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Abstract We introduce the condition of a profinite group being semi-free, which is
more general than being free and more restrictive than beingquasi-free. In particular,
every projective semi-free profinite group is free. We provethat the usual permanence
properties of free groups carry over to semi-free groups. Using this, we conclude
that if k is a separably closed field, then many field extensions ofk((x, y)) have free
absolute Galois groups.

Keywords Free profinite group· semi-free profinite group· absolute Galois groups

Mathematics Subject Classification (2000)12E30· 12F10· 20E18· 14H30

1 Introduction and results

A central problem is Galois theory is to understand the absolute Galois groups of
fields, and a key aspect is to find fields with free absolute Galois groups. For example,
if C is an algebraically closed field, thenK = C(x) is such a field. This was proved
for C = C by Douady; and in the general case by Pop [19] and the third author [9],
with another proof later by Jarden and the second author [8].The major conjecture in
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this context, Shafarevich’s conjecture, asserts that the maximal abelian extensionQab

of the rational numbersQ has a free absolute Galois group.
In [11], the third author and K. Stevenson suggest a strategyfor proving the free-

ness of a profinite group: breaking the argument into two simpler pieces, viz. quasi-
freeness and projectivity. This strategy was carried out in[10] in the context of a
two-variable Laurent series fieldK = k((x, y)). For any base fieldk, the absolute Ga-
lois group Gal(K) is quasi-free [11], though it is not free since it is not projective.
In [10] the third author proves that the commutator subgroupof a quasi-free group is
quasi-free, and hence Gal(Kab) is quasi-free. Now, if in additionk is separably closed,
then Gal(Kab) is also projective. Therefore Gal(Kab) is free, for suchk. This can be
viewed as an analog of Shafarevich’s conjecture.

In the above situation, it is key that the commutator subgroup of a quasi-free
group is quasi-free. This leads to the question of when a closed subgroup of a quasi-
free group is quasi-free, particularly in the case of projective subgroups. Since closed
subgroups inherit projectivity, this question generalizes the corresponding classical
question about free subgroups of a free profinite group. A partial answer is given in
[23], where Ribes, Stevenson, and Zalesskii prove that an open subgroup of a quasi-
free group is quasi-free.

The classical question — when is a closed subgroup of a free group itself free
— has been dealt with in numerous papers, e.g. [5,13,15,16,18]. The second author
has used twisted wreath products in [5] to attack this question. Not only does this
approach reprove many of the previously known results, but it also proves the so-
called ‘Diamond Theorem’ (see [4, Theorem 25.4.3]):

Theorem Let F be a free profinite group of infinite rank m. Let M1,M2 be normal
subgroups of F and let M be a subgroup of F such that M1 ∩ M2 ≤ M but M1 � M
and M2 � M. Then M is free of rank m.

(The diagram

F

IIIIIIIIII

M1

uuuuuuuuuu

IIIIIIIII
M M2

M1 ∩ M2

uuuuuuuuu

suggests the name Diamond Theorem.) Recently the first author proved this theorem
for finite m≥ 2 [2].

It would thus be desirable to carry over this and other permanence properties of
free profinite groups to the class of quasi-free profinite groups. However, our meth-
ods seem to work well only after a slight modification of the notion: We say that a
profinite group of infinite rankm is semi-freeif every nontrivial finite split embedding
problem for it hasm independentproper solutions. (See Section 2 below.)

The modified notion is in some ways more natural. First we have

a. free groups are semi-free (Theorem 3.6),
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b. semi-free groups are quasi-free, but not vice-versa (Proposition 6.1), and
c. the absolute Galois group ofk((x, y)) is semi-free (Theorem 7.1).

Moreover, we are able to prove the following theorem (where case VI corresponds
to the Diamond Theorem above). Also, as Example 6.5 below shows, not all of these
properties hold for the class of quasi-free groups.

Main Theorem Let F be a semi-free profinite group of infinite rank m and let M be
a closed subgroup of F. Then, in each of the following cases the group M is semi-free
of rank m.

I. (F : M) < ∞.
II. F/M̂ is finitely generated, wherêM =

⋂

σ∈F Mσ is the normal core of M.
III. weight(F/M) < m (the definition of weight is recalled at Section 5.1.5).
IV. M is a proper subgroup of finite index of a closed normal subgroup of F.
V. M is normal in F, and F/M is abelian.

VI. There exist closed normal subgroups M1, M2 of F such that M1 ∩ M2 ≤ M but
M1 � M and M2 � M.

VII. M contains a closed normal subgroup N of F such that F/N is pronilpotent and
(F : M) is divisible by at least two primes.

VIII. M is sparse in F (see Definition 5.1).
IX. (F : M) =

∏

pα(p), whereα(p) < ∞ for all p.

The proof of Main Theorem is in Section 5.
This theorem gives rise to new constructions of fields havingfree absolute Galois

groups; see Section 8. One of them generalizes the construction of fields with free
absolute Galois groups discussed above in the second paragraph of the introduction.
Another was provided by Jarden, using ideas of Pop.

We conclude the introduction with some ideas of the proof. The goal is to prove
thatM is semi-free, i.e. that an arbitrary finite split embedding problemE1 for M has
many independent proper solutions. We know thatM is a subgroup of a semi-free
groupF, so we wish to transfer the solvability problem toF. The first thing we do is
to induce a split embedding problemE for F with the property that a weak solution
of E induces a weak solution toE1 (see Proposition 4.6 for the exact definition of
E). The embedding problemE is constructed using atwisted wreath product(see
Definition 4.1).

NowE has many independent proper solutions becauseF is semi-free. Each one
of these proper solutions, sayψ, induces a solutionν of E1. (Hereν = π ◦ ψ|M, where
π is the Shapiro map; see Definition 3.2.) We encounter two difficulties: (1)ν is not
necessarily apropersolution; (2) for two distinct proper solutionsψ1 , ψ2 of E we
may get thatν1 = ν2.

We extract from [5] a condition under whichν remains a proper solution. This
settles the first difficulty. To treat (2), we use that fact that in our situation,ψ1, ψ2

are not only distinct, but also independent. Hence the imageof ψ1 × ψ2 is also a
wreath product (Lemma 4.4). This fact leads us to generalizethe work in [5], and
find a necessary conditions for any two independent proper solutionsψ1, ψ2 to induce
independent proper solutionsν1, ν2, as needed forM to be semi-free. See Proposi-
tion 4.6 b.
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Note that this strategy does not apply to the corresponding problem for quasi-free
groups, where the distinct proper solutions for a split embedding problem need not
be independent, and since the image ofψ1 × ψ2 for distinct solutionsψ1, ψ2 of E
need not be a twisted wreath product in the absence of independence. By avoiding
this difficulty, our focus on semi-free groups permits us to show that many subgroups
of semi-free groups are semi-free (and in particular quasi-free); and that if such a
subgroup is also projective then it is free (see Theorem 3.6).

2 Independent subgroups and solutions of embedding problems

Definition 2.1 Let F be a profinite group.

a. Open subgroupsM1, . . . ,Mn of F areF-independentif

(F :
n
⋂

i=1

Mi) =
n
∏

i=1

(F : Mi).

If M1, . . . ,Mn are normal inF, this is equivalent to

F/
n
⋂

i=1

Mi �

n
∏

i=1

F/Mi

b. A familyM of open subgroups ofF is F-independent if every finite subset of
M is F-independent.

