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Abstract. This paper provides applications of patching to qua-
dratic forms and central simple algebras over function fields of
curves over henselian valued fields. In particular, we use a patch-
ing approach to reprove and generalize a recent result of Parimala
and Suresh on the u-invariant of p-adic function fields, p 6= 2. The
strategy relies on a local-global principle for homogeneous spaces
for rational algebraic groups, combined with local computations.

1. Introduction

A longstanding open problem in the theory of quadratic forms is to
find a general method for evaluating the u-invariant of fields. To date,
though, the u-invariant has been computed only in quite restricted
situations. In this paper we prove a general result that provides the u-
invariant of function fields of curves for a variety of open cases, as well
as implying known results in a unified way. Most notably, we obtain
a new proof of the recent result of Parimala and Suresh ([PS07]) on
the u-invariant of nondyadic p-adic function fields. Our approach also
yields evidence for the expected growth of the u-invariant, for example
upon field extensions.

The method used here is quite different from that of [PS07] and other
works on this topic, and is not cohomological. The results stem from a
local-global principle for the existence of points on certain homogeneous
varieties, which yields a Hasse-Minkowski type statement for quadratic
forms over function fields of curves.

Our proofs rely on ideas from patching, a method that has been used
in the past to prove many results about Galois theory (see e.g. [Har03]).
In [HH07], the first two authors extended patching to structures over
fields rather than over rings, to make the method more amenable to
other applications. This approach shows that giving an algebraic struc-
ture over certain function fields is equivalent to giving the structure over
a suitable collection of overfields. As in earlier forms of patching, a key

The first author was supported in part by NSF Grant DMS-0500118.
1



2 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN

step is to prove a matrix factorization result. We use these ideas here,
especially in the proof of our local-global principle.

In addition, we show how the same local-global principle can be used
to obtain results about the period-index problem for central simple
algebras. In particular, we give a new proof of a recent result of Lieblich
([Lie08]) on function fields of curves over henselian rings. It has been
understood that there is a connection between results concerning u-
invariants and the period-index problem for central simple algebras,
and it is interesting to see how similar our proofs are in these two
situations.

Below, we summarize the main results on quadratic forms and central
simple algebras (which can be found in Sections 4 and 5).

1.1. Results on quadratic forms. We begin by recalling Kaplan-
sky’s definition of the u-invariant (some references use a modified defi-
nition due to Elman and Lam which agrees with this for nonreal fields,
see e.g. [Pfi95], p. 114).

Definition 1.1
Let k be a field. The u-invariant of k, denoted by u(k), is the max-
imal dimension of anisotropic quadratic forms over k (or ∞, if such
dimensions are arbitrarily large).

The u-invariant and the possible values it can take for a fixed or vary-
ing field has been a major object of study in the theory of quadratic
forms. (Note that it is a positive integer if it is finite.) There are many
open problems concerning this number; see for example, [Lam05], Sec-
tion XIII.6. On the other hand there has been a lot of recent progress,
most notably in the computation of the u-invariant of function fields
of non-dyadic p-adic curves due to Parimala and Suresh (see below).

It is generally expected that the u-invariant of field extensions should
grow along with the cohomological dimension. In particular, for “rea-
sonable” fields, one expects that finite extensions have the same u-
invariant, and that the u-invariant should double upon a finitely gen-
erated field extension of transcendence degree one. To formalize our
discussion towards these expectations, we make the following definition:

Definition 1.2
Let k be a field. The strong u-invariant of k, denoted by us(k), is the
smallest real number n such that

- every finite field extension E/k satisfies u(E) ≤ n, and
- every finitely generated field extension E/k of transcendence

degree one satisfies u(E) ≤ 2n.
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If these u-invariants are arbitrarily large we say that us(k) = ∞.

Thus us(k) ≤ n if and only if every finitely generated field extension
E/k of transcendence degree ` ≤ 1 satisfies u(E) ≤ 2`n. Since the u-
invariant, if finite, is a positive integer, it follows that us(k) is at least
1 and lies in 1

2
N.

Concerning quadratic forms, our main result is:

Theorem (Theorem 4.10)
Let K be a complete discretely valued field whose residue field k has
characteristic unequal to 2. Then us(K) = 2us(k).

More generally we show that this holds for excellent henselian dis-
crete valuation rings (Corollary 4.12). As a consequence of these re-
sults, in many cases we are able to obtain exact values of the u-invariant
and strong u-invariant, not just upper bounds.

By definition, a Cd-field has u-invariant at most 2d. Using this, we
deduce from our main theorem that if T is a complete (or excellent
henselian) discrete valuation ring whose residue field is a Cd-field of
odd characteristic, every function field F of a regular T -curve satisfies
u(F ) ≤ 2d+2 (see Corollary 4.13(a), which is more general). As a special
case, we obtain the recent theorem of Parimala and Suresh ([PS07],
Theorem 4.6; Corollary 4.15 below): A function field in one variable
over a non-dyadic p-adic field has u-invariant 8. Our result also applies
to function fields over the algebraic closure of Q in a non-dyadic p-adic
field.

Applying induction to our main theorem we obtain that the u-
invariant of an m-local field with algebraically closed (respectively, fi-
nite) residue field of characteristic unequal to 2 is 2m+1 (resp., 2m+2);
see Corollary 4.14. For example, the u-invariant of a one-variable func-
tion field over Qp((t)) is 16, for p odd. As another application, let k be
a function field of transcendence degree d over an algebraically closed
field of characteristic unequal to 2. Then the u-invariant of the func-
tion field of a K-curve is at most 2d+m+1, for any m-local field K with
residue field k; see after Corollary 4.13.

In addition to these, we obtain similar results for other classes of
fields which naturally occur in the context of patching, described at
the end of Section 4. More specifically, suppose that T is a complete
discrete valuation ring with uniformizer t and residue field k of charac-
teristic unequal to 2. If F is the fraction field of T [[x]] or of the t-adic
completion of T [x], then u(F ) ≤ 4us(k), with equality if u(k) = us(k);
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e.g. if k is a Cd-field having u-invariant 2d. In particular, if k is alge-
braically closed, then u(F ) is equal to 4; and u(F ) equals 8 if k is finite
(example cases of the latter include k((x, y)) and the fraction field of
Zp[[x]] with p odd).

1.2. Results on central simple algebras. Given a field k, recall
that the period (or exponent) of a central simple k-algebra A is the
order of the class of A in the Brauer group of k; and the index of A is
the degree of the division algebra D that lies in the class of A (i.e. such
that A is a matrix ring over D). The period and index always have the
same prime factors, and the period always divides the index ([Pie82],
Proposition 14.4(b)(ii)). The period-index problem asks whether all
central simple algebras A over a given field k satisfy ind(A) | per(A)d

for some fixed exponent d depending only on k. In analogy with the
notion of the strong u-invariant (Definition 1.2), we make the following
definition (extending that of Lieblich; see [Lie08], Definition 1.1):

Definition 1.3
Let k be a field. The Brauer dimension of k (away from a prime p)
is defined to be 0 if k is separably closed (resp. separably closed away
from p, i.e. the absolute Galois group of k is a pro-p group). Otherwise,
it is the smallest positive integer d such that

- for every finite field extension E/k and every central simple
E-algebra A (resp. with p 6 | per(A)), we have ind(A)| per(A)d−1;
and

- for every finitely generated field extension E/k of transcendence
degree one and every central simple E-algebra A (resp. with
p 6 | per(A)), we have ind(A)| per(A)d.

If no such number d exists, we say that the Brauer dimension is ∞.

Again, we can summarize this by saying that the Brauer dimension
of k is at most d if for every finitely generated field extension E/k of
transcendence degree ` ≤ 1 and every central simple E-algebra A (resp.
with p 6 | per(A)), we have ind(A)| per(A)d+`−1.

As with the u-invariant, it is expected that this invariant should
grow in parallel to the cohomological dimension. In particular, one
expects that it should increase by one upon a finitely generated field
extension of transcendence degree one. Early results in this direction
were obtained by Saltman in [Sal97] and [Sal98], including the fact that
ind | per2 for p-adic curves, along with a general mechanism to relate
the Brauer dimension of curves over discretely valued fields to that of
curves over the residue field. (See also [For96].) Along these lines, in
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Section 5 we give an alternative proof of a result that was recently
shown by Lieblich in the case d > 0 ([Lie08], Theorem 5.3):

Theorem (Theorem 5.5)
Let K be a complete discretely valued field whose residue field k has
characteristic 0 (resp. characteristic p > 0). If k has Brauer dimension
d ≥ 0 (resp. away from p) then K has Brauer dimension at most d+ 1
(resp. away from p).

More generally, as in [Lie08], we show a version of this result for
excellent henselian rings. As an application of the above theorem,
since the Brauer dimension of a finite field is 1, it follows that the
Brauer dimension of a p-adic field is at most 2, and that of Qp((t)) is
at most 3. As another application, let k be the function field of a curve
over a separably closed field. Then the Brauer dimension of k is 1 by
[deJ04]. So ind(α) = per(α) for all α in the Brauer group of k((t)) with
char(k) not dividing the period. Similarly, ind(α) divides per(α)2 for
all α in the Brauer group of k((t))(x) of period not divisible by char(k).

In analogy to the results on the u-invariant, we also obtain state-
ments for fields that arise from patching; see Corollary 5.10. In partic-
ular, let T be a complete discrete valuation ring with uniformizer t and
residue field k of characteristic 0 (resp. characteristic p > 0) and Brauer
dimension d (resp. away from p). If F is the fraction field of T [[x]] or of
the t-adic completion of T [x], then ind(α)| per(α)d+2 for all α ∈ Br(F )
with period not divisible by char(k). Moreover ind(α) = per(α) if F is
k((x, t)) or the fraction field of k[x][[t]] where k is separably closed, or
if F is the fraction field of Zur

p [[x]], provided that the residue charac-
teristic does not divide per(α).

1.3. Organization of the manuscript. The organization of the man-
uscript is as follows. Section 2 is concerned with a decomposition of
vectors. It is fairly technical and may be skipped upon a first reading.
Section 3 shows how this decomposition in vector spaces can be used
to obtain a multiplicative decomposition (i.e. factorization) in rational
linear algebraic groups (Theorem 3.6). The main result of the section,
the local-global principle for homogeneous spaces (Theorem 3.7), is a
rather direct consequence. It is the key ingredient for proving the upper
bounds in the later results. In Sections 4 and 5, local computations
combined with Theorem 3.7 yield the main results about quadratic
forms and central simple algebras, respectively.
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2. Decomposition of vectors

The goal of this section is to prove a decomposition theorem (The-
orem 2.5) that will be used in the next section to obtain factorization
results and a local-global principle for rational linear algebraic groups.
This strategy parallels that of [HH07], which concerned the group GLn.

Throughout this section we let F0 be the fraction field of a complete
discrete valuation ring R̂0 with uniformizer t, and we let | | be a norm
on F0 induced by the t-adic valuation — i.e. |a| = α−v(a) for a real
number α > 1. This norm extends uniquely to a norm on a fixed
algebraic closure F̄0 of F0 (again denoted by | |). If E ⊆ F̄0 is a field
extension of F0 and V is a finite dimensional vector space over E with
basis b1, . . . , bn, we define a norm on V by setting |

∑
aibi| = max{|ai|}.

Since V is finite dimensional, it is complete with respect to this metric
if E is finite over F0. We will commonly identify such a vector space V
with the points of the affine space An

F0
(E) and consequently talk about

the norm of such points as well.
For n ≥ 0, the t-adic topology on An

F0
(F̄0) is finer than the Zariski

topology. This is because a basic open set in the Zariski topology is
defined by the non-vanishing of a polynomial f ∈ F0[x1, . . . , xn], and
because such an f is continuous in the t-adic topology.

Now fix n, let A = F0[x1, . . . , x2n] be the coordinate ring of A2n
F0

,
and let Â = F0[[x1, . . . , x2n]] be the completion at the maximal ideal
m0 at the origin. Also let A0 be the localization of A at m0; thus
A0 ⊂ Â. For short, we write x for (x1, . . . , x2n). Given a 2n-tuple
ν = (ν1, . . . , ν2n) ∈ N 2n of nonnegative integers, write |ν| =

∑
νi

and let xν denote xν1
1 · · ·xν2n

2n , a monomial of total degree |ν|. For
f =

∑
ν cνx

ν ∈ Â we define ‖f‖ = sup{|cν |} (or ∞ if the coefficients
are unbounded). Note that ‖f‖ is finite for f ∈ A.

For a real number M ≥ 1, let ÂM ⊂ Â be the subset consisting of
those f as above such that for all ν ∈ N2n we have |cν | ≤ M |ν|. Since
the absolute value on F0 is non-archimedean, ÂM is a ring; and it is
complete with respect to the restriction of the m0-adic topology on Â.
Note also that ÂM ⊂ ÂM ′ if M < M ′. In the case that M = |t|s for
some (possibly negative) integer s, the subring ÂM ⊂ Â is just the
power series ring R̂0[[x1t

s, . . . , x2nt
s]]. In general, the next result shows

that we can view the elements of ÂM as power series functions that are
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defined and t-adically bounded by 1 on the t-adic open disc of radius
M−1 about the origin in A2n(F0).

Lemma 2.1 (a) Let f ∈ A0 ⊂ Â satisfy |f(0)| ≤ 1. Then for
some M ≥ 1 we have f ∈ ÂM and f = g/h for some g, h ∈ A

with h ∈ Â×M .
(b) Let M ≥ 1 and let f =

∑
ν∈N2n cνx

ν ∈ ÂM . If a ∈ A2n(F0) with
|a| < M−1 then the series

f(a) :=
∑

ν

cνa
ν

converges t-adically to an element of F0, of norm at most 1.
(c) In part (a), if a ∈ A2n(F0) with |a| < M−1 then the series f(a)

converges t-adically to the value g(a)/h(a) ∈ F0.

Proof. (a) Since A0 is the localization of R̂0[x1, . . . , xn] at the ideal
(x1, . . . , xn), we may write f = g/h with g, h ∈ R̂0[x1, . . . , xn] ⊂ A

and with h 6∈ m0. Here ‖g‖ ≤ 1 and ‖h‖ = 1, so g, h ∈ Â1. Since
A/m0 is a field, there exists h′ ∈ A such that hh′ − 1 ∈ m0. Writing
hh′ = 1 − e with e ∈ m0 ⊂ A, we see that the inverse to h in Â is
given by

∑
i≥0 h

′ei (where this series converges in Â because e ∈ m0).
So f =

∑
i≥0 gh

′ei ∈ Â. Let M = max{1, ‖h′‖, ‖e‖} < ∞. Thus
g, h, h′, e ∈ ÂM (using that the nonconstant coefficients satisfy the
required condition by our choice of M , and the constant coefficients
have absolute value at most 1). Furthermore, since ÂM is a ring, each
term of

∑
h′ei and of

∑
gh′ei is also in ÂM . Since ÂM is complete

with respect to the restriction of the m0-adic topology on Â, these
series converge to elements of ÂM ⊂ Â. Therefore, f, h−1 ∈ ÂM and
h ∈ Â×M .

