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Abstract We introduce the condition of a profinite group being seraefrwhich is
more general than being free and more restrictive than lepiagi-free. In particular,
every projective semi-free profinite group is free. We pritza the usual permanence
properties of free groups carry over to semi-free groupsndJthis, we conclude
that if k is a separably closed field, then many field extensiong(efy)) have free
absolute Galois groups.

Keywords Free profinite groupsemi-free profinite groupabsolute Galois groups

Mathematics Subject Classification (2000)12E30- 12F10- 20E18- 14H30

1 Introduction and results

A central problem is Galois theory is to understand the altedbalois groups of
fields, and a key aspect is to find fields with free absolute Galmups. For example,
if C is an algebraically closed field, thégqy= C(x) is such a field. This was proved
for C = C by Douady; and in the general case by Pop [19] and the thittoa{®],

with another proof later by Jarden and the second authof [&].major conjecture in
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this context, Shafarevich’s conjecture, asserts that #ndmmal abelian extensiop®
of the rational number® has a free absolute Galois group.

In [11], the third author and K. Stevenson suggest a strdtagyroving the free-
ness of a profinite group: breaking the argument into two Empeces, viz. quasi-
freeness and projectivity. This strategy was carried oytLdj in the context of a
two-variable Laurent series field = k((x, y)). For any base fiel#, the absolute Ga-
lois group GalK) is quasi-free [11], though it is not free since it is not pajve.
In [10] the third author proves that the commutator subgmfgpquasi-free group is
quasi-free, and hence GKRP) is quasi-free. Now, if in additiok is separably closed,
then GalK??) is also projective. Therefore GHIE) is free, for suctk. This can be
viewed as an analog of Shafarevich’s conjecture.

In the above situation, it is key that the commutator subgrotia quasi-free
group is quasi-free. This leads to the question of when adissbgroup of a quasi-
free group is quasi-free, particularly in the case of priyecsubgroups. Since closed
subgroups inherit projectivity, this question generaiige corresponding classical
guestion about free subgroups of a free profinite group. Aigdamswer is given in
[23], where Ribes, Stevenson, and Zalesskii prove that an spbgroup of a quasi-
free group is quasi-free.

The classical question — when is a closed subgroup of a freepgitself free
— has been dealt with in numerous papers, e.g. [5,13, 15816l the second author
has used twisted wreath products in [5] to attack this qoestNot only does this
approach reprove many of the previously known results, toalsb proves the so-
called ‘Diamond Theorem’ (see [4, Theorem 25.4.3]):

Theorem Let F be a free profinite group of infinite rank m. Let N, be normal
subgroups of F and let M be a subgroup of F such thattW, < M but M; £ M
and M, £ M. Then M is free of rank m.

I
M, M M>

N7

M1 N M,

(The diagram

suggests the name Diamond Theorem.) Recently the firstigoitbeed this theorem
for finitem > 2 [2].

It would thus be desirable to carry over this and other peenee properties of
free profinite groups to the class of quasi-free profinitauge However, our meth-
ods seem to work well only after a slight modification of theiow: We say that a
profinite group of infinite ranknis semi-freaf every nontrivial finite split embedding
problem for it hagn independentroper solutions. (See Section 2 below.)

The modified notion is in some ways more natural. First we have

a. free groups are semi-free (Theorem 3.6),



b. semi-free groups are quasi-free, but not vice-versg@iton 6.1), and
c. the absolute Galois group kf(x, y)) is semi-free (Theorem 7.1).

Moreover, we are able to prove the following theorem (whes®ed/I corresponds
to the Diamond Theorem above). Also, as Example 6.5 belowshaot all of these
properties hold for the class of quasi-free groups.

Main Theorem Let F be a semi-free profinite group of infinite rank m and let& b
a closed subgroup of F. Then, in each of the following casegtbup M is semi-free
of rank m.

I. (F: M) < oco.
Il. F/M is finitely generated, whem® = (", M? is the normal core of M.
Il. weight(F/M) < m (the definition of weight is recalled at Section 5.1.5).
IV. M is a proper subgroup of finite index of a closed normalgsobp of F.
V. Misnormalin F, and FM is abelian.
VI. There exist closed normal subgroupg,M, of F such that M n M, < M but
M; £ Mand M, £ M.
VII. M contains a closed normal subgroup N of F such thatlks pronilpotent and
(F : M) is divisible by at least two primes.
VIIIl. M is sparse in F (see Definition 5.1).
IX. (F: M) =[] p“P, wherea(p) < c for all p.

The proof of Main Theorem is in Section 5.

This theorem gives rise to new constructions of fields hafreg absolute Galois
groups; see Section 8. One of them generalizes the coristrudtfields with free
absolute Galois groups discussed above in the second pplegf the introduction.
Another was provided by Jarden, using ideas of Pop.

We conclude the introduction with some ideas of the prooé gbal is to prove
thatM is semi-free, i.e. that an arbitrary finite split embeddingigemé&; for M has
many independent proper solutions. We know thiats a subgroup of a semi-free
groupF, so we wish to transfer the solvability problemRoThe first thing we do is
to induce a split embedding probletnfor F with the property that a weak solution
of & induces a weak solution #8; (see Proposition 4.6 for the exact definition of
&). The embedding probler@ is constructed using twisted wreath producfsee
Definition 4.1).

Now & has many independent proper solutions bec&uisesemi-free. Each one
of these proper solutions, sgyinduces a solution of &;. (Herev = o y|u, Where
n is the Shapiro map; see Definition 3.2.) We encounter tviicdities: (1)v is not
necessarily @roper solution; (2) for two distinct proper solutiong # ¢, of & we
may get that; = v,.

We extract from [5] a condition under whichremains a proper solution. This
settles the first diiculty. To treat (2), we use that fact that in our situatign,y
are not only distinct, but also independent. Hence the inadgg x y, is also a
wreath product (Lemma 4.4). This fact leads us to gener#tigenvork in [5], and
find a necessary conditions for any two independent propetieosy 1, ¥, to induce
independent proper solutions, v, as needed foM to be semi-free. See Proposi-
tion 4.6 b.



Note that this strategy does not apply to the correspondivigipm for quasi-free
groups, where the distinct proper solutions for a split etalieg problem need not
be independent, and since the imageajefx y, for distinct solutions/,, ¥, of &
need not be a twisted wreath product in the absence of indeper. By avoiding
this difficulty, our focus on semi-free groups permits us to show tlatynsubgroups
of semi-free groups are semi-free (and in particular gfragl}; and that if such a
subgroup is also projective then it is free (see Theorem 3.6)

2 Independent subgroups and solutions of embedding probles

Definition 2.1 Let F be a profinite group.
a. Open subgroupdy, ..., M, of F areF-independentif

(F:( M) =] ]F: m).
i=1

If My,..., M, are normal irF, this is equivalent to

n

ﬂ ~ ﬁF/M.

b. A family M of open subgroups df is F-independentif every finite subset of
M is F-independent.

The notion ofF-independence coincides with independence with respeabieto
Haar probability measure dn [4, Section 18.3]. There is also the following equiva-
lent characterization of independence: Open subgrblps. ., M, areF-independent
if and only if F acts transitively o ][, F/M;. This criterion can be used to obtain
alternative short proofs of parts ¢ and d in Proposition 2/2.

