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Both RSLnk and FWun are in bijection with the

set of torns- fixed points in two particular varieties :

· (Pawlowski-Rhoades) Spanning configuration spaces
Given n=k,
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· Each column is nonzero

· The matrix unique up to scaling columns

·Some K*1 minor is nonzero.
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· (G-Levinson -Wool Delta-Springer fibers
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PoincareSeries

Given a complex variety X, its Poincareseries is

Poin (Xi9) =[ im Hi(X)) give
jo
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* Why care?
We can use different decompositions ofASprik
to get different combinatorial

formulas for Dep-fult=
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Pawlowski- Rhoades proved PRik also has the same Poincare poly :

dinr (P)
Poin (PRm ; 9) = reg)[ 9 I = Poin (A Sprin ; 9)
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Poincare duality : If a complex variety X is smooth and

compact , Poin(X , 9) = revg Poin (Xi9).

· PRnK is smooth but noncompact

· ASpnik is compact but not smooth .

NextTime : Use Springer Theory to construct an
-

S action on H* (JSprik) , give new formulas for

Depen /t=0 .