(b) Since f ∈ ÂM , we have that |cν | ≤ M |ν| for each ν. Let a ∈
A2n(F0) with m := |a| < M−1. Thus |cνaν | ≤ (mM)|ν| < 1 for each
ν, since 0 ≤ mM < 1. Since F0 is t-adically complete, the series f(a)
(which has finitely many terms of each total degree) converges to an
element of F0 of norm at most 1.

(c) Since h ∈ A ∩ Â×M , we have h(a)h−1(a) = 1 and so h(a) 6= 0.
Let d > deg(g) and let C = max{‖g‖, ‖h‖}. Let fs be the polynomial
truncation of the series f ∈ Â modulo the terms of degree ≥ s. Thus
the sequence fs(a) converges to some c ∈ F0, by (b). If s ≥ d, then
ks := fsh − g is a polynomial whose terms each have degree ≥ s and
for which the coefficients of the terms of degree j have absolute value
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at most M jC. With m := |a|, the absolute values of the terms of
degree j in ks(a) are at most (mM)jC, and so |ks(a)| ≤ (mM)sC.
Thus ks(a) → 0, since 0 < mM < 1. That is, fs(a)h(a) → g(a), or
equivalently ch(a) = g(a). Thus c = g(a)/h(a), i.e. the series f(a)
converges to g(a)/h(a). �

Lemma 2.2
Suppose f ∈ ÂM with M ≥ 1, and write

f = c0,0 + L+
∑
|ν|≥2

cνx
ν

where L is a linear form in x1, . . . , x2n and all cν ∈ F0. Let s ≥ 0,
let 0 < ε ≤ |t|/M2, and suppose a, a′ ∈ A2n(F0) with |a| ≤ ε and
|a′| ≤ ε|t|s. Then

|f(a+ a′)− f(a)− L(a′)| ≤ ε|t|s+1.

Proof. We may rearrange the quantity of interest as:

f(a+ a′)− f(a)− L(a′) =
∑
|ν|≥2

cν ((a+ a′)ν − aν) .

Since the absolute value is non-archimedean, it suffices to show that
for every term m = cνx

ν with |ν| ≥ 2 we have

|m(a+ a′)−m(a)| ≤ ε|t|s+1.

For a given ν with |ν| ≥ 2, consider the expression (x + x′)ν − xν ,
regarded as a homogeneous element of degree j = |ν| in the polyno-
mial ring F0[x1, . . . , x2n, x

′
1, . . . , x

′
2n]. Since the terms of degree j in

x1, . . . , x2n cancel, the result is a sum of terms of the form λ` where λ
is an integer and ` is a monomial in the variables x, x′ with total degree
d in x1, . . . , x2n and total degree d′ in x′1, . . . , x′2n, such that d+ d′ = j
and d < j. Hence d′ ≥ 1. Consequently, for each term of this form,

|λ`(a, a′)| ≤ |`(a, a′)| ≤ εd(ε|t|s)d′
= εj|t|sd′ ≤ εj|t|s.

Since (a + a′)ν − aν is a sum of such terms, and the norm is non-
archimedean, we conclude |(a+ a′)ν − aν | ≤ εj|t|s.

Since m = cνx
ν , it follows that

|m(a+ a′)−m(a)| ≤ |cν |εj|t|s ≤M jεj|t|s.

Now ε ≤ |t|/M2, so εj−1 ≤ |t|j−1/M2j−2. Since |t| < 1, M ≥ 1, and
j ≥ 2, we have

εj−1 ≤ |t|j−1

M j+j−2
≤ |t|
M j

.
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Rearranging this gives the inequality (Mε)j ≤ ε|t| and so (Mε)j|t|s ≤
ε|t|s+1. Therefore

|m(a+ a′)−m(a)| ≤M jεj|t|s ≤ ε|t|s+1,

as desired. �

For the remainder of this section, it will be convenient to write yi =
xn+i for i = 1, . . . , n. We will let ν = (ν1, . . . , νn) and ρ = (ρ1, . . . , ρn)
be n-tuples of non-negative integers; and for such ν, ρ we will write
|(ν, ρ)| =

∑
νi +

∑
ρi and will let xνyρ denote xν1

1 · · ·xνn
n y

ρ1

1 · · · yρn
n , a

monomial of total degree |(ν, ρ)|. An element of Â will be written as
f =

∑
ν,ρ cν,ρx

νyρ with cν,ρ ∈ F0.

Lemma 2.3
Let f ∈ m0A0, and suppose there is some 1 ≤ i ≤ n such that f(a, 0) =
ai = f(0, a) for all a = (a1, . . . , an) ∈ F n

0 for which f(a, 0) and f(0, a)

converge. Then f ∈ ÂM ⊂ Â for some M ≥ 1, and its expansion has
the form

f = xi + yi +
∑

|(ν,ρ)|≥2

cν,ρx
νyρ.

Proof. By Lemma 2.1(a), both f and g := f − xi − yi ∈ m0A0 lie
in ÂM for some M ≥ 1; in particular, g =

∑
ν,ρ cν,ρx

νyρ with each
|cν,ρ| ≤ M |(ν,ρ)|. Here g converges in a t-adic neighborhood of (0, 0),
on which g(a, b) = 0 if a = 0 or b = 0. To prove the result it suffices
to show that cν,ρ = 0 for |(ν, ρ)| < 2. This is automatic for c0,0 since
g ∈ m0A0. It remains to show that cν,ρ = 0 for |(ν, ρ)| = 1.

We argue by contradiction. Suppose that there exists (ν0, ρ0) such
that cν0,ρ0 6= 0 with |(ν0, ρ0)| = 1. Without loss of generality, we
may assume that ν0 = (1, 0, . . . , 0) and ρ0 = (0, 0, . . . , 0). Choose
0 < m < 1 such that m ≤ |cν0,ρ0|, and N > 0 such that |tN | < m/M2.
Let v = (tN , 0, . . . , 0) ∈ A2n; thus g(v) = 0. Also, |L(v)| ≥ m|tN | > 0,
where L is the sum of the terms of g of degree 1. So L(v) 6= 0.

Now let h = cν,ρx
νyρ be an arbitrary term of g whose degree j :=

|(ν, ρ)| is at least 2. We claim |h(v)| < |L(v)|. Showing this for all such
h would imply that |g(v)| = |L(v)|. Since g(v) = 0 6= L(v), this would
lead to a contradiction.

To verify the claim, we may assume h(v) 6= 0. Using the definition
of v, we see directly that h = cxj

1 for some c ∈ F0, and that |h(v)| =

|c||tN |j. Here |c| ≤M j since g ∈ ÂM and h is a term of g. We compute

|L(v)|
|h(v)|

≥ m|tN |
|c||tN |j

≥ m

M j

1

|tN |j−1
.
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Since |tN | < m/M2, we have 1/|tN | > M2/m and so 1/|tN |j−1 >
M2(j−1)/mj−1. Combining this with the above,

|L(v)|
|h(v)|

≥ m

M j

1

|tN |j−1
>

m

M j

M2j−2

mj−1
=
M j−2

mj−2
≥ 1,

because j ≥ 2, M ≥ 1, and 0 < m < 1. So |L(v)| > |h(v)| as
desired. �

For the next result and for use in the next section, we make the
following hypothesis, continuing under the notation introduced at the
beginning of the current section:

Hypothesis 2.4
We assume that the complete discrete valuation ring R̂0 contains a
subring T which is also a complete discrete valuation ring having uni-
formizer t, and that F1, F2 are subfields of F0 containing T . We fur-
ther assume that V ⊂ F1 ∩ R̂0, W ⊂ F2 ∩ R̂0 are t-adically complete
T -submodules satisfying V +W = R̂0.

The main theorem of this section is the following decomposition re-
sult, which is related to [HH07], Proposition 3.2 (with An

F0
here corre-

sponding to the affine space of square matrices of a given size):

Theorem 2.5
Under Hypothesis 2.4, let f : An

F0
× An

F0
99K An

F0
be an F0-rational

map that is defined on a Zariski open set U ⊆ An
F0
× An

F0
containing

the origin (0, 0). Suppose further that f(u, 0) = u = f(0, u) whenever
(u, 0) (resp. (0, u)) is in U . Then there is a real number ε > 0 such
that for all a ∈ An(F0) with |a| ≤ ε, there exist v ∈ V n and w ∈ W n

such that (v, w) ∈ U(F0) and f(v, w) = a.

Proof. Write the function f as an n-tuple (f1, . . . , fn) with fi ∈ A0. In
fact fi ∈ m0A0 since fi(0, 0) = 0. So by Lemma 2.1(a), there is a real
number M ≥ 1 such that fi ∈ ÂM for all i; and by Lemma 2.3,

fi = xi + yi +
∑

|(ν,ρ)|≥2

cν,ρ,ix
νyρ (∗)

for some cν,ρ,i in F0.
As noted at the beginning of this section, the t-adic topology on

affine space is finer than the Zariski topology. So there exists δ > 0
such that (v, w) ∈ U(F0) for all v, w ∈ An(F0) satisfying |(v, w)| ≤ δ.
Choose N > 0 such that |tN | ≤ min{|t|/M2, δ}, and set ε = |tN |. In
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particular, whenever |(v, w)| ≤ ε, the point (v, w) lies in U(F0), and
hence f(v, w) is defined.

Now suppose a = (a1, . . . , an) ∈ An(F0) with |a| ≤ ε. We will
inductively construct sequences of elements vj = (v1,j, . . . , vn,j) ∈ V n,
wj = (w1,j, . . . , wn,j) ∈ W n, with j ≥ 0, such that v0 = w0 = (0, . . . , 0)
and

(1) |(vj, wj)| ≤ ε for all j ≥ 0;
(2) |vj − vj−1|, |wj − wj−1| ≤ ε|t|j−1 for all j ≥ 1; and
(3) |fi(vj, wj)− ai| ≤ ε|t|j for all j ≥ 0.

Since the T -modules V n,W n are t-adically complete, the second con-
dition ensures that v = lim

j→∞
vj and w = lim

j→∞
wj exist in V n and

W n. The first condition shows moreover that |(v, w)| ≤ ε, so that
(v, w) ∈ U(F0) and f(v, w) is defined. Finally, the third condition
implies that f(v, w) = a. Thus it suffices to construct such sequences.

It follows from Lemma 2.1(b) that since at each stage we will have
|(vj, wj)| ≤ ε ≤ |t|/M2 < 1/M , the power series expressions for
f(vj, wj) are convergent. By Lemma 2.1(c) we may identify the limits
of these evaluated power series with the values of the original rational
functions.

Observe that the first and third conditions hold for j = 0. Now
assume inductively that for some j ≥ 0 we have chosen vj, wj satisfying
the three asserted conditions (except the second, if j = 0). Define
bj = (b1,j, . . . , bn,j) = a− f(vj, wj). By the third condition on (vj, wj),
we have |bj| ≤ ε|t|j = |t|N+j. Write bj = tN+juj with uj ∈ R̂n

0 . By
Hypothesis 2.4, we may write uj = v′j+1 + w′j+1 for v′j+1 ∈ V n, w′j+1 ∈
W n.

Let vj+1 = vj + tN+jv′j+1 and wj+1 = wj + tN+jw′j+1. It is im-
mediate by construction that |vj+1 − vj|, |wj+1 − wj| ≤ ε|t|j since
|t|N = ε. This proves the second condition on (vj+1, wj+1). Since
|vj|, |wj| ≤ ε ≤ |t|/M2 (by the first condition on (vj, wj)) and since
|tN+jv′j+1|, |tN+jw′j+1| ≤ ε|t|j, it follows by equation (∗) and Lemma 2.2
that
|fi(vj+1, wj+1)− ai| = |fi(vj+1, wj+1)− fi(vj, wj)− bi,j|

=
∣∣fi(vj + tN+jv′j+1 , wj + tN+jw′j+1)− fi(vj, wj)− tN+j(v′j+1 + w′j+1)

∣∣
≤ ε|t|j+1,

proving the third condition on (vj+1, wj+1). The first condition on
(vj+1, wj+1) holds by the second condition on (vj+1, wj+1) together with
the first condition on (vj, wj), since the norm is non-archimedean and
j ≥ 0. �
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The above decomposition theorem will be used in the next section to
extend [HH07], Proposition 3.2, which used an additive decomposition
to provide a factorization of matrices in GLn. In applying Theorem 2.5
above to obtain factorization in more general rational linear algebraic
groups G (Theorem 3.2 below), we will identify G birationally with an
open subset of some affine space, with f above being the map there
that corresponds to multiplication in G.

3. Factorization and a local-global principle

We say that a connected linear algebraic group defined over a field
F is rational if it is rational as an F -variety. In this section we prove
factorization theorems for such groups (Theorems 3.4 and 3.6), gener-
alizing results of [HH07] about the rational group GLn. The key step
is Theorem 3.2, which relies on Theorem 2.5. Afterwards, in Theo-
rem 3.7, we apply this factorization to obtain a local-global principle
for homogeneous spaces for rational groups.

Lemma 3.1
Let G be a rational connected linear algebraic group over an infinite
field F , let F0 be an extension field of F , and let g ∈ G(F0). Then
there exists a Zariski open subset Y ⊆ G such that g ∈ Y (F0) and such
that Y is F -isomorphic to an open subset of affine space over F .

Proof. Since G is rational, there exists a non-empty irreducible Zariski
open subset Y ′ ⊆ G that is isomorphic to an open subset of affine
space. Since F is infinite, every non-empty open subset of affine F -
space contains an F -point. Consequently, there exists a point y ∈
Y ′(F ), and the F0-scheme y−1g−1Y ′

F0
∩ Y ′

F0
is a Zariski dense open

subset of Y ′
F0

. Since Y ′ is F -isomorphic to an open subset of affine
space, and since F is infinite, it follows that Y ′(F ) is dense in Y ′(F0)
with respect to the Zariski topology. Therefore there exists y′ ∈ Y ′(F )
such that y′ ∈ y−1g−1Y ′(F0). That is to say, g ∈ Y ′(F0)(yy

′)−1. Setting
Y = Y ′(yy′)−1, we find that Y is an F -subscheme of G such that
g ∈ Y (F0) and Y ∼= Y ′ is F -isomorphic to an open subvariety of affine
space. �

The following factorization theorem, which extends [HH07], Propo-
sition 3.2, to more general rational linear algebraic groups than GLn,
relies on Theorem 2.5 above:
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Theorem 3.2
Under Hypothesis 2.4, assume that F is a subfield of F1 ∩ F2 that con-
tains T , and that F1 is t-adically dense in F0. Let G be a rational con-
nected linear algebraic group defined over F . Then for any g ∈ G(F0)
there exist gi ∈ G(Fi), i = 1, 2, such that g1g2 = g.

