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Section 1. Introduction

This paper proves results on Galois covers of affine varieties in characteristic p, showing
that they behave extremely well under embedding problems with p-group kernel. Namely,
given such a connected Galois cover Y → X with Galois group G = Γ/P , where P is a
p-group, is there a connected Galois cover Z → X with group Γ that dominates Y → X?
Moreover, can Z → X be chosen with prescribed local behavior? For example, if X ′ is a
closed subset of X, and if the restriction Y ′ → X ′ of Y → X is dominated by a (possibly
disconnected) Γ-Galois cover Z ′ → X ′, then can Z → X above be chosen so as to restrict to
Z ′ over X ′? This general type of problem is traditionally called an “embedding problem,”
since on the function field level a G-Galois extension is being embedded into a Γ-Galois
extension. Over an arbitrary field of characteristic p > 0 (e.g. finite fields or Laurent series
fields), this paper answers several questions of this type in the affirmative.

In particular, if Y → X is étale, then in the situation above there is such a Z which
is étale over Y and extends the given Z ′ (Theorem 3.11). Moreover this remains true even
if Y → X is ramified, provided that its degree is prime to p (Theorem 4.3). In the case
of curves (where X ′ is a finite set of points), it is true even if Y → X is merely assumed
to be tamely ramified (Theorem 5.14). In this context the local condition corresponds
to specifying the residue field extensions over a given finite set of points — and this is a
non-trivial condition if the base field k is not algebraically closed. An “adelic” version for
curves, in which X ′ is taken to consist of spectra of local fields rather than points, is also
shown (Theorem 5.6).

Problems of this sort have been considered in several papers. The case that X is the
spectrum of a global field and X ′ is adelic was shown in [Ne, Main Theorem]; but there
ramification at places outside of X ′ is permitted and the kernel of Γ → G is allowed to be
somewhat more general. (Only the number field case was explicitly treated in [Ne], but
the result carries over to the function field case. Cf. also [SW].) In [Ka, Theorem 2.1.5], a
related result was shown for projective curves X over separably closed fields, with adelic
conditions. (This generalized a result of [Ha1, §2], in the case G = 1; cf. [Ka, Theorem
2.1.4].) But there the dominating cover Z need not be connected. On the other hand,
in [Se2, Theorem 1] (in connection with the solvable case of the Abhyankar Conjecture),
it was shown for X = A1 over k = k̄ that Z can be chosen so as to be connected, if no
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local conditions are imposed. A version for affine curves viewed as rigid analytic spaces
(and with X ′ taken to be an affinoid) appeared in [Ra1, Prop. 4.2.5, Cor. 4.2.6], using the
machinery of Runge pairs, as part of the proof of the full Abhyankar Conjecture for A1.
A version motivated by formal schemes appeared in [Ha2, Prop. 4.1], allowing Y → X

to be ramified and of degree prime to p. This result, which relied on the moduli of p-
covers in [Ha1], appeared in the context of proving the Abhyankar Conjecture for general
affine curves over k = k̄ (assuming [Ra1]). Afterwards [Ra2], Raynaud pointed out the
relationship with [Ra1, Prop. 4.2.5], and found a rigid analytic version that also allows
Y → X to be ramified and prime to p. This version could then be used instead of [Ha2,
Prop. 4.1], to prove the general case of the Abhyankar Conjecture by rigid analytic (rather
than formal) methods, assuming the case of A1. (The opposite is also possible. That is,
the rigid approach of [Ra1] to the Abhyankar Conjecture for A1 could instead be replaced
by a formal scheme approach; cf. [HS, Theorem 6].) F. Pop later showed in [Po, Thm. B]
how the original version [Ra1, Prop. 4.2.5] could already be used to prove the Abhyankar
Conjecture for general curves, and even to prove that embedding problems with quasi-p
kernel can be solved properly (i.e. with Z connected) for affine curves over k = k̄ (without
local conditions).

The results of the current paper can be regarded as generalizations and simplifications
of the corresponding results of [Ra1], [Ha2], and [Ra2]. Namely, the base space need not
be a curve, and the base field can be arbitrary (of characteristic p) — thus providing
arithmetic content. Also the machinery of rigid and formal geometry (including the Runge
pairs and the moduli of p-covers) are avoided in the current version, by allowing a more
elementary notion of “local condition.” Just as the related results in those papers played a
role in proving Abhyankar’s Conjecture, the results here should be applicable to extensions
of that conjecture to more general spaces.

The assertions in this paper are for affine varieties, and break down for projective
varieties. For example, in Theorem 5.14, the embedding problem is solved by a tamely
ramified connected cover of an affine curve; but no assertion is made about the behavior
over infinity. In fact, at least one point on the projective completion must be allowed to
ramify wildly. This is related to the statement of the “Strong Abhyankar Conjecture”
[Ha2, Thm. 6.2], where all but one branch point can be taken to be tame.

The structure of this paper is as follows: Section 2 is purely group theoretic, and
provides a cohomological criterion for solving (group-theoretic) embedding problems with
p-group kernel and local conditions. The ideas for this section are related to ideas in
[Ka], [Se2], and [Ra1]. Sections 3 and 4 then apply this to embedding problems over
affine varieties of arbitrary dimension in characteristic p, by using that the appropriate
fundamental groups have p-cohomological dimension 1 and infinite p-rank, and by showing
an appropriate surjectivity on H1’s. Section 5 turns to results for curves, and shows the
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adelic result (Theorem 5.6) similarly. In order to show the result in the case that Y → X

is tamely ramified (Theorem 5.14), the strategy is reversed: Theorem 5.6 is combined
with group-theoretic results to obtain Theorem 5.14, and from that it follows that the
corresponding fundamental group has p-cohomological dimension 1.

I would like to express thanks to Bob Guralnick for group-theoretic discussions and
for his comments on this manuscript. I would also like to thank Claus Lehr and Rachel
Pries for their comments as well.

Section 2. Embedding problems with p-kernel.

This section considers embedding problems for profinite groups with p-group kernel. Propo-
sitions 2.2 and 2.3 provide cohomological criteria for the existence of solutions satisfying
given local conditions. The approaches in [Ka, §2], [Se2, §4] and [Ra1,§4] appear here in
a non-geometric setting. Later, in Sections 3-5, the results here will be applied to funda-
mental groups of affine varieties in characteristic p. We begin with some terminology in
this general setting. Here the notion of being “φ-solvable” will correspond geometrically
to an embedding problem being solvable with given local conditions.

If Π,Γ, G are profinite groups, then an embedding problem E for Π consists of a pair
of surjective group homomorphisms (α : Π → G, f : Γ → G). A weak solution to E
consists of a group homomorphism β : Π → Γ such that fβ = α. If such a β is surjective,
then it is called a proper solution to E . We will call E weakly [resp. properly] solvable if it
has a weak [resp. a proper] solution. The kernel of E is defined to be N := ker(f). We
call E a finite embedding problem [resp. a p-embedding problem, an elementary abelian
p-embedding problem, etc.] if N is a finite group [resp. a p-group, an elementary abelian
p-group, etc.]. An elementary abelian p-embedding problem E = (α : Π → G, f : Γ → G) is
irreducible if the conjugation action of Γ on P = kerf defines an irreducible representation;
or equivalently, if P is a minimal non-trivial normal subgroup of Γ.

Let E = (α : Π → G, f : Γ → G) be an embedding problem for Π, and let φ1 : Π1 → Π
be a homomorphism of profinite groups. Write G1 = αφ1(Π1) ⊂ G, Γ1 = f−1(G1) ⊂ Γ,
and f1 = f |Γ1 . Thus φ∗1(E) := (αφ1 : Π1 → G1, f1 : Γ1 → G1) is an embedding problem for
Π1, which we call the pullback of E to Π1. Note that E and φ∗1(E) have the same kernel. If
β : Π → Γ is a weak solution to E , then there is an induced weak solution to φ∗1(E), viz. the
pullback φ∗1(β) := βφ1 : Π1 → Γ1. Suppose that φ = {φj}j∈J is a family of homomorphisms
φj : Πj → Π of profinite groups. We will say that E is weakly [resp. properly] φ-solvable
if for every collection {βj}j∈J of weak solutions to the pulled back embedding problems
φ∗j (E), there is a weak [resp. proper] solution β to E and elements nj ∈ N = ker(E) such
that φ∗j (β) = inn(nj) ◦ βj for all j ∈ J . (Here inn(nj) ∈ Aut(Γ) denotes left conjugation
by nj .) Note that weak solutions βj are considered in this definition, even in the proper
case. For a geometric interpretation of these notions, see Proposition 3.1.
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The following reduction lemma allows us to restrict attention to the class of finite
p-embedding problems that are elementary abelian and irreducible:

Lemma 2.1. Let φ = {φj}j∈J be a family of homomorphisms φj : Πj → Π of profinite

groups. Suppose that every irreducible finite elementary abelian p-embedding problem for

Π is weakly [resp. properly] φ-solvable. Then so is every finite p-embedding problem for

Π.

Proof. Consider a finite p-embedding problem E = (α : Π → G, f : Γ → G) for Π, together
with weak solutions βj to the pullbacks Ej = φ∗j (E) = (αφj : Πj → Gj , f : Γj → Gj). We
wish to show that E has a weak [resp. proper] solution β such that φ∗j (β) agrees with each
βj after conjugation by elements pj of P = ker(E). We proceed by induction on the order
of P . The desired conclusion is immediate if P = 1, and so we assume that P is non-trivial.

Since P is a non-trivial p-group, it has a non-trivial center Z. Since P is normal in Γ,
and since Z is characteristic in P , it follows that Z is normal in Γ. Let A be a minimal non-
trivial normal subgroup of Γ contained in Z. By minimality, A is an elementary abelian
p-group (since its subgroup of p-torsion elements is also normal) and Γ acts irreducibly on
A via conjugation. Letting P̄ = P/A and Γ̄ = Γ/A, we obtain exact sequences

1 → P̄ → Γ̄
f̄→G→ 1 (1)

and
1 → A→ Γ

g→ Γ̄ → 1. (2)

Consider the embedding problem Ē = (α : Π → G, f̄ : Γ̄ → G) for Π, and let Ēj =
φ∗j (Ē) = (αφj : Πj → Gj , f̄j : Γ̄j → Gj) be the pullback of Ē from Π to Πj . Since P̄ is
strictly smaller than P , it follows by the inductive hypothesis that Ē is weakly [resp.
properly] φ-solvable. That is, there is a weak [resp. a proper] solution β̄ to Ē that induces
the weak solutions β̄j := gβj to Ēj up to conjugation by elements p̄j ∈ P̄ (i.e. β̄j =
inn(p̄j)β̄φj). Choose pj ∈ P over p̄j ∈ P̄ . Let Γ̄◦ = β̄(Π) ⊂ Γ̄, let Γ◦ = g−1(Γ̄◦) ⊂ Γ,
and let g◦ = g|Γ◦ . [Thus Γ̄◦ = Γ̄, Γ◦ = Γ, and g◦ = g in the proper case.] Now
E◦ = (β̄ : Π → Γ̄◦, g◦ : Γ◦ → Γ̄◦) is an irreducible finite elementary abelian p-embedding
problem for Π with kernel A, and for each j ∈ J the map inn(p−1

j )βj is a weak solution to
the pullback E◦j = φ∗j (E◦) of E◦ from Π to Πj . So by hypothesis there is a weak solution
β : Π → Γ◦ [resp. a proper solution β : Π → Γ] to E◦ that induces each inn(p−1

j )βj up
to A-conjugacy. The map β is then the desired weak [resp. proper] solution to E inducing
the βj ’s up to P -conjugacy.

If f : Γ → G is a (continuous) homomorphism of profinite groups, then there is an
induced map f∗ : Hom(Π,Γ) → Hom(Π, G), given by f∗(γ) = f ◦ γ. Also, if φ1 : Π1 → Π
is a homomorphism, then there is an induced map φ∗1 : Hom(Π, G) → Hom(Π1, G), given
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by φ∗1(γ) = γ ◦ φ1 for γ ∈ Hom(Π, G). Consider a family φ = {φj}j∈J of homomorphisms
φj : Πj → Π. Then there is an induced map φ∗ : Hom(Π, G) →

∏
j∈J Hom(Πj , G),

given by φ∗j on the jth factor. Similarly, if Π acts on an abelian group A, then so does
each Πj (via φj), and we obtain induced homomorphisms φ∗j : Z1(Π, A) → Z1(Πj , A) and
φ∗ : Z1(Π, A) →

∏
j∈J Z

1(Πj , A) on the corresponding cocycle groups. (Here φ∗j (γ) = γ◦φj
for γ ∈ Z1(Π, A).) These in turn induce homomorphisms φ∗j : H1(Π, A) → H1(Πj , A) and
φ∗ : H1(Π, A) →

∏
j∈J H

1(Πj , A) on cohomology groups. We will say that the family φ is
p-dominating [resp. strongly p-dominating] if φ∗ : H1(Π, P ) →

∏
j∈J H

1(Πj , P ) is surjective
[resp. surjective with infinite kernel] for every non-trivial finite elementary abelian p-group
P on which Π acts continuously.