A key example of independence occurs in the case of a Galdisdigension
L/K.If F = Gal(L/K) andLg,..., L, are the fixed fields o4, ..., M, in L, then by
the Galois correspondenddy, ..., M, areF-independent if and only iE4,..., L,
are linearly disjoint oveK.

The following properties can be either proven directly odwaeed from the cor-
responding properties of linear disjointness of fields:

Proposition 2.2 Let My, ..., M, be open subgroups of a profinite group F.

a. (F 1Ly M) < TTL(F © M),

b. Let M < N; < F. Then M, M, are F-independent if and only if fN\M, are
F-independentand MN; N M, are Ny-independent.

c. The subgroups M.. Mn are F-independent if and only if M..., M,_; are
F-independent anm L M;, M, are F- -independent.

d. LetM < N; < Ffor eachl <i<n.If My,..., M, are F-independent, then so
are N, ..., N

e. Suppose M« F. Then M, M; are F-independent if and only if E M1 M.



Proof (a) This follows by induction from the case= 2, which is standard.
(b) First assum&;, M, areF-independent. Then, sincBl{ N Mz : My N M) <
(N1 : M;) we have
. _ (F Min Mz) _ (F . Ml)(F . Mz)
(F ' NlnMZ)_ (NlﬁMzi MlﬁMg) B (NlﬁMzi MlﬁMg)
(F : N1)(Nz : My)(F : Mp)
= > (F : N)(F : My).
(Nl NMy: M N Mz) - ( l)( 2)
Therefore equality holds by (a), ald, M, areF-independent. Similarly, sincé\{ :
N1 N My) < (F : M2) we have

(F :Mi1n Mg) _ (F : M]_)(F : Mg)
(F . Nl) (F . Nl)
> (N]_ : M]_)(N]_ N1 N Mg),

(N1 : M1Nn (N2 Mp)) =

so M, N; N My areN;-independent by (a). Conversely,
(F Min Mz) = (F . Nl)(Nl M1n (N]_ N Mz)) = (F . Ml)(Nl NN Mz)

_ . (F N1 N Mg) _ . .

(c) By part (a),
n n-1 n
(Fo( M) < (F: [\ M)(F: M) < [ [(F: M.
i=1 i=1 i=1

So F : NL M) = TIL,.(F : M) if and only if the above two inequalities are
equalities, and the assertion follows.
(d) Since (); Mi : Ni N) < TT;(Mi : Ny) we have

e YU GREAL\ VR I [(GRED -
(F . O NI) - (ﬂl Mi ()i Ni) = Hi(Mi . Ni) B ITI(F ’ N')’

so equality holds by (a).
(e) We have ;M5 : M) = (M2 : M1 N My). Thus

(F : My)(F : Mg) = (F : MiM2)(Mz : M1 N M2)(F @ Mp)
= (F : MiM2)(F : M1 N My).

O

Recall that arembedding problemfor a profinite groug is a pair of epimor-
phisms of profinite groups

(¢p: F > G,a: H-G). (1)

The embedding problem is calldahite if H andG are finite. It is calledsplit (re-
spectivelynontrivial ) if  splits (respectively is not an isomorphism). We abbreviate
finite split embedding problem’ and write ‘FSEP’. @weak) solutionfor an embed-
ding problem is a homomorphispn F — H with @ oy = ¢. A solution is said to be
proper if it is surjective.



Definition 2.3 We call solutions of a finite embedding problem {idlependentif
their kernels are Kerindependent.

We now introduce a criterion for the independence of propart®ns of finite
embedding problems in terms of fiber products of groups.

Let{ai: Hi —» G| i € I} be a family of epimorphisms of profinite groups. Their
fiber product with respect to the;’s is defined by

><GHi ={he ]_[ Hil ai(hi) = o;j(hy) Vi, j € 1},

(Hereh; = h(i) is the value oh ati.) This is a closed subgroup §f Hi, hence a profi-
nite group. The projection on theh coordinate, pr X g Hi — Hj, is surjective. The
fiber product is equipped with a canonical epimorphignz a; o pr;: X Hi — G,
which is independent dfe I.

In particular, ifl is a finite set, say = {1,..., n}, then

X Hi=Hixg - xgHy={(hy,-- . hn) € [ [ Hil aalhe) = -+ = an(hi)).
Fiber products are associative:

Lemma 2.4 Leta;: Hi — Go,i =1,...,n,andB: G — Gg be epimorphisms of finite
groups. Then the natural map<g, Hi) Xe, G — Xg(Hi Xg, G) is an isomorphism.

Proof An element in {Xg, Hi) g, G is of the form (f, ..., hy), g), where the ele-
mentsh; € H; andg € G all have the same image @y. An element inX s (H; Xg, G)
is of the form (b1, 0) ..., (hy, 9)), for such elementl; € H; andg € G, because the
fiber productis taken ov&. The map thattakesty, . .., h,),g)to ((h1,9) ..., (hn, 9))
is clearly an isomorphism. O

A key property, in our setting, of fiber products is that sosy; of embedding
problems ¢: F — G,a;: Hi — G), i € I, induce a canonical solutiog! = [] i,
of the embedding problenp( F — G,a': X Hi — G). More precisely,' (x))i =
Yi(X) for eachx € F; e.g., if| = {1,...,n}, theny'(X) = (Y1(X)," -, ¥n(X)). We
obtain the original solutions via the projection on the clhiates, i.ey; = pr, o ¢/
for eachi € 1. In particular, taking= = G andy = id, we see that if all the;'s split,
so doesy'.

Given a single epimorphism: H — G and a sel, we write H'G for the fiber
productX s Hi, whereH; = H ande; = « for eachi € I.

Lemma 2.5 Letl beasetandlef = (¢: F — G,a: H — G) be a finite embedding
problem for a profinite group F. P@&' = (¢: F — G,a': H}; — G). Then solutions
{yi}ier OF & are independent and proper if and only if the solutign= [] y; of &' is
proper.

Proof We first assume thatis finite,| = {1,..., n}. Ifone of they;’s is not surjective,
theny' is not surjective. Hence, we may assume ihat .., ¥, are surjective. Let
K = Kerp andM; = Keny;, i = 1,...,n. By the definition ofy' we have Kep' =
NiLy Mi. SincelHg| = [HI"/IGI™, we get thaty' is surjective if and only if  :
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LMD = HYIGML But F @ N M) = (F @ KY(K @ N, M) = [GI(K :
NL; Mi); hencey! is surjective if and only if K : O, M) = [H"/IG" = [T, (K :
M;), as desired.

In the general caslel('3 is the inverse limit oHé, whereJ runs through the finite
subsets of and the epimorphisms’: H'G - Hé are given by the restriction of
coordinates from to J. Obviously,y” = 77 o !, for eachJ. Hencey' is proper if
and only if ally”’s are proper. By the first paragraph of this proof this hagpeand
only if they;’s are independent and proper. |

3 Semi-free profinite groups

Definition 3.1 A profinite groupF is quasi-freeif there exists an infinite cardinal
m such that every nontrivial FSEP férhas exactlym distinct proper solutions (see
[10,11,23]). By [23, Lemma 1.2] such a group is of rank

In the following definition we give a stronger variant of qisfigeness.

Definition 3.2 A profinite groupF is semi-freé" if it is a profinite group of infinite
rankm and every nontrivial FSEP fdf hasm independent proper solutions.