Proof. Since G is rational, there is a Zariski dense open subset U ′ of G
that is F -isomorphic to a Zariski open subset U of An

F , where n is the
dimension of G. After translating, we may assume that U ′ contains
the identity e ∈ G and that the F -isomorphism φ : U ′ → U ⊆ An

F

takes e to the origin in An(F ). Consider the group multiplication map
µ : G×G→ G, and let Ũ ′ = µ−1(U ′) ∩ (U ′ × U ′) ⊆ G×G. Note that
Ũ ′ is a Zariski open subset of G×G that contains the point (e, e), and
that µ(Ũ ′) ⊆ U ′. The isomorphism φ : U ′ → U induces an isomorphism
φ × φ|eU ′ : Ũ ′ → Ũ for some dense open subset Ũ ⊆ An

F × An
F = A2n

F .
Hence there exists a morphism f : Ũ → U such that the following
diagram commutes:

G×G ⊇ Ũ ′
µ|eU′ //

φ×φ|eU′
��

U ′

φ

��

⊆ G

A2n
F ⊇ Ũ f

// U ⊆ An
F

Since µ(g, e) = g = µ(e, g) for g ∈ G, it follows that f(v, 0) = v =

f(0, v) when (v, 0) and (0, v) are in Ũ . Consequently, it follows from
Theorem 2.5 (with Ũ here playing the role of U there) and the assump-
tions of Hypothesis 2.4 that there is an ε > 0 such that for g ∈ U ′(F0)

with |φ(g)| ≤ ε, there exist v ∈ V n, w ∈ W n with (v, w) ∈ Ũ(F0) such
that f(v, w) = φ(g). Thus v ∈ U(F1) and w ∈ U(F2).

To prove the theorem, consider first the special case that g ∈ G(F0)
satisfies |φ(g)| ≤ ε. If we set g1 = φ−1(v) and g2 = φ−1(w) for v, w as
above, then gi ∈ G(Fi) for i = 1, 2, and (g1, g2) ∈ Ũ ′. But now we have
g1g2 = g ∈ G(F0) by the above commutative diagram, as desired.

The general case reduces to the above special case by a classical
argument (e.g. see [Kn62]). Namely, by Lemma 3.1, there is an open
F -subset Y ⊆ G such that g ∈ Y (F0), together with an open immersion
ψ : Y → An

F . Now An(F1) is t-adically dense in An(F0), and the t-adic
topology is finer than the Zariski topology. So since φ(e) = 0 ∈ An

F ,
there exists h ∈ Y (F1) ⊆ G(F1) such that |φ(h−1g)| ≤ ε. By the first
part, h−1g = g′1g

′
2 with g′i ∈ G(Fi), i = 1, 2. Setting g1 = hg′1 ∈ G(F1)

and g2 = g′2 ∈ G(F2) gives the desired conclusion g = g1g2 ∈ G(F0). �
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In order to apply this result, we recall the following notation and
terminology, which arose in the context of patching in [HH07]:

Notation 3.3 [HH07] (Sections 4 and 6)
Let T be a complete discrete valuation ring with uniformizer t and
residue field k, and let X̂ be a normal irreducible projective T -curve
with function field F and with closed fiber X. Given an irreducible
component X0 of X with generic point η, consider the local ring of X̂
at η. For a (possibly empty) proper subset U of X0, we let RU denote
the subring of this local ring consisting of the rational functions that
are regular at each point of U . In particular, R∅ is the local ring of X̂
at the generic point of the component X0. The t-adic completion of RU

is denoted by R̂U . If P is a closed point of X, we write RP for the local
ring of X̂ at P , and R̂P for its completion at its maximal ideal. (Note
the distinction R̂P vs. R̂{P}.) A height 1 prime ℘ of R̂P that contains
t determines a branch of X at P , i.e. an irreducible component of the
pullback of X to Spec R̂P . Similarly the contraction of ℘ to the local
ring of X̂ at P determines an irreducible component X0 of X, and we
say that ℘ lies on X0. Note that a branch ℘ uniquely determines a
closed point P and an irreducible component X0. In general, there
can be several branches ℘ on X0 at a point P ; but if X0 is smooth at
P then there is a unique branch ℘ on X0 at P . We write R̂℘ for the
completion of the localization of R̂P at ℘; thus R̂P is contained in R̂℘,
which is a complete discrete valuation ring.

Since X̂ is normal, the local ring RP is integrally closed and hence
unibranched; and since T is a complete discrete valuation ring, RP

is excellent and hence R̂P is a domain ([Gro65], Scholie 7.8.3(ii, iii,
vii)). For nonempty U as above and Q ∈ U , R̂U/t

nR̂U → R̂Q/t
nR̂Q is

injective for all n and hence R̂U → R̂Q is also injective. Thus R̂U is
also a domain. Note that the same is true if U is empty. The fraction
fields of the domains R̂U , R̂P , and R̂℘ will be denoted by FU , FP , and
F℘.

If ℘ is a branch at P lying on the closure of U ⊂ X0, then there are
natural inclusions of R̂P and R̂U into R̂℘, and hence of FP and FU into
F℘. The inclusion of R̂P was observed above; for R̂U , note that the
localizations of RU and of RP at the generic point of X0 are the same
(viz. R∅); and this localization is naturally contained in the t-adically
complete ring R̂℘. Thus so is RU and hence its t-adic completion R̂U .
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Theorem 3.4 (Factorization over smooth curves)
Let T be a complete discrete valuation ring, let X̂ be a smooth connected
projective T -curve with function field F and closed fiber X. Define
fields Fi, i = 0, 1, 2, by one of the following:

(1) Fi = FUi
where U1, U2 are proper subsets of X, U1∪U2 = X, and

U0 = U1 ∩ U2. (Note that here F0 is not a complete discretely
valued field unless U0 = ∅.)

(2) F1 = FP , F2 = FU , and F0 = F℘, where P is a closed point of
X with complement U ⊂ X, and ℘ corresponds to the (unique)
branch of X at P .

(3) F1 and F0 are as in (2) and F2 = F∅.

Let G be a rational connected linear algebraic group defined over F .
Then for any g ∈ G(F0) there exist gi ∈ G(Fi), i = 1, 2, such that
g1g2 = g.

Proof. It suffices to show that the hypotheses of Theorem 3.2 hold in
each of the three parts of the above assertion.

For part (1), write R̂i = R̂Ui
. We first assume that U0 is empty, so

that R̂0 is a complete discrete valuation ring with uniformizer t. In this
situation let P be a closed point of U1 and let P̂ be a lift of P to X̂
(i.e. an effective prime divisor on X̂ whose restriction to X is P ; see
[HH07], Section 4.1). Let gX be the genus of X, pick a non-negative
integer N > 2gX − 2, and let V = L(Spec R̂1, NP̂ ), the T -submodule
of F1 consisting of rational functions on Spec R̂1 whose pole divisor is
at most NP̂ . Note that V ⊂ R̂0 since these rational functions do not
have poles along the closed fiber (t). LetW = R̂2. Then Hypothesis 2.4
holds for these rings and modules, by [HH07], Proposition 4.5.

To complete the proof of part (1) in this case, it suffices to verify that
the hypotheses of Theorem 3.2 are satisfied, i.e. that F1 is t-adically
dense in F0. Since the fraction field of R̂1/tR̂1 is the same as R̂0/tR̂0

(viz. the function field of X), it follows from [HH07], Lemma 3.1(a),
that the ring R0 := R̂0 ∩ F1 is t-adically dense in R̂0. For the density
of F1 in F0, let x ∈ F0; since R̂0 is a discrete valuation ring with
uniformizer t, we may write x = t−ny for some n ∈ Z and y ∈ R̂0. By
the density of R0 in R̂0, for any ` > 0 there exists x0 ∈ R0 such that
x0−y ∈ t`+nR̂0. It then follows that t−nx0−x ∈ t`R̂0. But t−nx0 ∈ F1,
since the field F1 contains R0. So F1 is indeed dense in F0, finishing
the proof of part (1) of the theorem in this special case.

More generally, if U0 is not necessarily empty, then we proceed as
follows (paralleling the proof of [HH07], Theorem 4.10). Let U ′

2 =
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U2 r U0, and write F ′
2 = FU ′

2
and F ′

0 = F∅. Any g ∈ G(F0) lies in
G(F ′

0), and so by the above special case we may write g = g1g2 with
g1 ∈ G(F1) ≤ G(F0) and g2 ∈ G(F ′

2). But also g2 = g−1
1 g ∈ G(F0); and

F ′
2∩F0 = F2 by Theorem 4.9 of [HH07] since U ′

2∪U0 = U2. So actually
g2 ∈ G(F2), finishing the proof of part (1).

For part (3), take V = R̂P and W = R̂∅. Hypothesis 2.4 holds by
[HH07], Lemma 5.3. Also, the fraction field of R̂P/tR̂P is R̂℘/tR̂℘, by
[HH07], Lemma 5.2(d). (Those results apply since if we let R̂ = R̂{P},
then it is straightforward to check that the rings R̂1, R̂2, R̂0 obtained
from R̂ in [HH07], Notation 5.1, are the same as the rings R̂P , R̂∅,
R̂℘ here.) So as in the proof of (1), F1 is t-adically dense in F0. Thus
Theorem 3.2 implies the assertion.

Part (2) is now immediate from the other two parts. Specifically, by
(3) we may factor any element g ∈ G(F0) as g′1g′2 with g′1 ∈ G(FP ) and
g′2 ∈ G(F∅). Taking U1 = {P} and U2 = U = X r U1, by (1) we may
then factor g′2 as g′′1g2 with g′′1 ∈ G(FP ) (since FU1 = F{P} ⊂ FP ) and
g2 ∈ G(FU). Writing g1 = g′1g

′′
1 ∈ G(FP ) gives the desired factorization

g = g1g2. �

The above factorization theorem generalizes results of [HH07] about
GLn to rational connected linear algebraic groups G. Parts (1) and (3)
for GLn were respectively shown in Theorem 4.10 and Theorem 5.4 of
[HH07] (which in the latter case again used the above comment about
the rings in [HH07], Notation 5.1). Also, if X̂ = P1

T , we can just
take V = R̂1 in case (1) of the above proof, corresponding to choosing
N = 0.

As in Section 6 of [HH07], the second part of the above result will
next be extended to curves X̂ that are not necessarily smooth, and to
the case where several points are chosen. To do this, we will choose a
finite morphism X̂ → P1

T , so that the function field F of X̂ is a finite
extension of the function field F ′ of P1

T . We will then relate linear
algebraic groups over F to linear algebraic groups over F ′, using the
restriction of scalars functor RF/F ′ that takes affine varieties over F
to affine varieties over F ′, and which is characterized by the functorial
isomorphism αX,Z : HomF ′(Z,RF/F ′(X)) → HomF (Z ×F ′ F,X) (see
[BLR90], Section 7.6, Theorem 4, which does not require separability
of F/F ′). It will be convenient to use the following notation:

Notation 3.5
In the context of Notation 3.3, assume that f : X̂ → P1

T is a finite
morphism such that P := f−1(∞) contains all points at which distinct
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irreducible components of the closed fiber X ⊂ X̂ meet. (Such an
f exists by [HH07], Proposition 6.6.) We let U be the collection of
irreducible components U of f−1(A1

k), and let B be the collection of all
branches ℘ at the points of P.

Theorem 3.6 (Simultaneous factorization for curves)
Let X̂ be a normal connected projective T -curve and let f : X̂ → P1

T

a finite morphism, in the context of Notation 3.5. Let G be a rational
connected linear algebraic group over the function field F of X̂, and
suppose that for every branch ℘ ∈ B we are given an element g℘ ∈
G(F℘). Then we may find an element gP ∈ G(FP ) for each P ∈ P, and
an element gU ∈ G(FU) for each U ∈ U, such that for every branch
℘ ∈ B at a point P ∈ P with ℘ lying on the closure of some U ∈ U, we
have g℘ = gPgU with respect to the natural inclusions FP , FU → F℘.

To avoid possible confusion, we emphasize that each gP (resp. gU)
depends only on P (resp. U); but that the identity g℘ = gPgU takes
place in G(F℘), where we view gP and gU as elements of G(F℘) via
the respective inclusions of G(FP ) and G(FU) that are induced by the
corresponding inclusions of fields. Thus if ℘, ℘′ are each branches at P
lying on the closure of U (e.g. if P is a nodal point on an irreducible
component of X), then the products g℘ = gPgU and g℘′ = gPgU take
place over different fields F℘, F℘′ , with respect to different inclusions.

Proof. Let F ′ be the function field of P1
T . Thus F , the function field of

X̂, is a finite field extension of F ′ via f . Under Notation 3.3 for P1
T ,

we may consider the rings R̂∞, R̂A1 , and R℘′ where ℘′ is the branch at
∞ defined by the closed fiber. Let F ′

1, F ′
2, and F ′

0 be the corresponding
fraction fields.

Let G′ := RF/F ′(G). By functoriality of RF/F ′ , the F ′-variety G′ is a
linear algebraic group (e.g. see [Mil72], Section 1) and it is rational. By
the defining property of RF/F ′ , there is a natural isomorphism G′(F ′

0) =
G(F ′

0 ⊗F ′ F ). Since F ′
0 ⊗F ′ F =

∏
℘ F℘ by [HH07], Lemma 6.2(a), we

find:

G′(F ′
0) = G(F ′

0 ⊗F ′ F ) = G(
∏
℘

F℘) =
∏
℘

G(F℘).