The notion ofF-independence coincides with independence with respect tothe
Haar probability measure onF [4, Section 18.3]. There is also the following equiva-
lent characterization of independence: Open subgroupsM1, . . . ,Mn areF-independent
if and only if F acts transitively on

∏n
i=1 F/Mi . This criterion can be used to obtain

alternative short proofs of parts c and d in Proposition 2.2 below.
A key example of independence occurs in the case of a Galois field extension

L/K. If F = Gal(L/K) andL1, . . . , Ln are the fixed fields ofM1, . . . ,Mn in L, then by
the Galois correspondence,M1, . . . ,Mn areF-independent if and only ifL1, . . . , Ln

are linearly disjoint overK.
The following properties can be either proven directly or deduced from the cor-

responding properties of linear disjointness of fields:

Proposition 2.2 Let M1, . . . ,Mn be open subgroups of a profinite group F.

a. (F :
⋂n

i=1 Mi) ≤
∏n

i=1(F : Mi).
b. Let M1 ≤ N1 ≤ F. Then M1,M2 are F-independent if and only if N1,M2 are

F-independent and M1,N1 ∩ M2 are N1-independent.
c. The subgroups M1, . . . ,Mn are F-independent if and only if M1, . . . ,Mn−1 are

F-independent and
⋂n−1

i=1 Mi , Mn are F-independent.
d. Let Mi ≤ Ni ≤ F for each1 ≤ i ≤ n. If M1, . . . ,Mn are F-independent, then so

are N1, . . . ,Nn.
e. Suppose M1 ⊳ F. Then M1,M2 are F-independent if and only if F= M1M2.
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Proof (a) This follows by induction from the casen = 2, which is standard.
(b) First assumeM1,M2 areF-independent. Then, since (N1 ∩ M2 : M1 ∩ M2) ≤

(N1 : M1) we have

(F : N1 ∩ M2) =
(F : M1 ∩ M2)

(N1 ∩ M2 : M1 ∩ M2)
=

(F : M1)(F : M2)
(N1 ∩ M2 : M1 ∩ M2)

=
(F : N1)(N1 : M1)(F : M2)

(N1 ∩ M2 : M1 ∩ M2)
≥ (F : N1)(F : M2).

Therefore equality holds by (a), andN1,M2 areF-independent. Similarly, since (N1 :
N1 ∩ M2) ≤ (F : M2) we have

(N1 : M1 ∩ (N1 ∩ M2)) =
(F : M1 ∩ M2)

(F : N1)
=

(F : M1)(F : M2)
(F : N1)

≥ (N1 : M1)(N1 : N1 ∩ M2),

so M1,N1 ∩ M2 areN1-independent by (a). Conversely,

(F : M1 ∩ M2) = (F : N1)(N1 : M1 ∩ (N1 ∩ M2)) = (F : M1)(N1 : N1 ∩ M2)

= (F : M1)
(F : N1 ∩ M2)

(F : N1)
= (F : M1)(F : M2).

(c) By part (a),

(F :
n
⋂

i=1

Mi) ≤ (F :
n−1
⋂

i=1

Mi)(F : Mn) ≤
n
∏

i=1

(F : Mi).

So (F :
⋂n

i=1 Mi) =
∏n

i=1(F : Mi) if and only if the above two inequalities are
equalities, and the assertion follows.

(d) Since (
⋂

i Mi :
⋂

i Ni) ≤
∏

i(Mi : Ni) we have

(F :
⋂

i

Ni) =
(F :
⋂

i Mi)
(
⋂

i Mi :
⋂

i Ni)
≥

∏

i(F : Mi)
∏

i(Mi : Ni)
=
∏

i

(F : Ni),

so equality holds by (a).
(e) We have (M1M2 : M1) = (M2 : M1 ∩ M2). Thus

(F : M1)(F : M2) = (F : M1M2)(M2 : M1 ∩ M2)(F : M2)

= (F : M1M2)(F : M1 ∩ M2).

⊓⊔

Recall that anembedding problemfor a profinite groupF is a pair of epimor-
phisms of profinite groups

(ϕ : F → G, α : H → G). (1)

The embedding problem is calledfinite if H andG are finite. It is calledsplit (re-
spectivelynontrivial ) if α splits (respectively is not an isomorphism). We abbreviate
‘finite split embedding problem’ and write ‘FSEP’. A(weak) solutionfor an embed-
ding problem is a homomorphismψ : F → H with α ◦ψ = ϕ. A solution is said to be
proper if it is surjective.
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Definition 2.3 We call solutions of a finite embedding problem (1)independent if
their kernels are Kerϕ-independent.

We now introduce a criterion for the independence of proper solutions of finite
embedding problems in terms of fiber products of groups.

Let {αi : Hi → G | i ∈ I } be a family of epimorphisms of profinite groups. Their
fiber product with respect to theαi ’s is defined by

�
G

Hi = {h ∈
∏

Hi | αi(hi) = α j(h j) ∀i, j ∈ I }.

(Herehi = h(i) is the value ofh at i.) This is a closed subgroup of
∏

Hi , hence a profi-
nite group. The projection on thei-th coordinate, pri :

�
G Hi → Hi , is surjective. The

fiber product is equipped with a canonical epimorphismαI = αi ◦ pri :
�

G Hi → G,
which is independent ofi ∈ I .

In particular, ifI is a finite set, sayI = {1, . . . , n}, then
�

G
Hi = H1 ×G · · · ×G Hn = {(h1, · · · , hn) ∈

∏

Hi | α1(h1) = · · · = αn(hn)}.

Fiber products are associative:

Lemma 2.4 Letαi : Hi → G0, i = 1, . . . , n, andβ : G→ G0 be epimorphisms of finite
groups. Then the natural map(

�
G0

Hi) ×G0 G→
�

G(Hi ×G0 G) is an isomorphism.

Proof An element in (
�

G0
Hi) ×G0 G is of the form ((h1, . . . , hn), g), where the ele-

mentshi ∈ Hi andg ∈ G all have the same image inG0. An element in
�

G(Hi ×G0 G)
is of the form ((h1, g) . . . , (hn, g)), for such elementshi ∈ Hi andg ∈ G, because the
fiber product is taken overG. The map that takes ((h1, . . . , hn), g) to ((h1, g) . . . , (hn, g))
is clearly an isomorphism. ⊓⊔

A key property, in our setting, of fiber products is that solutionsψi of embedding
problems (ϕ : F → G, αi : Hi → G), i ∈ I , induce a canonical solution,ψI =

∏

ψi ,
of the embedding problem (ϕ : F → G, αI :

�
G Hi → G). More precisely, (ψI (x))i =

ψi(x) for eachx ∈ F; e.g., if I = {1, . . . , n}, thenψI (x) = (ψ1(x), · · · , ψn(x)). We
obtain the original solutions via the projection on the coordinates, i.e.ψi = pri ◦ ψ

I

for eachi ∈ I . In particular, takingF = G andϕ = id, we see that if all theαi ’s split,
so doesαI .

Given a single epimorphismα : H → G and a setI , we write H I
G for the fiber

product
�

G Hi , whereHi = H andαi = α for eachi ∈ I .