Remark 3.3Definition of semi-free finitely generated profinite groupnémight
consider saying that a group of finite rankm is semi-free if every FSEP fadFf
has a proper solution. But this condition wileverbe satisfied, sincé cannot sur-
ject onto finite groups that have rank greater thafi.e. that cannot be generated by
m or fewer elements). As an alternative, one might say thabamf of rankm is
semi-free if every FSERy( F — G,a: H — G) is properly solvablg@rovidedthat
H has rank at mogn (this condition onH being automatic ifm is infinite). Form
finite, this condition would imply that any finite grolh generated byn elements is
a quotient ofF (takingG = 1). But thenF is free [4, Lemma 17.7.1]. Thus a finitely
generated profinite group is semi-free (in this sense) ifamd if it is free. For this
reason, we restrict our attention to groups of infinite rank.

Remark 3.4In Definition 3.2, it would sffice to assume just that rafikis at most
m. More precisely, leF be a profinite group and let be an infinite cardinal. Assume
that rankF < mand every nontrivial FSEP fétr hasmindependent proper solutions.
Then rankF = m, and thug is semi-free.

Indeed, consider any nontrivial FSEP and{l¢t | i < m} a set of independent
proper solutions. Then Ker # Kery; for all i # j. This implies thaF has at leasin
open subgroups, the siitery; | i < m}, and hence rank > m (see [4, Proposition
17.1.2]). Therefore rank = m, as needed.

Clearly, every semi-free group is quasi-free. One mighpeasthat the opposite
is also true. Ifm = X, then for both notions it gtices to have one proper solution of
any nontrivial FSEP (see the lemma below), and hence theggaiigalent. Ifm > N,
then there are quasi-free groups that are not semi-free ddtp@ne the discussion of
this to Section 6.

1 aterm coined by Moshe Jarden as an alternative to “strongigiefree”, which we initially used.



Lemma 3.5 Let F be a countably generated profinite group. Then F is dezei-of
rank X if and only if every FSEP for F is properly solvable.

Proof Let & = (¢o: F — G,a0: H — G) be a nontrivial FSEP. For each integer
n>0,letan1: HY — Hg‘l be the projection map. Inductively, we can find solutions
¢n: F — HE of the FSEP

En=(pn-1:G— Hg‘l, an-1: HE — Hg_l).

Theng := lim ¢n: G — Hg is surjective. Lemma 2.5 implies the existenceXgfin-
dependent proper solutions, and thus semi-free. O

We extend [11, Theorem 2.1]:

Theorem 3.6 Let F be a profinite group of infinite rank m. The following cdiwhs
are equivalent:

a. Fisfree.
b. F is semi-free and projective.
c. Fis quasi-free and projective.

Proof We show that (a}> (b). Let&E = (¢: F — G, a: H — G) be a nontrivial finite
embedding problem fdE. Fix a setl of cardinalitym. Let H('3 be the corresponding
fiber product; let pr. H('3 — H be the projection on thieth coordinate, for eache I;
and lete! = @ o7 H('3 — G be the canonical epimorphism.

SinceF is free of rankm and since ranl&ﬂg) < m, we have a proper solution
vy F — H('3 of the embedding problempy( F — G, a: H('3 — G) [22, Theo-
rem 3.5.9]. Puy; = mj oy for eachi € |. Then, by Lemma 2.5, solutior{gi}ic
of & are independent and proper. &ss nontrivial, they are distinct.

Implication (b)= (c) is trivial and (¢c)= (a) is [11, Theorem 2.1]. O

From technical point of view, it is preferable to work withet sfpairwiseproper
solutions of a FSEP instead of independent set of solutidhs. following result
shows that it is possible.

Proposition 3.7 Let M be an infinite family of pairwise F-independent open normal
subgroups of a profinite group F. The¥l contains an F-independent subfamiy,
of cardinality| M.

Proof By Zorn’s Lemma there is a maximBtindependent subfamily1y of M. We
have to show thdiMo| = |M|. Assume the contrary; that igylo| < IM|.

Let M; be the family of all finite intersections of the elementsAdf. If Mg is
finite, then so isMy; if Mg is infinite, thenMy| = [Myl. In particular| M| < |M.
The groups inM; are open inF. Let M, be the family of all open subgroups Bf
containing a group itM;. Again, if My is finite, then so is\y; if M is infinite, then
IMa| = |My]. In particular)My| < IM].

For every proper subgroug of F there exists at most ond € M such that
M < N. Indeed, ifM1, My € M are distinct, theM1 M, = F, by Proposition 2.2(e),



and hence we cannot hay, M, < N < F. Since|Ms| < IM|, there existdM € M
such that

M < Ne M, onlyfor N=F. *)

We claim thatMg U {M} is F-independent. (This will produce the desired contradic-
tion to the maximality ofMy.) Thus we have to show, for distinbty, ..., M, € Mo,
thatM;, ..., My, M areF-independent.

PutN = N, M;. By Proposition 2.2(c) it slices to show thaM, N are F-
independent. By constructioN, € M;. HenceMN € M,. SinceM < MN, by (*),
MN = F. Hence, by Proposition 2.2(e}, N areF-independent. O

Corollary 3.8 Let m be an infinite cardinal and let F be a profinite group of kan
at most m. Then F is semi-free of rank m if and only if everymaat FSEP has m
pairwise independent proper solutions.

4 Finite split embedding problems and twisted wreath produts

We follow [5] and establish the connection between FSEPdwistied wreath prod-
ucts.

Definition 4.1 (Twisted wreath product) Let A, Go < G be finite groups with a
(right) action ofGg on A. Write Ino@O(A) for all functionsf: G — A such that

f(or) = (o) for all o € G andr € Gy with component wise multiplication. Then
Indg (A) = AGC) andG acts on Ing (A) by

f7(p) = f(op), o,peG,fe Indgo(A).

The twisted wreath product, Awrg, G, is defined to be the semidirect product of
Indgo(A) andG, i.e. Awrg, G = Indgo(A) = G. Here and belowy : Awrg,G — G
denotes the canonical projectidi- — o (see [4, Definition 13.7.1]). Similarly,
ap : A= Gy — Gp denotes the canonical projectian- — o of the semidirect
product.

There is an epimorphisny: Indgo(A) — Adefined byrg(f) = f(1). It extends to
an epimorphismr : Indgo(A)xGo — AxGg defined byfr +— f(1)rfor f e Indgo(A)
andr € Gy, sinceng(f7) = f7(1) = f(r) = f(1)" = no(f)" forall f € Inng(A) and
T € Go. We callr the Shapiro map of Awrg, G.

Remark 4.2 a. If G = Gg in Definition 4.1, therAwrg, G = A< G.
b. See [21], where a related notion, known as a permutatiwredth product, is
used in a similar context.

The following technical result will be needed later.

Lemma 4.3 Under the above notation, let B 771(Gg). Then B is a subgroup of
Awrg, G of index(G : Gp)|Al. If A # 1, then B does not contalndgo(A).
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Proof As the Shapiro map is surjective, (In@O(A) = Gg : B) = |Al. Thus the index
of Bin Awrg, Gis (G : Go)lAl.

If A+ 1,thereisf e Indgo(A) such thatf(1) # 1; thenn(f) ¢ Go, and hence
f ¢ B. O

Lemma 4.4 Consider groups H= A wrg, G, fori=1,...,n. Then G acts on[] A,
componentwise anX s Hi = ([T A) wrg, G.