As the following two propositions show, (strongly) p-dominating families φ are well-
behaved, in the sense that every solvable p-embedding problem must also be φ-solvable (in
the strong or weak sense, respectively). In proving Proposition 2.2, we will need to twist a
given weak solution γ ∈ Hom(Π,Γ) in order to satisfy the local conditions corresponding
to a p-dominating family φ. This twisting will be via an appropriate 1-cocycle, and will
be defined as follows:

Let A be an abelian normal subgroup of a finite group Γ, let Π be a profinite group,
and let γ ∈ Hom(Π,Γ). Then Π acts on A via γ and the conjugation action of Γ on
A. With respect to this action, we may consider the group Z1(Π, A) of 1-cocycles. If
α ∈ Z1(Π, A) then we may consider the map α · γ : Π → Γ given by (α · γ)(π) = α(π)γ(π),
for π ∈ Π. Here α · γ ∈ Hom(Π,Γ) because α is a cocycle. If we let f : Γ → G := Γ/A be
the quotient map, inducing f∗ : Hom(Π,Γ) → Hom(Π, G), then α 7→ α · γ is a bijection
from Z1(Π, A) to the fibre of f∗ containing γ. Under this bijection, if a ∈ A = C0(Π, A)
then da ∈ B1(Π, A) is sent to inn(a−1)◦γ. Also, the above cocycle group Z1(Π, A) depends
only on the fibre of f∗ containing γ, and (α, γ′) 7→ α · γ′ defines a “twisting” action of this
Z1(Π, A) on that fibre. (In the special case that A is central in Γ, the action of Π on A is
trivial. The groups Z1(Π, A), H1(Π, A), Hom(Π, A) then all coincide and are independent
of γ, and we obtain a twisting action of this common group on Hom(Π,Γ).)

Recall (cf. [Se1, I, 3.4, Proposition 16]) that if p is a prime number and Π is a profinite
group, then cdp(Π) ≤ 1 if and only if every finite p-embedding problem for Π has a weak
solution. The proof of the following result is related to ideas in the proofs of [Ka, Theorem
2.1.5] and [Ra1, Prop. 4.2.5] (where they appeared in more geometric contexts).

Proposition 2.2. Let p be a prime number and let Π be a profinite group. Then the

following conditions are equivalent:

(i) Every finite p-embedding problem for Π is weakly solvable (i.e. cdp(Π) ≤ 1).

(ii) Every finite p-embedding problem for Π is weakly φ-solvable, for every p-dominating

family of homomorphisms φ = {φj : Πj → Π}j∈J .

Proof. The implication (ii) ⇒ (i) is immediate, by taking the Πj ’s to be trivial. So we
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prove (i) ⇒ (ii).
Let φ = {φj : Πj → Π}j∈J be a p-dominating family of homomorphisms, and let

E = (α : Π → G, f : Γ → G) be a finite p-embedding problem for Π, with kernel P . We
wish to show that E is φ-solvable. By Lemma 2.1 it suffices to prove this under the
hypothesis that P is an elementary abelian p-subgroup of Γ that properly contains no
non-trivial normal subgroups of Γ (corresponding to the representation being irreducible).
Let γ : Π → Γ be a weak solution to E , and assume for each j that βj : Πj → Γj ⊂ Γ is a
weak solution to the pullback Ej = φ∗j (E) = (αφj : Πj → Gj , fj : Γj → Gj). We need to
show that E has a weak solution β that induces each βj up to P -conjugacy.

As above, we have a natural action of Z1(Π, P ) on the fibre of f∗ : Hom(Π,Γ) →
Hom(Π, G) containing γ. The same assertion holds with Π,Γ replaced by Πj ,Γj , and with
γ replaced by γj = φ∗j (γ) : Πj → Γj , the pullback of γ from Π to Πj . Here the action of
Z1(Πj , P ) is compatible with that of Z1(Π, P ). Since βj and γj are both weak solutions
to Ej , they satisfy fjβj = αφj = fjγj ; and so βj , γj ∈ Hom(Πj ,Γj) lie in the same fibre
of fj∗ : Hom(Πj ,Γj) → Hom(Πj , Gj). Thus there is an element ρj ∈ Z1(Πj , P ) such that
ρj · γj = βj . Let ρ

j
be the image of ρj in H1(Πj , P ) and let ρ′ = {ρ

j
}j ∈

∏
j H

1(Πj , P ).
Now φ∗ : H1(Π, P ) →

∏
j H

1(Πj , P ) is surjective (by the p-dominating hypothesis, if
P 6= 1; and trivially, if P = 1). So there is an element ρ ∈ H1(Π, P ) such that φ∗(ρ) = ρ′.

Let ρ ∈ Z1(Π, P ) be a lift of ρ (i.e. a representative of the class ρ, modulo B1(Π, P )).
Let β = ρ · γ ∈ Hom(Π,Γ). Then β is a weak solution to E that induces each βj up to
multiplication by a coboundary dpj ∈ B1(Πj , P ) ⊂ Z1(Πj , P ) (for some pj ∈ C0(Πj , P ) =
P ). But multiplication by dpj is the same as composition by inn(p−1

j ), i.e. right conjugation
by pj . So β induces each βj up to P -conjugacy, as desired.

Recall that the p-rank of a profinite group Π is the dimension of the Fp-vector space
Hom(Π,Z/pZ) of continuous homomorphisms. Equivalently, the p-rank is the rank of the
maximum pro-p quotient of Π.

The proof of the following result is related to ideas in [Se2, §4] and in the proof of
[Ra1, Prop. 4.2.5].

Theorem 2.3. Let p be a prime number and let Π be a profinite group of infinite p-rank.

Then the following conditions are equivalent:

(i) Every finite p-embedding problem for Π is weakly solvable (i.e. cdp(Π) ≤ 1).

(ii) Every finite p-embedding problem for Π is weakly φ-solvable, for every p-dominating

family of homomorphisms φ = {φj : Πj → Π}j∈J .

(iii) Every finite p-embedding problem for Π is properly solvable.

(iv) Every finite p-embedding problem for Π is properly φ-solvable, for every strongly

p-dominating family of homomorphisms φ = {φj : Πj → Π}j∈J .

Proof. The equivalence of (i) and (ii) was given in Proposition 2.2, and it is trivial that
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(iii) ⇒ (i). The implication (iv) ⇒ (iii) follows from the assumption that Π has infinite
p-rank, by taking the Πj ’s to be trivial. So it suffices to show that (ii) ⇒ (iv).

So let φ = {φj : Πj → Π}j∈J be a strongly p-dominating family of homomorphisms.
We wish to show that if E = (α : Π → G, f : Γ → G) is a p-embedding problem for Π, then
E is properly φ-solvable. By Lemma 2.1, it suffices to do this in the case that the kernel
of f is an elementary abelian p-group P = (Z/pZ)m that properly contains no non-trivial
normal subgroups of Γ. That is, we wish to show that for such an E , and for any family of
weak solutions βj to Ej = φ∗j (E), there is a proper solution β : Π → Γ to E together with
elements pj ∈ P such that φ∗j (β) = inn(pj)βj ∈ Hom(Πj ,Γ) for each j ∈ J . This is trivial
if P = 1; so we may assume P 6= 1.

By (ii), there is a weak solution β0 ∈ Hom(Π,Γ) to E together with elements pj ∈ P
such that φ∗j (β0) = inn(pj)βj . Since fβ0 = α : Π → G is surjective, it follows that Γ is
generated by β0(Π) and P = kerf . Now β0(Π) ∩ P is a normal subgroup of β0(Π) (since
P is normal in Γ) and of P (since P is abelian). Since Γ is generated by β0(Π) and P , it
follows that β0(Π) ∩ P is a normal subgroup of Γ.

If β0(Π)∩P is all of P , then the image of β0 contains P and hence it is all of Γ (again
since Γ is generated by β0(Π) and P ). So in this case β0 is the desired proper solution and
we are done.

Thus we may assume that β0(Π)∩P is strictly contained in P . But by the irreducibility
hypothesis on P , it follows that β0(Π)∩P is then trivial. Hence the restriction of f : Γ → G

to β0(Π) is injective, and thus is an isomorphism onto G (being surjective, since fβ0 = α).
This implies that β0 factors through G; i.e. β0 is in the image of Hom(G,Γ) → Hom(Π,Γ).

Since 1 → P → Γ → G → 1 is a short exact sequence with abelian kernel, there
is an induced conjugation action of G on P (by choosing representatives in Γ). This in
turn yields actions of Π on P (via α : Π → G) and of Πj on P (via α ◦ φj : Πj →
G). Let F be the kernel of the induced map φ∗ : H1(Π, P ) →

∏
j H

1(Πj , P ), taking
cohomology with respect to these actions. Since F is infinite (by the hypothesis on φ)
while H1(G,P ) is finite, there is an element ρ ∈ F ⊂ H1(Π, P ) that is not in the image
of α∗ : H1(G,P ) → H1(Π, P ). Let ρ ∈ Z1(Π, P ) be a lift of ρ. Thus we may consider
β := ρ · β0 ∈ Hom(Π,Γ). Here β maps to α under Hom(Π,Γ) → Hom(Π, G), because
β0 7→ α under this map and because P = ker(Γ → G). That is, β is a weak solution to the
embedding problem E . Since ρ ∈ F = kerφ∗ =

⋂
j kerφ∗j , we have that ρφj = φ∗j (ρ) = 1.

So φ∗j (β) = βφj = ρφj · β0φj = β0φj = φ∗j (β0) = inn(pj)βj , as desired.

It remains to show that β : Π → Γ is surjective, and thus a proper solution to the
embedding problem E . Now β0 is in the image of Hom(G,Γ) → Hom(Π,Γ), whereas
ρ is not in the image of Z1(G,P ) → Z1(Π, P ); so β = ρ · β0 is not in the image of
Hom(G,Γ) → Hom(Π,Γ). Thus the restriction of f : Γ → G to β(Π) is not injective. That
is, β(Π)∩P is a non-trivial subgroup of P . But β(Π)∩P is normal in Γ. The irreducibility
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hypothesis thus implies that β(Π) ∩ P = P ; i.e. P ⊂ β(Π). Since Γ is generated by P and
β(Π), it follows that β is surjective.

Section 3. p-Embedding problems for affine varieties: unramified case.

We now turn to the main theme of this paper, viz. p-embedding problems in a geometric
context, for fundamental groups of affine varieties in characteristic p. The group-theoretic
results of Section 2 are applied here, and in the following sections, in order to obtain results
that assert that covers Y → X with Galois group G = Γ/P (where P is a p-group) can
be dominated by Γ-Galois covers Z → X with Z → Y étale and with prescribed local
behavior. This section considers the case in which Y → X is étale (Theorem 3.11), while
Section 4 allows Y → X to be ramified (but adds another restriction). Stronger results
will be shown in the case of dimension 1, in Section 5.

The link between the group theory of Section 2 and the geometry of these sections
is made explicit below in Proposition 3.1, which permits Theorem 2.3 to be applied to
fundamental groups to obtain geometric results. To apply Theorem 2.3, it is first observed
that the fundamental group of an affine variety in characteristic p has cdp ≤ 1 (Corollary
3.3) and infinite p-rank (Corollary 3.7), and then it is shown that the local conditions are
strongly p-dominating in the sense of §2 (Proposition 3.8). As a consequence, if Y → X

is étale, the existence of the desired cover Z → X is shown (Theorem 3.11), in a result
parallel to [Ra1, Corollary 4.2.6] (and indirectly drawing on ideas of [Se2,§4]). In the next
section, a variant (Theorem 4.3) is shown in which Y → X is permitted to be ramified but
is required to have degree prime to p.

We begin by recalling some basic terminology. An étale cover (“revêtement étale”)
f : Y → X is a morphism of schemes that is finite and étale [Gr, I, Def. 4.9]. The Galois
group Gal(Y/X) of Y → X consists of the automorphisms g of Y such that fg = f . An
étale cover f : Y → X is Galois if X and Y are connected and Gal(Y/X) acts simply
transitively on each generic geometric fibre. If Y → X is an étale cover (not necessarily
connected), if ι : G→ Gal(Y/X) is a homomorphism of finite groups, and if G acts simply
transitively on each generic geometric fibre (via ι), then we will say that Y → X and the
G-action together constitute a G-Galois étale cover.

Let X be a connected locally Noetherian scheme with a geometric base point ξ. A
pointed étale cover of (X, ξ) consists of an étale cover f : Y → X and a geometric point
η ∈ Y such that f(η) = ξ. The pointed Galois étale covers of (X, ξ) form an inverse
system of pointed schemes, and their Galois groups form an inverse system of groups
whose inverse limit is the algebraic fundamental group Π = π1(X, ξ). (Cf. [Gr, V §7].)
If G is a finite group, then there is a bijection between the homomorphisms α : Π → G

and the isomorphism classes of pointed G-Galois étale covers (Y, η) → (X, ξ), under which
surjective homomorphisms correspond to connected covers. Composing α with conjugation
by g ∈ G has the effect of changing the base point of Y (over ξ) from η to g(η), but
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it does not affect the isomorphism class of the underlying (unpointed) G-Galois cover.
Thus isomorphism classes of (unpointed) G-Galois étale covers of X are in bijection with
equivalence classes of homomorphisms α : Π → G, two such homomorphisms being declared
equivalent if they differ by an inner automorphism of G.