Lemma 2.5 Let I be a set and letE = (ϕ : F → G, α : H → G) be a finite embedding
problem for a profinite group F. PutEI = (ϕ : F → G, αI : H I

G → G). Then solutions
{ψi}i∈I of E are independent and proper if and only if the solutionψI =

∏

ψi of EI is
proper.

Proof We first assume thatI is finite, I = {1, . . . , n}. If one of theψi ’s is not surjective,
thenψI is not surjective. Hence, we may assume thatψ1, . . . , ψn are surjective. Let
K = Kerϕ andMi = Kerψi , i = 1, . . . , n. By the definition ofψI we have KerψI =
⋂n

i=1 Mi . Since|H I
G| = |H|

n/|G|n−1, we get thatψI is surjective if and only if (F :
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⋂n
i=1 Mi) = |H|n/|G|n−1. But (F :

⋂n
i=1 Mi) = (F : K)(K :

⋂n
i=1 Mi) = |G|(K :

⋂n
i=1 Mi); henceψI is surjective if and only if (K :

⋂n
i=1 Mi) = |H|n/|G|n =

∏n
i=1(K :

Mi), as desired.
In the general caseH I

G is the inverse limit ofHJ
G, whereJ runs through the finite

subsets ofI and the epimorphismsπJ : H I
G → HJ

G are given by the restriction of
coordinates fromI to J. Obviously,ψJ = πJ ◦ ψI , for eachJ. HenceψI is proper if
and only if allψJ’s are proper. By the first paragraph of this proof this happens if and
only if theψi ’s are independent and proper. ⊓⊔

3 Semi-free profinite groups

Definition 3.1 A profinite groupF is quasi-free if there exists an infinite cardinal
m such that every nontrivial FSEP forF has exactlym distinct proper solutions (see
[10,11,23]). By [23, Lemma 1.2] such a group is of rankm.

In the following definition we give a stronger variant of quasi-freeness.

Definition 3.2 A profinite groupF is semi-free1 if it is a profinite group of infinite
rankm and every nontrivial FSEP forF hasm independent proper solutions.

Remark 3.3Definition of semi-free finitely generated profinite group: One might
consider saying that a groupF of finite rank m is semi-free if every FSEP forF
has a proper solution. But this condition willneverbe satisfied, sinceF cannot sur-
ject onto finite groups that have rank greater thanm (i.e. that cannot be generated by
m or fewer elements). As an alternative, one might say that a groupF of rankm is
semi-free if every FSEP (ϕ : F → G, α : H → G) is properly solvableprovidedthat
H has rank at mostm (this condition onH being automatic ifm is infinite). Form
finite, this condition would imply that any finite groupH generated bym elements is
a quotient ofF (takingG = 1). But thenF is free [4, Lemma 17.7.1]. Thus a finitely
generated profinite group is semi-free (in this sense) if andonly if it is free. For this
reason, we restrict our attention to groups of infinite rank.

Remark 3.4In Definition 3.2, it would suffice to assume just that rankF is at most
m. More precisely, letF be a profinite group and letmbe an infinite cardinal. Assume
that rankF ≤ mand every nontrivial FSEP forF hasm independent proper solutions.
Then rankF = m, and thusF is semi-free.

Indeed, consider any nontrivial FSEP and let{ψi | i < m} a set of independent
proper solutions. Then Kerψi , Kerψ j for all i , j. This implies thatF has at leastm
open subgroups, the set{Kerψi | i < m}, and hence rankF ≥ m (see [4, Proposition
17.1.2]). Therefore rankF = m, as needed.

Clearly, every semi-free group is quasi-free. One might suspect that the opposite
is also true. Ifm= ℵ0, then for both notions it suffices to have one proper solution of
any nontrivial FSEP (see the lemma below), and hence they areequivalent. Ifm> ℵ0,
then there are quasi-free groups that are not semi-free. We postpone the discussion of
this to Section 6.

1 a term coined by Moshe Jarden as an alternative to “strongly quasi-free”, which we initially used.
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Lemma 3.5 Let F be a countably generated profinite group. Then F is semi-free of
rankℵ0 if and only if every FSEP for F is properly solvable.

Proof Let E = (ϕ0 : F → G, α0 : H → G) be a nontrivial FSEP. For each integer
n > 0, letαn−1 : Hn

G → Hn−1
G be the projection map. Inductively, we can find solutions

ϕn : F → Hn
G of the FSEP

En = (ϕn−1 : G→ Hn−1
G , αn−1 : Hn

G → Hn−1
G ).

Thenϕ := lim
←
ϕn : G→ HNG is surjective. Lemma 2.5 implies the existence ofℵ0 in-

dependent proper solutions, and thusF is semi-free. ⊓⊔

We extend [11, Theorem 2.1]:

Theorem 3.6 Let F be a profinite group of infinite rank m. The following conditions
are equivalent:

a. F is free.
b. F is semi-free and projective.
c. F is quasi-free and projective.

Proof We show that (a)⇒ (b). LetE = (ϕ : F → G, α : H → G) be a nontrivial finite
embedding problem forF. Fix a setI of cardinalitym. Let H I

G be the corresponding
fiber product; let pri : H I

G → H be the projection on thei-th coordinate, for eachi ∈ I ;
and letαI = α ◦ πi : H I

G → G be the canonical epimorphism.
SinceF is free of rankm and since rank(H I

G) ≤ m, we have a proper solution
ψ : F → H I

G of the embedding problem (ϕ : F → G, ᾱ : H I
G → G) [22, Theo-

rem 3.5.9]. Putψi = πi ◦ ψ for eachi ∈ I . Then, by Lemma 2.5, solutions{ψi}i∈I
of E are independent and proper. AsE is nontrivial, they are distinct.

Implication (b)⇒ (c) is trivial and (c)⇒ (a) is [11, Theorem 2.1]. ⊓⊔

From technical point of view, it is preferable to work with a set ofpairwiseproper
solutions of a FSEP instead of independent set of solutions.The following result
shows that it is possible.

Proposition 3.7 LetM be an infinite family of pairwise F-independent open normal
subgroups of a profinite group F. ThenM contains an F-independent subfamilyM0

of cardinality |M|.

Proof By Zorn’s Lemma there is a maximalF-independent subfamilyM0 ofM. We
have to show that|M0| = |M|. Assume the contrary; that is,|M0| < |M|.

LetM1 be the family of all finite intersections of the elements ofM0. If M0 is
finite, then so isM1; if M0 is infinite, then|M1| = |M0|. In particular,|M1| < |M|.
The groups inM1 are open inF. LetM2 be the family of all open subgroups ofF
containing a group inM1. Again, ifM1 is finite, then so isM2; if M1 is infinite, then
|M2| = |M1|. In particular,|M2| < |M|.

For every proper subgroupN of F there exists at most oneM ∈ M such that
M ≤ N. Indeed, ifM1,M2 ∈ M are distinct, thenM1M2 = F, by Proposition 2.2(e),
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and hence we cannot haveM1,M2 ≤ N < F. Since|M2| < |M|, there existsM ∈ M
such that

M ≤ N ∈ M2 only for N = F. (*)

We claim thatM0 ∪ {M} is F-independent. (This will produce the desired contradic-
tion to the maximality ofM0.) Thus we have to show, for distinctM1, . . . ,Mn ∈ M0,
thatM1, . . . ,Mn,M areF-independent.

