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Next Goal Use Springer Theory to construct an Su-

action on H*ASpul) and upgrade the
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Using the theory of perverse sheaves, this action
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Projecting to partial flag varieties - taking invariants.



NextTime Relate Asprik to

the partial resolutions" of Borho-MacPherson

to obtain the "to" skewing formula.
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ASprik is a fiber of 3 over 5 /M = KAB

-> Use BM's theory to derive the EO skewing
formula.