Similarly,

G′(F ′
1) =

∏
P

G(FP ), G′(F2) =
∏
U

G(FU),
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via F ′
1⊗F ′F =

∏
P FP and F ′

2⊗F ′F =
∏

U FU ([HH07], Lemma 6.2(a)).
In particular, we may identify our tuple (g℘) ∈

∏
℘G(F℘) with an el-

ement g0 ∈ G′(F ′
0). By Theorem 3.4(2), there exist g1 ∈ G′(F ′

1) and
g2 ∈ G′(F ′

2) such that g0 = g1g2. Again using the above identifications,
the element g1 corresponds to a tuple (gP ) ∈

∏
P∈PG(FP ) and g2 cor-

responds to a tuple (gU) ∈
∏

U∈UG(FU). By [HH07], Lemma 6.2(b),
the above isomorphisms on F ′

i ⊗F ′ F (for i = 0, 1, 2) are compatible,
with respect to the inclusions of

∏
FP and

∏
FU into

∏
F℘, and of

F ′
1, F

′
2 into F ′

0. So by the functoriality of RF/F ′ , the above factorization
g0 = g1g2 ∈ G′(F ′

0) yields the desired equality g℘ = gPgU ∈ G(F℘) for
each point P ∈ P, each component U ∈ U, and each branch ℘ at P
lying on the closure of U . �

We continue to adopt Notations 3.3 and 3.5, concerning a normal
projective T -curve X̂ with function field F and associated sets P,U,B.

In what follows, if a linear algebraic group G acts on a variety H
over a field F , we will say that G acts transitively on the points of H if
for every field extension E of F the induced action of the group G(E)
on the set H(E) is transitive. (See also Remark 3.9.)

Theorem 3.7 (Local-global principle for homogeneous spaces)
Let G be a rational connected linear algebraic group over F that acts
transitively on the points of an F -variety H. Then in the context of
Notation 3.5, H(F ) 6= ∅ if and only if H(FP ) 6= ∅ for each P ∈ P and
H(FU) 6= ∅ for each U ∈ U.

Proof. If H(F ) is non-empty, then so are each H(FP ) and H(FU), since
F is contained in FP and FU .

For the converse, pick a point hP ∈ H(FP ) for each P ∈ P and a
point hU ∈ H(FU) for each U ∈ U. For each ℘ ∈ B, as observed in
Notation 3.3 there is a unique point P ∈ P and a unique irreducible
component X0 of X such that ℘ is a branch at P that lies on X0. The
component X0 is the closure of a unique U ∈ U, which is thus also
determined by ℘. Here we can view hP and hU as points of H(F℘) via
the inclusions of FP and FU into F℘. Since G acts transitively on the
points of H, there is an element g℘ ∈ G(F℘) such that g℘(hU) = hP in
H(F℘). Since G is rational and we are in the situation of Notation 3.5,
Theorem 3.6 implies that there is a collection of group elements gP ∈
G(FP ) for all P ∈ P and gU ∈ G(FU) for all U ∈ U, such that for
every branch ℘ at P on the closure of U we have g℘ = gPgU . Let
h′P = g−1

P (hP ) ∈ H(FP ) and h′U = gU(hU) ∈ H(FU). Thus if P,U, ℘
are a triple as above, then h′P and h′U become identified with the same
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element h′℘ ∈ H(F℘) under the inclusions of H(FP ) and H(FU) into
H(F℘). (Here h′℘ depends only on ℘ since ℘ determines P and U .)

We claim that there is an affine Zariski open subset SpecA ⊆ H that
contains the points h′P , h′U , h′℘ for all P,U, ℘. This is clear if H is quasi-
projective, since this set of points is finite. For a more general variety
H, observe that if ξ1, ξ2 ∈ P∪U∪B are related by being members of a
common triple P,U, ℘ as above, then any affine open subset of H that
contains h′ξ1 must also contain h′ξ2 (since they define the same point in
H(F℘)). But since the closed fiber of the curve X̂ is connected, any
two elements ξ1, ξ2 ∈ P ∪ U ∪ B are in the transitive closure of this
relation. This proves the claim.

Let φP : A → FP , φU : A → FU , and φ℘ : A → F℘ be the ho-
momorphisms corresponding to the points h′P ∈ H(FP ), h′U ∈ H(FU),
and h′℘ ∈ H(F℘). Thus if ℘ is a branch at P on the closure of U , the
maps φP and φU each induce the homomorphism φ℘ : A→ F℘ via the
inclusions FP , FU ↪→ F℘. So all the maps φP , φU , and φ℘ together de-
fine a homomorphism φ from A to the inverse limit of the finite inverse
system consisting of the fields FP (for P ∈ P), FU (for U ∈ U), and F℘

(for ℘ ∈ B). But by [HH07], Proposition 6.3, this inverse limit is just
F , with respect to the inclusions of F into the fields FP , FU , F℘. The
F -homomorphism φ : A → F then defines an F -rational point on H;
i.e. H(F ) 6= ∅ as asserted. �

Corollary 3.8
Let G1 and G2 be linear algebraic groups such that G1×G2 is a rational
connected linear algebraic group. Then the assertions of Theorems 3.2,
3.4, 3.6 and 3.7 hold for G1 and G2.

Proof. By symmetry, it suffices to prove the statement for G1. Theo-
rems 3.2, 3.4 and 3.6 hold for G1 by choosing a preimage in G1×G2 of
each given point of G1; factoring in G1×G2 by the respective theorems
for that rational connected group; and then projecting the factoriza-
tion to G1. Theorem 3.7 holds for G1 because it holds for G1×G2 and
because G1 × G2 acts transitively on the points of any F -variety for
which G1 does. �

Remark 3.9
In the special case that G is a (connected) reductive linear algebraic
group over F and H is a projective F -variety, the transitivity condition
in the above theorem simplifies. Specifically, it is equivalent to the a
priori weaker condition that the group G(F̄ ) acts transitively (in the
classical sense) on the set H(F̄ ), where F̄ is an algebraic closure of F .
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To see this, note that for any field extension E of F , the stabilizer
of an E-point of H is a parabolic subgroup of G, by the projectivity of
H. By the hypotheses on G, parabolic subgroups are self-normalizing
([Bor91], Theorem 11.16), hence distinct E-points have distinct stabi-
lizers; and two such subgroups are conjugate under G(E) if they are
conjugate under G(Ē) ([Bor91], Theorem 20.9(iii)). But the transitiv-
ity of G(F̄ ) on H(F̄ ) yields the same over Ē, implying the conjugacy
of the stabilizers. Therefore the stabilizers of any two E-points of H
are conjugate under G(E), and the points are then in the same G(E)-
orbit. These extra hypotheses on G and H are in fact satisfied in the
situations below where we apply the above theorem (see the proofs of
Theorems 4.2 and 5.1); but we will not need to use this fact.

4. Quadratic forms

In this section we prove our results on quadratic forms. We do this
by reducing to a local problem, using the local-global principle in The-
orem 3.7. For generalities concerning quadratic forms, we refer the
reader to [Lam05] and [Grv02].

Let F be a field of characteristic unequal to 2. Recall that by the
Witt decomposition theorem ([Lam05], I.4.1), every quadratic form q
over F may be decomposed as an orthogonal sum qt ⊥ qa ⊥ qh, where
qt is totally isotropic, qa is anisotropic, and qh is hyperbolic (or zero).
All factors are uniquely determined up to isometry. Here qr := qa ⊥ qh
is regular (i.e. non-degenerate); and the qt factor does not occur if q is
regular. The Witt index iW (q) of q is 1

2
dim qh; if q is regular this is

the same as the dimension of any maximal totally isotropic subspace
([Grv02], pp. 41-42). Since char(F ) 6= 2, every quadratic form over F
is isometric to a diagonal form a1x

2
1 + · · ·+ anx

2
n, which is denoted by

〈a1, . . . , an〉. If E is a field containing F , then qE denotes the form q
viewed as a quadratic form over E.

Remark 4.1
If q is a regular quadratic form over a field F of characteristic unequal
to 2, then the special orthogonal group SO(q) of isometries of q of
determinant 1 is a rational connected linear algebraic group. More
generally, let A be a finite dimensional central simple F -algebra with
an involution ι (i.e. an anti-automorphism of order 2), and let G = {a ∈
A× | ι(a) = a−1}. Then the classical Cayley map a 7→ (1− a)(1 + a)−1

defines a birational isomorphism from the connected component G◦ to
the F -linear subspace of A consisting of the ι-skew symmetric elements
of A ([KMRT98], p. 201, Exercise 9); thus G◦ is rational.
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Theorem 4.2
In the context of Notation 3.5, suppose q is a quadratic form over F of
dimension unequal to two, such that qFξ

is isotropic for each ξ ∈ P∪U.
Then q is isotropic.

Proof. If the dimension of q is one, then each qFξ
is totally isotropic,

and hence not regular. Thus neither is q, and the conclusion follows in
this case.

Now suppose n := dim q ≥ 3. By Witt decomposition, we may write
q = qt ⊥ qr, where qr is regular and qt is totally isotropic. If qt 6= 0
then q is isotropic and there is nothing to show. Therefore, we may
assume that q (and hence each qFξ

) is regular.
Let H be the projective quadric hypersurface defined by q. Observe

that O(q) acts transitively on the points of the F -variety H (see the
definition before Theorem 3.7). To see this, let L be a field extension
of F , and let ξ1, ξ2 ∈ H(L). These points correspond to lines W1,W2

through the origin in An
L that are totally isotropic with respect to qL;

and hence any isomorphism f : W1 → W2 as L-vector spaces is an
isometry. By Witt’s extension theorem ([Grv02], Theorem 5.2), such
an f extends to an isometry of An

L taking W1 to W2. That is, some
element of the orthogonal group O(q)(L) carries ξ1 to ξ2. Hence O(q)
acts transitively on the points of H.

Since n ≥ 3, the quadric hypersurface H is connected. Therefore,
the special orthogonal group SO(q), which is the connected component
of O(q), also acts transitively on the points of H. By Remark 4.1, the
group SO(q) is rational. Since SO(q) acts transitively on the points of
H, Theorem 3.7 implies that H(F ) is non-empty provided that each
H(Fξ) is. That is, if each qFξ

is isotropic then so is q. �

We note that in the above proof, the transitivity of SO(q) on the
points of H can also be proven by applying Remark 3.9. Namely,
SO(q) is connected and reductive, and the projective variety H is ho-
mogeneous for that group over F̄ (i.e., SO(q)(F̄ ) acts transitively on
H(F̄ )). So Remark 3.9 implies that SO(q) acts transitively on the
points of H.

The above result can be regarded as a Hasse-Minkowski theorem for
quadratic forms over the function field of a curve defined over a com-
plete discretely valued field. As a consequence, we obtain the following:

Corollary 4.3
In the context of Notation 3.5, suppose q is a regular quadratic form
over F . Then iW (q) ∈ {min(iW (qFξ

)),min(iW (qFξ
)) − 1}, where the
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minimum is taken over all ξ ∈ P ∪ U. Moreover the second case can
occur only if all qFξ

are hyperbolic.

Proof. We proceed by induction. If the dimension of q is one, then q
and qFξ

cannot contain a hyperbolic plane, and so the Witt indices are
all 0. If the dimension of q is two, and if any qFξ

is anisotropic, then so
is q; thus iW (q) = 0 = min(iW (qFξ

)). The remaining two-dimensional
case is when all qFξ

are hyperbolic, in which case min(iW (qFξ
)) = 1 and

iW (q) is equal to 1 or 0 depending on whether or not q is hyperbolic.
For the inductive step, consider a form q of dimension n ≥ 3 and

assume that the assertion holds for forms of dimension n − 2. We
may suppose that min(iW (qFξ

)) is nonzero (otherwise there is nothing
to show). In particular, each qFξ

is isotropic. Then by Theorem 4.2,
q is isotropic. By Witt decomposition, this implies that q ' h ⊥ q′

for some q′ and a hyperbolic plane h. Hence iW (q′) = iW (q) − 1 and
dim(q′) = n − 2. Moreover qFξ

' hFξ
⊥ q′Fξ

for all ξ. Thus qFξ

is hyperbolic if and only if q′Fξ
is, and iW (q′Fξ

) = iW (qFξ
) − 1. The

conclusion of the corollary thus holds for q′ and hence for q. �

We thank J.-L. Colliot-Thélène for bringing to our attention the
following example, which shows that Theorem 4.2 does not in general
hold in dimension two, and that the second case of Corollary 4.3 can
occur for forms that are hyperbolic over the fields Fξ.

Example 4.4
Let T be a complete discrete valuation ring with uniformizer t, fraction
field K, and residue field k of characteristic unequal to 2. Consider the
field F = K(x)[y]/(y2−x(x−1)(1−xt)), which is a degree two extension
of the function field K(x) of P1

T . The normalization X̂ of P1
T in F is

a normal projective T -curve that is equipped with a degree two finite
morphism f : X̂ → P1

T . The closed fiber X of X̂ is a rational k-curve
with a single node P , which is the unique point lying over the point at
infinity on P1

k; and the complement U of P in X is the inverse image of
the affine k-line. The general fiber of X̂ is an elliptic curve over K; this
is a Tate curve in the case that K is a p-adic field. With a = x(x− 1),
let X̂ ′ → X̂ be the unramified degree two cover with function field
F ′ := F [

√
a], and let q be the quadratic form 〈a,−1〉 over F . Then q

is anisotropic over F because a is not a square in F . But X̂ ′ → X̂ is
split over P and U and hence over the spectra of R̂P and R̂U . Hence
the two-dimensional form q becomes isotropic (and thus hyperbolic)
over FP and over FU . This shows that Theorem 4.2 does not always
hold for forms of dimension two. Moreover, the Witt indices iW (qP )
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and iW (qU) are equal to one, whereas that of the anisotropic form q is
equal to zero. Thus iW (q) can equal min(iW (qFξ

)) − 1 in the locally
hyperbolic case of Corollary 4.3.

Next, we consider a variant on Hensel’s Lemma.

Lemma 4.5
Let R be a ring and I an ideal such that R is I-adically complete. Let
X be an affine R-scheme with structure morphism φ : X → SpecR.
Let n ≥ 0. If sn : SpecR/In → X ×R (R/In) is a section of φn :=
φ×R (R/In) and its image lies in the smooth locus of φ, then sn may
be extended to a section of φ.

Proof. Write X = SpecS for some R-algebra S, with structure map
i : R → S. Let X ′ ⊆ X be the smooth locus of X over R, and
let φ′ be the restriction of φ to X ′. Since X ′ is smooth over R, it is
formally smooth over R (see [Gro67], Definition 17.3.1). That is, for
any m ≥ 1, any section sm : SpecR/Im → X ′ ×R (R/Im) of φ′m :=
φ′×R (R/Im) lifts to a section sm+1 : SpecR/Im+1 → X ′×R (R/Im+1)
of φ′m+1 := φ ×R (R/Im+1) (see [Gro67], Definition 17.1.1). Hence by
induction, there is a compatible system of sections sm : SpecR/Im →
X ′ ×R (R/Im) ⊆ X ×R (R/Im) of the maps φm, for m ≥ n, with each
sm in particular lifting sn. Here the morphism sm : SpecR/Im →
X ×R (R/Im) corresponds to a retract πm : S/ImS → R/Im of the
mod Im-reduction im : R/Im → S/ImS of i (i.e., πm ◦ im is the identity
on R/Im). Writing pm : S → S/ImS for the reduction modulo ImS,
we obtain a compatible system of maps πm ◦ pm : S → R/Im, which in
turn defines a map π : S → R given by their inverse limit (using that
R is I-adically complete). The map π is then a retract of i and thus
corresponds to a section of φ that extends sn. �

In fact, the above lemma holds even without the assumption that
X is affine over SpecR, by using Corollaire 5.1.8 and Théorème 5.4.1
of [Gro61] in place of the inverse system argument at the end of the
above proof. By citing the above lemma in that more general form, one
could use the projective hypersurface H of Theorem 4.2 rather than the
associated affine quadric Q in the proof of Proposition 4.8 below, and
one would not need to choose an affine open subset in the proof of
Proposition 5.2. The proof above, however, is more elementary.