Proof We have
X Hi = {((f10),.... (o)) | fi € I (A), o € G},
([ [A)wre, G = ((fu..... f)| fi € IndE (). o€ G),
and the isomorphism is given l§¢f10), ..., (fao)) = (f1, ..., fa)o. O

Lemma 4.5 Letp: F — G be an epimorphism of a profinite group F onto a finite
group G. Let M be a closed subgroup of F, lei & ¢(M) < G, and assume thatds
acts on a finite group A. Consider the FSEP

80(A) = ((le: M — Go,a’o: A > GO - Go),
and lety be a solution of the corresponding FSEP
EA) =(¢p: F > G,a: Awrg,G — G),

with notation as in Definition 4.1. Letbe the Shapiro map ofvrg, G. Theny(M) <
Indg (A) = Go andxr o Y|y is a solution ofEe(A).

Proof We havey(M) < o Y(Go) = Indgo(A) = Go. Thusx o Y|y is defined. Let
a Indgo(A) = Gg — Gg be the restriction of. From the commutativity of

M
y \L4P|M

Indg (A) < Gp ———Go

T 4
AXGO

we havexg o o Y|y = ¢lum, i.€.7 o Y]y is a solution. m]

Although the solutionr o |y in the preceding lemma need not be proper, even if
Y is proper, the proof of [4, Proposition 25.4.1] shows thater some assumptions
on M, the properness af does imply the properness ofo y|m. Moreover, ifF is
a free profinite group of infinite rankn, that proof produces a family ah distinct
proper solutions 0Eq(A). We generalize this in part b of the following proposition,
where we consider proper solutions that are not just distiut in fact independent.

Proposition 4.6 Let M < F be profinite groups, let A5; be finite groups together
with an action of G on A, and let

81(A) = (/J: M — Gl,a/li A > Gl - Gl)
be a FSEP for M. Let DFg, L be subgroups of F such that
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(2a) D is an open normal subgroup of F with MD < Kery,
(2b) Fqis an open subgroup of F with M Fo < MD,
(2c¢) L is an open normal subgroup of F with4 Fo n D.

PutG=F/L, Gy = Fo/L < G, and lety: F — G be the quotient map.
a. Then there is an epimorphism: Gy — G3, through which an action of gon A
is defined, such that every weak solutipof the FSEP
EA) =(¢: F > G,a: Awrg, G — G)

induces a weak solution = p o o Y|y of E1(A). Herer is the Shapiro map of
Awrg, G andp: Ax Gy — Ax G; is the extension af; by the identity of A.

b. Letne N. Assume that there is a closed normal subgroup N of F withM N L
such that there is no nontrivial quotieAt of A" through which the action of &
on A" descends and for which the FSEP

(2: F/N - G,a: Awrg, G — G), (3)

whereg is the quotient map, is properly solvable. Then any n inddpahproper
solutionsy of E(A) induce n independent proper solutionsf E1(A).

M Fo MD —F
|
kelrp ‘ ‘
MND—FoNnD—D

N—MnL——L

Proof (a) We can exteng to a mapMD — G; by md — u(m) forall m e M
andd € D. Its restriction toFq is an epimorphisnp;: Fo — G;. It decomposes as
1 = @10 g, Wherepg: Fg — G is the restriction of to Fg andy; : Gog — Gy is an
epimorphism. (Here we use that kg, = L < D < Kery; to obtaing;.) Let Gg act
on Avia ¢;. Then we have the following commutative diagram

Fo——F

AxGy —25 Go|—= G

P1
P\L ¢1

AxG; —> Gy,

wherep is given byplg, = ¢1 andpla = ida. By Lemma 4.5 o y|u is a (not
necessarily proper) solution &5(A) : (eolm: M — G, ag: A= Gg — Gp). Hence
v = p omoyly is asolution ofE1(A).

(b) Let{y;} , be a family of independent proper solutionsi¢h). Let 1< i < n,
and lety; = p oo yi|m be the induced solution &1 (A), as in (a). It skices to show
that eachy; is proper and the familyy;}7! , is independent.
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By Lemma 4.4, Awrg, G) = A"wrg, G. So by Lemma 2.5/, ..., yn define a
proper solutiony: F — A"wrg, G, of

EAM) = (¢: F - G,a: A"wrg, G — G).

Applying Lemma 4.5, withA" playing the role ofA there, we getthat=p’ o 7’ o ¢
is a solution of
81(An) = (/1: M- Gl,a/]_Z A" x4 G]_ - Gl).

(Herep’ andn’ are defined as andr with A" replacingA.) By Part C of [4, Proposi-
tion 25.4.1] (again, withA" replacingA), 7’ (¢(N)) = A". Butv(N) = p’ (7' (¢(N))) =
o' (A") = A" ThereforeA" < v(M), and thusy is a proper solution oE;(A"). As
v = [1¥i, we get thaty = []vi. Consequentlyys, ..., v, are independent proper
solutions (Lemma 2.5). O

Corollary 4.7 (cf. [4, Proposition 25.4.1])Let F be a semi-free profinite group of
infinite rank m and let M be a closed subgroup of F. Assume tivag\fery open
normal subgroup D of F there exist L ang Bs in(2b),(2¢) of Proposition 4.6, and
there exists N F with N < M n L such that no FSEP

(¢: F/N - F/L,a: Awrg,, F/L — F/L),

where A is a nontrivial finite group on whichyAL acts and where is the quotient
map, is properly solvable.
Then M is semi-free of rank m.

Proof By [4, Corollary 17.1.4], rank{l) < rank(F) = m. Let &1(A) be a FSEP as in
Proposition 4.6. Chood@ as in (2a) of Proposition 4.6. Withy, L, N be as above, let
&E(A) be as in Proposition 4.6. Sinéeis quasi-free of rankn, there exists a family

of independent proper solution 8{A) of cardinalitym. This in turn induces a family

N of solutions of&1(A) (Lemma 4.5). The hypotheses of Proposition 4.6 hold by
the assumptions of the present corollary. Therefore foryepesitive integen and

for every non-trivial quotienf of A", the embedding problem (3) of Proposition 4.6
has no proper solution. Henag,...,¥, € ¥ inducevy,...,v, € N which are
independent and proper. Therefdveis a family of independent proper solutions of
cardinalitym. O

5 Semi-free subgroups

5.1 Proof of Main Theorem

Let F be semi-free of ranknand letM < F.

5.1.1 Case |

Assume thaM is open inF. We apply Corollary 4.7. Given an op&nxF, we take an
openL<F with L < MND. Then forFy = M andN = L, there are no proper solutions

of the embedding problem appearing in Corollary 4.7, sintsean isomorphism and
a is not. ThereforeM is semi-free.
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5.1.2 Case ll

Assume thaf/M is finitely generated, wher®l = ,.r M is the normal core of
MinF.

We apply Proposition 4.6. L&1(A) = (u: M —» G, a1: AxGy — G;) be a
nontrivial FSEP foM. Let D be an open normal subgroup®fwith M N D < Keru.
Let Fo = MD andN = M n D. ThenF/N is finitely generated (as an open subgroup
of F/M x F/D). Thus,F has only finitely many open subgroups containhaf
index at most = (F : D)|Aj%. Their intersectionl,, is an open normal subgroup Bf
containingN and contained iD.

