Geometric Interpretation for the Delta Thm (II)

Goal! Explain the identity

$$S_{(k-1)}^{\perp}$$
 ($E_{k(n-k+1),k}$.) = $\Delta'_{e_{k-1}}$ en using affine Springer fibers.

Still t=0 specialization

Last Time

•
$$PR_{n,k} := \{ (L_{1,-1}, L_{n}) | L_{i} \text{ a line in } C^{k}, L_{i} + \dots + L_{n} = C^{k} \}$$

 $\underset{open}{\leq}$ $P^{k-1} \times \dots \times P^{k-1}$ smooth, nonempt

•
$$\Delta Sp_{n,k} := \{V_{i} = \{V_{i} \in V_{i} \in C^{k(n-k+1)}\} \mid NV_{i} \leq V_{i}, \text{ ker } N \leq V_{n}\}$$

$$\stackrel{C}{\subset} \text{losed} \quad \exists \{(1,1,...,l,(n-k)(k+1))\}$$

where N is nilpotent,
$$JT(N) = k = (n-k+1)^k$$

An affine paving of X is a filtration of X by closed subvarieties $X = X_n = 2X_{n-1} = X_{n-2} = --- = X_1 = X_0 = \emptyset$

Such that $X_i \setminus X_{i-1} \cong \mathbb{C}^{m_i}$ for some m_i

Fact If X is compact and has an affine paving, then $Poin(X;q) = \sum_{i} q^{m_{i}}.$

Thm (G-Levinson-Woo)

DSp_{n,k} has an affine paving in which each cell C contains one torus-fixed point corresponding to some PEWLD_{n,k} with area (P)=0, and

 $Codim_{\Delta Sp_{n,k}}(C) = dinv(P).$

(*1) follows immediately as a corollary
Cells are given by intersecting Asprox with Sohubert cells.

* Why care?

We can use different decompositions of DSp_{n,k}

to get different combinatorial formulas for Dé_{k-1}en to

Exof thm n=3, $k=2 \rightarrow dim(\Delta Sp_{3,2})=2$

$$P = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \iff \begin{bmatrix} 001 \\ 100 \\ 010 \end{bmatrix} \iff C = \begin{bmatrix} ab1 \\ 100 \\ 010 \end{bmatrix} : a,b,c \in C \end{bmatrix} \land \Delta S p_{3,2}$$

$$RSL_{3,2} \qquad (Sp_{3,2a})^T \qquad Schubert cell$$

$$NV, CV;$$

Exercise $= \left\{ \begin{bmatrix} a & b & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} : a, b \in \mathcal{C} \right\}$

 $\frac{2}{2} \mathbb{C}^{2}$ $\operatorname{codim}(c) = 2 - \operatorname{dim}(c) = 2 - 2 = 0$

Next Goal Use Springer Theory to construct an Sn action on H*(USpn,k) and upgrade the Poincaré polynomial to a Frobenius series.

 $N := \{ \text{ nilpotent nxn matrices } N \}$ nilpotent cone $FI([J...]) := \{ V. = (V_1 < V_2 < ... < U_n = q^n) \mid \text{dim } V_i / V_{i-1} = 1 \text{ } \text{ } \text{ } \text{ } \}$

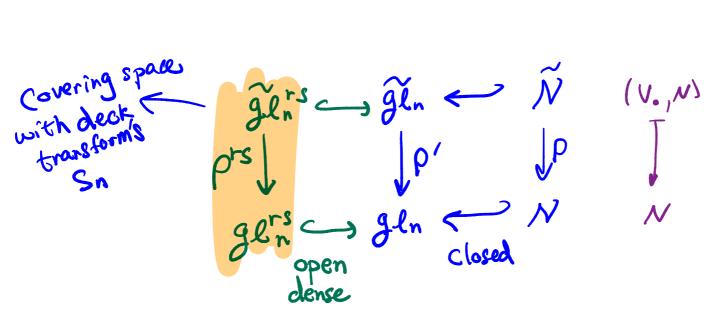
 $\mathcal{N} := T^*(F((i^n)) \cong \{(V_{\cdot}, N) \in F((i^n) \times N \mid NV_{i} \leq V_{i} \forall i\}$

Vector
bundle
FI(In)

N

P is called the Springer resolution of N

- · Given NEN, the Springer Fiber is $SpN:=P^{-1}(N)\cong \{V. \in FI(I^n) \mid NV: \leq V: \forall i \} \subseteq FI(I^n) \}$
- · Springer (76') défined an action of Sn on H*(Spr).