In the context of Notation 3.5, assume that the residue field k of
T has characteristic unequal to 2. In particular, F does not have
characteristic 2. As a consequence, any quadratic form q over F may
be diagonalized.
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Definition 4.6
If q = 〈a1, . . . , an〉 is a regular diagonal quadratic form over a field F

as above, its singular divisor on X̂ is the sum of those prime divisors
on X̂ at which the divisor of some ai (viewed as a rational function on
X̂) has odd multiplicity.

Observe in the above definition that a change of variables x′i = cixi

with ci ∈ F× does not affect the singular divisor, since each ai is then
multiplied by a square. In particular, in the context of Notation 3.5,
for every ξ ∈ U ∪ P, there is such a change of variables taking q to
another diagonal form q′ = 〈a′1, . . . , a′n〉 with each a′i ∈ R̂ξ ∩F . Here q′
is isometric to the form q, and has the same singular divisor.

We recall the following standard result:

Lemma 4.7
Let S be a two-dimensional excellent normal scheme. Then there is a
birational morphism π : S ′ → S such that S ′ is regular. Moreover if D
is a divisor on S then we may choose π : S ′ → S such that the support
of π−1(D) has only normal crossings.

Proof. The first part of the assertion is resolution of singularities for
surfaces; see [Abh69] or [Lip75]. If π : S ′ → S is as in the first part,
then by [Lip75], page 193, there is a birational morphism S ′′ → S ′ of
regular surfaces for which the inverse image of D′ = π−1(D) is a normal
crossing divisor on S ′′. �

Recall from Definition 1.1 that the u-invariant of a field is the maxi-
mal dimension of anisotropic quadratic forms over the field. Below we
use Notation 3.3.

Proposition 4.8
Let X̂ be a regular projective T -curve with function field F and closed
fiber X. Let q be a regular diagonal quadratic form over F .

(a) Let X0 be an irreducible component of X, with function field
κ(X0). If dim q > 2u(κ(X0)) then qFU

is isotropic for some
Zariski dense affine open subset U ⊂ X0.

(b) Let P be a closed point of X with residue field κ(P ), and assume
that there are c components of the singular divisor of q that pass
through P . If dim q > 2cu(κ(P )) then qFP

is isotropic.

Proof. Write q = 〈a1, . . . , ad〉 with ai ∈ F . After a multiplicative
change of variables, we may assume that each ai lies in R̂U or R̂P

respectively.
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(a) Since X̂ is regular, the maximal ideal of the local ring at the
generic point η of X0 (which is a codimension one point of X̂) is prin-
cipal. So there is a Zariski affine open neighborhood SpecR ⊂ X̂ of
η whose closed fiber U is an affine open subset of X0 along which X
is regular, and such that the defining ideal of U in SpecR is principal,
say with generator t0 ∈ R ⊂ F . Thus t ∈ t0R.

Consider the principal divisor (a1 · · · ad) on X̂. Each of its compo-
nents other than X0 (which may or may not be a component of this
divisor) meets U at only finitely many points. After shrinking U by
deleting those points, we may assume that the restriction of this divi-
sor to Spec R̂U is either trivial or is supported along the closed fiber.
Thus q is isometric to a diagonal form over R̂U ∩ F whose entries are
each either units in R̂U or the product of t0 and a unit (since even
powers of t0 may be factored out). Therefore, over R̂U ∩ F , the form
q is isometric to q′ ⊥ t0q

′′, where q′, q′′ are diagonal forms all of whose
entries are units in R̂U . It suffices to show (possibly after shrinking U
again) that either q′ or q′′ is isotropic over FU , since then q′ ⊥ t0q

′′ and
hence q would be as well.

Since dim q = dim q′ + dim q′′, the assumption on dim q implies that
either q′ or q′′ has dimension e greater than u(κ(X0)). Let Q ⊂ AebRU

be the affine quadric cone defined by that subform and let Q′ ⊂ Q
be the complement of the origin. (Thus Q is the affine cone over the
projective quadric defined by that subform.) Since e > u(κ(X0)), it
follows that Q′(κ(X0)) 6= ∅. Therefore there is a rational section of
the affine morphism Q → SpecRU over U whose image lies on (the
closed fiber of) Q′. This rational section is defined as a morphism on a
dense open subset of U . Replacing U by that subset, we may assume
that this rational map is a section U → Q′ ⊂ Q of Q → Spec R̂U

over U . Now Q′ is the smooth locus of Q over R̂U , since the residue
characteristic of T is not 2, and since the quadratic form is diagonal
with unit coefficients. So by Lemma 4.5, the section over U lifts to a
section Spec R̂U → Q. This yields an FU -point of Q that is not the
origin (since its restriction to U is not). Hence either q′ or q′′ is isotropic
over FU , as desired.

(b) Since R̂P is regular and local, it is a unique factorization domain
([Eis95], Theorem 19.19). So the components Dj of the singular divisor
D that pass through P are the loci of irreducible elements rj ∈ R̂P ,
1 ≤ j ≤ c. After rescaling the variables we obtain an isometric form
q′ = 〈a′1, . . . , a′d〉 with the same singular divisor as q, such that each
a′i is of the form ui

∏
r

nij

j ∈ R̂P ∩ F for some units ui ∈ R̂×
P , where
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each nij = 0 or 1. For each c-tuple λ = (λ1, . . . , λc) ∈ {0, 1}c, let
S(λ) = {i |ni,j = λj for j = 1, . . . , c} and define qλ = ⊥

i∈S(λ)
ui. Let qλ

be the reduction of qλ modulo the maximal ideal of R̂P .
Since dim q > 2cu(κ(P )), at least one of the 2c forms qλ over κ(P )

has dimension e greater than u(κ(P )). Hence Q′(κ(X0)) 6= ∅, where
Q′ is the complement of the origin in the affine cone Q ⊂ AebRP

defined

by the form qλ. Since Q′ is the smooth locus of Q over R̂P , Lemma 4.5
lifts the κ(X0)-point of Q′ to a section Spec R̂P → Q. This yields an
FP -point of Q that is not the origin, thereby showing that qλ is isotropic
over FP . Thus so is (

∏
r

λj

j )qλ. Since (
∏
r

λj

j )qλ is a subform of q′, this
implies that q′ is isotropic as well. Hence so is the isometric form q. �

Lemma 4.9
Let T be a discrete valuation ring with fraction field K and residue
field k of characteristic unequal to 2. Then u(K) ≥ 2u(k) and us(K) ≥
2us(k).

Proof. Let t be a uniformizer of T , and hence of its completion T̂ . Let
q be an anisotropic form over k and let n be its dimension. Since the
characteristic of k is not 2, we may assume that q is diagonal. Let q̃
be a diagonal lift of q to T . By [Lam05], VI.1.9(2), q′ = q̃ ⊥ tq̃ is
anisotropic over K̂, the fraction field of T̂ . Hence q′ is also anisotropic
over K. This shows that if u(k) ≥ n then u(K) ≥ 2n; and that proves
the first assertion.

For the second assertion, let n = us(k) ∈ 1
2
Z. By definition of us,

there is either an anisotropic quadratic form q of dimension n ∈ Z
over a finite extension E of k, or an anisotropic quadratic form q of
dimension 2n ∈ Z over a finitely generated field extension E of k of
transcendence degree one. After replacing q by an isometric form, we
may assume in either situation that q is diagonal. We consider the
above two cases in turn.

In the former case, u(E) = n. Observe that there is a finite extension
L of K whose residue field is E. (Namely, we inductively reduce to
the case that E = k[a] for some a ∈ E, say with monic minimal
polynomial f(y) ∈ k[y]; and then take L = K[ã], where ã is a root of
some monic lift of f(y) to T [y].) By the first assertion of the lemma,
u(L) ≥ 2u(E) = 2n. But us(K) ≥ u(L). So us(K) ≥ 2n = 2us(k).

In the latter case, u(E) = 2n. Let {x} be a transcendence basis
for E over k. We may assume that E = k(x)[a] for some a ∈ E, say
with monic minimal polynomial f ∈ k[x, y] over k(x). Take a monic
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lift f̃ ∈ T [x, y] of f and let F be the fraction field of T [x, ã], where
ã is a root of f̃ . This is a field of transcendence degree one over K.
Taking the normalization of T [x] in F , we obtain a normal T -curve X̃
whose closed fiber X is irreducible and has function field E. Let ξ be
the generic point of X, and let R be the local ring of X̃ at ξ. Thus
R is a discrete valuation ring with fraction field F and residue field
E. By the first assertion of the lemma, u(F ) ≥ 2u(E) = 4n; and so
us(K) ≥ 2n = 2us(k). �

We now prove our main result about quadratic forms, in terms of
the strong u-invariant (see Definition 1.2).

Theorem 4.10
Let T be a complete discrete valuation ring having fraction field K and
residue field k, with char k 6= 2. Then us(K) = 2us(k).

Proof. By the second part of Lemma 4.9, us(K) ≥ 2us(k). It remains to
show that us(K) ≤ 2us(k). Write n = us(k), so every finite extension
of k has u-invariant at most n. By Springer’s theorem on nondyadic
complete discrete valuation fields (see [Lam05], VI.1.10 and XI.6.2(7)),
every finite extension of K has u-invariant at most 2n. To prove the
desired inequality, we must therefore show that every finitely generated
field extension of transcendence degree one over K has u-invariant at
most 4n. Let F be such a field extension, and let q be a quadratic form
over F of dimension > 4n. We wish to show that q is isotropic.

We may assume that q is regular, since otherwise it is trivially
isotropic. The characteristic of F is not 2, by the same property for k;
so there is a diagonal form over F that is isometric to q, and we may
replace q by that form. Let X̂1 be a normal projective model for F over
T , and let D1 be the singular divisor of q on X̂1 (see Definition 4.6).
By Lemma 4.7, there is a regular projective T -curve X̂ with function
field F , and a birational morphism π : X̂ → X̂1, such that π−1(D1) has
only normal crossings. The singular divisor D of q on X̂ is contained
in π−1(D1), and so it also has only normal crossings.

For each irreducible component X0 of the closed fiber X of X̂,
the function field κ(X0) has transcendence degree one over k; and so
u(κ(X0)) ≤ 2us(k) = 2n by the definition of us. Hence for each such
component, dim q > 4n ≥ 2u(κ(X0)); and thus by Proposition 4.8(a),
we may pick a Zariski dense affine open subset U0 ⊂ X0 such that qFU0

is isotropic. By [HH07], Proposition 6.6, there is a finite morphism
f : X̂ → P1

T such that f−1(∞) contains the (finitely many) points of
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X that do not lie in any of our chosen sets U0 (as X0 ranges over the
components of X), as well as containing all the closed points at which
distinct components of X meet. Under Notation 3.5, and by the choice
of f , each U ∈ U is contained in one of the above sets U0; hence FU

contains FU0 . Thus qFU
is isotropic for each U ∈ U. Meanwhile, since

the singular divisor of q has at most normal crossings, the number of
components of this divisor that pass through any closed point P ∈ X
is at most two. Since u(κ(P )) ≤ us(k) = n for each P , we have that
dim q > 4n ≥ 4u(κ(P )) ≥ 4. So by Proposition 4.8(b), qFP

is isotropic
for each P ∈ P. Therefore by Theorem 4.2, q is indeed isotropic. �

The above result generalizes from the complete case to the henselian
case. First we prove a lemma that relies on the Artin Approximation
Theorem ([Art69], Theorem 1.10).

Lemma 4.11
Let T be an excellent henselian discrete valuation ring, and let K̂ be
the completion of its fraction field K. Let E be a finitely generated
field extension of K having transcendence degree at most one, and
let X be a projective E-variety. Suppose that X(Ê) 6= ∅ for every
finitely generated field extension Ê of K̂ that contains E and satisfies
tr. deg. bK Ê = tr. deg.K E. Then X(E) 6= ∅.

Proof. Let t be a uniformizer of T . By hypothesis, X is a closed
subset of some Pn

E defined by homogeneous polynomials f1, . . . , fm ∈
E[z0, . . . , zn].

First consider the case that E is finite over K. After multiplying
the polynomials fi by some power of t, we may assume that each fi

lies in S[z0, . . . , zn], where S is the integral closure of T in E (this
being the valuation ring of E). Extend the valuation on K to E. Then
the completion Ê of E is finite over K̂ (and is the compositum of
its subfields K̂ and E); so by assumption, X has an Ê-point. After
multiplying a choice of coordinates of the point by some power of t,
we may assume that each coordinate āi lies in the valuation ring Ŝ of
Ê (where Ŝ is also the integral closure of T̂ in Ê). Thus we have a
solution (ā0, . . . , ān) ∈ Ŝn+1 of the polynomial equations f1 = · · · =
fm = 0, with not all āi equal to 0. So for some e > 0 and some
i0, the element āi0 ∈ Ŝ is not congruent to zero modulo teŜ. By the
Artin Approximation Theorem ([Art69], Theorem 1.10), there exists a
solution (a0, . . . , an) ∈ Sn+1 to the system f1 = · · · = fm = 0 such that
ai ≡ āi modulo teŜ. In particular, ai0 6= 0. Hence (a0, . . . , an) defines
an S-point of X, and X(E) 6= ∅.
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It remains to consider the case that E has transcendence degree one
over K. Thus E = K(x)[y1, . . . , yr]/(g1, . . . , gs), a finite extension of
K(x), for some polynomials gi ∈ T [x, y] defining a prime ideal I ⊂
T [x, y] that does not extend to the unit ideal in K(x)[y]. (Here for
short we write y for y1, . . . , yr. Below we also write g for g1, . . . , gs.)
Since K̂(x)[y] is faithfully flat over K(x)[y], the extension Î of I to
T̂ [x, y] does not induce the unit ideal in K̂(x)[y]. In particular, Î is a
proper ideal in T̂ [x, y].