Now, forn = 2, the embedding problem (3), i.e.

(p: F/N - F/L,a: Awrg, F/L — F/L),

for any nontrivial quotientA of AZ, has no proper solution. Indeed, assume there
exists a proper solutiosr: F/N — Awrg,, F/L of (3). By Lemma 4.3 there is a
subgroupB of H = Awrg,. F/L of index H : B) = (F : Fo)lAl < r that does not
contain Ker. In particular, { : B) > (H : BKera) = (F/L : o(B)). Write y~%(B) as
K/N, for someN < K < F. Then F : K) = (F/N : K/N) = (H : B) <r, and hence

L < K.Asg =a oy, we haveK/L = o(K/N) = a(y(K/N)) = a(B). Therefore

(H:B)=(F:K)=(F/L:K/L) = (F/L: a(B)) < (H : B),

a contradiction.

SinceF is semi-free, there exists a familif of independent, and in particular
pairwise independent, proper solutions of the nontrividEP E(A) = (¢: F —
F/L,a: Awrg,, F/L — F/L) suchthat?| = m. By Proposition 4.6(b) witm = 2, ¥
induces a familyV of pairwise independent proper solutionsefand|N| = |¥| = m.
By Corollary 3.8 we get thatl is semi-free of rankn.

5.1.3 Cases |V, VI, and VII

The proof of Case VI is verbally identical with the proof oktbbiamond Theorem,
[4, Theorem 25.4.3], provided that we replace [4, Propmsi#5.4.1] by our Corol-
lary 4.7.

Case IV immediately follows from Case VI. So does Case VIhc8iF : M) =
(F/N : M/N) is divisible by two primes and the Sylow subgroups are nérima
F/N, there are two (Sylow) normal subgroups P, of F/N such thatP; NP, = 1
and Py, P, ¢ M/N. The preimaged;, M, of P, P, are normal inF and satisfy
MiNM; =N < M, butM; £ M andM, £ M.

5.1.4 Case V

Assume thaM < F andF/M is abelian. It follows thaM is also semi-free either by
Cases Il and VI or directly from Corollary 4.7. We show therfer. If F/M is cyclic,
then, by Case IIM is semi-free. Otherwise, there exists a grsubgroup of rank 2 in
F/M, sayH. It factors aH = C;xC,, whereCy, C, are nontrivial cyclic prop group.
ThenC; N C, = 1 andCy, C, <« F/M (sinceF/M is abelian). The preimagéd;, M,
of Cy, C, are normal irF and satisfyM; N M, = M, butM; £ M andM; £ M.
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5.1.5 Cases lll, VIII, and IX

The proofs of these three cases are based on Case | and onlproen&ary argu-
ments than the other cases.

Recall that weight/M) = 1 if M is open, and weighi/M) is the cardinality of
the set of open subgroups Bfthat containM if (F : M) = oo ([4, Section 25.2]).

Proof (Proof of Case lll)Let §(M) = (¢: M — G,a: H — G) be a FSEP foM
and letMgy = Kerg. There is an oped <« F such thatDb n M < My. By Case | we
may replacd- by its open subgroupM to assume thddM = F. Thendm ¢(m),
ford € D, me M, extendsp to an epimorphisnp: F — G. Let Fq be its kernel. It
containsD, henceFgM = F andFg "' M = Mg. Thus M : Mg) = (F : Fo) and we
have the FSEB(F) = (¢: F - G,a: H — G).

Let ¥ be a family of independent proper solutionsggF) of cardinalitym. Each
Y € ¥ defines a solutiofy’ := |y of E(M). Let ¥’ = {¢/ | ¢y € ¥} and letX C ¥’
be a maximal subset of independent proper solutions (Zberisma). We claim that
X has cardinalitym.

Assume diferently, that is to say, assuridg < m. LetN = (,.x Kery' if X # 0
andN = Mg if X = 0. In both case®l < M.

It suffices to findy € ¥ such thatNKery = Fq. Indeed, then for every open
subgroupNy of Mg containingN we have Np : No N Kery) = (Fo : Kery),

M—————F
N No Mo Fo
N N Keny No N Keny M N Keny = Kerny/ —— Kerny

i.e.,Np and Kep’ areMy-independent. In particular, takind, = Mo, we have M :
Kery) = (Mg : M n Kery) = (Fo : Kery), and hence/’ is surjective. Furthermore,
for any finite subseX’ of X, takingNo = (M,cx- Kerny” we get by Proposition 2.2(c)
that X’ U {¢’} is an independent set of solutions. Therefore s&'is {¢’}, which
contradicts the maximality oX.

To complete the proof, for eaghe ¥ let L, = NKery and assume thai, # Fo.
Since{Kery | y € ¥} is Fo-independent, the séit, | ¢ € ¥} is also independent by
Proposition 2.2¢?). SinceL,, # Fo for all y € ¥, this implies in particulat,, # Ly,
for all distincty,y> € ¥. Hence weightto/N) > m. But weightFo/M) < m by
the hypothesis of Case Il and the fact that is an open subgroup df. More-
over weightM/N) < m, by [4, Lemma 25.2.1(b)]. Hence weighy/N) < m by [4,
Lemma 25.2.1(d)], a contradiction. O

Definition 5.1 A closed subgroup of a profinite groug= of infinite index is called
sparseif for all n € N there exists an open subgrokpof F containingM such that
for every proper open subgrolyof K containingM we have K : L) > n.
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The following lemma shows that this definition is equivalemi2, Definition
2.1

Lemma 5.2 If M is sparse in F, then for ever§, n € N there exists K as in Defini-
tion 5.1 of index at leastin F.

Proof Let £,n € N. Choose an open subgroifg of index¢{y > ¢ in F such that
M < Kp. By the definition there exists; with M < K; < F such thatK; : L) > nép
for all proper open subgrousof K; that containM. Then the assertion follows with
K = Kg N Ky, since K; : K) < 4. O

Proof (Proof of Case VllILet M be a sparse subgroupBf LetEp(A) = (u: M —
G,a: A= G — G) be a nontrivial FSEP foM.

Choose an open normal subgrobp of F such thatEp N M < Keru and let
Fo = MEg. SinceM is sparse irFq [2, Corollary 2.3], there is an open subgroup
K of Fo containingM such thatK : L) > |A?/G| for each proper open subgroup
L of M that containdM. Extendu to an epimorphisnp: K — G by ¢(re) = u(r),

r € M, e e Eg. By Case IK is semi-free of rankn; hence it sffices to show that two
independent proper solutiogs, v, of E(A) = (¢: K — G,a: AxG — G) induce
two independent proper solutionsg|y, ¥2|m (Corollary 3.8).

By Lemma 4.4A? » G is the fiber product oA~ G — G with itself. Thusyq, ¥
induce a proper solutiog of (A?) = (¢: K = G,a: A>xG — G) (Lemma 2.5).
LetL = Kery. Then K : ML) = (A? = G : ¢(M)) < |A?G|. Hence, by the choice of
K, we get thatML = K. Thereforey|y is a proper solution oEy(A%) = (¢: M —
G, a: A2~G — G). Buty|y = y1lmxy2luw. Consequentlyys|v, 2|y are independent
proper solutions ofo(A), as claimed. O

The following corollary of Case VIII extends [2, Lemma 2.4]free groups of
uncountable infinite rank.