Put N =
⋂n

i=1 Mi . By Proposition 2.2(c) it suffices to show thatM,N are F-
independent. By construction,N ∈ M1. HenceMN ∈ M2. SinceM ≤ MN, by (*),
MN = F. Hence, by Proposition 2.2(e),M,N areF-independent. ⊓⊔

Corollary 3.8 Let m be an infinite cardinal and let F be a profinite group of rank
at most m. Then F is semi-free of rank m if and only if every nontrivial FSEP has m
pairwise independent proper solutions.

4 Finite split embedding problems and twisted wreath products

We follow [5] and establish the connection between FSEPs andtwisted wreath prod-
ucts.

Definition 4.1 (Twisted wreath product) Let A, G0 ≤ G be finite groups with a
(right) action ofG0 on A. Write IndG

G0
(A) for all functions f : G → A such that

f (στ) = f (σ)τ for all σ ∈ G andτ ∈ G0 with component wise multiplication. Then
IndG

G0
(A) � A(G:G0) andG acts on IndGG0

(A) by

f σ(ρ) = f (σρ), σ, ρ ∈ G, f ∈ IndG
G0

(A).

The twisted wreath product, AwrG0 G, is defined to be the semidirect product of
IndG

G0
(A) andG, i.e. AwrG0 G = IndG

G0
(A) ⋊ G. Here and below,α : AwrG0 G → G

denotes the canonical projectionfσ 7→ σ (see [4, Definition 13.7.1]). Similarly,
α0 : A ⋊ G0 → G0 denotes the canonical projectionaσ 7→ σ of the semidirect
product.

There is an epimorphismπ0 : IndG
G0

(A)→ A defined byπ0( f ) = f (1). It extends to
an epimorphismπ : IndG

G0
(A)⋊G0→ A⋊G0 defined byf τ 7→ f (1)τ for f ∈ IndG

G0
(A)

andτ ∈ G0, sinceπ0( f τ) = f τ(1) = f (τ) = f (1)τ = π0( f )τ for all f ∈ IndG
G0

(A) and
τ ∈ G0. We callπ theShapiro mapof AwrG0 G.

Remark 4.2 a. If G = G0 in Definition 4.1, thenAwrG0 G = A⋊G.
b. See [21], where a related notion, known as a permutationalwreath product, is

used in a similar context.

The following technical result will be needed later.

Lemma 4.3 Under the above notation, let B= π−1(G0). Then B is a subgroup of
AwrG0 G of index(G : G0)|A|. If A , 1, then B does not containIndG

G0
(A).
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Proof As the Shapiro mapπ is surjective, (IndGG0
(A) ⋊G0 : B) = |A|. Thus the index

of B in AwrG0 G is (G : G0)|A|.
If A , 1, there isf ∈ IndG

G0
(A) such thatf (1) , 1; thenπ( f ) < G0, and hence

f < B. ⊓⊔

Lemma 4.4 Consider groups Hi = Ai wrG0 G, for i = 1, . . . , n. Then G0 acts on
∏

Ai

componentwise and
�

G Hi � (
∏

Ai) wrG0 G.

Proof We have
�

G
Hi = {

(

( f1σ), . . . , ( fnσ)
)

| fi ∈ IndG
G0

(Ai), σ ∈ G},

(
∏

Ai) wrG0 G = {( f1, . . . , fn)σ | fi ∈ IndG
G0

(Ai), σ ∈ G},

and the isomorphism is given by
(

( f1σ), . . . , ( fnσ)
)

7→ ( f1, . . . , fn)σ. ⊓⊔

Lemma 4.5 Let ϕ : F → G be an epimorphism of a profinite group F onto a finite
group G. Let M be a closed subgroup of F, let G0 = ϕ(M) ≤ G, and assume that G0
acts on a finite group A. Consider the FSEP

E0(A) = (ϕ|M : M → G0, α0 : A⋊G0→ G0),

and letψ be a solution of the corresponding FSEP

E(A) = (ϕ : F → G, α : AwrG0 G→ G),

with notation as in Definition 4.1. Letπ be the Shapiro map of AwrG0 G. Thenψ(M) ≤
IndG

G0
(A) ⋊G0 andπ ◦ ψ|M is a solution ofE0(A).

Proof We haveψ(M) ≤ α−1(G0) = IndG
G0

(A) ⋊ G0. Thusπ ◦ ψ|M is defined. Let
α′ : IndG

G0
(A) ⋊G0→ G0 be the restriction ofα. From the commutativity of

M
ψ|M

sshhhhhhhhhhhh

ϕ|M��
IndG

G0
(A) ⋊G0

α′ //

π ((QQQQQ
G0

A⋊G0

α0

;;wwwww

we haveα0 ◦ π ◦ ψ|M = ϕ|M, i.e.π ◦ ψ|M is a solution. ⊓⊔

Although the solutionπ ◦ψ|M in the preceding lemma need not be proper, even if
ψ is proper, the proof of [4, Proposition 25.4.1] shows that, under some assumptions
on M, the properness ofψ does imply the properness ofπ ◦ ψ|M. Moreover, ifF is
a free profinite group of infinite rankm, that proof produces a family ofm distinct
proper solutions ofE0(A). We generalize this in part b of the following proposition,
where we consider proper solutions that are not just distinct, but in fact independent.

Proposition 4.6 Let M ≤ F be profinite groups, let A,G1 be finite groups together
with an action of G1 on A, and let

E1(A) = (µ : M → G1, α1 : A⋊G1→ G1)

be a FSEP for M. Let D, F0, L be subgroups of F such that
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(2a) D is an open normal subgroup of F with M∩ D ≤ Kerµ,
(2b) F0 is an open subgroup of F with M≤ F0 ≤ MD,
(2c) L is an open normal subgroup of F with L≤ F0 ∩ D.

Put G= F/L, G0 = F0/L ≤ G, and letϕ : F → G be the quotient map.

a. Then there is an epimorphism̄ϕ1 : G0→ G1, through which an action of G0 on A
is defined, such that every weak solutionψ of the FSEP

E(A) = (ϕ : F → G, α : AwrG0 G→ G)

induces a weak solutionν = ρ ◦ π ◦ ψ|M of E1(A). Hereπ is the Shapiro map of
AwrG0 G andρ : A⋊G0→ A⋊G1 is the extension of̄ϕ1 by the identity of A.

b. Let n∈ N. Assume that there is a closed normal subgroup N of F with N≤ M∩L
such that there is no nontrivial quotient̄A of An through which the action of G0
on An descends and for which the FSEP

(ϕ̄ : F/N → G, ᾱ : ĀwrG0 G→ G), (3)

whereϕ̄ is the quotient map, is properly solvable. Then any n independent proper
solutionsψ ofE(A) induce n independent proper solutionsν ofE1(A).

M F0 MD F

M ∩ D

kerµ

F0 ∩ D D

N M ∩ L L

Proof (a) We can extendµ to a mapMD → G1 by md 7→ µ(m) for all m ∈ M
andd ∈ D. Its restriction toF0 is an epimorphismϕ1 : F0 → G1. It decomposes as
ϕ1 = ϕ̄1 ◦ ϕ0, whereϕ0 : F0→ G0 is the restriction ofϕ to F0 andϕ̄1 : G0→ G1 is an
epimorphism. (Here we use that Kerϕ|F0 = L ≤ D ≤ Kerϕ1 to obtainϕ̄1.) Let G0 act
on A via ϕ̄1. Then we have the following commutative diagram

F0

ϕ0

��

ϕ1

��

// F

ϕ

��
A⋊G0

α0 //

ρ

��

G0

ϕ̄1

��

// G

A⋊G1
α1 // G1,

whereρ is given byρ|G0 = ϕ̄1 andρ|A = idA. By Lemma 4.5,π ◦ ψ|M is a (not
necessarily proper) solution ofE0(A) : (ϕ0|M : M → G0, α0 : A ⋊G0 → G0). Hence
ν = ρ ◦ π ◦ ψ|M is a solution ofE1(A).