We claim that Î is a prime ideal in T̂ [x, y]. For if it were not, then
there would exist c, d ∈ T̂ [x, y] r Î for which cd ∈ Î; i.e., cd =

∑
eigi

for some ei ∈ T̂ [x, y]. But then [Art69], Theorem 1.10, applied to the
coefficients of the elements c, d, ei, would produce a contradiction to I
being prime, which proves the claim.

Since Î = (g) is prime in T̂ [x, y], the ring Ê := K̂(x)[y]/(g) = E⊗KK̂

is a domain. But Ê is finite over the field K̂(x), since E is finite over
K(x); hence Ê is a field, and is the compositum of its subfields E and
K̂. Since Ê has transcendence degree one over K̂, by the hypothesis
there is an Ê-point of X; i.e. a solution (ā0, . . . , ān) ∈ Ên+1 to the
system f1 = · · · = fm = 0, with some āi0 6= 0. Lifting each āi to an
element of K̂(x)[y] and then multiplying by a non-zero element of T̂ [x],
we obtain elements âi ∈ T̂ [x, y] for i = 0, . . . , n, and elements bjh ∈
T̂ [x, y] for j = 1, . . . ,m and h = 1, . . . , s, such that fj(â0, . . . , ân) =∑

h bjhgh ∈ T̂ [x, y] for all j. Moreover âi0 6∈ Î ⊂ T̂ [x, y], and hence
for some e > 0 its image in (T̂ /teT̂ )[x, y] does not lie in the reduction
of Î. Applying [Art69], Theorem 1.10, to the coefficients of x and
y in âi, bjh, there exist a′i, b′jh ∈ T [x, y] that are congruent to âi, bjh
modulo te, such that fj(a

′
0, . . . , a

′
n) =

∑
h b

′
jhgh ∈ T [x, y] for all j. The

reductions of a′0, . . . , a′n modulo I then yield a solution (a0, . . . , an) ∈
(T [x, y]/I)n+1 ⊂ En+1 to the system f1 = · · · = fm = 0, with ai0 6= 0.
This solution then defines an E-point of X. �

Corollary 4.12
Let T be an excellent henselian discrete valuation ring with fraction
field K and with residue field k of characteristic unequal to 2. Then
us(K) = 2us(k).

Proof. Let K̂ be the completion of K; this is a complete discretely val-
ued field with residue field k. Thus us(K̂) = 2us(k) by Theorem 4.10.
Also, us(K) ≥ 2us(k) by the second part of Lemma 4.9. Thus to prove
the result it suffices to show that us(K) ≤ 2us(k).
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So let E be a finitely generated field extension of K having transcen-
dence degree ` ≤ 1, and let q be a quadratic form over E of dimension
n > 21+`us(k). We wish to show that q is isotropic over E. Let H be
the hypersurface in Pn−1

E defined by q (as in the proof of Theorem 4.2).
Now us(K̂) = 2us(k), and so n > 2`us(K̂). Hence over every finitely
generated field extension of K̂ having transcendence degree `, over
which q is defined (e.g. containing E), the form q is isotropic. Equiva-
lently, H has a rational point over each such field. So by Lemma 4.11,
H has a rational point over E; i.e. q is isotropic over E. �

Recall that k is a Cd-field if for all m ≥ 1 and n > md, every
homogeneous form of degree m in n variables over k has a non-trivial
solution in k. In particular, a Cd-field k satisfies u(k) ≤ 2d (by taking
m = 2). Moreover, every finite extension of k is also a Cd-field, and
every one-variable function field over k is a Cd+1-field ([Ser73], II.4.5).
Hence us(k) ≤ 2d for a Cd-field k.

Recall also that a field K is called an m-local field with residue field
k if there is a sequence of fields k0, . . . , km with k0 = k and km = K,
and such that ki is the fraction field of an excellent henselian discrete
valuation ring with residue field ki−1 for i = 1, . . . ,m. For K and k as
above, it follows by induction that a finite extension of K is an m-local
field whose residue field is a finite extension of k. Also note that if
char(k) 6= 2, us(K) = 2mus(k) by Theorem 4.12 and induction; and
so u(F ) ≤ 2m+1us(k) for any one-variable function field F over K, by
definition of us.

Corollary 4.13
Suppose that K is an m-local field whose residue field k is a Cd-field of
characteristic unequal to 2, and let F be a function field over K in one
variable.

(a) Then us(K) ≤ 2d+m and hence u(F ) ≤ 2d+m+1.
(b) If u(k) = 2d then u(K) = 2d+m. Moreover if some normal K-

curve with function field F has a K-point, then u(F ) = 2d+m+1.
(c) If u(k′) = 2d for every finite extension k′/k, then u(F ) =

2d+m+1.

Proof. (a) By the discussion preceding this result, us(K) = 2mus(k)
and u(F ) ≤ 2m+1us(k). But us(k) ≤ 2d since k is a Cd-field. So the
conclusion follows.

(b) Since k is a Cd-field with u(k) = 2d, we have that u(k) ≤ us(k) ≤
2d and so in fact all three quantities are equal. Applying Lemma 4.9 and
induction yields that u(K) ≥ 2mu(k) = 2d+m. But u(K) ≤ us(K) ≤
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2d+m by (a). So all these quantities are equal too, proving the first
assertion.

Now let X be a normal K-curve with function field F and let ξ be a
K-point on X. The local ring at ξ has fraction field F and residue field
K. So Lemma 4.9 implies that u(F ) ≥ 2u(K) = 2d+m+1. The reverse
inequality follows from part (a).

(c) The inequality u(F ) ≤ 2d+m+1 is given in part (a). To show the
reverse inequality, choose a normal (or equivalently, regular) K-curve
X having function field F , and choose a closed point ξ on X. Let R be
the local ring of X at ξ, with residue field κ(ξ). Then the fraction field
of R is F , and κ(ξ) is a finite extension of K. Hence κ(ξ) is an m-local
field whose residue field k′ is a finite extension of k. By hypothesis,
u(k′) = 2d; and k′ is a Cd-field since k is. So applying part (b) to k′
and κ(ξ), we find that u(κ(ξ)) = 2d+m. Lemma 4.9 now implies that
u(F ) ≥ 2d+m+1. �

For example, if k is a field of transcendence degree d over an alge-
braically closed field of characteristic unequal to 2, then k is a Cd-field
(theorem of Tsen-Lang, see [Ser73], II.4.5(b)). So u(F ) ≤ 2d+m+1 for
any one-variable function field F over an m-local field with residue
field k, by Corollary 4.13(a). This was known in the special case that
F is a one-variable function field over k((t)). Namely, in that situation,
k((t)) is a Cd+1-field by Theorem 2 of [Gre66]; so F is a Cd+2-field by
the theorem of Tsen-Lang cited above and hence u(F ) ≤ 2d+2.

As a special case of Corollary 4.13(b), the u-invariant of K(x) equals
2d+m+1 if K is an m-local field whose residue field is Cd, has u-invariant
2d, and does not have characteristic 2.

Corollary 4.14
Let F be a one-variable function field over an m-local field whose residue
field k has characteristic unequal to 2.

(a) If k is algebraically closed, then u(F ) = 2m+1.
(b) If k is a finite field, then u(F ) = 2m+2.

Proof. (a) This is a special case of Corollary 4.13(c), using that an
algebraically closed field k is C0, satisfies u(k) = 1, and has no non-
trivial finite extensions.

(b) A finite field k is C1 (by [Ser73], II.3.3(a)), and so u(k) ≤ 2 by the
comment before Corollary 4.13. But u(k) 6= 1 since the form x2 − cy2

is anisotropic for any non-square c ∈ k (using char k 6= 2). Hence
u(k) = 2. Since these properties hold for all finite fields of characteristic
not 2, the assertion is again a special case of Corollary 4.13(c). �
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From Corollary 4.14, we immediately obtain the following, which in
the case of Qp was recently shown by Parimala and Suresh ([PS07],
Theorem 4.6):

Corollary 4.15
Let p be an odd prime, and let K be a finite extension of Qp or of the
field of algebraic p-adic numbers (i.e. the algebraic closure of Q in Qp).
If F is a function field in one variable over K, then u(F ) = 8.

Proof. This is the case of Corollary 4.14(b) with k a finite field and
m = 1, taking the 1-local field to be a p-adic field. �

Note that the above corollary shows that u(F ) ≤ 8 even if K is not
a finite extension but merely algebraic.

As another example of Corollary 4.14(b), let K = Qp((t)) with p
odd, and let F be a one-variable function field over K. Then K is
2-local with finite residue field, and so u(F ) = 16.

We conclude this section by proving an analog of Theorem 4.10 for
function fields of patches. This is done by means of the following
lemma. We adhere to Notation 3.3.

Lemma 4.16
Let X̂ be a smooth connected projective curve over a complete discrete
valuation ring T and let F be its function field. Let n ≥ 0 and assume
that the residue characteristic of T does not divide n. Let U be a subset
of the closed fiber X and let P be a closed point of X̂. If a ∈ F×

U (resp.
a ∈ F×

P ) then there exists an a′ ∈ F and a unit u ∈ F×
U (resp. u ∈ F×

P )
such that a = a′un.

Proof. First consider the case that a ∈ F×
U . Since FU is the fraction

field of R̂U , we may write a = a1/a2 where a1, a2 ∈ R̂U and ai 6= 0. By
the Weierstrass Preparation Theorem for R̂U given in [HH07], Propo-
sition 4.7, the nonzero element ai ∈ R̂U may be written as a product
ai = bici with bi ∈ F× and ci ∈ R̂×

U for i = 1, 2. Let t be a uniformizer
of T . Then the reduction of ci modulo t is an element c̄i ∈ R̂U/tR̂U ,
the ring of rational functions on X that are regular at the points of
U . But this ring is also RU/tRU . So we may lift c̄i to an element
c′i ∈ RU ⊂ F . Here ci/c′i ∈ R̂×

U , and in fact ci/c′i ≡ 1 mod tR̂U . Now
the residue characteristic of T does not divide n, and 1 is an n-th root
of ci/c′i modulo t. Hence ci/c′i has a (non-zero) n-th root c′′i ∈ R̂U by
Hensel’s Lemma. Thus u := c′′1/c

′′
2 lies in F×

U , and a′ := b1c
′
1/b2c

′
2 lies
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in F . Since ai = bic
′
i(c

′′
i )

n, we have a = a1/a2 = a′un. This proves the
result in this case.

Next consider the case that a ∈ F×
P . Taking U = {P} in the previous

case, we are reduced to showing that every element a ∈ F×
P is of the

form a = a′un where a′ ∈ F×
{P} and u ∈ F×

P (because F{P} ⊂ FP ).
By the local Weierstrass Preparation Theorem for R̂P given in [HH07],
Proposition 5.6, we may write ai = bici for some bi ∈ F×

{P} and ci ∈
R̂×

P . (As noted in the proof of Theorem 3.4(3), our rings R̂{P} and
R̂P correspond to R̂ and R̂1 in [HH07], Section 5.) Let m be the
maximal ideal of R̂{P} and let m′ be the maximal ideal of R̂P . So
m′ = mR̂P . Let c̄i ∈ R̂×

P /m
′ be the reduction of ci modulo m′. The

inclusion R̂{P} ↪→ R̂P induces an isomorphism on the residue fields
R̂{P}/mR̂{P} → R̂P/m

′R̂P ; so we can regard c̄i ∈ R̂{P}/mR̂{P}, and we
can lift it to an element c′i ∈ R̂{P} ⊂ F{P}. Here c′i 6= 0 since c̄i 6= 0

(because ci ∈ R̂×
P ). So ci/c′i ∈ R̂×

P is congruent to 1 modulo tR̂P , and
so by Hensel’s Lemma is an n-th power of some non-zero c′′i ∈ R̂P .
Taking a′ = b1c

′
1/b2c

′
2 ∈ F×

{P} and u := c′′1/c
′′
2 ∈ R̂P ⊂ FP with u 6= 0

then yields the desired identity a = a′un. �

As a consequence of this lemma and Theorem 4.10, we obtain:

Corollary 4.17
Let T be a complete discrete valuation ring with uniformizer t, whose
residue field k is not of characteristic 2. Let X̂ be a smooth projective
T -curve with closed fiber X, and let ξ be a proper subset of X (resp.
a closed point of X). Then 4u(κ(Q)) ≤ u(Fξ) ≤ 4us(k) for any closed
point Q ∈ X (resp. for Q = ξ).

Proof. Let K be the fraction field of T and let E,F be the function
fields of X, X̂. Thus F is a one-variable function field over K. Let
k′ = κ(Q), and let I ⊂ R̂ξ be the ideal that defines the closed fiber X
locally.

For the first inequality, consider the case when ξ = U ⊂ X. The
local ring A of X at Q is a discrete valuation ring having residue field
k′ and fraction field E. Also, the localization of R̂U at the prime ideal I
is a discrete valuation ring having residue field E and fraction field FU .
Applying Lemma 4.9 to these two rings yields u(FU) ≥ 2u(E) ≥ 4u(k′),
as asserted. In the other case, when ξ = P ∈ X (in which case Q = P ),
if we replace the ring A by its completion Â, the field E by the fraction
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field Ê of Â, and R̂U , FU by R̂P , FP , then Lemma 4.9 similarly yields
u(FP ) ≥ 2u(Ê) ≥ 4u(k′).

For the second inequality, let q be a quadratic form over Fξ of di-
mension n > 4us(k). We wish to show that q is isotropic. Since the
characteristic of k and hence of Fξ is not 2, the form q is isometric to a
diagonal form a1x

2
1 + · · · anx

2
n with ai ∈ Fξ. By Lemma 4.16, ai = a′iu

2
i

for some a′i ∈ F and ui ∈ F×
ξ . So after rescaling xi by a factor of ui,

we obtain a form q′ = a′1x
2
1 + · · · + a′nx

2
n that is isometric to q, with

a′i ∈ F . The dimension of the F -form q′ is greater than 2us(K), since
us(K) = 2us(k) by Theorem 4.10. Therefore q′ is isotropic over F and
hence over Fξ. Thus so is q. �

Corollary 4.18
Under the hypotheses of Corollary 4.17, if k is algebraically closed (resp.
finite), then u(Fξ) = 4 (resp. 8).