Corollary 5.3 If M is a sparse subgroup of a free profinite group F of rank=n2,
then M is a free profinite group eank(M) = maxNo, rank(F)}.

Proof The case where rank] < Xp is provenin [2]. Assumen = rank(F) is infinite.
By Theorem 3.6F is semi-free of rankn. By Case VIl of the Main Theoremn is
semi-free of rankn. Also, M is projective, being a closed subgroup of a free profinite
group. Consequently is free of rankm (Theorem 3.6). O

Case IX s, in fact, a special case of Case VIII:

Lemma 5.4 Let M be a closed subgroup of a profinite group F of infinite ide
AssuméF : M) = [T, p*® with all o(p) finite. Then M is sparse in F.

Proof Forn e N takeK to be an open subgroup &fcontainingM such thatp®(® |
(F : K)forall p<n. ThenforeactM < L £ K only primesp > ncan divide K : L).
Therefore,K : L) > n. O

As a consequence of Corollary 5.3 and Lemma 5.4, we get [Dpd2ition 5.1]:

Corollary 5.5 Let M be a closed subgroup of a free profinite group F of rank &
AssumdF : M) = [T, p*® with all a(p) finite. If (F : M) is infinite, then M is free
profinite group of ranknaxXo, rank(F)}.
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6 Quasi-freeness vs. semi-freeness

We now construct an example of a quasi-free group that isamot-free.

For a profinite grou and an infinite seX denote byp{y C the free product of
copies{Cylxex Of Cin the sense of [1]. That i§sx C contains a copZy of C for each
x € X; and every family of homomorphisngs: Cx — A into a finite groupA, such
thaty,(Cy) = 1 for all but finitely manyx € X, uniquely extends to a homomorphism
¥: HxC — A. As usual lef,, denote the free profinite group of countable rank.

Proposition 6.1 Let X be a set of infinite cardinality m. Let € [[,Z/pZ be the
direct product of all prime cyclic groups. Let £ (Fy C) * F,,. Then

a. F is quasi-free of rank m, and
b. the FSEP
(F—->1,7Z/4Z — 1) (4)

has at most countably many independent proper solutions.

In particular, for m> Ng, F is quasi-free but not semi-free.

Proof (a) The rank off{yx C is mand the rank of,, is 8o < m. Hence the rank of
is m. In particular, every FSEP fd¥ has at mosin proper solutions. Let

(¢p: F > G,a: H-G) (5)

be a nontrivial FSEP. Leg: G — H be its splitting. We need two auxiliary maps:
Firstly, there exists a nontrivial homomorphismC — Kera; namely, an epimor-
phism ofC onto a subgroup of Kerof prime order. Secondly, sinde, is free of
infinite rank, there exists an epimorphigtt F,, — o (¢(F,,)) such thatr o ¢’ is
the restriction ofp to F,,. In particulary’(F,,) contains Ket. Sincey is continuous,
there is & € X such thaiX \ Y is finite andp(C,) = 1 for everyy e Y.

For everyy € Y define a homomorphisig,: F — H in the following manner:
Its restriction toCy = C coincides withr; if y # x € Y, the restriction ofyy, to Cy is
trivial; if x e X \'Y, the restriction of}y, to Cy is 8 o ¢; and, finally, the restriction of
Yy to F.isy’. Thuse o Yy = . Asyy(F) 2 v (F,) 2 Kera, the mapyy is a proper
solution of (5).

As Yy, # yy, for distincty;,y. € Y, (5) has at leasfy] = m distinct proper
solutions.

(b) Let ¥ be an independent set of proper solutions of (4). Theanap/4Z — 1
decomposes as = By, wherey: Z/4Z — Z/2Z andB: Z/2Z — 1. If Y1,y € ¥
are independent, theno 1,y o ¥, are independent proper solutions 8f Z/2Z —
1,¢: F — 1) (Proposition 2.2(d)). In particulay,c 1 # yo,. Thus{yoy| ¢ € ¥}
has at least the cardinality &f.

On the other hand;,/4Z is a 2-group and the 2-Sylow subgroup®is of order 2.
Hence everyy € ¥ maps eaclC, = C into Kery, the unique subgroup &/4Z
of order 2, and hence o ¢ is trivial on C. Thereforey o y is trivial on }{x C. It
follows thaty o y is determined by its restriction #6,,. But there arés, (continuous)
homomorphism&,, — Z/4Z. Thus|¥| < No. o
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Remark 6.20ne can modify the construction in the proposition to get lasohute
Galois grougF which is quasi-free but not semi-free. E.g.,fet Fx([1p.2Zp) * D=

F.,, whereD is the free product of the constant sheaf of copie® (#Z over some
profinite space of weighh. One can show along the lines of the proof of Proposi-
tion 6.1 thatF is quasi-free but not semi-free. MoreovErjs real projective in the
sense of [6, p. 472] and hence isomorphic to an absolute $&gtoup by [6, The-
orem 10.4]. We leave out the details, since the assertiontsde the scope of this
work.

Remark 6.3In order to complete the picture we show that being semiifeatrictly
weaker than being free. In fact, i is semi-free of infinite rankn andG is of rank

< m, thenF = G is semi-free. This leads to many examples of semi-free bufrae
profinite groups; e.g., tak8 to be finite and recall that a free group has no torsion.
Furthermore, we can construct a semi-free group of arlgitahomological dimen-
siond, by takingF free andG of cohomologicadl. If d > 1 then the groupis not free,
or even projective, since its cohomological dimension satgr than one. Another
example is the absolute Galois group given in Theorem 7.awpelhich is semi-
free but is not projective (and hence not free) because hisroological dimension

is greater than one.

The conditiorm > N in the above proposition is essential:

Remark 6.41f rank(F) = Ny, thenF is semi-free if and only if it is quasi-free.
Indeed, assumeE is quasi-free. Then every FSEP is solvable. By LemmaR3.5
is semi-free. The opposite direction is immediate.

We now show that Case 1l of our Main Theorem does not carry tvguasi-free
subgroups of quasi-free groups.

Example 6.5Let X be a set of cardinalityn > 8o and letF = (FxC) * F,, be
the group of Proposition 6.1. L&l be the kernel of the map — F,. ThenF is
guasi-free of rankn, weight/M) < m, but M is not quasi-free.

Indeed, by Proposition 6.F, is quasi-free of rankn. We have

weight(F/M) = rankF,) = 8o

sinceF/M = F,,. Itis easy to see thafl is generated by the conjugatesig; C in F.
Sincelx C is generated by copies 6fandC = [],Z/pZ is generated by elements
of prime order, alsdV is generated by elements of prime order. HEARZ is not
an image oM. In particular,M is not quasi-free.

Remark 6.6t is interesting to ask which of the cases of the Main Theoherals
for quasi-free groups. As we have seen, Case lll does not hol23] Case | is
proved. Case V is proved in [10] favl = [F, F]. Combining the methods of this
paper together with [10], one can extend the result toMrsuch thaF/M is abelian
but not a prop group. The proof of Case VIl (and hence of (IX)) can be catoger
to quasi-free groups. However, we do not know if the diamdwedtem, i.e. Case VI,
which is the central result of this paper, holds for quasefgroups. All other cases
are open in the quasi-free case.
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In order to use our method, i.e. using wreath products, fasgtree groups for
M of infinite index inF, one needs to come up with a new idea, as explained at the
end of Section 1.