In the above context, if f : Γ→→G is a surjection of finite groups and α : Π → G is
a surjective homomorphism, then a weak solution β : Π → Γ to the embedding problem
E = (α : Π → G, f : Γ → G) corresponds to a pointed Γ-Galois étale cover (Z, ζ) → (X, ξ)
that dominates (Y, η). Here Z is connected if and only if β is a proper solution to E . If
ψ : X1 → X is a morphism of connected schemes, then G-Galois étale covers of X pull
back to G-Galois étale covers of X1 (and such a pullback need not be connected, even if
the given cover of X is). On the level of equivalence classes of homomorphisms, pullback
may be interpreted as follows:

Let ξ, ξ1 be geometric base points of X,X1 respectively. Then there is a natural
homomorphism ψ∗ : π1(X1, ξ1) → π1(X,ψ(ξ1)). Since X is connected, an isomorphism
ι1 : π1(X,ψ(ξ1)) →∼ π1(X, ξ) is induced by choosing a geometric point ξ̃ over ξ on the

pro-universal cover (X̃ψ(ξ1), ψ̃(ξ1)) of (X,ψ(ξ1)). (The choice of ξ̃ corresponds classically
to choosing a homotopy class of paths from ψ(ξ1) to ξ; and varying that choice will
vary ι1 by an inner isomorphism. Cf. [Gr, V.5, V.7].) Composing, we obtain a map
ι1 ◦ ψ∗ : π1(X1, ξ1) → π1(X, ξ). The pointed G-Galois étale cover of X corresponding to
α : π1(X, ξ) → G then pulls back to the pointed G-Galois étale cover of X1 corresponding
to α ◦ ι1 ◦ ψ∗ : π1(X1, ξ1) → G. Forgetting the base points, the unpointed G-Galois étale
covers of X pull back to such covers of X1, as noted above; and this pullback depends
only on the cover, i.e. is independent of the choice of ι1. To the extent that we will focus
on unpointed G-Galois covers, we will often suppress the base points and the isomorphism
ι1, and then simplify notation by just writing ψ∗ : π1(X1) → π1(X) for the map between
fundamental groups. Thus the equivalence class of the pullback α ◦ ψ∗ : π1(X1) → G of
α : π1(X) → G will be well defined, corresponding to the pullback of G-Galois covers.

The above remarks, together with the definition of “φ-solvable” in Section 2, yield:

Proposition 3.1. Let ψj : Xj → X (for j ∈ J) be a family of morphisms of connected

schemes. Let φj = ψj∗ : π1(Xj) → π1(X) and φ = {φj}j . Let f : Γ → G be a surjective

homomorphism of finite groups, let Y → X be a connected G-Galois étale cover corre-

sponding to a homomorphism α : π1(X) → G, and let Yj → Xj be the pullback via ψj .

Then the following are equivalent:

(i) For each choice of Γ-Galois étale covers Zj → Xj that dominate Yj → Xj (for

j ∈ J), there is a [connected] Γ-Galois étale cover Z → X that dominates Y → X

and pulls back to each Zj → Xj , up to isomorphism.

(ii) The embedding problem E = (α : π1(X) → G, f : Γ → G) is weakly [resp. properly]

φ-solvable.
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Proof. In the statement of the proposition, regard π1(X) and π1(Xj) as the fundamental
groups of X,Xj with respect to geometric base points ξ, ξj , and choose isomorphisms
ιj : π1(X,ψ(ξj)) →∼ π1(X, ξ) as above. Given Y → X, the choice of map α : π1(X, ξ) →
G corresponds to a choice of base point η for Y over ξ; and the composition αιjφj :
π1(Xj , ξj) → G corresponds to a choice of base point ηj for Yj over ξj .

Suppose first that condition (i) holds, and let βj : π1(Xj , ξj) → Γ be weak solutions
of the induced embedding problems Ej for π1(Xj , ξj). Thus fβj = αιjφj : π1(Xj , ξj) → G,
and βj corresponds to a pointed Γ-Galois cover Zj → Xj that dominates the pointed
G-Galois cover Yj → Xj . By (i), there is a [connected] Γ-Galois étale cover Z → X that
dominates Y → X and pulls back to each Zj → Xj , as an unpointed Γ-Galois étale cover
of Xj . Choose a base point ζ for Z over η; this corresponds to a weak [resp. proper]
solution β : Π → Γ to the embedding problem E . The composition βιjφj : π1(Xj , ξj) → Γ
is a solution to Ej corresponding to a pointed Γ-Galois cover of Xj ; and by hypothesis,
the underlying unpointed Γ-Galois cover agrees with Zj → Xj (although the base points
might not agree). Thus βj and βιjφj differ by an inner automorphism of Γ — viz. by the
element gj ∈ Γ that takes the base point of one to the base point of the other. But since
the reductions to G of these two pointed Γ-Galois covers of Xj are both (Yj , ηj) → (Xj , ξj),
it follows that gj ∈ N := ker(f : Γ → G). Thus the weak [resp. proper] solution β to E
induces the given weak solutions βj to Ej up to conjugation by elements of N . This shows
that (ii) is satisfied.

Conversely, suppose that condition (ii) holds, and let Zj → Xj be Γ-Galois étale covers
that dominate Yj → Xj . Choosing a base point ζj for Zj over ηj , we obtain corresponding
weak solutions βj : π1(Xj , ξj) → Γ to the induced embedding problems Ej . By (ii), there is
a weak [resp. proper] solution β to E that induces each βj up to conjugacy by N . The map
β : Π → Γ corresponds to a [connected] pointed Γ-Galois cover Z → X which dominates
Y → X and whose pullback to Xj agrees (as an unpointed Γ-Galois cover) with Zj → Xj .
So (i) is satisfied.

Via Proposition 3.1, we may obtain results about dominating covers with local condi-
tions by applying Theorem 2.3 to fundamental groups. In order to show that the hypothe-
ses of 2.3 are satisfied, we will first need to verify that certain fundamental groups have
p-cohomological dimension ≤ 1. We do so using the following well-known result, which is
stated here for the sake of completeness, and whose proof is embedded in those of [Se2,
Prop. 1] and [Ka, Lemma 1.4.3]. Cf. also [PS, Thm. 4.13], which provides a detailed proof
in the setting of Corollary 3.3(b) below.

Proposition 3.2. Let X be a connected Noetherian scheme.

(a) Let F be the locally constant finite étale sheaf onX associated to a finite π1(X)-module

F . Then H1(π1(X), F ) = H1
et(X,F) and H2(π1(X), F ) injects into H2

et(X,F).

(b) Let ` be a prime number. If cd`(X) ≤ 1 then cd`(π1(X)) ≤ 1.
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Proof. (a) Over the pro-universal cover X̃ of X, we have that F|X̃ is the constant group
F . Moreover, for any finite étale Y → X, any α ∈ H1

et(Y,F|Y ) is represented by a finite
étale F -Galois cover of Y , and is trivialized over X̃. Thus H1

et(X̃,F|X̃) = 0.
According to the exact sequence of low degree terms [Mi,p. 309] coming from the

Hochschild-Serre spectral sequence Hp(π1(X),Hq
et(X̃,F)) ⇒ Hp+q

et (X,F) [Mi, I Thm.
2.20, Remark 2.21(b)], we have that

0 → H1(π1(X),H0
et(X̃,F|X̃)) → H1

et(X,F) → H0(π1(X),H1
et(X̃,F|X̃))

→ H2(π1(X),H0
et(X̃,F|X̃)) → H2

et(X,F)

is exact. Since H1
et(X̃,F|X̃) = 0 and H0

et(X̃,F|X̃) = F , we obtain that H1(π1(X), F )) →∼

H1
et(X,F) and H2(π1(X), F ) ↪→ H2

et(X,F).
(b) Let F be a finite `-torsion π1(X)-module, corresponding to a locally constant

`-torsion finite étale sheaf F . Then H2(π1(X), F ) ↪→ H2
et(X,F) by (a). By hypothesis,

H2
et(X,F) = 0. Hence H2(π1(X), F ) = 0. Thus cd`(π1(X)) ≤ 1.

Corollary 3.3. (a) (Serre, [Se2, Prop. 1]) If X is a connected affine curve over a separably

closed field k, then cd(π1(X)) ≤ 1.

(b) ([Se3, §2.2], [PS, Thm. 4.13]) If X is a smooth connected projective curve over a

separably closed field k of characteristic p > 0, then cdp(π1(X)) ≤ 1.

(c) If X is a connected Noetherian affine scheme of characteristic p > 0 then cdp(π1(X))
≤ 1.

Proof. (a) Let p = char k. For every ` 6= p, we have that cd`(X) ≤ 1 by [AGV, IX, Cor. 5.7].
On the other hand if ` = p, then the same conclusion holds by [AGV, X, Thm. 5.1]. So
cd`(π1(X)) ≤ 1 for all `, by Proposition 3.2(b). That is, cd(π1(X)) ≤ 1.

(b) By [AGV, X, Cor. 5.2], cdp(X) ≤ dimX = 1, so the conclusion follows from the
proposition.

(c) By [AGV, X, Thm. 5.1], cdp(X) ≤ 1. So the conclusion again follows.

In order to verify the hypotheses of Theorem 2.3, we will use Corollary 3.3(c) above
and Corollary 3.7 and Proposition 3.8 below. For those results, we need some preparation.

Lemma 3.4. Let R ⊂ S be an integral extension of integral domains, and let I be a

non-zero ideal of S. Then I ∩R is a non-zero ideal of R.

Proof. This is a special case of [Bo, V, §2.1, Cor. 1 to Prop. 1], taking A = R, A′ = S,
a′ = I, p = (0), p′ = (0). (One can alternatively proceed as in the remark at [La, p.10].)

Lemma 3.5. Let X be a Noetherian normal integral scheme and let Σ be the set of points

of X of codimension 1. Then
⋂
ξ∈ΣOX,ξ is the ring of global functions on X.
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Proof. If U = SpecR is any affine open subset ofX, then R is a Noetherian integrally closed
domain, and hence a Krull domain [Bo, VII, 1.3, Cor. to Lemma 1]. Thus R =

⋂
ξ∈ΣU

OX,ξ,
where ΣU is the set of points of U of codimension 1 (corresponding to the height 1 primes
of R) [Bo, VII, 1.6, Theorem 4]. Since this is true for each U , the conclusion follows.

For any ring R of characteristic p, we define the Fp-linear map ℘ : R→ R by ℘(r) =
rp − r. If R is a domain and a1, . . . , am ∈ R, then consider the R-algebra S given by
adjoining elements x1, . . . , xm subject to xpi − xi = ai (for i = 1, . . . ,m). This extension
R ⊂ S is finite, étale, and P -Galois, where P is an elementary abelian p-group of rank
m. Conversely, every P -Galois finite étale extension of R is of this form, by Artin-Schreier
theory. Moreover S is a domain if and only if the images of the elements ai in R/℘(R) are
Fp-linearly independent. Thus the p-rank of π1(SpecR) is the dimension of R/℘(R) as an
Fp-vector space.

For any ring S and any n > 0, the map ℘ : Sn → Sn is defined for the ring Sn, and
it is given by ℘ : S → S on each coordinate. If M is a subset of Sn, then we may consider
the image of M under ℘; this is also a subset of Sn.

Lemma 3.6. Let k be a field of characteristic p, let R be a finitely generated k-algebra

which is an integral domain but not a field. Let S be an integral domain that contains

R and is finite as an R-algebra. Let I be a non-zero ideal of R, and let M be a non-zero

R-submodule of Sn. Then IM/(IM ∩ ℘(M)) is an infinite dimensional Fp-vector space.

Proof. Let M1, . . . ,Mn ⊂ S be the images of M under the n projection maps πj :
Sn → S. Then each Mj is an R-submodule of S, and some Mj is non-zero. Now
πj(IM ∩℘(M)) ⊂ IMj∩℘(Mj), and so the map πj induces a surjective Fp-homomorphism
IM/(IM ∩ ℘(M))→→IMj/(IMj ∩ ℘(Mj)). Thus IM/(IM ∩ ℘(M)) is infinite dimensional
if IMj/(IMj ∩ ℘(Mj)) is. So replacing M by Mj , it suffices to prove the result under the
assumption that M is a non-zero R-submodule of S (i.e. that n = 1).

By Noether Normalization [Bo, V, 3.1, Theorem 1], there exist algebraically in-
dependent elements x1, . . . , xd ∈ R such that R is integral over the polynomial ring
T = k[x1, . . . , xd] ⊂ R, and such that J := I ∩ T is generated by x1, . . . , xh for some
h ≥ 0. Here d > 0 since R is not a field. Also, R is finite over T since it is integral over
T and is finitely generated as a T -algebra (since it is finitely generated over k). Moreover
J 6= (0) by Lemma 3.4, and so h > 0; thus x1 ∈ J ⊂ I.