Proof. Let k′ = κ(Q). In the algebraically closed case the result fol-
lows from Corollary 4.17 since k′ = k and u(k) = us(k) = 1. In
the finite case, k′ is also finite, and both k and k′ are C1-fields with
u-invariant equal to 2 (as noted in the proof of Corollary 4.14(b)).
Moreover us(k) = 2 since u(k) ≤ us(k) ≤ 2 for a C1-field. So the result
again follows from Corollary 4.17. �

For example, if k is algebraically closed (resp. finite), then the frac-
tion fields of k[[x, t]] and k[x][[t]] each have u-invariant equal to 4 (resp.
8). This follows by taking X̂ = P1

k[[t]] and taking ξ equal to the affine
line or one point. Similarly, taking X̂ = P1

Zp
with p 6= 2, we obtain

that the fraction field of Zp[[x]] has u-invariant 8, as does the fraction
field of the p-adic completion of Zp[x]. The above corollary can also be
applied to other smooth projective curves; but by restricting attention
to the line we may weaken the above hypotheses on k:

Corollary 4.19
Let T be a complete discrete valuation ring with uniformizer t, whose
residue field k has characteristic unequal to 2 and satisfies u(k) = us(k).
Then the fraction fields of T [[x]] and of the t-adic completion of T [x]
have u-invariant equal to 4u(k).

Proof. This is immediate from Corollary 4.17, by taking X̂ = P 1
T ; tak-

ing U = A1
T and P to be the point x = t = 0 in the respective cases;

and taking Q to be the rational point x = t = 0 in both cases. �
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In particular, if k is any field with u(k) = us(k), the field k((x, t))
has u-invariant equal to 4u(k). For example, if k is a Cd-field with
u(k) = 2d, then k((x, t)) has u-invariant equal to 2d+2. This is because
2d = u(k) ≤ us(k) ≤ 2d, using that k is Cd. (Here, as above, we assume
char(k) 6= 2.)

5. Central simple algebras

This section contains our results on central simple algebras. As in the
previous section, we use Theorem 3.7 to reduce to a local problem. For
basic notions concerning central simple algebras, we refer the reader
to [Sal99] and [Pie82]. In particular, we recall that the index of a
central simple F -algebra A can be characterized as the degree of a
minimal splitting field for A, i.e. a field extension E/F such that A
splits over E in the sense that A⊗F E is a matrix algebra over F .

The notion of a central simple algebra over a field generalizes to that
of an Azumaya algebra over a commutative ring; see [Sal99], Chapter 2,
or [Gro68], Part I, Section 1. If A is an Azumaya algebra of degree n
over a domain R, and 1 ≤ i < n, there is a functorially associated
smooth projective R-scheme SBi(A), called the i-th generalized Severi-
Brauer variety of A (see [VdB88], p. 334, and [See99], Theorem 3.6;
their notation is a bit different). For each R-algebra S, the S-points
of SBi(A) are in bijection with the right ideals of AS := A ⊗R S that
are direct summands of the S-module AS having dimension (i.e. S-
rank) ni. If R is a field F , so that A is a central simple F -algebra,
and if E/F is a field extension, then SBi(A)(E) 6= ∅ if and only if
ind(AE) divides i ([KMRT98], Proposition 1.17). Here AE

∼= Matm(∆)
for some E-division algebra ∆ and some m ≥ 1, and the right ideals
of E-dimension ni are in natural bijection with the subspaces of ∆m of
∆-dimension i/ ind(AE) ([KMRT98], Proposition 1.12, Definition 1.9).
Thus, writingD for the F -division algebra in the class ofA, the F -linear
algebraic group GL1(A) = GLm(D) acts transitively on the points of
the F -scheme SBi(A) (recall the definition given prior to Theorem 3.7).

We now place ourselves in the context of Section 3.

Theorem 5.1
Under Notation 3.3 and 3.5, let A be a central simple F -algebra. Then
ind(A) = lcmξ∈P∪U ind(AFξ

).

Proof. Let n be the degree of A, and let D be the F -division algebra
in the class of A. Then GL1(A) = GLm(D) is a Zariski open subset
of An2

F (because multiplication in D is given by polynomials over F );
so it is a rational connected linear algebraic group. As noted above,
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if 1 ≤ i < n then GL1(A) acts transitively on the points of SBi(A);
and if E is a field extension of F , then SBi(A)(E) 6= ∅ if and only if
ind(AE) divides i. So Theorem 3.7 implies that ind(A)|i if and only
if ind(AFξ

)|i for each ξ ∈ P ∪ U. Thus ind(A) = lcmξ∈P∪U ind(AFξ
) as

claimed. �

Before proving our results about the period-index problem for central
simple algebras, we recall the notion of ramification for such algebras.
Consider an integrally closed Noetherian domain R with fraction field
E, the function field of Y = SpecR. For a codimension one irre-
ducible subvariety Z ⊂ Y with function field κ(Z), and an integer n
not divisible by the characteristic of κ(Z), there is a canonically defined
ramification map (or residue map)

ramZ : Br(E)[n] → H1(κ(Z),Z/nZ)

on the n-torsion part of the Brauer group (see [COP02], §2, or [Sal99],
pp. 67-68; here we identify Z/nZ with 1

n
Z/Z ⊆ Q/Z). An element

of H1(κ(Z),Z/nZ) determines a cyclic Galois field extension L/κ(Z)
with a specified generator σ of Gal(L/κ(Z)) whose order divides n. For
a given class α ∈ Br(E)[n] there are only finitely many codimension
one subvarieties Z ⊂ Y for which ramZ(α) is nonzero. We call the
reduced closed subscheme supported on the union of these varieties Z
the ramification divisor of α (or of an algebra in its class). By [Sal99],
Theorem 10.3, and [Gro68], Part II, Proposition 2.3, if R is regular of
dimension at most 2 and n is prime to the characteristics of all the
residue fields κ(Z), then

(∗) 0 → Br(R)[n] // Br(E)[n]
⊕Z ramZ //

⊕
Z H

1(κ(Z),Z/nZ)

is an exact sequence of abelian groups. An n-torsion element of Br(E)
is unramified if its ramification divisor is trivial; i.e. if its image under
⊕Z ramZ is zero. By the exact sequence (∗), this is equivalent to saying
that this element of Br(E) is induced by an n-torsion element of Br(R).

Recall (from the introduction) that we say that a field k is separably
closed away from p if its absolute Galois group is a pro-p group. By
[Sha72], III.1, Proposition 16, this is equivalent to the condition that
cdq(k) = 0 for all primes q 6= p. By [Ser73], II.4.1, Proposition 11,
if q 6= char(k) the condition cdq(k) = 0 implies that cdq(K) = d for
any function field K of transcendence degree d over k. This in turn
implies that there is no non-trivial prime-to-char(k) torsion in Br(K),
for any finitely generated field K over k of transcendence degree ≤ 1,
by applying [Ser73], II.2.3, Proposition 4, to such a field K, and using
that Br(K) = H2(K,Gm). Recall also that the Brauer dimension of k
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(resp. away from p) is defined to be 0 if k is separably closed (away from
p), and that otherwise it is the smallest positive integer d such that for
every finitely generated field extension E/k of transcendence degree
` ≤ 1, and every central simple E-algebra A (resp. with p 6 | per(A)), we
have ind(A)| per(A)d+`−1.

Proposition 5.2
Let T be a complete discrete valuation ring with residue field k, let X̂
be a regular projective T -curve with function field F and let X be its
closed fiber. Let A be a central simple F -algebra whose period n is not
divisible by char(k). Let d ≥ 0. Suppose that k has Brauer dimension at
most d away from char(k). Under Notation 3.3 we have the following:

(a) Let X0 be an irreducible component of X. Then ind(AFU
) di-

vides nd+1 for some Zariski dense affine open subset U ⊂ X0.
(b) Let P be a closed point of X, and assume that the ramification

divisor of A has at most a normal crossing singularity at P .
If the period q of AFP

is a prime number unequal to char(k),
and FP contains a primitive q-th root of unity, then ind(AFP

)
divides qd+1.

Proof. (a) As in the proof of Proposition 4.8(a), there is an affine Zariski
open neighborhood SpecR ⊂ X̂ of the generic point of X0 whose closed
fiber U is an affine open subset ofX0 along whichX is regular, and such
that the defining ideal of U in SpecR is principal, say with generator
t0 ∈ R ⊂ F . Let D be the ramification divisor of A in X̂. After shrink-
ing U , we may assume that the ramification divisor of A on Spec R̂U

is either trivial or is the divisor of t0 and that ramU([A]) corresponds
to an étale cyclic Galois cover U ′ → U with Galois generator σ. By
[Gro71], I, Corollaire 8.4, we may lift U ′ → U to obtain an étale Galois
cover Û ′ → Spec(R̂U), which necessarily has the same (cyclic) Galois
group. Let L̂/FU be the corresponding cyclic field extension and σ̂ the
lift of σ to L̂. Let B be the cyclic FU -algebra (L̂, σ̂, t0), of degree divid-
ing n (see, for example, [Sal99], p.7). Thus B is unramified away from
t0 on R̂U ; and it follows from [Sal99], Lemma 10.2, that the cyclic cover
of U and Galois generator that are associated to B agree with those
associated to A (i.e. U ′ and σ). Let C = AFU

⊗FU
Bop, where Bop is

the opposite algebra. Notice that the period of C divides n since those
of AFU

and Bop do. Since [Bop] = −[B] and the ramification map is a
group homomorphism, the central simple algebra C is unramified over
R̂U .
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Suppose that ind(CFV
)|nd for some dense open subset V ⊆ U . Since

AFV
is Brauer equivalent to (C⊗FU

B)FV
, and since ind(B)| deg(B)|n, it

would then follow that ind(AFV
)| ind(CFV

) ind(B)|nd+1. So to complete
the proof of (a) it suffices to show that ind(CFV

)|nd for some V .
Since the class of C in the Brauer group is unramified over FU , the

exact sequence of ramification (∗) yields an Azumaya algebra C over
R̂U with per(C) = per(C) and such that CFU

is Brauer equivalent to
C. Since per(C) divides n, the central simple algebra Cκ(U) has period
dividing n (here κ(U) is the function field of U). By assumption on the
residue field k, ind(Cκ(U))| per(Cκ(U))

d|nd =: i for d > 0. In fact, the
same holds if d = 0 since in that case, per(Cκ(U)) = 1 by the comments
before the proposition (using char(k) 6 |n).

Let m be the degree of C over R̂U . By tensoring C with a matrix
algebra, we may assume that m > i. We may therefore consider the
i-th generalized Severi-Brauer R̂U -scheme SBi(C). As noted before the
statement of Theorem 5.1, the fact that ind(Cκ(U))|i implies the exis-
tence of a κ(U)-rational point on SBi(Cκ(U)); or equivalently on SBi(C),
by functoriality of SBi. Hence the morphism π : SBi(C) → Spec R̂U

has a section Spec(κ(U)) → SBi(C) over Spec(κ(U)), the generic point
of the closed fiber U of Spec(R̂U). Choose a Zariski dense open subset
V ⊆ U such that this section over Spec(κ(U)) extends to a section over
V , and such that the image of this latter section lies in an open subset
of SBi(C) that is affine over R̂U . Then by Lemma 4.5, the section over
V lifts to a section over Spec(R̂V ). Thus we obtain an FV -point of
SBi(C); or equivalently, of SBi(CFV

). Consequently, the central simple
FV -algebra CFV

has index dividing i = nd. But CFV
is Brauer equiva-

lent to CFV
, since CFU

is Brauer equivalent to C. Hence ind(CFV
) also

divides nd, as desired.
(b) By our assumptions, R̂P is a complete regular local ring whose

fraction field contains a primitive q-th root of unity; and AFP
is a central

simple algebra whose period is q and whose ramification divisor has at
most a normal crossing at P . Therefore [Sal07], Theorem 2.1, applies.
In particular, AFP

is Brauer equivalent to B⊗C, where the class of C is
unramified over R̂P and the index of B divides q2. Namely, the above-
mentioned theorem asserts that B is either a symbol algebra of index
dividing q or the product of at most two such symbol algebras, each of
which determines a cyclic extension of the residue field at a branch of
the ramification divisor at P . That same theorem says that the case of
two symbol algebras occurs only if the cyclic field extension associated
to one of the symbols is unramified at P (and is of degree prime to
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char(k)). If d = 0, this cyclic extension would have trivial residue field
extension at P by the assumption on k, and would therefore be trivial.
So in fact the index of B divides q if d = 0. That is, in general the
index of B divides q1+e, where e = 0 if d = 0 and e = 1 if d > 0.

As in the proof of part (a), we may find an Azumaya algebra C

over R̂P such that CFP
is Brauer equivalent to C. By tensoring with

a matrix algebra of suitable size, we may assume that the degree of C

is greater than qd−e (with e as above). By the hypothesis on k, the
algebra Ck has index dividing i := qd−e (again using the comments
before the proposition, in the case d = 0, to get per(Ck) = 1 and
hence ind(Ck) = 1). Thus we obtain a section Spec k → SBi(C) of
SBi(C) → Spec R̂P over Spec k whose image lies in (the closed fiber of)
an affine open subset of SBi(C). Since SBi(C) → Spec R̂P is smooth
and R̂P is complete with residue field k, we may apply Lemma 4.5 to
this affine open subset and obtain a section Spec R̂P → SBi(C). This
in turn gives an FP -point of SBi(C), or equivalently an FP -point of
SBi(CFP

). In particular, we find that the index of CFP
divides i = qd−e.

But CFP
is Brauer equivalent to C. Since A ∼= B⊗C we therefore find

ind(A)| ind(B) ind(C)|q1+eqd−e = qd+1

as desired. �

Before using the above proposition to show our main result on Brauer
dimension (Theorem 5.5), we prove two lemmas.

Lemma 5.3
Let K be a complete discretely valued field, and suppose that α ∈ Br(K)
has period n, prime to the residue characteristic of K. Let L be a totally
ramified extension of K of degree n. Then αL ∈ Br(L) is unramified.

Proof. Let k be the common residue field of K and L. By [Sal99],
Theorem 10.4, the ramification maps for K and L (with respect to the
maximal ideals of the corresponding complete discrete valuation rings)
form a commutative diagram

Br(K)

res

��

ram // H1(k,Q/Z)

n

��
Br(L)

ram // H1(k,Q/Z),

where the left hand vertical map is induced by restriction (in Galois
cohomology), and the right hand vertical map is induced by multipli-
cation by n. Since α has order n in the group Br(K), its image in the
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lower right hand H1(k,Q/Z) is zero. Hence αL ∈ Br(L) is unrami-
fied. �

Lemma 5.4
Suppose K is a complete discretely valued field with residue field k and
valuation ring T . Let α ∈ Br(T ). Then ind(αK) = ind(αk).