7 Fields with semi-free absolute Galois groups

The main result in [11] (Theorem 5.1 there) was that for anlg fie the absolute
Galois group oK := k((x,y)) is quasi-free. In fact more is true:

Theorem 7.1 Let k be a field. Then the absolute Galois group of the field=K
k((x, t)) is semi-free of rankardK.

The proof of this stronger result is essentially contaimetié proof of the original
theorem in [11]. We explain below what additional obseasineed to be made to
complete the argument, and how these observations alsbsgiehger forms of other
results in [11]. See also [12, Theorem 5.1] for more details.

First we recall the strategy used to prove [11, Theorem TFHh¢ proof of that
theorem relied on a related geometric assertion, [11, Ritipo 5.3]. That propo-

sition asserted that given a split short exact sequenee N — I —f> G —> 1of
finite groups with non-trivial kernel, ang-Galois connected normal branched cover
Y* — X* = Sped][[ x, t]] can be dominated by B-Galois connected normal branched
coverZ* — X*. Moreover it said that this cover may be chosen suchZhat> Y*
satisfied a splitting condition (that* — Y* is totally split at the generic points of
the ramification locus o¥* — X*), and that the set of isomorphism classes of such
coversZ* — X* has cardinality equal tm := cardk((x, t)).

The proof of [11, Proposition 5.3] relied on [11, Theorem]Authich was a more
global version of that assertion. Namely, it considered aamconnected curvi
over a fieldk := k((t)), and then considered a finite split embedding problem for
the absolute Galois group of the function fisddof X (this field K being a global
analog of the more local field considered in [11, Proposition 5.3]). The conclusion
was similar: that anysz-Galois branched coveY — X of normal curves can be
dominated by a-Galois branched covef — X; that this cover can be chosen
with a splitting property; and that there ame := cardK distinct such choices of
corresponding normal branched covérs> X. (The splitting property is that — Y
is totally split over a given finite séd c Y of closed points, and the decomposition
groups ofZ — X at the points oZ over¢ € D are the conjugates of(Gs), whereGs
is the decomposition group &6f — X ats and wherer is a section off.)

Moreover, for the sake of [11, Proposition 5.3], more wasashon [11, Theo-
rem 4.1], to enable passage from a global solution to a maee fmlution. LetX be
a smooth projective model fot overKk[[t]]; and with Y, Z as above, leY, Z be the
corresponding normal branched covers. Pdie a closed point oK whose residue
field is separable ovdys, let X* be the spectrum of the complete local ringoat P,
and suppose that the pullba¥k — X* of Y — Xis connected. Then among the pull-
backsz* — X* of the above solution& — X there arandistinct proper solutions of
the corresponding local embedding problem. This additionadition was applied
in the case of the-line overk in order to obtain [11, Proposition 5.3].
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More specifically, the relationship between the local agsefl11, Proposition 5.3]
and the more global assertion [11, Theorem 4.1] is basedeminvg k((x, t)) as the
fraction field of the complete local ring of := IP’&[ g at the pointx =t = 0. In
order to apply [11, Theorem 4.1] to the proof of [11, Proposits.3], a change of
variables can be made to reduce to the case in which the ptjmseunramified in
Y* — X*. The reduction of this cover moduld) (s then induced from a branched
cover of the projectivé-line, by the Katz-Gabber theorem [17, Theorem 1.4.1]. A
patching argument then shows that this covebes in turn the closed fiber of a
cover oﬂP& o that restricts tor* — X*. This enables [11, Theorem 4.1] to be cited;
and by the extra conditions in the paragraph above, the psmpetions to the em-
bedding problem over the function field ]Bﬁ[m] yield distinct proper solutions to the
embedding problem ovéi(x, t)).

Theorem 4.1 of [11] was a variant on results of Pop [20, Maiedrem A] and
of Haran and Jarden [7, Theorem 6.4], showing that finite¢ sptbedding problems
over the function fields of curves over complete discretely®d (or more generally
large) fields have proper regular solutions (and that sord@iadal conditions can
also be satisfied, e.g. the existence of an unramified rdfamiat). Like those earlier
results, [11, Theorem 4.1] was proven using patching. Geaes were chosen for
the kernelN of the given finite split embedding problem; and cyclic ceverre
constructed with groups generated by each of those elernemts. These were then
patched together to form a global solution; in doing so, a matibility condition
(agreement on overlaps) had to be satisfied by the cyclicreave the “patches”.
Such a construction was carried out in [11, Proposition.38b} the construction
there assumed that branch pointsZof> Y that correspond to distinct generators of
Z had the property that their closuresYnare disjoint. In order to apply this to the
proof of [11, Theorem 4.1] (where the branch points all ceedeon the closed fiber at
P, in order to preserve the solutions ov€), it was necessary to blow up the closed
fiber to separate the branch points.

We can now describe the proof of Theorem 7.1:

Proof As discussed above, this theorem is a strong form of [11, fémed®.1], and

to prove this result it stices to prove a corresponding strong form of [11, Proposi-
tion 5.3]: that among the covers — X* whose existence is asserted in that propo-
sition, there is a subset having cardinatityand which is linearly disjoint as a set of
covers ofY*. To prove this, we need to see that in the situation of [11ofdwe 4.1],

an additional property holds: that there anehoices oZ — X that are linearly dis-
joint overY, that properly solve the given global embedding problerd, taat induce
proper solutions ovex* that are linearly disjoint oveY* =Y xx X*.

To show this stronger version of [11, Theorem 4.1], the keintpis that the
branch points associated to the generatorbl afan be chosen im different (and
even disjoint) ways. As shown in the original proof, gively ahoices of these points
on X (which correspond to curves ofithat are finite ovek][ X]]), any other choice
of points that is congruent to the original choice modulo fiicgently high power
of t will also work. (Indeed, this is how it was shown that there mrdistinct solu-
tions, both ovelX and overX*.) What needs to be shown here is that by varying the
branch points we can obtamsolutions that are linearly disjoint ov&r Since Galois
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branched covers with no common subcover are linearly ditjdi sufices to show
that the set o solutionsZ — X, such that the coves — Y have pairwise disjoint
branch loci, can be chosen such that eAck Y has no non-trivial étale subcover
W->Y.

In the above situation, i — Y has a non-trivial étale subcovéf — Y, then
the Galois group GaflyW), which is a subgroup oN = Gal(Z/Y), must contain
all the inertia groups oZ — Y. But this is ruled out by the explicit construction
in the proof of [11, Proposition 3.5]. Namely, that resub@ss that the closed fiber
Z — Y of Z — Y is anN-Galois mock cover; i.e., each irreducible componert of
maps isomorphically ont¥, with the irreducible components being indexed by the
cosets ofN in I". The construction in the proof there shows that for each igeoe
n of N, there is a closed poir®, € Z lying in the ramification locus oZ — Y,
such thain generates the inertia group af— Y at Q, and also the inertia groups
at the generic points of the ramification components padsir@yghQ,. Since the
elementa: together generatl, this shows that th&l-Galois covelZ — Y has no
non-trivial étale subcovers, as desired.

Thus the above strong form of [11, Theorem 4.1] indeed hdlgnce so does
the strong form of [11, Proposition 5.3]; and thus also Tkeor.1 above, the strong
form of [11, Theorem 5.1]. O

Another key result of [11], viz. Corollary 4.4 there, asedrthat ifK is the func-
tion field of a smooth projective curve over a very large fiklJdhen the absolute
Galois group oK is quasi-free. This can also be strengthened, as follows:

Theorem 7.2 If K is the function field of a smooth projective curvgoter a large
field k, then the absolute Galois group of K is semi-free.