Now T is the ring of functions on Adk ⊂ Pdk. Let V be the normalization of Pdk in
the fraction field L of S. Then π : V → Pdk is a finite morphism of Noetherian normal
integral projective varieties, and V ′ := π−1(Adk) is an affine open subset of V whose ring
of functions S′ is the integral closure of S. Also, V − V ′ = π−1(H), where H ⊂ Pnk is the
hyperplane at infinity; the associated reduced scheme is a union of finitely many divisors
Di on V . Since V is normal, for each i there is a discrete valuation vi : L∗ → Z associated
to Di. Note that vi(x1) < 0, since x1 has a pole along H.
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By Lemma 3.5, if an element s ∈ S′ = O(V ′) is regular at the generic point of each
Di, then it is a global function on the projective variety V and hence is constant (i.e. lies
in a finite field extension of k). So for each non-constant s ∈ S′, there is an i such that
vi(s) < 0. Let a be the smallest (non-negative) integer such that vi(m) is of the form
−pab for some i, some non-constant m ∈M ⊂ S′, and some positive integer b prime to p.
(Here not every element in M is constant, since M ⊂ S is a non-zero R-module. So the
minimum is being taken over a non-empty subset of the non-negative integers, and is thus
well defined.) Fix such a choice of i and m corresponding to a. For each positive integer
j, consider the element mj := xjp

a+1

1 m ∈ IM . Then vi(mj) = jpa+1vi(x1) − pab. Thus
pa||vi(mj) (i.e. pa strictly divides vi(mj)) and vi(mj) < 0 for all j, and the integers vi(mj)
are distinct, since vi(x1) < 0.

Now consider any non-trivial Z/pZ-linear combination c of the elements mj (i.e. any
linear combination with at least one non-zero coefficient). Since pa||vi(mj) < 0 and the
integers vi(mj) are distinct, it follows that c satisfies pa||vi(c) < 0. Let m′ ∈ M . If m′

satisfies vi(m′) ≥ 0, then vi(℘(m′)) ≥ 0 and hence c 6= ℘(m′) (since vi(c) < 0). On the
other hand, if instead m′ ∈ M satisfies vi(m′) < 0, then the minimality of a implies that
pa|vi(m′) < 0 and so pa+1|vi(℘(m′)); so again c 6= ℘(m′) (since pa||vi(c)). This shows
that such a linear combination c does not lie in ℘(M). Thus the elements mj ∈ IM ⊂ S

(for j = 1, 2, . . .) are linearly independent modulo ℘(M); and so IM/(IM ∩ ℘(M)) is an
infinite dimensional Fp-vector space.

Corollary 3.7. Let k be a field of characteristic p, and let R be a finitely generated

k-algebra which is an integral domain but not a field. Then π1(SpecR) has infinite p-rank.

Proof. As remarked above, the p-rank of π1(SpecR) is equal to the dimension of R/℘(R)
as an Fp-vector space. This dimension is infinite by Lemma 3.6, by taking I to be the unit
ideal, M = R = S, and n = 1.

The following result parallels [Ra1, Prop. 4.2.1], as does its proof (which uses Lemma
3.6). But the proof is able to be much simpler here than for the result in [Ra1], since it
deals just with subschemes rather than affinoids. Note that the strategies both here and in
[Ra1, §4.2] are inspired by that of [Se2, §4]. (For the definition of a (strongly) p-dominating
family φ = {φj}j∈J , see Section 2.)

Proposition 3.8. Let X = SpecR be an irreducible affine variety of dimension > 0, and

of finite type over a field k of characteristic p > 0. Let X ′ be a closed subset, strictly

contained in X, and having connected components X1, . . . , Xr. Let φj : π1(Xj) → π1(X)
be induced by the inclusions Xj ↪→ X, and let φ = {φj}j . Then φ is strongly p-dominating.

Proof. Let Π = π1(X) and Πj = π1(Xj). Let P = (Z/pZ)n be a non-trivial finite
elementary abelian p-group together with a continuous action of Π (so n > 0). We wish to
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show that the induced homomorphism φ∗ : H1(Π, P ) →
∏
j H

1(Πj , P ) is surjective with
infinite kernel.

Under the above action, the finite group P becomes a Π-module, and corresponds to
a locally constant finite étale sheaf F of Z/pZ-vector spaces over X. (Namely, if U is a
connected étale open subset of X, then F(U) = Pπ1(U), the subgroup of P fixed by π1(U).)
Similarly, for each j the Πj-module P corresponds to a finite locally constant étale sheaf
Fj of Z/pZ-vector spaces over Xj . Over X we have the Artin-Schreier exact sequence

0 → Z/pZ → Ga
℘→ Ga → 0

of étale sheaves of Z/pZ-vector spaces [Mi,p.67], where ℘(a) = ap − a. Tensoring over
Z/pZ with F we obtain an exact sequence

0 → F →M ℘→ M→ 0 (1)

of étale sheaves on X, where M is a locally free sheaf of Ga-modules of rank n in the
étale topology. Here M is induced by a locally free sheaf MZ of rank n in the Zariski
topology [Mi, p.134]; in particular MZ is coherent. Since X = Spec R is affine, and since
R is Noetherian (being of finite type over k), there is an equivalence of categories between
coherent OX -modules (in the Zariski sense) and finite R-modules [Ht, II, Prop. 5.4]. Under
this equivalence, the locally free Zariski sheafMZ corresponds to a locally freeR-moduleM
of rank n > 0. Here the map ℘ : M→M corresponds to a Z/pZ-linear map ℘ : M →M .

More explicitly, the action of Π on P has a kernel Φ ⊂ Π which is normal and of
finite index, and which corresponds to a Galois finite étale cover W → X (of Galois group
Π/Φ). The action of Φ = π1(W ) on P = (Z/pZ)n is trivial, and so M|W is free of rank
n. Thus M(W ) = Sn, where W = SpecS. By the sheaf axiom, M is the equalizer of the
two natural maps M(W ) →M(W ×XW ); and in particular M is an R-submodule of Sn.
Also, the map ℘ : M → M is the restriction of the corresponding map on M(W ) = Sn,
which is given by the classical map ℘ : S → S on each coordinate.

Since X is affine and sinceM is induced by the coherent Zariski sheafMZ correspond-
ing to the R-module M , we have H0(X,M) = M and H1(X,M) = 0 (by comparison of
étale and Zariski cohomologies for coherent sheaves [Mi, III 3.8]). So the exact sequence
of sheaves (1) gives rise to the exact sequence

M
℘→ M → H1(X,F) → 0. (2)

That is, H1(X,F) = M/℘(M). Similarly, for each j, we have H1(Xj ,Fj) = Mj/℘(Mj),
where Mj = M/IjM and Ij is the ideal of Xj . Moreover H1(X,F) = H1(Π, P ) and
H1(Xj ,Fj) = H1(Πj , P ) by Proposition 3.2(a). So

∏r
j=1H

1(Πj , P ) =
∏r
j=1H

1(Xj ,Fj),
and φ∗ may be identified with the map M/℘(M) →

∏r
j=1Mj/℘(Mj). It remains to show

that this map is surjective with infinite kernel.

14



Since X1, . . . , Xr are pairwise disjoint closed sets, their ideals I1, . . . , Ir ⊂ R are
pairwise relatively prime. So M →M ′ :=

∏r
j=1Mj is surjective by the Chinese Remainder

Theorem. Hence so is the composition M →
∏r
j=1Mj →

∏r
j=1Mj/℘(Mj), which factors

through M/℘(M) →
∏r
j=1Mj/℘(Mj). So that latter map is also surjective, as desired.

Finally, we show that the map M/℘(M) →
∏r
j=1Mj/℘(Mj) has infinite kernel. Let

I =
⋂r
j=1 Ij , so thatM ′ = M/IM . Now I,M 6= 0; the R-moduleM is contained in Sn; and

S is finite over R. So by Lemma 3.6, IM/(IM ∩℘(M)) is infinite. But IM/(IM ∩℘(M))
is contained in the kernel of M/℘(M) →M ′/℘(M ′) =

∏r
j=1Mj/℘(Mj). Thus this kernel

is indeed infinite.

Example 3.9. Let p = 3, let P = Z/3Z, let R = k[x, x−1] and let X = SpecR. Also, let
S = k[y, y−1] where y2 = x, and let Y = SpecS. Then C := Gal(Y/X) is cyclic of order
2, and there are two actions of C on P , each inducing an action of Π = π1(X) on P and
yielding a p-embedding problem E = (α : Π → C, f : Γ → C).

The first of these two actions is the trivial one, corresponding to the case that Γ is
cyclic of order 6. In this case the R-module M in the proof above is R itself, viewed
as a submodule of S, and the map ℘ : M → M is just the usual map ℘ on R. Here
ker(℘) = H0(Π, P ) = Z/3Z and cok(℘) = H1(Π, P ) = Hom(Π, P ) = R/℘(R), which is
isomorphic to

⊕
(3,n)=1 x

nk if k is algebraically closed.
The second of these two actions, in which the generator of C acts on P by a 7→ −a,

corresponds to the case that Γ = S3. Here M is again a free R-module of rank 1, but the
map ℘ : M → M is not the obvious one. This is because M is now the submodule yR =⊕

(2,n)=1 y
nk ⊂ S. Here ker(℘) = H0(Π, P ) = 0, and cok(℘) = H1(Π, P ) = M/℘(M) is

isomorphic to
⊕

(6,n)=1 y
nk if k is algebraically closed.

Note that the R-module M is free of rank 1 for each of the two actions above, but the
maps ℘ : M →M are different. Thus ℘ depends not just on the isomorphism class of M ,
but also on the embedding of M into Sn (corresponding to the action of Π on A).

As a result of the above proposition together with Theorem 2.3, we obtain:

Corollary 3.10. Let X and φ be as in Proposition 3.8. Then every finite p-embedding

problem for π1(X) is properly φ-solvable.

Proof. The p-rank of π1(X) is infinite, by Corollary 3.7. Also cdp(π1(X)) ≤ 1, by Corollary
3.3(c). So condition (i) of Theorem 2.3 holds; hence so does condition (iv) of that result.
By Proposition 3.8, φ is a strongly p-dominating family. So every finite p-embedding
problem for Π is properly φ-solvable, by the conclusion of 2.3(iv).

Reinterpreting the above result in light of Proposition 3.1, we obtain the main result
of this section, concerning affine varieties X over an arbitrary field of characteristic p > 0:

Theorem 3.11. Let X be an irreducible affine variety of dimension > 0 and of finite type

over a field k of characteristic p. Let P be a p-subgroup of a finite group Γ; let G = Γ/P ;
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and let Y → X be a connected G-Galois étale cover. Let X ′ ⊂ X be a proper closed

subset, let Y ′ = Y ×X X ′, and suppose that Z ′ → Y ′ is a P -Galois étale cover such that

the composition Z ′ → X ′ is Γ-Galois. Then there is a connected P -Galois étale cover

Z → Y such that the composition Z → X is Γ-Galois, and such that Z ×X X ′ ≈ Z ′ as

Γ-Galois covers.

Proof. Let f : Γ → G be the quotient map, and let α : π1(X) → G be a surjection
corresponding to the connected G-Galois étale cover Y → X. Also, let X1, . . . , Xr be
the connected components of X ′, and let φj , φ be as in the statement of Proposition 3.8.
By Corollary 3.10, the finite p-embedding problem E = (α : π1(X) → G, f : Γ → G) is
properly φ-solvable. So the conclusion follows from the implication (ii)⇒ (i) of Proposition
3.1.

Section 4. p-Embedding problems for affine varieties: ramified case.

This section, like the previous one, considers p-embedding problems with local conditions
over affine varieties of characteristic p. That is, we are given a G-Galois cover Y → X

and a group Γ with a normal p-subgroup P such that Γ/P = G. We then wish to find a
Γ-Galois cover Z → X dominating Y → X, with Z → Y étale, and with Z → X having
prescribed local behavior. In Section 3, the given cover Y → X was required to be étale.
Here it is permitted to be ramified, but we add the requirement that its degree be prime
to p. In a variant of Theorem 3.11, we show here, in Theorem 4.3, that such problems
have solutions. While Theorem 3.11 paralleled [Ra1, Cor. 4.2.6], the main result in this
section is closer to paralleling the results of [Ha2, §4] and [Ra2].

The strategy here is adapted from that of [Ra2], viz. defining an appropriate fun-
damental group π1(Y/X). This π1 is then shown to satisfy the analogs of Cor. 3.3(c),
Cor. 3.7 and Prop. 3.8, and hence to satisfy the hypotheses appearing in Theorem 2.3. As
a consequence, that group-theoretic result will apply here, and Theorem 4.3 will follow.

We begin by fixing terminology and reviewing concepts concerning covers that are not
necessarily étale. Let X be a reduced Noetherian scheme. A morphism f : Y → X of
finite type is generically étale if for every irreducible component Y ◦ of Y , the closure of its
image X◦ := f(Y ◦) is an irreducible component of X, and Y ◦ → X◦ is étale at the generic
point. A cover of X is a finite morphism of schemes f : Y → X which is generically étale.
(If X is irreducible, this is equivalent to the definition in [Ha2, §1]). Thus ramification in
codimension ≥ 1 is permitted here. Given a cover Y → X, we define the Galois group
Gal(Y/X) exactly as for étale covers (cf. the beginning of Section 3). Similarly, we define
the notions of a Galois cover and a G-Galois cover exactly as in the étale case.

Next, we define the version of π1 that will be used in proving Theorem 4.3. If X is a
connected Noetherian scheme and Y → X is a Galois cover (not necessarily étale), then we
will let π1(Y/X) denote the Galois group of the maximal connected pro-cover of X that
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is étale over Y . More precisely, if compatible geometric base points are chosen on X and
Y , at which Y → X is étale, then we may consider the inverse system {Zν}ν of pointed
connected étale covers of Y that are Galois over X. The group π1(Y/X) is then defined
to be lim

←−
Gal(Zν/X). Since the pro-universal cover of Y is Galois over X, it follows that

there is an exact sequence 1 → π1(Y ) → π1(Y/X) → Gal(Y/X) → 1.
Note that above, if X1 is a connected closed subset of X and Y ◦1 is a connected

component of Y1 := Y ×X X1, then there is an induced map π1(Y ◦1 /X1) → π1(Y/X)
(determined up to inner automorphism, corresponding to the choice of a base point). This
map is compatible with the maps between the respective terms of the above exact sequence
and the analogous sequence for π1(Y ◦1 /X1).