- · Given $x \in gl_n^{rs}$, $V. \in (p^{rs})^{-1}(x)$, $x \vee i \subseteq V_i \quad \forall i$.
- Since $x \sim \begin{bmatrix} \lambda_1 \\ -\lambda_n \end{bmatrix} \lambda_i \neq \lambda_i$, the eigenspaces of x are all 1-dim'l 1-dim'l
- Since $x \ Vi \subseteq Vi$, $x \ Vi = Vi$, and Vi is a direct sum of eigenlines, so $\exists \sigma \in S_n \ S.t. \ Vi = L\sigma, \oplus \neg \oplus L\sigma_i \ \forall i$

 \mathbb{E}_{x} $x = \begin{bmatrix} 3 - 1 \\ 4 \end{bmatrix}$ \in \mathfrak{gl}_{3}^{rs} , eigenlines $\langle e_{1} \rangle$, $\langle e_{2} \rangle$, $\langle e_{3} \rangle$ $\langle e_{7} \rangle$ $\langle e_{1} \rangle$, $\langle e_{2} \rangle$, $\langle e_{3} \rangle$ $\langle e_{1} \rangle$, $\langle e_{2} \rangle$, $\langle e_{3} \rangle$ $\langle e_{1} \rangle$, $\langle e_{2} \rangle$, $\langle e_{3} \rangle$

{[',],[,'],....}

Permuting eigenlines defines an action of Sn on each fiber $(p^{rs})^{-1}(x)$, which extends to a fiber-wise action of Sn C gers.

In fact, CSn = End (Rprs Cgins)

Using the theory of perverse sheaves, this action transfers to an action of Sn on the cohomology of each fiber of p', so in particular for each fiber of p:

Sn C H*(p'(M) = H*(SpN).

A (ool, but where is the combinatorics?! A Let $\mu = JT(N)$

Poin (Spriq) = rev_q ($\sum_{\substack{P \text{ row-strict} \\ \text{tableaux} \\ \text{of Shapen}}} q_{\text{inv}(P)}$) $P = \prod_{\substack{P \text{ inv}(P) \\ \text{Shapen}}} M = (\prod_{\substack{P \text{ inv}(P) \\ \text{tableaux} \\ \text{of Shapen}}} (\prod_{\substack{P \text{ inv}(P) \\ \text{of Shapen}}} M = (\prod_{\substack{P \text{ inv}(P) \\ \text{of Shapen}}} (\prod_{\substack{P \text{ inv}(P) \\ \text{ inv}(P)}} (\prod_{\substack{P \text{ inv}(P) \\ \text{$

Special property:

For each (d,,,d)+n, there is a partial flag variety

Sprc FI(In)

TI(SpN) = FI(d, -, de) := { V. = (V, c V2 c -- c Ve) | Vi c (", dim (Vi/Vi-1) = di}

N Vi c Vi

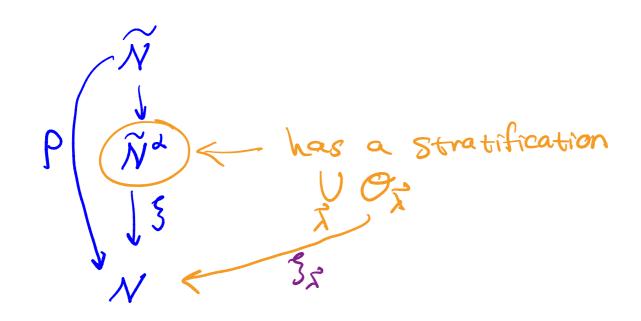
Poin $(\pi(Sp_N); q) = Hilb (H^*(Sp_N)^{Sa_1 \times \dots \times Sa_n}; q)$ $= \langle \widetilde{H}_{\mu}(x; q), h_{a} \rangle \quad (m_a \text{ coeff})$ $= \text{rev}_{q} (\sum_{\substack{P \text{ row Strict} \\ \text{shape } \mu}} q^{\text{inv}(P)}).$

Projecting to partial flag varieties => Taking invariants.

Next Time Relate Asphix to
the "partial resolutions" of Borho-Mac Phenson
to obtain the "t=o" skewing formula.

Borho and Mac Pherson.

For each d, there is a "partial resolution" of N $\vec{N}^{\alpha} = \{(V, N) \in F((2) \times N \mid NV_i \subseteq V_i\}$



 $\Delta Sp_{n,k}$ is a fiber of S_X over JT(N) = k I

I use BM's theory to derive the t=0 skewing formula.