(b) Let {ψi}
n
i=1 be a family of independent proper solutions ofE(A). Let 1≤ i ≤ n,

and letνi = ρ ◦ π ◦ψi |M be the induced solution ofE1(A), as in (a). It suffices to show
that eachνi is proper and the family{νi}

n
i=1 is independent.
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By Lemma 4.4, (AwrG0 G)n
G = An wrG0 G. So by Lemma 2.5,ψ1, . . . , ψn define a

proper solution,ψ : F → An wrG0 G, of

E(An) = (ϕ : F → G, α : An wrG0 G→ G).

Applying Lemma 4.5, withAn playing the role ofA there, we get thatν = ρ′ ◦ π′ ◦ ψ
is a solution of

E1(An) = (µ : M → G1, α1 : An ⋊G1→ G1).

(Hereρ′ andπ′ are defined asρ andπ with An replacingA.) By Part C of [4, Proposi-
tion 25.4.1] (again, withAn replacingA), π′(ψ(N)) = An. But ν(N) = ρ′(π′(ψ(N))) =
ρ′(An) = An. ThereforeAn ≤ ν(M), and thusν is a proper solution ofE1(An). As
ψ =

∏

ψi , we get thatν =
∏

νi . Consequently,ν1, . . . , νn are independent proper
solutions (Lemma 2.5). ⊓⊔

Corollary 4.7 (cf. [4, Proposition 25.4.1])Let F be a semi-free profinite group of
infinite rank m and let M be a closed subgroup of F. Assume that for every open
normal subgroup D of F there exist L and F0 as in (2b),(2c) of Proposition 4.6, and
there exists N⊳ F with N ≤ M ∩ L such that no FSEP

(ϕ : F/N → F/L, α : AwrF0/L F/L→ F/L),

where A is a nontrivial finite group on which F0/L acts and whereϕ is the quotient
map, is properly solvable.

Then M is semi-free of rank m.

Proof By [4, Corollary 17.1.4], rank(M) ≤ rank(F) = m. LetE1(A) be a FSEP as in
Proposition 4.6. ChooseD as in (2a) of Proposition 4.6. WithF0, L,N be as above, let
E(A) be as in Proposition 4.6. SinceF is quasi-free of rankm, there exists a familyΨ
of independent proper solution ofE(A) of cardinalitym. This in turn induces a family
N of solutions ofE1(A) (Lemma 4.5). The hypotheses of Proposition 4.6 hold by
the assumptions of the present corollary. Therefore for every positive integern and
for every non-trivial quotient̄A of An, the embedding problem (3) of Proposition 4.6
has no proper solution. Henceψ1, . . . , ψn ∈ Ψ induceν1, . . . , νn ∈ N which are
independent and proper. ThereforeN is a family of independent proper solutions of
cardinalitym. ⊓⊔

5 Semi-free subgroups

5.1 Proof of Main Theorem

Let F be semi-free of rankm and letM ≤ F.

5.1.1 Case I

Assume thatM is open inF. We apply Corollary 4.7. Given an openD⊳F, we take an
openL⊳F with L ≤ M∩D. Then forF0 = M andN = L, there are no proper solutions
of the embedding problem appearing in Corollary 4.7, sinceϕ is an isomorphism and
α is not. Therefore,M is semi-free.
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5.1.2 Case II

Assume thatF/M̂ is finitely generated, wherêM =
⋂

σ∈F Mσ is the normal core of
M in F.

We apply Proposition 4.6. LetE1(A) = (µ : M → G1, α1 : A ⋊ G1 → G1) be a
nontrivial FSEP forM. Let D be an open normal subgroup ofF with M ∩D ≤ Kerµ.
Let F0 = MD andN = M̂ ∩ D. ThenF/N is finitely generated (as an open subgroup
of F/M̂ × F/D). Thus,F has only finitely many open subgroups containingN of
index at mostr = (F : D)|A|2. Their intersection,L, is an open normal subgroup ofF
containingN and contained inD.

Now, for n = 2, the embedding problem (3), i.e.

(ϕ̄ : F/N → F/L, ᾱ : ĀwrF0/L F/L→ F/L),

for any nontrivial quotientĀ of A2, has no proper solution. Indeed, assume there
exists a proper solution̄ψ : F/N → ĀwrF0/L F/L of (3). By Lemma 4.3 there is a
subgroupB of H = ĀwrF0/L F/L of index (H : B) = (F : F0)|Ā| ≤ r that does not
contain Kerᾱ. In particular, (H : B) > (H : BKerᾱ) = (F/L : ᾱ(B)). Write ψ̄−1(B) as
K/N, for someN ≤ K ≤ F. Then (F : K) = (F/N : K/N) = (H : B) ≤ r, and hence
L ≤ K. As ϕ̄ = ᾱ ◦ ψ̄, we haveK/L = ϕ̄(K/N) = ᾱ(ψ̄(K/N)) = ᾱ(B). Therefore

(H : B) = (F : K) = (F/L : K/L) = (F/L : ᾱ(B)) < (H : B),

a contradiction.
SinceF is semi-free, there exists a familyΨ of independent, and in particular

pairwise independent, proper solutions of the nontrivial FSEPE(A) = (ϕ : F →
F/L, α : AwrF0/L F/L→ F/L) such that|Ψ | = m. By Proposition 4.6(b) withn = 2,Ψ
induces a familyN of pairwise independent proper solutions ofE1 and|N| = |Ψ | = m.
By Corollary 3.8 we get thatM is semi-free of rankm.

5.1.3 Cases IV, VI, and VII

The proof of Case VI is verbally identical with the proof of the Diamond Theorem,
[4, Theorem 25.4.3], provided that we replace [4, Proposition 25.4.1] by our Corol-
lary 4.7.

Case IV immediately follows from Case VI. So does Case VII: Since (F : M) =
(F/N : M/N) is divisible by two primes and the Sylow subgroups are normal in
F/N, there are two (Sylow) normal subgroupsP1,P2 of F/N such thatP1 ∩ P2 = 1
and P1,P2 * M/N. The preimagesM1,M2 of P1,P2 are normal inF and satisfy
M1 ∩ M2 = N ≤ M, but M1 � M andM2 � M.

5.1.4 Case V

Assume thatM ⊳ F andF/M is abelian. It follows thatM is also semi-free either by
Cases II and VI or directly from Corollary 4.7. We show the former. If F/M is cyclic,
then, by Case II,M is semi-free. Otherwise, there exists a pro-p subgroup of rank 2 in
F/M, sayH. It factors asH = C1×C2, whereC1,C2 are nontrivial cyclic pro-pgroup.
ThenC1 ∩C2 = 1 andC1,C2 ⊳ F/M (sinceF/M is abelian). The preimagesM1,M2

of C1,C2 are normal inF and satisfyM1 ∩ M2 = M, but M1 � M andM2 � M.
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5.1.5 Cases III, VIII, and IX

The proofs of these three cases are based on Case I and on more elementary argu-
ments than the other cases.