Proposition 4.1. Let X = SpecR be an irreducible affine variety of dimension > 0, and

of finite type over a field k of characteristic p > 0. Let γ : Y → X be a finite Galois cover

of degree prime to p, and let Π̃ = π1(Y/X).

(a) Then cdp(Π̃) ≤ 1.

(b) The group Π̃ has infinite p-rank.

(c) Let X ′ ⊂ X be a closed subset, strictly contained in X, and having connected compo-

nents X1, . . . , Xr. For each j, suppose that the pullback Yj = Y ×XXj → X is generically

étale. Let Y ◦j be a connected component of Yj ; let Π̃j = π1(Y ◦j /Xj); let φ̃j : Π̃j → Π̃ be

induced by the inclusion Xj ↪→ X; and let φ̃ = {φ̃j}j . Then φ̃ is strongly p-dominating.

Proof. (a) The group π1(Y ) is a closed subgroup of π1(Y/X), with quotient group G :=
Gal(Y/X). The index (π1(Y/X) : π1(Y )) is equal to |G| = deg(γ), which is prime to p.
So by [Se1, I.3.3, Prop. 14], these two profinite groups have the same cdp. The assertion
now follows from Corollary 3.3(c).

(c) Consider a continuous action of Π̃ on a non-trivial finite elementary abelian p-group
P , and the induced action of Π̃j on P . We wish to show that the induced homomorphism
φ̃∗ : H1(Π̃, P ) →

∏
j H

1(Π̃j , P ) is surjective with infinite kernel.
Restricting the actions of Π̃ and of Π̃j to the closed subgroups π1(Y ) and π1(Y ◦j ), we

may regard P as a module over π1(Y ) and over π1(Y ◦j ). By the Hochschild-Serre spectral
sequence Hp(G,Hq(π1(Y ), P )) ⇒ Hp+q(Π̃, P ) (cf. [Se1, I 2.6(b)] or [Sh, p.51]), there is an
exact sequence

H1(G,Pπ1(Y )) → H1(Π̃, P ) → H1(π1(Y ), P )G → H2(G,Pπ1(Y )).

Here the first and last terms vanish, since G is of order prime to p and since P is a p-group
[Se1, I 3.3 Cor. 2]. Thus H1(Π̃, P ) → H1(π1(Y ), P )G is an isomorphism. By Proposition
3.2(a) we may identify H1(π1(Y ), P ) with H1(Y,FY ), where FY is the locally constant
finite p-torsion étale sheaf on Y associated to P (viewed as a π1(Y )-module). We thus
identify H1(Π̃, P ) with H1(Y,FY )G = H1(π1(Y ), P )G.
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Similarly, letting Gj = Gal(Y ◦j /Xj) ⊂ G for each j, the exact sequence

1 → π1(Y ◦j ) → π1(Y ◦j /Xj) → Gj → 1

allows us to identify H1(Π̃j , P ) with H1(Y ◦j ,FY ◦
j
)Gj = H1(π1(Y ◦j ), P )Gj . For each j,

the closed set Yj = γ−1(Xj) is a disjoint union of connected components Yj,1, . . . , Yj,mj
,

with Yj,1 = Y ◦j . We may then identify the induced G-module IndGGj
H1(π1(Y ◦j ), P ) with∏

`H
1(π1(Yj,`), P ), and thus H1(Π̃j , P ) = H1(π1(Y ◦j ), P )Gj with

(∏
`H

1(π1(Yj,`), P )
)G.

By Proposition 3.8, the map φ∗Y : H1(π1(Y ), P ) →
∏
j,`H

1(π1(Yj,`), P ) is surjective.

This restricts to a map H1(π1(Y ), P )G →
(∏

j,`H
1(π1(Yj,`), P )

)G, which is surjective

since the order of G is not divisible by p. (Namely, if z ∈
∏
j,`H

1(π1(Yj,`), P )
)G ⊂∏

j,`H
1(π1(Yj,`), P ) then some w ∈ H1(π1(Y ), P ) maps to z; and then

1
|G|

∑
g∈G

g(w) ∈

H1(π1(Y ), P )G also maps to z.) This surjectivity and the above identifications

H1(Π̃, P ) = H1(π1(Y ), P )G, H1(Π̃j , P ) =
(∏
`

H1(π1(Yj,`), P )
)G
,

show that the map φ̃∗ : H1(Π̃, P ) →
∏
j H

1(Π̃j , P ) is surjective, as desired. It remains to
show that φ̃∗ has infinite kernel, or equivalently that

H1(Y,FY )G →
(∏
j,`

H1(Yj,`,FYj,`
)
)G = H1(Y ′,FY ′)G

does, where Y ′ =
⋃
Yj,` = γ−1(X ′).

The exact sequence (2) in the proof of Proposition 3.8, but with Y instead of X, takes
the form

MY
℘→ MY → H1(Y,FY ) → 0. (2′)

Here MY is a finite locally free R1-module (where Y = SpecR1), and it corresponds to the
locally free sheaf MY = FY ⊗Z/pZ Ga on Y . As in the proof of Proposition 3.8, MY is a
finite R1-submodule of Sn, for some domain S that is a finite étale extension of R1, where
n is the rank of P . Restricting the sequence (2′) to the G-invariant subspaces yields the
sequence

MG
Y

℘→ MG
Y → H1(Y,FY )G → 0 (3)

of Z/pZ-vector spaces. The sequence (3) is again exact because G is of order prime to p (by
an averaging argument as above). Here MG

Y is a finite R-module contained in MY ⊂ Sn.
Similarly there is an exact sequence

MG
Y ′

℘→ MG
Y ′ → H1(Y ′,FY ′)G → 0 (3′)
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of finite modules over R′ = R/I, where I ⊂ R is the ideal of X ′; here MG
Y ′ is a finite

R′-submodule of S′n, where S′ = R′ ⊗R S.
The sequences (3) and (3′) are compatible, and the map H1(Y,FY )G → H1(Y ′,FY ′)G

may be identified with the map MG
Y /℘(MG

Y ) → MG
Y ′/℘(MG

Y ′). The kernel of this map
contains IMG

Y /(IM
G
Y ∩ ℘(MG

Y )). So to show that the kernel is infinite, it suffices to show
that IMG

Y /(IM
G
Y ∩ ℘(MG

Y )) is. Now I 6= 0; MG
Y is an R-submodule of Sn; and S is finite

over R. So by Lemma 3.6, it suffices to show that MG
Y is non-zero.

Since γ : Y → X is a cover, γ restricts to a finite étale morphism over an affine Zariski
open dense subset U ⊂ X. Let V = γ−1(U) ⊂ Y . There are induced homomorphisms
π1(U) = π1(V/U) → Π̃ and π1(Y ) → Π̃, and a commutative diagram

π1(V ) > π1(U)

∨ ∨
π1(Y ) > Π̃

of profinite groups. The action of Π̃ on P thus induces actions of π1(U) and π1(V ) on P

which are compatible with the above actions of Π̃ and π1(Y ) on P . The corresponding
locally constant finite p-torsion étale sheaves FU and FV on U and V are thus compatible
with FY ; i.e. FY |V = FV = γ∗(FU ). Consider the locally free sheaves MU = FU ⊗Z/pZ Ga

on U and MV = FV ⊗Z/pZ Ga on V . As in the proof of Proposition 3.8, these two sheaves
correspond to finite locally free modules MU and MV over the rings of functions of the
affine varieties U and V . Since P is non-zero, so are FU , MU and MU . But MV and hence
MG
V contains MU . So MG

V is non-zero, and thus so is MG
V = MG

Y |V . So MG
Y is non-zero,

and hence so is MG
Y , as desired.

(b) In part (c), take X ′ to be empty, take P = Z/pZ, and take the trivial action of Π̃
on P . Then part (c) asserts that H1(Π̃, P ) is infinite. But this is just Hom(Π̃,Z/pZ). So
Π̃ has infinite p-rank.

Corollary 4.2. Let Π̃ and φ̃ be as in Proposition 4.1. Then every finite p-embedding

problem for Π̃ is properly φ̃-solvable.

Proof. The pro-p-group Π̃ has infinite p-rank, by Proposition 4.1(b). Also, cdp(Π̃) ≤ 1, by
Proposition 4.1(a). So condition (i) of Theorem 2.3 holds for the group Π̃, and hence so
does 2.3(iv). By Proposition 4.1(c), φ̃ is a strongly p-dominating family. So every finite
p-embedding problem for Π̃ is properly φ̃-solvable, by the conclusion of 2.3(iv).

Using this result, we obtain the following analog of Theorem 3.11, in which the G-
Galois cover Y → X is permitted to have ramification, but in which G = Γ/P is required
to have order prime to p (corresponding to P being a Sylow p-subgroup of Γ):
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Theorem 4.3. Let X be an irreducible affine variety of dimension > 0 and of finite type

over a field k of characteristic p. Let P be a p-subgroup of a finite group Γ, and assume

that G = Γ/P is of order prime to p. Let Y → X be a connected G-Galois cover, let

X ′ ⊂ X be a proper closed subset, and assume that Y ′ = Y ×XX ′ is generically étale over

X ′. Suppose that Z ′ → Y ′ is a P -Galois étale cover such that the composition Z ′ → X ′ is

Γ-Galois. Then there is a connected P -Galois étale cover Z → Y such that the composition

Z → X is Γ-Galois, and such that Z ×X X ′ ≈ Z ′ as Γ-Galois covers.

Proof. We proceed as in the proof of Theorem 3.11. Let f : Γ → G be the quotient map,
and let α̃ : π1(Y/X) → G = Gal(Y/X) be the canonical map. Also, let X1, . . . , Xr be
the connected components of X ′ and let φ̃j , φ̃ be as in the statement of Proposition 4.1.
By Corollary 4.2, the finite p-embedding problem Ẽ = (α̃ : π1(Y/X) → G, f : Γ → G)
is properly φ̃-solvable. Paralleling the implication (ii) ⇒ (i) of Proposition 3.1, the Γ-
Galois covers Zj → Xj correspond to weak solutions βj to the pullbacks φ̃∗j (Ẽ), and the
desired cover Z → X corresponds to the proper solution β to Ẽ that induces the βj ’s up
to P -conjugacy.

Remark 4.4. Theorems 3.11 and 4.3 each make an assumption on the given G-Galois
cover Y → X: either that it is étale or that it is prime-to-p. If one simply dropped these
assumptions (e.g. permitting Y → X to have wild ramification), then the assertion that
the cover Z → Y can be chosen to be étale would become false. This can be seen, for
example, by taking Γ to be cyclic of order p2; P and G = Γ/P to be p-cyclic; X = A1; and
Y → X a G-Galois cover that is totally ramified over the origin. For then, any Γ-Galois
cover Z → X dominating Y → X must also be totally ramified over the origin (since its
inertia group surjects onto G), and then Z → Y is not étale.

While the above remark shows that the separate hypotheses on Y → X in Theorems
3.11 and 4.3 cannot simply be dropped, in the case that X is a curve there is a natural
weaker hypothesis which would lead to a more general assertion containing these two
theorems as special cases: That if Y → X is a connected G-Galois cover of a characteristic
p affine variety X having only tame ramification, and if G = Γ/P for some p-group P ,
then there is a connected P -Galois étale cover Z → Y such that Z → X is Γ-Galois and
has given behavior over a given proper closed subset X ′ ⊂ X. The strategy employed in
the proofs of Theorems 3.11 and 4.3 cannot be used directly to prove such an assertion,
since one first would need to know that an appropriate version of π1 has cdp ≤ 1 (but the
proof of Proposition 4.1(a) above does not carry over). In the following section, however,
we turn this around — proving such an assertion for affine curves X (Theorem 5.14), and
then deducing that the corresponding version of π1 has cdp ≤ 1 (Corollary 5.16). The
assertion is shown by first proving an analogous result in an “adelic” situation (Theorem
5.6).
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Section 5. p-Embedding problems for affine curves.

The previous two sections showed that p-embedding problems can be solved over charac-
teristic p affine varieties, with prescribed behavior over a given proper closed subset, under
appropriate hypotheses. This section will show that in the case of normal affine curves X,
even more is true: that such embedding problems can be solved with prescribed behavior
over a given finite set of local fields (Theorem 5.6). This gives greater control on the local
behavior, and will also lead to a result on tame covers (Theorem 5.14, referred to at the
end of the previous section) which subsumes and strengthens the main results of Sections
3 and 4 in the case of curves.

More precisely, suppose that X is a normal curve over an arbitrary field k of character-
istic p > 0. For each closed point ξ ∈ X, the complete local ring ÔX,ξ is a complete discrete
valuation ring. By the local field at ξ we will mean the fraction field KX,ξ := frac ÔX,ξ (or
for short, Kξ). The fundamental group of Spec(Kξ) may be identified with the absolute Ga-
lois group GKξ

of Kξ, i.e. the Galois group Gal(Ks
ξ/Kξ) of the separable closure of Kξ. If X

is connected and U ⊂ X is a non-empty open subset, the inclusion Spec(Kξ) ↪→ U induces
a homomorphism φξ : GKξ

→ π1(U) between the corresponding fundamental groups.
We begin with the following lemmas. Here, as before, for any characteristic p ring A

we consider the Fp-linear map ℘ : A→ A given by ℘(a) = ap − a.