Proof By a recent result of Pop (see [10, Proposition 3.3]), evargd field is very
large. So the assumption d&nin [11, Corollary 4.4] can be (a priori) weakened from
very large to large. Concerning the strengthening of thelkmion, this can be done
in a similar way to what was done above for Theorem 7.1. Nasftely Corollary 4.4]
followed from [11, Theorem 4.3], which was a variant of [Lhebrem 4.1] in which
the fieldk = k((t)) was replaced by a more general large fiEldAs in the case of
Theorem 7.1, to prove 7.2 it flices to show that the proper solutiafis — Xp in
[11, Theorem 4.3] can be chosen so as to be linearly disjoiit ; and for this it
sufices to show that they can be chosen so that Zaeh Yy has no non-trivial étale
subcovers.

Theorem 4.3 of [11] was proven using [11, Theorem 4.1], byngk = F;
obtaining a proper solution for the function field of the iedd curveX := Xg xg R
overR = K[[t]]; descending fronR to a k-algebraA of finite type, corresponding
to ak-variety V; considering the descendédGalois coverZy — Xa as a family
of I'-Galois covers oy parametrized by/; and then specializing tk-points ofV
(thereby obtaining solutions ov¥p) using thak is (very) large. To prove the desired
strong form of [11, Theorem 4.3], observe that in the contdxhe above use of
[11, Theorem 4.1], the branch points (which can be variedrarily modulo some
suficiently high power ot) can be chosen so as not to be constant; i.e. not of the
form P’ x, k with P’ a point of Xp. As a result, the the varying branch locus of the
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family of I'-Galois covers oKy parametrized by is base-point free. So as in the
proof of the strong form of [11, Theorem 4.1], the specializevers can be chosen
to have no non-trivial étale subcovers; and hence theyregarly disjoint. This shows
that [11, Theorem 4.3] can be strengthened as claimed todadhe desired linear
disjointness assertion; and hence Theorem 7.2, the stoomgdf [11, Corollary 4.4],
also holds. O

8 Fields with free absolute Galois groups

We present two families of fields having free absolute Gajoisips. For each we use
Theorem 3.6 to reduce the proof of freeness to proving tleegtbup is semi-free and
projective.

The semi-freeness follows from the Diamond Theorem (Maiedfem, Case VI)
together with the semi-freeness of the absolute Galoispyodthe base field, which
was established in the previous section. The projectidtachieved by dierent
means (here we just quote it).

8.1 Fields containing the maximal abelian extensiok({f, t))

We follow [10] to find fields with free absolute Galois groupetlus start with a
general fact and then give some concrete examples.

Corollary 8.1 Let K = k((x,Y)), where k is separably closed and let L be a separable
extension of K. If L contains the maximal abelian extensibK,cand its absolute
Galois groupGal(L) satisfies one of the cases of the Main Theorem as a subgroup of
Gal(K), thenGal(L) is a free profinite group.

Proof The group GaK) is semi-free of rankn by Theorem 7.1. Hence so is Ga)(
Also, Gal() is projective [10, Theorem 4.4] (see also [3]). Thus, TeeoB.6 yields
that Gal() is free. O

Example 8.2Let K = k((x,y)), wherek is separably closed. L& be a Galois ex-
tension ofK not containing the maximal abelian extensié® of K. Let L be any
subextension o K&/K 22, We claim that Gal() is free of rank equal to the cardinal-
ity of L.

To see this, first note that Gl is semi-free (Theorem 7.1). If = K2, then by
[10, Theorem 4.6(b)] it follows that Gdlf is free. (Equivalently, this follows from
Main Theorem Case V together with Corollary 8.1.)

Now consider the case # K2, SinceK? ¢ E andK? c L, it follows thatL ¢
E. FurthermoreE/K andK2®/K are Galois. Hence by the Galois correspondence,
M = Gal(L) satisfies Case VI of the Main Theorem wkh= Gal(K), M; = Gal(E),
andM, = Gal(K?). By Corollary 8.1, Gal() is free.

Gal(K?®) ——— Gal(K)

Ga|I(L)

|
Gal(E) N Gal(K#)

GalE)
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8.2 Jarden’s example — extension of roots

This example is adapted from [14]. Liebe a PAC field of characteristijg > 0 and
K = K(x). LetF C k[X] < K be the set of all monic irreducible polynomials. For each
f € ¥ choose a set of compatible roots

{7 ptnCKs.
(Here compatible means thaft%)“ = f# forall n,n prime top.) Let
L=K(f7 | f e F andpt n).

Note thatL/K is Galois if and only ifK contains all roots of unity. Thus in general
L/K is not Galois. In what follows we show that Gi)(is free of rank equal to the
cardinality ofL.

Fact 1 Gal(L) is projective.
This fact follows from a theorem of Pop (see Theorems 104d914.6.4 in [14]).

Lemma 8.3 There exist Galois extensionsg,|L, of K such that LC L;L,, but L ¢ L;,
i=12

Proof Let Ly denote the extension &f generated by all roots of unity. Let
Ly = Lo(x% | ptn)yandL; = Lo(f% | f e F N\ {x}andptn).

Clearly Ly, L, are Galois extensions ¢f. It is obvious thatL C L;L,. Choose an
integerm > 1 that is not divisible byp. Since & + 1)% ¢ L1 we get thal ¢ L,; and
similarly Xm ¢ L, implies thatl ¢ L,. O

Theorem 8.4 Gal(L) is free of rank equal to the cardinality of L.

Proof By Theorem 3.6 it sfiices to show that Gdlj is both projective and semi-free
of rank equal to the cardinality d¢f. We already mentioned that Ghj(is projective
(Fact 1).

Theorem 7.2 implies that G&{) is semi-free of rankn := |K| = |L|. (Recall that
k is PAC, and in particular large.) Taking absolute Galoisugoof the fieldd 4, L,
in the above lemma establishes the condition of Case VI okthi® Theorem, thus
Gal(L) is semi-free of rankn. O

In fact, even more is true. Namely, we have learned from Pajpthie proof of his
theorem (referred to above) applies more broadly. In pagicit applies in the case
thatk = F((t)) for some separably closed fiel (using that this field, like a PAC
field, has projective absolute Galois group and “satisfiesieeusal local-global prin-
ciple). Following the same construction as above, we adaduce that the resulting
field L has free absolute Galois group of rghk Note that by Corollary 25.4.8 of [4],
this also implies that the absolute Galois groug¢t))(x)° is free forF separably
closed.
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Moreover, ifk’ is the field obtained fronk by adjoining a set of compatiblg"
roots to all the non-zero elementslothen Pop’s argument also shows that= Lk’
has projective absolute Galois group in the casekhis@ local field such aBp((t))
or Qp. (Here the adjunction of additional roots is to deal with taet that Galk) is
no longer projective.) Since Lemma 8.3 then holds vitfeplaced byL’ (and with
L; in the proof replaced by its compositum wkH, the above proof of Theorem 8.4
then shows that Gdl() is a free profinite group.

Acknowledgements We thank Moshe Jarden for the suggestion to consider Casiethié Main Theorem.
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