Recall that weight(F/M) = 1 if M is open, and weight(F/M) is the cardinality of
the set of open subgroups ofF that containM if ( F : M) = ∞ ([4, Section 25.2]).

Proof (Proof of Case III)Let E(M) = (ϕ : M → G, α : H → G) be a FSEP forM
and letM0 = Kerϕ. There is an openD ⊳ F such thatD ∩ M ≤ M0. By Case I we
may replaceF by its open subgroupDM to assume thatDM = F. Thendm 7→ ϕ(m),
for d ∈ D, m ∈ M, extendsϕ to an epimorphismϕ : F → G. Let F0 be its kernel. It
containsD, henceF0M = F andF0 ∩ M = M0. Thus (M : M0) = (F : F0) and we
have the FSEPE(F) = (ϕ : F → G, α : H → G).

LetΨ be a family of independent proper solutions ofE(F) of cardinalitym. Each
ψ ∈ Ψ defines a solutionψ′ := ψ|M of E(M). LetΨ ′ = {ψ′ | ψ ∈ Ψ } and letX ⊆ Ψ ′

be a maximal subset of independent proper solutions (Zorn’sLemma). We claim that
X has cardinalitym.

Assume differently, that is to say, assume|X| < m. Let N =
⋂

ψ′∈X Kerψ′ if X , ∅
andN = M0 if X = ∅. In both casesN ≤ M0.

It suffices to findψ ∈ Ψ such thatNKerψ = F0. Indeed, then for every open
subgroupN0 of M0 containingN we have (N0 : N0 ∩ Kerψ) = (F0 : Kerψ),

M F

N N0 M0 F0

N ∩ Kerψ N0 ∩ Kerψ M ∩ Kerψ = Kerψ′ Kerψ

i.e.,N0 and Kerψ′ areM0-independent. In particular, takingN0 = M0, we have (M0 :
Kerψ′) = (M0 : M ∩ Kerψ) = (F0 : Kerψ), and henceψ′ is surjective. Furthermore,
for any finite subsetX′ of X, takingN0 =

⋂

ψ′∈X′ Kerψ′ we get by Proposition 2.2(c)
thatX′ ∪ {ψ′} is an independent set of solutions. Therefore so isX ∪ {ψ′}, which
contradicts the maximality ofX.

To complete the proof, for eachψ ∈ Ψ let Lψ = NKerψ and assume thatLψ , F0.
Since{Kerψ | ψ ∈ Ψ } is F0-independent, the set{Lψ | ψ ∈ Ψ } is also independent by
Proposition 2.2(??). SinceLψ , F0 for all ψ ∈ Ψ , this implies in particularLψ1 , Lψ2

for all distinctψ1, ψ2 ∈ Ψ . Hence weight(F0/N) ≥ m. But weight(F0/M) < m by
the hypothesis of Case III and the fact thatF0 is an open subgroup ofF. More-
over weight(M/N) < m, by [4, Lemma 25.2.1(b)]. Hence weight(F0/N) < m by [4,
Lemma 25.2.1(d)], a contradiction. ⊓⊔

Definition 5.1 A closed subgroupM of a profinite groupF of infinite index is called
sparseif for all n ∈ N there exists an open subgroupK of F containingM such that
for every proper open subgroupL of K containingM we have (K : L) ≥ n.
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The following lemma shows that this definition is equivalentto [2, Definition
2.1]:

Lemma 5.2 If M is sparse in F, then for everyℓ, n ∈ N there exists K as in Defini-
tion 5.1 of index at leastℓ in F.

Proof Let ℓ, n ∈ N. Choose an open subgroupK0 of index ℓ0 ≥ ℓ in F such that
M ≤ K0. By the definition there existsK1 with M ≤ K1 ≤ F such that (K1 : L) ≥ nℓ0

for all proper open subgroupsL of K1 that containM. Then the assertion follows with
K = K0 ∩ K1, since (K1 : K) ≤ ℓ0. ⊓⊔

Proof (Proof of Case VIII)Let M be a sparse subgroup ofF. LetE0(A) = (µ : M →
G, α : A⋊G→ G) be a nontrivial FSEP forM.

Choose an open normal subgroupE0 of F such thatE0 ∩ M ≤ Kerµ and let
F0 = ME0. SinceM is sparse inF0 [2, Corollary 2.3], there is an open subgroup
K of F0 containingM such that (K : L) > |A|2|G| for each proper open subgroup
L of M that containsM. Extendµ to an epimorphismϕ : K → G by ϕ(re) = µ(r),
r ∈ M, e ∈ E0. By Case I,K is semi-free of rankm; hence it suffices to show that two
independent proper solutionsψ1, ψ2 of E(A) = (ϕ : K → G, α : A ⋊G → G) induce
two independent proper solutionsψ1|M, ψ2|M (Corollary 3.8).

By Lemma 4.4,A2 ⋊G is the fiber product ofA⋊G→ G with itself. Thusψ1, ψ2

induce a proper solutionψ of E(A2) = (ϕ : K → G, α : A2 ⋊G → G) (Lemma 2.5).
Let L = Kerψ. Then (K : ML) = (A2 ⋊G : ψ(M)) ≤ |A|2|G|. Hence, by the choice of
K, we get thatML = K. Therefore,ψ|M is a proper solution ofE0(A2) = (ϕ : M →
G, α : A2⋊G→ G). Butψ|M = ψ1|M×ψ2|M. Consequently,ψ1|M, ψ2|M are independent
proper solutions ofE0(A), as claimed. ⊓⊔

The following corollary of Case VIII extends [2, Lemma 2.4] to free groups of
uncountable infinite rank.

Corollary 5.3 If M is a sparse subgroup of a free profinite group F of rank m≥ 2,
then M is a free profinite group ofrank(M) = max{ℵ0, rank(F)}.

Proof The case where rank(F) ≤ ℵ0 is proven in [2]. Assumem= rank(F) is infinite.
By Theorem 3.6,F is semi-free of rankm. By Case VIII of the Main Theorem,M is
semi-free of rankm. Also, M is projective, being a closed subgroup of a free profinite
group. ConsequentlyM is free of rankm (Theorem 3.6). ⊓⊔

Case IX is, in fact, a special case of Case VIII:

Lemma 5.4 Let M be a closed subgroup of a profinite group F of infinite index.
Assume(F : M) =

∏

p pα(p) with all α(p) finite. Then M is sparse in F.

Proof For n ∈ N takeK to be an open subgroup ofF containingM such thatpα(p) |

(F : K) for all p ≤ n. Then for eachM ≤ L � K only primesp > n can divide (K : L).
Therefore, (K : L) > n. ⊓⊔

As a consequence of Corollary 5.3 and Lemma 5.4, we get [15, Proposition 5.1]:

Corollary 5.5 Let M be a closed subgroup of a free profinite group F of rank m≥ 2.
Assume(F : M) =

∏

p pα(p) with all α(p) finite. If (F : M) is infinite, then M is free
profinite group of rankmax{ℵ0, rank(F)}.
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6 Quasi-freeness vs. semi-freeness

We now construct an example of a quasi-free group that is not semi-free.
For a profinite groupC and an infinite setX denote by

∏

∗ X C the free product of
copies{Cx}x∈X of C in the sense of [1]. That is,

∏

∗ X C contains a copyCx of C for each
x ∈ X; and every family of homomorphismsψx : Cx → A into a finite groupA, such
thatψx(Cx) = 1 for all but finitely manyx ∈ X, uniquely extends to a homomorphism
ψ :
∏

∗ X C→ A. As usual letF̂ω denote the free profinite group of countable rank.