Lemma 5.1. Let R be a Noetherian ring of characteristic p that is complete with respect

to an ideal I. Let A ⊃ R be an R-algebra, let M be a finite R-submodule of A, and

suppose that ℘(M) ⊂M . Then ℘(IM) = IM and hence IM ⊂ ℘(M).

Proof. Every element of IM is a sum of finitely many elements of the form im (with
i ∈ I and m ∈ M), so we may restrict attention to elements of this form. Also, since
℘(M) ⊂ M , and since M is an R-module (and in particular a Z/pZ-module), it follows
that F (M) ⊂M , where F : A→ A is the Frobenius map a 7→ ap.

If i ∈ I and m ∈ M , then ℘(im) = ipmp − im = i(ip−1mp − m) ∈ IM since
mp ∈ F (M) ⊂M . Thus ℘(IM) ⊂ IM . It remains to show that IM ⊂ ℘(IM).

Again, say i ∈ I and m ∈M . Then mpj ∈ F j(M) ⊂M for each non-negative integer
j. Since i ∈ I, we then have ip

j−1mpj ∈ Ip
j−1M . Now M is finite over R, and R is

I-adically complete; so M is equal to its own I-adic completion [Bo, III, 3.4, Theorem
3(ii)], i.e. M is I-adically complete. So the series −m− ip−1mp− ip2−1mp2− ip3−1mp3−· · ·
defines a well defined element m′ ∈M . Thus im′ ∈ IM . One immediately computes that
℘(im′) = im. This shows that IM ⊂ ℘(IM).

Lemma 5.2. Let R be a Dedekind domain and let U = SpecRU be a dense open subset

of X = SpecR. Let A be a normal ring containing RU , and let MU be a finite locally free

RU -submodule of A of rank n that is closed under ℘ : A→ A.
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Then there is a dense open subset X0 = SpecR0 ⊂ X such that U ∪X0 = X, together

with a locally free R-submodule M of MU having rank n, such that

(i) The canonical map M ⊗R RU →MU is an isomorphism;

(ii) M0 := M ⊗RR0 ⊂ A⊗RR0 is a free R0-module of rank n with a basis B ⊂M ; and

(iii) M0 is closed under ℘, as is Mξ := M ⊗R ÔX,ξ ⊂ A⊗R ÔX,ξ for each ξ ∈ X − U .

Proof. Since MU is a locally free RU -module of rank n, there is a dense open subset
U0 = SpecRU0 of U such that MU0 := MU ⊗RU

RU0 is free of rank n. Choose a basis
B = {b1, . . . , bn} for MU0 over RU0 . After multiplying the bi’s by appropriate elements of
R, and shrinking U0 if necessary, we may assume that the basis B consists of elements of
MU ⊂ MU0 ⊂ A. In particular, ℘(bi) ∈ ℘(MU ) ⊂ MU , and so bpi ∈ MU ⊂ MU0 for all
i. Write bpi =

∑
j ei,jbj with ei,j ∈ RU0 . After again multiplying the bi’s by appropriate

elements of R and shrinking U0, we may assume that each ei,j ∈ R.
Let Σ = U −U0. Then X0 := X −Σ is an affine dense open subset of the affine curve

X, say X0 = SpecR0. Thus R0 ⊂ RU0 . Let M0 be the R0-submodule of MU0 generated by
B. Since the bi’s are RU0-linearly independent, they are also R0-linearly independent. So
M0 is a free R0-module of rank n, and we may identify M0⊗R0RU0 = MU0 = MU⊗RU

RU0 .
Thus we obtain a locally free coherent sheaf M on the affine curve X, corresponding (via
[Ht, II, Prop. 5.4]) to a locally free R-module M of rank n that induces M0, MU , and MU0

(compatibly with the above identifications) over R0, RU , and RU0 respectively. Since B
generates the R0-module M0, it also generates the Rξ-module Mξ = M⊗RRξ = M0⊗R0Rξ
for each ξ ∈ X−U , where Rξ = ÔX,ξ. But bpi =

∑
j ei,jbj ∈M0 ⊂Mξ for each ξ ∈ X−U .

So M0 and the Mξ’s are each closed under the Frobenius map F and hence under ℘. And
since each bj ∈MU ,M0 compatibly, we have B ⊂M .

The next result is analogous to Proposition 3.8, but it considers local behavior over
local fields (rather than over closed subsets), and it requires X to be a curve. As in
Proposition 3.8, the result does not generalize to local schemes like Spec k[[t]], which are
not of finite type over the base field k.

Proposition 5.3. Let k be a field of characteristic p, and let X be a connected normal

affine k-scheme of dimension 1, of finite type over k. Let U = X − {ξ1, . . . , ξr} be a dense

open subset of X (where r ≥ 0). Let Π = π1(U), let Πj be the absolute Galois group of

Kξj
, let φj : Πj → Π be the map induced by SpecKξj

→ U , and let φ = {φj}j . Then φ is

strongly p-dominating.

Proof. Let P be a non-trivial finite elementary abelian p-group, say of rank n, together
with a continuous action of Π. We wish to show that the induced homomorphism φ∗ :
H1(Π, P ) →

∏
j H

1(Πj , P ) is surjective with infinite kernel.
Let R be the ring of functions on X, let RU be the ring of functions on the affine

curve U , and let K be the common fraction field of these rings. Let X̄ be the set of places
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of K/k, and identify the closed points of X with the corresponding places. Since X is an
affine curve, there is a place q ∈ X̄ that is not identified with any point of X. For each
place p ∈ X̄, let vp : K → Z be the corresponding discrete valuation. For p = ξ ∈ X, vξ
extends to a discrete valuation vξ : Kξ → Z. Let S = {ξ1, . . . , ξr} and S′ = S ∪ {q} ⊂ X̄.

As in the proof of 3.8, the action of Π on P induces an exact sequence

MU
℘→ MU → H1(Π, P ) → 0

of Z/pZ-vector spaces, where MU is a rank n locally free RU -submodule of SnU , and SU
is finite étale over RU . By the above exact sequence, we may identify H1(Π, P ) with
MU/℘(MU ). Similarly, we may identify H1(Πj , P ) with MU,j/℘(MU,j), where MU,j =
MU ⊗RU

Kξj
. We may also thus identify

∏r
j=1H

1(Πj , P ) with M ′U/℘(M ′U ), where M ′U =∏r
j=1MU,j (which is a module over K′ :=

∏
j Kξj contained in S′nU , where S′U = SU⊗RU

K′).
It thus suffices to show that the natural map fU : MU/℘(MU ) →M ′U/℘(M ′U ) is surjective
with infinite kernel.

Applying Lemma 5.2, we obtain a dense open subset X0 = SpecR0 of X such that
U ∪X0 = X, and a rank n locally free R-submodule M ⊂MU satisfying (i) - (iii) of that
lemma. Thus R0 ⊂ K′,Kξj

, and B = {b1, . . . , bn} ⊂M is a basis for M ⊗R R0 and hence
for M ′U = MU⊗RU

K′ = M⊗RK′ and MU,j . Let Rj = ÔX,ξj and Mj = M⊗RRj . Since M
is locally free and hence flat, the inclusions R ↪→ RU ↪→ K′ and R ↪→ R′ :=

∏
j Rj ↪→ K′

induce inclusions M ↪→MU ↪→M ′U and M ↪→M ′ :=
∏
jMj = M⊗RR′ ↪→M ′U . Similarly,

the exact sequence 0 → R
∆→ R′ ×RU

δ→ K′ induces an exact sequence

0 →M
∆→M ′ ×MU

δ→M ′U , (1)

where ∆ is the diagonal map and δ(a′, aU ) = a′ − aU .

To show the surjectivity of fU , let x̄′ ∈ M ′U/℘(M ′U ), and take x′ = (x′1, . . . , x
′
r) ∈

M ′U =
∏r
j=1MU,j lying over x̄′. Thus x′j =

∑
i ri,jbi, where ri,j ∈ Kξj . For each i =

1, . . . , n, the Strong Approximation Theorem [FJ, Prop. 2.11] implies that there is an
element ri ∈ K such that vξj

(ri − ri,j) = 1 for 1 ≤ j ≤ r and such that vp(ri) ≥ 0 for
every place p ∈ X̄ − S′. Thus ri ∈ RU and so the element x :=

∑
i ribi lies in MU . Let Ij

be the maximal ideal of Rj . Then ri − ri,j ∈ Ij ⊂ Rj for each i, j, since vξj (ri − ri,j) = 1.
So x − x′j =

∑n
i=1(ri − ri,j)bi ∈ IjMj ⊂ ℘(Mj) ⊂ ℘(MU,j) for each j, by Lemma 5.1

(regarding Mj ,MU as subsets of MU,j). Thus x− x′ ∈ ℘(M ′U ) (regarding MU ⊂M ′U ). So
x̄′ is the image of x̄ under MU/℘(MU ) → M ′U/℘(M ′U ), where x̄ is the class of x modulo
℘(MU ). This proves the desired surjectivity.

Finally, we show that the kernel of fU : MU/℘(MU ) → M ′U/℘(M ′U ) is infinite. Let
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f, fU , g, g
′ be the maps induced by inclusions, in the following commutative diagram:

M/℘(M)
f
> M ′/℘(M ′)

g

∨

g′

∨
MU/℘(MU )

fU

> M ′U/℘(M ′U ) .

It suffices to show that ker f contains an infinite dimensional Z/pZ-subspace N and that
the restriction g|N has finite kernel — for then, g(N) is an infinite subset of ker(fU ).
Now IM maps into IjMj under M → Mj , where I ⊂ R is the ideal corresponding to
the closed subset X − U . But IjMj ⊂ ℘(Mj) by Lemma 5.1. This is true for all j, so
N := IM/(IM ∩ ℘(M)) is contained in ker f . This set N is infinite, by Lemma 3.6. It
remains to show that ker(g|N ) is finite.

Viewing M ′,MU ⊂ M ′U , and using that ℘(M ′) ⊂ M ′ (by Lemma 5.2(iii)) and
℘(MU ) ⊂ MU , we have that ℘(M ′) ∩ ℘(MU ) ⊂ M ′ ∩MU = M , where the intersection
takes place in S′nU . By Lemma 5.1, ker(g|N ) = (IM ∩ ℘(MU ))/(IM ∩ ℘(M)) is contained
in the Z/pZ-vector space V := (℘(M ′)∩℘(MU ))/℘(M) ⊂M/℘(M). So it suffices to show
that V is finite. Consider the Z/pZ-vector space

W̃ = {(m′,mU ) ∈M ′ ×MU |℘(m′) = ℘(mU ) ∈ S′nU }.

There is a surjective Z/pZ-vector space homomorphism ρ̃ : W̃ → V , given by ρ̃(m′,mU ) =
℘(m′) = ℘(mU ) modulo ℘(M). Now if (m′,mU ) ∈ W̃ then m′ ∈ M ′ ⊂ S′n ⊂ S′nU and
mU ∈Mn

U ⊂ SnU ⊂ S′nU ; so m′−mU ∈ Q := ker(℘ : S′nU → S′nU ). That is, δ(W ) ⊂ Q, where
δ : M ′×MU →MU ′ is as in exact sequence (1) above. Now S′U = SU ⊗RU

K′ is finite étale
over K′, and thus is a direct sum of finitely many fields of characteristic p. Hence so is S′nU .
Since Z/pZ is the kernel of ℘ on any such field, it follows that Q is a finite dimensional
Z/pZ-vector space. Moreover by (1), δ induces an injection δ̄ : (M ′ ×MU )/M → MU ′ ,
where M is included as the diagonal. Thus if we let W = W̃/M (again, with M as the
diagonal), then the restriction of δ̄ to W is an injection W → Q. Thus W is finite. But
ρ̃ : W̃ → V factors through W̃ →W ; and the corresponding map ρ : W → V is surjective
since ρ̃ is. It follows that V = ρ(W ) is also finite, as desired.

Remark 5.4. (a) A weak version of the above result holds even if X is projective, provided
that the base field k is separably closed. Namely, in this situation, φ is p-dominating (rather
than strongly p-dominating). Arguing as in [Ka, 2.2.1], this can be shown using the Cartan-
Leray spectral sequence Hp(X,Rqι∗F) ⇒ Hp+q(U,F) [Mi, III Theorem 1.18(a)], where
ι : U → X is the inclusion and F is the p-torsion sheaf on U associated to a Π-module P
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as above. Namely, identifying H1(Kξj ,F) with H1(Kh
ξj
,F) (where Kh

ξj
is the fraction field

of the henselization Oh
ξj

of OX,ξj
), the associated exact sequence of low degree terms gives

0 → H1(X, ι∗F) → H1(U,F) →
∏
j

H1(Kξj ,F) → H2(X, ι∗F)

(since R1ι∗F is supported on X − U). But H2(X, ι∗F) = 0 by Cor. 3.3(b). So the map
H1(U,F) →

∏
j H

1(Kξj
,F), or equivalently φ∗ : H1(Π, P ) →

∏
j H

1(Πj , P ), is surjective.
(b) The argument in (a) above also works in the affine case, using Cor. 3.3(c) instead

of Cor. 3.3(b), even over a non-separably closed field, provided that one uses the strict
henselization rather than the henselization. This provides a weaker conclusion than 5.3,
however.

