Def: For \(n \) odd, define \(F(n) := \{ (b,f) : b = (b_1, b_2, \ldots, b_n) \} \), \(f = (f_1, f_2, \ldots, f_n) \).

For \((b,f) \in \mathcal{P}(n,m) \), define \(S(b,f) \) to be the filled diagram \((D', f') \) obtained by interchanging column 1 and column 2, with \(f_1 \) (now in column 2, i.e. cell \(\text{col}\{n,1\} \)) to \(f_2 \), and \(f_2 \) (now in column 1, i.e. cell \(\text{col}\{1,2\} \)) to \(f_1 \).

For any filled diagram \((D,f) \), if \([D] > [D'] \), then define \(S^2(D,f) \) to be the filled diagram obtained by applying \(S \) on the subdiagram \([D'] \) of \(D \) (and keep all other columns).

Def: For \(n \) even, define \(\text{DES}(n) := \{ (b,f) : b = (b_1, b_2, \ldots, b_n) \} \).

\(\text{DES}(n) = \text{DES}(n) \setminus \{(1, n-1)\} \) if \(n = 4k \).

\(\text{DES}(n) = \text{DES}(n) \setminus \{(1, n-1)\} \) otherwise.

e.g., \(\text{DES}(6) = \{ (1, 6), (2, 5), (3, 4) \} \).

Since \((5,4) \) contains a descent, we ignore it when counting \(\text{DES}(6) \).
Lemma: \(\text{Let } (a, b, c) \in \mathbb{R}_+^3, \text{ and } a_i, b_i, c_i \geq 0. \) \(\text{If } \text{Det}(a_{11} - b_{12} - c_{13}) \neq 0, \text{ then } \text{Det}(a_{21} - b_{22} - c_{23}) \neq 0. \) \(\text{and } (a_{31} - b_{32} - c_{33}) \neq 0. \) \(\text{Then } \text{Det}(a_{11} - b_{12} - c_{13}) = \text{Det}(a_{21} - b_{22} - c_{23}) = \text{Det}(a_{31} - b_{32} - c_{33}). \)

(a) \(\text{Det}(a_{11}) = \text{Det}(a_{22}) = \text{Det}(a_{33}) \)
(b) \(\text{Det}(a_{11}) \neq \text{Det}(a_{22}) \neq \text{Det}(a_{33}) \)
(c) \(\text{Det}(a_{11}) = \text{Det}(a_{22}) = \text{Det}(a_{33}) = 0 \)

Scale:

\(a = 83.1179a + 66.1 \), \(\sigma = 5.1452.16 \Rightarrow \text{Det}(a_{11}) = 0 \neq \text{Det}(a_{22}) = \text{Det}(a_{33}) = 0 \Rightarrow \text{Det}(a_{11}) = 0 \neq \text{Det}(a_{22}) = \text{Det}(a_{33}) = 0 \)

\(\text{std}(a) = 0 \Rightarrow \text{std}(a_{11}) = \text{std}(a_{22}) = \text{std}(a_{33}) = 0 \Rightarrow \text{Det}(a_{11}) = \text{Det}(a_{22}) = \text{Det}(a_{33}) = 0 \)

\(\text{std}(a_{11}) = \text{std}(a_{22}) = \text{std}(a_{33}) = 0 \Rightarrow \text{Det}(a_{11}) = \text{Det}(a_{22}) = \text{Det}(a_{33}) = 0 \)

Prop. For positive integers \(m, n \) and \(m \neq n \), there exists a bijection \(\phi : \mathbb{Z}_m \rightarrow \mathbb{Z}_n \) satisfying:

(1) \(|\text{Det}(\phi)| = |\text{Det}(e)| \) for any \(e \in \mathbb{Z}_m \)
(2) \(\text{Det}(\phi(e)) = \text{Det}(\theta(e)) \) for any \(e \in \mathbb{Z}_m \)
(3) \(|\text{Det}(\phi)| = |\text{Det}(e)| \) for any \(e \in \mathbb{Z}_n \)

\(\phi \) is called a “local” bijection.

By (1) and (2), we have

\(\text{Det}(\phi) = \text{Det}(\theta) \) for any \((a, b, c) \in \mathbb{R}_+^3 \)

By (3), (2) and (1), we have

\(\text{Det}(\phi) = \text{Det}(\theta) \) for any \((a, b, c) \in \mathbb{R}_+^3 \)

That's why (3) is "local".