Proposition 6.1 Let X be a set of infinite cardinality m. Let C=
∏

p Z/pZ be the
direct product of all prime cyclic groups. Let F= (

∏

∗ X C) ∗ F̂ω. Then

a. F is quasi-free of rank m, and
b. the FSEP

(F → 1,Z/4Z→ 1) (4)

has at most countably many independent proper solutions.

In particular, for m> ℵ0, F is quasi-free but not semi-free.

Proof (a) The rank of
∏

∗ X C is m and the rank ofF̂ω is ℵ0 ≤ m. Hence the rank ofF
is m. In particular, every FSEP forF has at mostm proper solutions. Let

(ϕ : F → G, α : H → G) (5)

be a nontrivial FSEP. Letβ : G → H be its splitting. We need two auxiliary maps:
Firstly, there exists a nontrivial homomorphismπ : C → Kerα; namely, an epimor-
phism ofC onto a subgroup of Kerα of prime order. Secondly, sincêFω is free of
infinite rank, there exists an epimorphismψ′ : F̂ω → α−1(ϕ(F̂ω)) such thatα ◦ ψ′ is
the restriction ofϕ to F̂ω. In particular,ψ′(F̂ω) contains Kerα. Sinceϕ is continuous,
there is aY ⊆ X such thatX r Y is finite andϕ(Cy) = 1 for everyy ∈ Y.

For everyy ∈ Y define a homomorphismψy : F → H in the following manner:
Its restriction toCy � C coincides withπ; if y , x ∈ Y, the restriction ofψy to Cx is
trivial; if x ∈ X r Y, the restriction ofψy to Cx is β ◦ ϕ; and, finally, the restriction of
ψy to F̂ω is ψ′. Thusα ◦ ψy = ϕ. Asψy(F) ⊇ ψ′(F̂ω) ⊇ Kerα, the mapψy is a proper
solution of (5).

As ψy1 , ψy2 for distinct y1, y2 ∈ Y, (5) has at least|Y| = m distinct proper
solutions.

(b) LetΨ be an independent set of proper solutions of (4). The mapα : Z/4Z→ 1
decomposes asα = βγ, whereγ : Z/4Z → Z/2Z andβ : Z/2Z → 1. If ψ1, ψ2 ∈ Ψ

are independent, thenγ ◦ ψ1, γ ◦ ψ2 are independent proper solutions of (β : Z/2Z→
1, ϕ : F → 1) (Proposition 2.2(d)). In particular,γ ◦ψ1 , γ ◦ψ2. Thus{γ ◦ψ | ψ ∈ Ψ }
has at least the cardinality ofΨ .

On the other hand,Z/4Z is a 2-group and the 2-Sylow subgroup ofC is of order 2.
Hence everyψ ∈ Ψ maps eachCx � C into Kerγ, the unique subgroup ofZ/4Z
of order 2, and henceγ ◦ ψ is trivial on Cx. Thereforeγ ◦ ψ is trivial on

∏

∗ X C. It
follows thatγ ◦ψ is determined by its restriction tôFω. But there areℵ0 (continuous)
homomorphismŝFω → Z/4Z. Thus|Ψ | ≤ ℵ0. ⊓⊔
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Remark 6.2One can modify the construction in the proposition to get an absolute
Galois groupF which is quasi-free but not semi-free. E.g., letF = FX(

∏

p,2Zp)∗D∗
F̂ω, whereD is the free product of the constant sheaf of copies ofZ/2Z over some
profinite space of weightm. One can show along the lines of the proof of Proposi-
tion 6.1 thatF is quasi-free but not semi-free. Moreover,F is real projective in the
sense of [6, p. 472] and hence isomorphic to an absolute Galois group by [6, The-
orem 10.4]. We leave out the details, since the assertion is outside the scope of this
work.

Remark 6.3In order to complete the picture we show that being semi-freeis strictly
weaker than being free. In fact, ifF is semi-free of infinite rankm andG is of rank
≤ m, thenF ∗G is semi-free. This leads to many examples of semi-free but not free
profinite groups; e.g., takeG to be finite and recall that a free group has no torsion.
Furthermore, we can construct a semi-free group of arbitrary cohomological dimen-
siond, by takingF free andG of cohomologicald. If d > 1 then the group is not free,
or even projective, since its cohomological dimension is greater than one. Another
example is the absolute Galois group given in Theorem 7.1 below, which is semi-
free but is not projective (and hence not free) because its cohomological dimension
is greater than one.

The conditionm> ℵ0 in the above proposition is essential:

Remark 6.4If rank(F) = ℵ0, thenF is semi-free if and only if it is quasi-free.
Indeed, assumeF is quasi-free. Then every FSEP is solvable. By Lemma 3.5F

is semi-free. The opposite direction is immediate.

We now show that Case III of our Main Theorem does not carry over to quasi-free
subgroups of quasi-free groups.

Example 6.5Let X be a set of cardinalitym > ℵ0 and letF = (
∏

∗ X C) ∗ F̂ω be
the group of Proposition 6.1. LetM be the kernel of the mapF → F̂ω. ThenF is
quasi-free of rankm, weight(F/M) < m, but M is not quasi-free.

Indeed, by Proposition 6.1,F is quasi-free of rankm. We have

weight(F/M) = rank(F̂ω) = ℵ0

sinceF/M = F̂ω. It is easy to see thatM is generated by the conjugates of
∏

∗ X C in F.
Since

∏

∗ X C is generated by copies ofC andC =
∏

pZ/pZ is generated by elements
of prime order, alsoM is generated by elements of prime order. HenceZ/q2Z is not
an image ofM. In particular,M is not quasi-free.

Remark 6.6It is interesting to ask which of the cases of the Main Theoremholds
for quasi-free groups. As we have seen, Case III does not hold. In [23] Case I is
proved. Case V is proved in [10] forM = [F, F]. Combining the methods of this
paper together with [10], one can extend the result to anyM such thatF/M is abelian
but not a pro-p group. The proof of Case VIII (and hence of (IX)) can be carried over
to quasi-free groups. However, we do not know if the diamond theorem, i.e. Case VI,
which is the central result of this paper, holds for quasi-free groups. All other cases
are open in the quasi-free case.
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In order to use our method, i.e. using wreath products, for quasi-free groups for
M of infinite index inF, one needs to come up with a new idea, as explained at the
end of Section 1.

7 Fields with semi-free absolute Galois groups

The main result in [11] (Theorem 5.1 there) was that for any field k, the absolute
Galois group ofK := k((x, y)) is quasi-free. In fact more is true:

Theorem 7.1 Let k be a field. Then the absolute Galois group of the field K:=
k((x, t)) is semi-free of rankcardK.

The proof of this stronger result is essentially contained in the proof of the original
theorem in [11]. We explain below what additional observations need to be made to
complete the argument, and how these observations also yield stronger forms of other
results in [11]. See also [12, Theorem 5.1] for more details.