Proof. Let A be an Azumaya algebra in the class of α, and let n be the
degree of A over T (which is also the degree of AK over K, and of Ak

over k). For 1 ≤ i < n, we have a commutative diagram of schemes

SBi(AK) //

πK

��

SBi(A)

π

��

SBi(Ak)oo

πk

��
Spec(K) // Spec(T ) Spec(k),oo

where SBi is the i-th generalized Severi-Brauer variety. Since π is a
proper morphism, by the valuative criterion for properness it follows
that any section of πK may be uniquely extended to a section of π.
Since π is a smooth morphism, it has a section if and only if πk does,
by Hensel’s lemma. This implies that πk has a section if and only if
πK has a section. But there is a K-point on SBi(AK) if and only if the
index of AK divides i, and similarly for k. So ind(αK)|i if and only if
ind(αk)|i. Therefore ind(αk) = ind(αK) as desired. �

Theorem 5.5
Let K be a complete discretely valued field whose valuation ring T has
residue field k. Suppose k has Brauer dimension d ≥ 0 away from
char(k). Then K has Brauer dimension at most d + 1 away from
char(k).

Proof. Let A be central simple algebra over a finitely generated field
extension F of K having transcendence degree ` ≤ 1, and assume that
p := char(k) ≥ 0 does not divide n := per(A). We wish to show that
ind(A) divides per(A)d+`. Let α ∈ Br(F ) be the class of A.

We begin by considering the case of ` = 0; i.e., F is a finite exten-
sion of K, whose residue field k′ is a finite extension of k. If d ≥ 1,
let L be a totally ramified extension of F of degree n = per(α).
Thus αL is unramified by Lemma 5.3. Equivalently, by the exact
sequence (∗) before the statement of Proposition 5.2, αL is induced
by an element αS in Br(S), where S is the valuation ring of L. By
Lemma 5.4, ind(αL) = ind(αk′), where αk′ ∈ Br(k′) is the class induced
by αS. The hypothesis on k implies that ind(αk′) | per(αk′)d−1. But
ind(α) |n ind(αL), by [Pie82], Proposition 13.4(v), since n = [L : F ].
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Also, per(αk′) | per(αS) = per(αL), since αk′ is induced by αS. So
ind(αL) | per(αL)d−1 and

ind(α) |n ind(αL) |n per(αL)d−1 |n per(α)d−1 = per(α)d,

as desired.
On the other hand, if d = 0, then k is separably closed away from

p, and so has no cyclic field extensions of degree prime to p. Thus
H1(k,Z/nZ) is trivial and α is unramified. So α is induced by an
element αR ∈ Br(R), where R is the valuation ring of F . Let αk

be the induced element of Br(k). Then ind(α) = ind(αk) = 1 by
Lemma 5.4 and the fact that Br(k) has no n-torsion (as noted before
Proposition 5.2). So ind(α) | per(α)d holds trivially. This concludes
the proof in the case ` = 0.

We now turn to the case ` = 1; i.e., F is a finitely generated field
extension of K having transcendence degree one. Write n =

∏m
i=1 q

ri
i ,

where the qi are distinct primes unequal to p and each ri ≥ 1. Since
α has order n in the abelian group Br(F ), we may write α = α1 +
· · · + αm, where αi is qi-power torsion. Here per(α) =

∏
i per(αi)

because the qi are pairwise relatively prime. Since the index of a tensor
product of algebras divides the product of the indices, it follows that
ind(α)|

∏
i ind(αi); so without loss of generality, we may assume that

m = 1 and that ind(α) is a power of a prime q. Since per(α)| ind(α),
the period of α is also a power of q, say n = qr.

Consider first the case r = 1, so that per(A) = q. Since char(F ) 6= q,
the extension F (ζq)/F , where ζq is a primitive q-th root of unity, is
an extension of F of degree dividing q − 1. Since this is prime to q,
we find ind(A) = ind(A ⊗F F (ζq)) and per(A) = per(A ⊗F F (ζq)),
by [Pie82], Propositions 13.4(vi) and 14.4b(v). Since F (ζq) is still a
finitely generated extension of K of transcendence degree 1, we may
therefore assume without loss of generality that ζq ∈ F .

Observe (as in the proof of Theorem 4.10) that there is a regular
projective T -curve X̂ with function field F such that the ramification
divisor D of A on X̂ has only normal crossings. Namely, let X̂1 be a
normal projective model for F over T , and let D1 be the ramification
divisor of A on X̂1. By Lemma 4.7, there is a regular projective T -
curve X̂ with function field F , and a birational morphism π : X̂ → X̂1,
such that π−1(D1) has only normal crossings. The ramification divisor
D of A on X̂ is contained in π−1(D1), and so it also has only normal
crossings.

By Proposition 5.2(a), for each irreducible component X0 of the
closed fiber X of X̂, there is a Zariski dense affine open subset U0 ⊂ X0
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such that AFU0
has index dividing qd+1. Let S be the (finite) set of

points of X that do not lie in any of our chosen sets U0 (as X0 ranges
over the components of X), together with all the closed points at which
distinct components of X meet. By [HH07], Proposition 6.6, there is
a finite morphism f : X̂ → P1

T such that S ⊆ P := f−1(∞). Under
Notation 3.5, and by the choice of f , each U ∈ U is contained in one
of the above sets U0; hence FU contains FU0 . Thus each AFU

has in-
dex dividing qd+1. Meanwhile, since the ramification divisor of A has
at most normal crossings, by Proposition 5.2(b) we also have that the
index of AFP

divides qd+1 for P ∈ P. Therefore ind(A) divides qd+1 by
Theorem 5.1, and the result is proven in this case.

We now consider the general case per(A) = qr by induction on r.
Choose an algebra B in the class qr−1[A]. Since B has period q, it
has index dividing qd+1 (by the first part of the proof for the case
` = 1). Consequently, B has a splitting field L whose degree over
F divides qd+1. Since L is a finitely generated field extension of K
of transcendence degree 1, and A ⊗F L has period dividing qr−1 (by
definition of L), it follows by induction that A⊗F L has index dividing
(qr−1)d+1. Hence A ⊗F L has a splitting field L′ whose degree over L
divides (qr−1)d+1. Therefore L′/F is a splitting field of A of degree
dividing (qr)d+1, and the proof is complete. �

As in the quadratic form case, the main theorem generalizes to a
result about henselian discrete valuation rings.

Corollary 5.6
Let T be an excellent henselian discrete valuation ring having fraction
field K and residue field k. Let d ≥ 0. Suppose that k has Brauer
dimension d away from char(k). Then K has Brauer dimension at
most d+ 1 away from char(k).

Proof. We wish to show that if E is a finitely generated field extension
of K of transcendence degree ` ≤ 1, and if the period of a central simple
E-algebra A is not divisible by char(k), then ind(A) | per(A)d+`−1 =: i.
Equivalently, we wish to show that there is an E-point on the general-
ized Severi-Brauer variety SBi(A).

The completion T̂ of T is a complete discrete valuation ring with
residue field k. Hence by Theorem 5.5, the Brauer dimension of its
fraction field K̂ is at most d+1 away from char(k). So for every finitely
generated field extension L of K̂ of transcendence degree ` over which
A is defined (e.g. containing E), the index of AL divides per(AL)d+`−1

and hence divides i = per(A)d+`−1. Thus SBi(A) has a rational point
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over every such field L. So by Lemma 4.11, SBi(A) has a rational point
over E. �

Recall the definition of an m-local field given in Section 4.

Corollary 5.7
Let K be an m-local field with residue field k, for some m ≥ 1. Let
d ≥ 0, and suppose that k has Brauer dimension d away from char(k).
Then K has Brauer dimension at most d+m away from char(k).

Proof. This follows from Corollary 5.6 and induction. �

In particular, if k is separably closed away from char(k), and F is
a one-variable function field over an m-local field with residue field k,
then ind(α) | per(α)m for any α ∈ Br(F ) of period not divisible by
char(k). The above result also has the following consequence:

Corollary 5.8
Let K be an m-local field with residue field k and let F be a one-variable
function field over K, where k is either

(a) a finite field; or
(b) the function field of a curve over a separably closed field k0.

Then ind(α) | per(α)m (resp. ind(α) | per(α)m+1) for every element in
the Brauer group of K (resp. of F ) of period not divisible by char(k).

Proof. (a) By Wedderburn’s Theorem, Br(k′) is trivial for every finite
extension k′ of k. Moreover, period equals index in the Brauer group of
any one-dimensional function field over k (see [Rei75], Theorem 32.19).
So the Brauer dimension of k is 1, and the conclusion follows from
Corollary 5.7.

(b) Let p = char(k0) = char(k) ≥ 0. As noted before Proposition 5.2,
since k0 is separably closed there is no non-trivial prime-to-p torsion in
Br(k). Moreover, if E is a one-variable function field over k, then E is
the function field of a surface over k0; and hence period equals index
for elements of prime-to-p period in Br(E), by the main theorem of
[deJ04]. Thus the Brauer dimension of k is 1, and the assertion again
follows from Corollary 5.7. �

As an example of Corollary 5.8(b), ind(α) | per(α)2 for any element
α in the Brauer group of C(x)((t))(y). Also, as a special case of part (a)
of the above result, we have the following analog of Corollary 4.15 that
was first proven by Saltman [Sal97]:
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Corollary 5.9
Let p be a prime, and let K be a finite extension of Qp or of the field of
algebraic p-adic numbers (i.e. the algebraic closure of Q in Qp). If F
is a function field in one variable over K and the period of α ∈ Br(F )
is not divisible by p, then ind(α) divides per(α)2.

As another example of Corollary 5.8(a) (taking m = 2), the field
K = Qp((t)) satisfies the relation ind(α) | per(α)2 for α ∈ Br(K) of
period prime to p, and the field F = Qp((t))(x) satisfies the relation
ind(α) | per(α)3 for α ∈ Br(F ) of period prime to p.

In parallel with the quadratic form situation, Theorem 5.5 has an
analog for the function fields of patches. Namely, using Lemma 4.16
and Theorem 5.5 we prove

Corollary 5.10
Let T be a complete discrete valuation ring with residue field k of char-
acteristic p ≥ 0. Let X̂ be a smooth projective T -curve with closed fiber
X, and let ξ be either a subset of X or a closed point of X. Suppose
that k has Brauer dimension d. Then for all α in Br(Fξ) with period
not divisible by p, we have ind(α) | per(α)d+2. Moreover if T contains
a primitive per(α)-th root of unity, then ind(α) | per(α)d+1.

Proof. As in the proof of Theorem 5.5 in the case ` = 1, by considering
the prime factorization of per(α) we reduce to the case that per(α) is
a prime power, say qr.

Let T ′ = T [ζqr ], where ζe denotes a primitive e-th root of unity. Let
X̂ ′ = X̂ ×T T

′, with function field F ′ = FT ′, and let ξ′ = ξ ×T T
′

in X̂ ′. Then Fξ′ = FξT
′ = Fξ(ζqr), where Fξ′ is as in Notation 3.3

with respect to the curve X̂ ′. Consider the intermediate field Fξ(ζq).
The degree [Fξ(ζq) : Fξ] divides q − 1 and s := [Fξ′ : Fξ(ζq)] divides
qr−1. Let α′ ∈ Br(Fξ′) and α′′ ∈ Br(Fξ(ζq)) be the elements induced by
α ∈ Br(Fξ). Since [Fξ(ζq) : Fξ] is prime to the period of α, the period
and index of α′′ are equal to those of α ([Pie82], Propositions 13.4(vi)
and 14.4b(v)). By [Pie82], Proposition 13.4(v), s ind(α′) is divisible by
ind(α′′) = ind(α).

Since Fξ′ contains ζqr , by [MS82] the element α′ ∈ Br(Fξ′) is rep-
resented by a tensor product (a1, b1)qr ⊗ · · · ⊗ (am, bm)qr of sym-
bol algebras, where each ai, bi ∈ Fξ′ . Applying Lemma 4.16 to the
smooth projective T ′-curve X̂ ′, we may write ai = a′iu

qr

i and bi =

b′iv
qr

i for a′i, b′i ∈ F ′ and ui, vi ∈ Fξ′ . Thus (ai, bi)qr is Brauer equiv-
alent to (a′i, b

′
i)qr . So if we consider the central simple F ′-algebra

A = (a′1, b
′
1)qr ⊗ · · · ⊗ (a′m, b

′
m)qr , then the class of A ⊗F ′ Fξ′ is α′.
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By Theorem 5.5, ind(A) | per(A)d+1. But ind(α) divides s ind(α′) and
hence s ind(A); and per(A) divides qr = per(α), since per(ai, bi)qr | qr.
So ind(α) | s per(α)d+1.

Since s divides qr−1, this shows that ind(α) | per(α)d+2. In the case
that T (and hence Fξ) contains a primitive qr-th root of unity, s = 1
and so ind(α) | per(α)d+1. �

Corollary 5.11
Under the hypotheses of Corollary 5.10, if k is separably closed, then
per(α) = ind(α) for elements in Br(Fξ) of period not divisible by the
characteristic of k.

Proof. Since the characteristic of k does not divide per(α), it follows
that k contains a primitive per(α)-th root of unity. Moreover k has
Brauer dimension zero. So ind(α) divides per(α) by Corollary 5.10.
But per(α) divides ind(α); so the result follows. �

In particular, if k is separably closed, then period equals index for
elements of period not divisible by char(k) in the Brauer groups of the
fraction fields of k[[x, t]] and k[x][[t]]. Similarly, let Zur

p be the maximal
unramified extension of Zp. The residue field of Zur

p is the algebraically
closed field F̄p, and so the fraction fields of Zur

p [[x]] and of the p-adic
completion of Zur

p [x] each have the property that period equals index
for elements in their Brauer group having period prime to p.

Remark 5.12
(a) The proof of Corollary 5.10 actually shows more: that the index

of α ∈ Br(Fξ) divides [Fξ(ζn) : Fξ(ζρ(n))]n
d+1, where n = per(α) and

where ρ(n) denotes the product of the distinct primes that divide n
(each taken with multiplicity one). In particular, the index of α in
Br(Fξ) divides per(α)d+2/ρ(per(α)).

(b) We suspect that actually ind(α)| per(α)d+1 in Corollary 5.10,
even without the assumption on roots of unity. Perhaps this could be
shown by paralleling the proof of Theorem 5.5 with F replaced by Fξ.
But doing this would require generalizations of previous results here
and in [HH07].

Remark 5.12(a) shows that Corollary 5.11 can be strengthened to
include the case that k is separably closed away from p = char(k). To
see this, first note for any integer n, the degree [Fξ(ζn) : Fξ(ζρ(n))] is
divisible only by primes that divide n. Now let α be an element of
Br(Fξ) whose period n is not divisible by p. Then the above degree is
prime to p. But k is separably closed away from p. So in fact this degree
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is equal to 1. Since the Brauer dimension d of k is zero, Remark 5.12(a)
then shows that ind(α) divides (and hence is equal to) n = per(α).
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