Using the above proposition, we obtain the following result, which asserts the existence
of proper solutions to p-embedding problems for curves with prescribed behavior over
finitely many local fields (rather than over closed subsets, as in Sections 3 and 4).

Corollary 5.5. Let X, Π, and φ be as in Proposition 5.3. Then every finite p-embedding

problem for Π is properly φ-solvable.

Proof. The proof is identical to that of Corollary 3.10, except that Proposition 5.3 is cited
rather than Proposition 3.8.

In terms of covers, the above yields:

Theorem 5.6. Let X be a connected normal affine curve of finite type over a field of

characteristic p, let r ≥ 0, and let ξ1, . . . , ξr be closed points of X. Let P be a normal p-

subgroup of a finite group Γ; let G = Γ/P ; and let Y → X be a connected normal G-Galois

cover which is étale away from ξ1, . . . , ξr. For each j let Aj be a Γ-Galois Kξj -algebra,

together with an isomorphism (SpecAj)/P →∼ Y ×X SpecKξj
of G-Galois covers. Then

there is a connected normal Γ-Galois cover Z → X which is étale away from ξ1, . . . , ξr,

together with compatible isomorphisms Z/P →∼ Y as G-Galois covers and Z×X SpecKξj
→∼

SpecAj as Γ-Galois covers.

Proof. Let U = X − {ξ1, . . . , ξr} and let V → U be the restriction of Y → X over U .
Following the proof of Theorem 3.11, let f : Γ → G be the quotient map, let α : π1(U) → G

be a surjection corresponding to the connected G-Galois étale cover V → U , and let φ be
as in the statement of Proposition 5.3. By Corollary 5.5, the finite p-embedding problem
E = (α : π1(U) → G, f : Γ → G) is properly φ-solvable. So by the implication (ii) ⇒ (i) of
Proposition 3.1, there is a connected Γ-Galois étale cover W → U that dominates V → U

and pulls back to each Zj → Xj up to isomorphism. Let Z be the normalization of X in
W . Then Z → X is as desired.
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Remark 5.7. (a) In the proof of Corollary 5.5, if one replaces Proposition 5.3 by Remark
5.4(a), then one obtains a proof that if X is a projective curve over a separably closed base
field k, then every embedding problem for Π is weakly φ-solvable. This in turn implies
that a weak form of Theorem 5.6 holds in this case (viz. that the asserted Γ-Galois cover
Z → X exists but need not be connected). This result is essentially [Ka, Theorem 2.1.5].
And in fact, the cover Z cannot in general be chosen to be connected — e.g. if the local
extensions Aj are taken to be trivial, and X is the projective line, then Z just consists of
disjoint copies of X.

(b) The above remark (a) no longer holds if the base field k is allowed to be arbitrary
(rather than separably closed). For example, let k ⊂ k′ be a separable field extension of
degree p; let X be the projective k-line; let ξ1 be the point x = ∞ on X and let ξ2 be the
point x = 0 on X. Also, let Γ = P be cyclic of order p; let G be the trivial group; and let
Y → X be the trivial cover. Let A1 be the trivial Γ-Galois Kξ1-algebra (Kξ1)p = IndP1 Kξ1 ,
and let A2 be the non-trivial Γ-Galois algebra k′((x)) over Kξ2 = k((x)). Then in the
context of Theorem 5.6, the desired Γ-Galois cover Z → X does not exist (even if it is
permitted to be disconnected), since it would have to be unramified everywhere, hence be
purely arithmetic — contradicting the fact that the residue fields k′, k over x = 0,∞ would
be distinct.

Using the above theorem, together with the results below, we will obtain (in Theorem
5.14) a strengthening of the results of Sections 3 and 4 in the case that the base space is
a curve.

Lemma 5.8. Let Γ be a finite group with an abelian normal subgroup A, and quotient

map f : Γ→→G := Γ/A. Suppose that G = C×||E, where A and C have relatively prime

orders, and suppose also that the exact sequence 1 → A→ f−1(E) → E → 1 splits. Then

the exact sequence 1 → A→ Γ → G→ 1 splits.

Proof. This is equivalent to a theorem of Gaschütz [Hu, I §12, Hauptsatz 17.4(a)]: If A is
an abelian normal subgroup of Γ, A ⊂ B ⊂ Γ, and the order of A is relatively prime to the
index (Γ : B), and if A has a complement in B, then A has a complement in Γ. Namely,
in the statement of the lemma, we can take B = f−1(E), whose index in Γ is equal to the
order of C.

If f : Γ → G and f ′ : Γ′ → G are group homomorphisms, then we may form the fibre
product of groups, namely Γ ×G Γ′ := {(g, g′) ∈ Γ × Γ′ | f(g) = f ′(g′)}. If f is surjective
with kernel N , then the exact sequence 1 → N → Γ → G → 1 induces an exact sequence
1 → N → Γ ×G Γ′ → Γ′ → 1. Here the map Γ ×G Γ′ → Γ′ is the second projection, and
the map N → Γ×G Γ′ is given by n 7→ (n, 1).

Lemma 5.9. Let R be a complete discrete valuation ring of characteristic p, with fraction

field K and residue field k. Let G be a finite group, let L be an G-Galois field extension
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of K, and let S be the integral closure of R in L. Suppose that the extension R ⊂ S

is tamely ramified. Let f : Γ→→G be a surjective homomorphism whose kernel is a finite

abelian p-group P .

Then there is a finite Galois field extension K ⊂ K ′ whose corresponding extension

of complete d.v.r.’s is étale, such that the induced exact sequence

1 → P → Γ×G Gal(K ′L/K) → Gal(K ′L/K) → 1 (2)

is split (where the compositum K ′L is taken in a fixed separable closure of K).

Proof. Let R ⊂ R1 be the maximal unramified subextension of R ⊂ S, and let K1 be the
fraction field of R1. Thus the extension R1 ⊂ S is totally ramified, and its Galois group
C is cyclic of order n prime to p. Let E1 be the Galois group of R1 over R. Thus we have
an exact sequence

1 → C → G→ E1 → 1.

Also, the ring R is isomorphic to k[[x]] by [Ma, Cor. 2 to Theorem 60], because R is
a complete regular local ring of dimension 1 containing a field (viz. Fp). Thus R1 is
isomorphic as an R-algebra to k1[[x]], where k1 is an E1-Galois field extension of k.

Let R2 = R1[ζn] = k1[ζn][[x]], where ζn is a primitive nth root of unity in the separable
closure of K, and where n is the order of C (which is not divisible by p). By Kummer
theory, the compositum R2S = S[ζn] is given as an R2-algebra by R2[z]/(zn − ux), for
some unit u ∈ R2 (where this is the full ring of integers in its fraction field because z is
a uniformizer). Let R3 = R2[ n

√
u]. Then R3S ≈ R3[y]/(yn − x). Also, since p does not

divide n, R3 is étale over R1, and hence over R. Moreover R3S is Galois over S, and the
natural surjection Gal(R3S/R) → Gal(R3/R) maps Gal(R3S/R[y]) isomorphically onto
Gal(R3/R). (Here we regard y as an element of R3S.) So the short exact sequence

1 → Gal(R3S/R3) → Gal(R3S/R) → Gal(R3/R) → 1

is split. There is a natural isomorphism Gal(R3S/R3) = Gal(S/R1) = C, and so we
may identify Gal(R3S/R) with a semidirect product C×||E3, where E3 = Gal(R3/R). The
natural surjection Gal(R3S/R) → Gal(S/R) may thus be identified with a map C×||E3→→G.

The surjections f : Γ → G (with kernel P ) and C×||E3→→G yield an exact sequence

1 → P → Γ×G
(
C×||E3

) g→C×||E3 → 1.

This restricts to an exact sequence

1 → P → g−1(E3)
g→E3 → 1,

regarding E3 as a subgroup of C×||E3. By Corollary 3.3(c), cdp(π1(SpecR)) ≤ 1, and
so the surjection π1(SpecR)→→E3 corresponding to the E3-Galois étale cover SpecR3 →
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SpecR must lift to a homomorphism π1(SpecR) → g−1(E3). Since g−1(E3) is finite,
this homomorphism factors through a finite quotient E′ of π1(SpecR). Thus we have a
surjection α : E′→→E3 which lifts to a map β : E′ → g−1(E3), and the quotient map
π1(SpecR)→→E′ corresponds to an E′-Galois étale extension R′ of R which contains R3.
The surjections g : g−1(E3)→→E3 and α : E′→→E3 yield an exact sequence

1 → P → g−1(E3)×E3 E
′ → E′ → 1 (3)

which has a splitting (β, id) : E′ → g−1(E3)×E3 E
′.

Now R′ is étale over R1 whereas S is totally ramified over R1. So R′S is a totally
ramified C-Galois extension of R′. As in the case of R3, the Galois group Gal(R′S/R) may
be identified with a semidirect product C×||E′, and the natural surjection Gal(R′S/R) →
Gal(S/R) may be identified with a map C×||E′→→G. The surjections f : Γ → G and
C×||E′→→G then yield an exact sequence

1 → P → Γ×G
(
C×||E′

) g′→C×||E′ → 1. (4)

Identifying g′−1(E′) with g−1(E3) ×E3 E
′, the sequence (4) restricts to the split exact

sequence (3). So by Lemma 5.8 (with A = P ), it follows that the sequence (4) splits.
Writing K ′ = frac(R′) and L = frac(S), we have that Gal(K ′L/K) = Gal(R′S/R) =
C×||E′. So the desired conclusion follows.

Recall (from the beginning of Section 4) that if Y → X is a Galois cover, then we
may consider an associated fundamental group π1(Y/X).

Proposition 5.10. Let R ⊂ S be a tamely ramified Galois extension of complete

discrete valuation rings of characteristic p. Let X = SpecR and Y = SpecS. Then

cdp(π1(Y/X)) ≤ 1.

Proof. Let Π = π1(Y/X). The condition cdp(Π) ≤ 1 is equivalent to the condition that
every finite p-embedding problem for π1(Y/X) has a weak solution, by [Se1, I, 3.4, Propo-
sition 16]. By Lemma 2.1, it suffices to restrict attention to finite embedding problems for
Π whose kernels are elementary abelian p-groups.

So let E = (α : Π → G, f : Γ → G) be such an embedding problem, and let P = ker f .
Then the surjection α corresponds to a pointed connected G-Galois cover Z → X which
factors as Z → Z0 → X, where Z → Z0 is étale and where Z0 → X is a Galois subcover
of the tamely ramified cover Y → X. Thus Z → X is tamely ramified.

Let K,L be the fraction fields of R,S respectively (regarded as subfields of a fixed
separable closure of K). By Lemma 5.9 there is a finite Galois field extension K ⊂ K ′ such
that R′ is étale over R, where R′ is the integral closure of R in K ′; and where the induced
exact sequence (2) of 5.9 is split. Let X ′ = SpecR′. We may give X ′ the structure of a
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pointed Galois étale cover of X; then X ′×X Z is a pointed étale cover of Z. Let Z ′ be the
component of X ′×X Z containing the base point. Then Z ′ is étale over Z and Galois over
X, with Galois group G′ := Gal(K ′L/K). Thus there is a surjection α′ : Π→→Gal(K ′L/K)
that induces the given map α : Π→→G = Gal(L/K). We then obtain a commutative
diagram

Π

α′

∨
1 > P > Γ×G G′

f ′

> G′ > 1

id

∨

λ′

∨

λ

∨
1 > P > Γ

f
> G > 1

with exact rows, where λ : G′→→G is the natural quotient map; where λ′ : Γ×G G′→→Γ is
the first projection and where λα′ = α : Π→→G.

Now the upper row is split, so there is a map β′ : Π → Γ×G G′ such that f ′β′ = α′.
Thus β := λ′β′ : Π → Γ satisfies fβ = α : Π → G; i.e. β is a weak solution to the given
embedding problem E .

If X is a regular connected pointed curve, and if Σ ⊂ X is a proper closed subset
not containing the base point, then define the tame fundamental group πt

1(X,Σ) to be the
inverse limit of the Galois groups of pointed Galois covers Y → X with Y regular, tamely
ramified over Σ, and étale elsewhere. Thus if X is projective, then this is the same as
πt

1(U), in the notation of [Gr], where U = X − Σ.

Corollary 5.11. Let R be a complete discrete valuation ring of characteristic p. Let

X = SpecR and let ξ be the closed point of X. Then cdp
(
πt

1(X, {ξ})
)
≤ 1.

