$
- Actions Commute

$$
\begin{aligned}
& \Rightarrow P_{k}(n) \times S_{k} \text { acts on } V^{* k} \\
& \Rightarrow V^{\otimes k} \cong \bigoplus_{\lambda+n}\left(\|^{\lambda} \otimes \mathbb{S}^{\lambda}\right) \\
& \text { rep of of }
\end{aligned}
$$

$$
\begin{gathered}
\lambda+n \\
\lambda_{2}+\cdots+\lambda_{l} \leq k
\end{gathered} \text { rep of } P_{k}(n)
$$

Compute character. $(d, \sigma) \in P_{k}(n) \times S_{n}$

$$
\begin{aligned}
& \quad \operatorname{Char}\left(V^{\otimes k}\right)=\sum X_{P_{n}(n)}^{\lambda}(d) X_{S_{n}}^{\lambda}(\sigma) \\
& S_{n} \subseteq G L_{n}
\end{aligned}
$$

$$
\operatorname{Char}\left(V^{\otimes k}\right)=P_{\mu}(\underbrace{}_{\substack{\text { evaluating at } \\ x_{1}, \ldots, x_{n}}})
$$ eigualutig of permutation matrices

Conj:

$$
\begin{aligned}
& P_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\lambda} \chi_{x_{1}(n)}(d) \tilde{S}_{\bar{\lambda}}\left(x_{1}, \ldots, x_{n}\right) \\
&
\end{aligned}
$$ Evaluates

Contrast. to irreducibles

$$
p_{\mu}=\sum x_{s_{k}(\sigma)} s_{\lambda}\left(x_{1, \ldots,}, x_{n}\right)
$$ of S_{n}

Furthermore, $\quad \tilde{S}_{\lambda} \tilde{S}_{\mu}=\sum \bar{g}_{\lambda \mu}^{\nu} \widetilde{S}_{\gamma}$
product of poly.