Proof. We wish to show that every finite p-embedding problem

Et = (αt : πt
1(X, {ξ}) → G, f : Γ → G)

for πt
1(X, {ξ}) has a weak solution. For such an embedding problem, the surjection αt

corresponds to a regular connected G-Galois cover Y → X that is tamely ramified over
ξ. There is a canonical map α : π1(Y/X) → G, corresponding to the cover Y . Since
Y → X is tamely ramified over ξ, the group π1(Y/X) is a quotient of πt

1(X, {ξ}), say via
a map q : πt

1(X, {ξ})→→π1(Y/X). Moreover the homomorphism αt factors as αt = αq.
By Proposition 5.10, the p-embedding problem E := (α : π1(Y/X) → G, f : Γ → G) has a
weak solution β : π1(Y/X) → Γ. Thus βq : πt

1(X, {ξ}) → Γ is a weak solution to Et.
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As a result, we obtain the following variant of Theorem 5.6:

Proposition 5.12. Let X be a connected normal affine curve of finite type over a field

k of characteristic p, let r, s ≥ 0, and let ξ1, . . . , ξr, ζ1, . . . , ζs be distinct closed points of

X. Let P be a normal p-subgroup of a finite group Γ; let G = Γ/P ; and let Y → X be a

connected normal G-Galois cover which is tamely ramified over ζ1, . . . , ζs and étale away

from ξ1, . . . , ξr, ζ1, . . . , ζs. For each j let Aj be a Γ-Galois Kξj
-algebra, together with an

isomorphism (SpecAj)/P →∼ Y ×X SpecKξj of G-Galois covers.

Then there is a connected normal Γ-Galois cover Z → X which is tamely ramified over

ζ1, . . . , ζs and étale away from ξ1, . . . , ξr, ζ1, . . . , ζs, together with compatible isomorphisms

Z/P →∼ Y as G-Galois covers and Z ×X SpecKξj
→∼ SpecAj as Γ-Galois covers.

Proof. For each i = 1, . . . , s, the pullback Yi := Y ×X Spec ÔX,ζi
→ Spec ÔX,ζi

is a
tamely ramified G-Galois cover of regular curves. By Corollary 5.11, there is a normal
tamely ramified Γ-Galois cover Z̄i → Spec ÔX,ζi

that dominates the G = Γ/P -Galois cover
Yi → Spec ÔX,ζi . Let Zi = SpecBi → SpecKζi be the generic fibre of Z̄i → Spec ÔX,ζi .
Thus Bi is a Γ-Galois Kζi-algebra, and Zi/P ≈ Y ×X SpecKζi as G-Galois algebras. By
Theorem 5.6, applied to the set Σ := {ξ1, . . . , ξr, ζ1, . . . , ζs} ⊂ X, we obtain a connected
normal Γ-Galois cover Z → X which is étale away from Σ, together with compatible
isomorphisms Z/P →∼ Y as G-Galois covers, and Z×XSpecKξj

→∼ SpecAj (for j = 1, . . . , r)
and Z ×X SpecKζi →∼ SpecBj (for i = 1, . . . , s) as Γ-Galois covers. Since Z̄i → Spec ÔX,ζi

is tamely ramified, Z → X is as desired.

Remark 5.13. If k is separably closed, then the assertion of Proposition 5.12 remains
true even if X is projective, provided that Z is no longer required to be connected. This
follows by replacing Theorem 5.6 by Remark 5.7(a), in the above proof. This variant of
5.12 can be regarded as a generalization of [Ka, Theorem 2.1.6] to the case of more than
two branch points (but stated just for one group at a time, rather than for π1).

Combining the above proposition with Theorem 3.11, we obtain the following theorem,
referred to at the end of Section 4. It implies and subsumes Theorems 3.11 and 4.3 in the
case of normal curves X. Namely, those results respectively assume that the given G-
Galois cover Y → X is either étale or is of degree prime-to-p. The result below for curves,
though, merely assumes that Y → X is tamely ramified. Note that the data over the
points ξj is non-trivial only in the case that the base field k is not algebraically closed,
which is thus the case of main interest.

Theorem 5.14. Let X be a connected normal affine curve of finite type over a field k

of characteristic p, let r, s ≥ 0, and let ξ1, . . . , ξr, ζ1, . . . , ζs be distinct closed points of X.

Let P be a p-subgroup of a finite group Γ; let G = Γ/P ; and let Y → X be a connected

normal G-Galois cover which is tamely ramified over ζ1, . . . , ζs and étale elsewhere.
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Let Z ′ → X ′ := {ξ1, . . . , ξr} be a Γ-Galois étale cover together with an isomorphism

Z ′/P →∼ Y ×X X ′ of G-Galois covers. Then there is a connected normal P -Galois étale

cover Z → Y such that the composition Z → X is a tamely ramified Γ-Galois cover Z → X

which is étale away from ζ1, . . . , ζs, and such that Z ×X X ′ ≈ Z ′ as Γ-Galois covers.

Proof. Let U = X−{ζ1, . . . , ζs} and let V → U be the pullback of Y → X over U . Applying
Theorem 3.11 to V → U and to the cover Z ′ → X ′ = {ξ1, . . . , ξr}, we obtain a connected
normal Γ-Galois étale cover W → U that dominates V → U and whose restriction to X ′

is Z ′ → X ′. Thus for each j the fibre over Xj := {ξj} is Zj := Z ′ ×X′ Xj → Xj . The
pullback of W → U over the complete local ring at ξj is a Γ-Galois étale cover of the form
Spec Āj → Spec ÔX,ξj , where Āj is a finite product of complete discrete valuation rings.
Here the closed fibre of Spec Āj → Spec ÔX,ξj

is isomorphic to Zj → Xj as a Γ-Galois
cover, and there is a compatible isomorphism of G-Galois covers of Spec ÔX,ξj

between
(Spec Āj)/P and the pullback of Y .

The generic fibre of Spec Āj → Spec ÔX,ξj is of the form SpecAj → SpecKξj , and
there is an isomorphism (SpecAj)/P →∼ Y ×X SpecKξj of G-Galois covers. By Proposition
5.12, we obtain a connected normal Γ-Galois cover Z → X which is tamely ramified over
ζ1, . . . , ζs and étale away from ξ1, . . . , ξr, ζ1, . . . , ζs, and which compatibly induces the G-
Galois cover Y → X modulo P and induces the Γ-Galois covers SpecAj → SpecKξj

via pullback. The pullback of Z → X over Spec ÔX,ξj thus has the same generic fibre
SpecAj → SpecKξj

as the étale cover Spec Āj → Spec ÔX,ξj
. Since Z is normal and is

finite over X, it follows that these two G-Galois covers of Spec ÔX,ξj
agree. Hence the

closed fibre of Z over Xj = {ξj} agrees with Zj → Xj as a Γ-Galois cover (and so Z×XX ′

agrees with Z ′), and Z → X is étale over X ′. Thus Z → X is tamely ramified, and hence
so is the intermediate P -Galois cover Z → Y . Hence Z → Y is étale, since P is a p-group.
So Z is as desired.

Reinterpreting the above results in terms of embedding problems, we obtain:

Corollary 5.15. Let X be a connected normal affine curve of finite type over a field k of

characteristic p, let Σ be proper closed subset of X, let r ≥ 0, and let ξ1, . . . , ξr be distinct

closed points of X −Σ. Let Gk(ξj) be the absolute Galois group of the residue field k(ξj).

(a) Let φt = {φt
j}j , where φt

j : Gk(ξj) → πt
1(X,Σ) corresponds to the inclusion {ξj} ↪→

X − Σ. Then every finite p-embedding problem for πt
1(X,Σ) is properly φt-solvable.

(b) Let Y → X be a connected normal Galois cover that is tamely ramified over Σ and

étale elsewhere. Let φY = {φY,j}j , where φY,j : Gk(ξj) → π1(Y/X) corresponds to the

inclusion {ξj} ↪→ X −Σ. Then every finite p-embedding problem for π1(Y/X) is properly

φY -solvable.

Proof. (a) Let E = (α : πt
1(X,Σ) → G, f : Γ → G) be a finite p-embedding problem for

πt
1(X,Σ). Then the surjection α yields a connected normal G-Galois cover of X which is
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tamely ramified over Σ and étale elsewhere. A weak solution to the induced embedding
problem φt∗(E) yields Γ-Galois étale covers Zj → Xj := {ξj} that dominate the pullbacks
Yj → Xj of Y → X. By Theorem 5.14 there is a connected normal Γ-Galois cover
Z → X that is tamely ramified over Σ and étale elsewhere; that dominates Y → X; and
that restricts to each Zj → Xj . Just as in the remarks prior to Proposition 3.1, such a
cover corresponds to a proper solution to E whose compositions with the component maps
φt
j : Gk(ξj) → πt

1(X,Σ) are conjugate to proper solutions of the pullbacks φt∗
j (E). So E is

properly φt-solvable.
(b) Let E = (α : π1(Y/X) → G, f : Γ → G) be a finite p-embedding problem for

π1(Y/X). Consider a weak solution to φ∗Y (E), corresponding to Γ-Galois étale covers
Zj → Xj := {ξj} that dominate the pullbacks Yj → Xj of Y → X. As in the proof
of Proposition 5.10, the surjection α corresponds to a pointed connected normal G-Galois
cover Z → X which factors as Z → Z0 → X, where Z → Z0 is étale and where Z0 → X is a
Galois subcover of Y → X. Thus Z → X is tamely ramified over Σ and étale elsewhere; and
so it corresponds to a surjection αt : πt

1(X,Σ) → G (factoring through α). By (a), there is
a proper solution to the p-embedding problem Et := (αt : πt

1(X,Σ) → G, f : Γ → G) which
up to conjugacy induces the given weak solution to φ∗Y (E). Such a solution corresponds to
a connected normal Γ-Galois cover W → X which dominates the G-Galois cover Z → X,
such that W → Z is étale, and which restricts to each Zj → Xj . Thus the Γ-Galois cover
W → X factors as W → Z0 → X, where W → Z0 is étale (since W → Z is at most tamely
ramified, and is Galois of p-power degree). Hence W corresponds to a proper solution
to the given p-embedding problem E , inducing the given weak solution to φ∗Y (E) up to
conjugacy. So E is properly φY -solvable.

The following corollary provides a variant of Corollary 3.3(c) in the tame case, and a
generalization of Proposition 4.1(a) to the case that the given cover Y → X need only be
tame (rather than prime-to-p). The base space X, however, is assumed here to be a curve.

Corollary 5.16. Let X be a connected normal affine curve of finite type over a field k of

characteristic p, and let Σ be a proper closed subset of X.

(a) Then cdp(πt
1(X,Σ)) ≤ 1.

(b) Let Y → X be a connected normal Galois cover that is tamely ramified over Σ and

étale elsewhere. Then cdp(π1(Y/X)) ≤ 1.

Proof. Taking r = 0 in Corollary 5.15 (so that φt [resp. φY ] is the empty collection), we
obtain that every finite p-embedding problem for πt

1(X,Σ) [resp. for π1(Y/X)] is properly
solvable, and hence weakly solvable. So the assertion that cdp ≤ 1 follows from [Se1, I,
3.4, Prop. 16].

Remark 5.17. (a) In Sections 3 and 4, it was first proven that π1(X) or π1(Y/X) (in
the prime-to-p case) had cdp ≤ 1, and then that was used in showing that every finite
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p-embedding problem was properly φ-solvable (in Theorems 3.11 and 4.3, and Corollaries
3.10 and 4.2). But in the present section, in the case of curves, it was not known a priori
that the relevant cdp ≤ 1. Instead, the prior strategy was reversed above: first proving that
every finite p-embedding problem for πt

1(X) and π1(Y/X) (in the tamely ramified case) is
properly φ-solvable (Theorem 5.14 and Corollary 5.15), and then deducing (in Corollary
5.16) that cdp ≤ 1.

(b) It would be interesting to know if Theorem 5.14, and Corollaries 5.15 and 5.16,
have higher dimensional analogs (e.g. having hypotheses of tame ramification at points
of codimension 1). Such analogs would strengthen the main results of Sections 3 and 4,
which assumed either that there was no ramification, or that the given cover Y → X was
of degree prime-to-p.
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des schémas” (SGA 4, vol. 3). Lecture Notes in Mathematics, Vol. 305, Springer-
Verlag, Berlin/Heidelberg/New York, 1973.

[Bo] N. Bourbaki. “Elements of Mathematics: Commutative Algebra.” Hermann and
Addison-Wesley, Paris and Reading, Mass., 1972.

[FJ] M. Fried, M. Jarden. “Field Arithmetic.” Ergeb. Math. Grenzgeb., Vol. 11,
Springer-Verlag, Berlin/New York, 1986.

[Gr] A. Grothendieck. “Revêtements étales et groupe fondamental” (SGA 1). Lec-
ture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-Heidelberg-New York,
1971.

[Ha1] D. Harbater. Moduli of p-covers of curves. Communications in Algebra 8 (1980),
1095-1122.

[Ha2] D. Harbater. Abhyankar’s conjecture on Galois groups over curves. Inventiones
Math. 117 (1994), 1-25.

[HS] D. Harbater, K. Stevenson. Patching and thickening problems. Journal of Algebra
212 (1999), 272-304.

[Ht] R. Hartshorne. “Algebraic Geometry.” Graduate Texts in Mathematics, Vol. 52,
Springer-Verlag, Berlin-Heidelberg-New York, 1977.

[Hu] B. Huppert. “Endliche Gruppen I.” Grundlehren Band 134, Springer-Verlag, Berlin-
Heidelberg-New York, 1967.

[Ka] N. Katz. Local-to-global extensions of representations of fundamental groups. Ann.
Inst. Fourier, Grenoble 36 (1986), 69-106.

[La] S. Lang. “Algebraic Number Theory.” Addison-Wesley, Reading, Mass., 1970.
[Ma] H. Matsumura. “Commutative Algebra.” Mathematics Lecture Notes Series, sec-

ond edition, Benjamin-Cummings, Reading, Mass., 1980.
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