First we recall the strategy used to prove [11, Theorem 5.1].The proof of that
theorem relied on a related geometric assertion, [11, Proposition 5.3]. That propo-

sition asserted that given a split short exact sequence 1→ N → Γ
f
→ G → 1 of

finite groups with non-trivial kernel, anyG-Galois connected normal branched cover
Y∗ → X∗ = Speck[[ x, t]] can be dominated by aΓ-Galois connected normal branched
coverZ∗ → X∗. Moreover it said that this cover may be chosen such thatZ∗ → Y∗

satisfied a splitting condition (thatZ∗ → Y∗ is totally split at the generic points of
the ramification locus ofY∗ → X∗), and that the set of isomorphism classes of such
coversZ∗ → X∗ has cardinality equal tom := cardk((x, t)).

The proof of [11, Proposition 5.3] relied on [11, Theorem 4.1], which was a more
global version of that assertion. Namely, it considered a smooth connected curveX
over a fieldk̂ := k((t)), and then considered a finite split embedding problem for
the absolute Galois group of the function fieldK of X (this field K being a global
analog of the more local fieldK considered in [11, Proposition 5.3]). The conclusion
was similar: that anyG-Galois branched coverY → X of normal curves can be
dominated by aΓ-Galois branched coverZ → X; that this cover can be chosen
with a splitting property; and that there arem := cardK distinct such choices of
corresponding normal branched coversZ→ X. (The splitting property is thatZ→ Y
is totally split over a given finite setD ⊂ Y of closed points, and the decomposition
groups ofZ→ X at the points ofZ overδ ∈ D are the conjugates ofσ(Gδ), whereGδ

is the decomposition group ofY→ X at δ and whereσ is a section off .)
Moreover, for the sake of [11, Proposition 5.3], more was shown in [11, Theo-

rem 4.1], to enable passage from a global solution to a more local solution. LetX̄ be
a smooth projective model forX overk[[ t]]; and with Y,Z as above, let̄Y, Z̄ be the
corresponding normal branched covers. LetP be a closed point of̄X whose residue
field is separable overk, let X∗ be the spectrum of the complete local ring ofX̄ at P,
and suppose that the pullbackY∗ → X∗ of Ȳ→ X̄ is connected. Then among the pull-
backsZ∗ → X∗ of the above solutions̄Z→ X̄ there aremdistinct proper solutions of
the corresponding local embedding problem. This additional condition was applied
in the case of thex-line overk̂ in order to obtain [11, Proposition 5.3].
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More specifically, the relationship between the local assertion [11, Proposition 5.3]
and the more global assertion [11, Theorem 4.1] is based on viewingk((x, t)) as the
fraction field of the complete local ring of̄X := P1

k[[ t]] at the pointx = t = 0. In
order to apply [11, Theorem 4.1] to the proof of [11, Proposition 5.3], a change of
variables can be made to reduce to the case in which the prime (t) is unramified in
Y∗ → X∗. The reduction of this cover modulo (t) is then induced from a branched
cover of the projectivek-line, by the Katz-Gabber theorem [17, Theorem 1.4.1]. A
patching argument then shows that this cover ofP1

k is in turn the closed fiber of a
cover ofP1

k[[ t]] that restricts toY∗ → X∗. This enables [11, Theorem 4.1] to be cited;
and by the extra conditions in the paragraph above, the proper solutions to the em-
bedding problem over the function field ofP1

k[[ t]] yield distinct proper solutions to the
embedding problem overk((x, t)).

Theorem 4.1 of [11] was a variant on results of Pop [20, Main Theorem A] and
of Haran and Jarden [7, Theorem 6.4], showing that finite split embedding problems
over the function fields of curves over complete discretely valued (or more generally
large) fields have proper regular solutions (and that some additional conditions can
also be satisfied, e.g. the existence of an unramified rational point). Like those earlier
results, [11, Theorem 4.1] was proven using patching. Generators were chosen for
the kernelN of the given finite split embedding problem; and cyclic covers were
constructed with groups generated by each of those elementsin turn. These were then
patched together to form a global solution; in doing so, a compatibility condition
(agreement on overlaps) had to be satisfied by the cyclic covers on the “patches”.
Such a construction was carried out in [11, Proposition 3.5]. But the construction
there assumed that branch points ofZ → Y that correspond to distinct generators of
Z had the property that their closures in̄Y are disjoint. In order to apply this to the
proof of [11, Theorem 4.1] (where the branch points all coalesce on the closed fiber at
P, in order to preserve the solutions overX∗), it was necessary to blow up the closed
fiber to separate the branch points.

We can now describe the proof of Theorem 7.1:

Proof As discussed above, this theorem is a strong form of [11, Theorem 5.1], and
to prove this result it suffices to prove a corresponding strong form of [11, Proposi-
tion 5.3]: that among the coversZ∗ → X∗ whose existence is asserted in that propo-
sition, there is a subset having cardinalitym, and which is linearly disjoint as a set of
covers ofY∗. To prove this, we need to see that in the situation of [11, Theorem 4.1],
an additional property holds: that there arem choices ofZ → X that are linearly dis-
joint overY, that properly solve the given global embedding problem, and that induce
proper solutions overX∗ that are linearly disjoint overY∗ = Y×X X∗.

To show this stronger version of [11, Theorem 4.1], the key point is that the
branch points associated to the generators ofN can be chosen inm different (and
even disjoint) ways. As shown in the original proof, given any choices of these points
on X (which correspond to curves on̄X that are finite overk[[ x]]), any other choice
of points that is congruent to the original choice modulo a sufficiently high power
of t will also work. (Indeed, this is how it was shown that there are m distinct solu-
tions, both overX and overX∗.) What needs to be shown here is that by varying the
branch points we can obtainmsolutions that are linearly disjoint overY. Since Galois
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branched covers with no common subcover are linearly disjoint, it suffices to show
that the set ofm solutionsZ→ X, such that the coversZ→ Y have pairwise disjoint
branch loci, can be chosen such that eachZ → Y has no non-trivial étale subcover
W→ Y.

In the above situation, ifZ → Y has a non-trivial étale subcoverW → Y, then
the Galois group Gal(Z/W), which is a subgroup ofN = Gal(Z/Y), must contain
all the inertia groups ofZ → Y. But this is ruled out by the explicit construction
in the proof of [11, Proposition 3.5]. Namely, that result asserts that the closed fiber
Z̄ → Ȳ of Z → Y is anN-Galois mock cover; i.e., each irreducible component ofZ̄
maps isomorphically ontōY, with the irreducible components being indexed by the
cosets ofN in Γ. The construction in the proof there shows that for each generator
n of N, there is a closed pointQn ∈ Z̄ lying in the ramification locus of̄Z → Ȳ,
such thatn generates the inertia group of̄Z → Ȳ at Qn and also the inertia groups
at the generic points of the ramification components passingthroughQn. Since the
elementsn together generateN, this shows that theN-Galois coverZ → Y has no
non-trivial étale subcovers, as desired.

Thus the above strong form of [11, Theorem 4.1] indeed holds.Hence so does
the strong form of [11, Proposition 5.3]; and thus also Theorem 7.1 above, the strong
form of [11, Theorem 5.1]. ⊓⊔

Another key result of [11], viz. Corollary 4.4 there, asserted that ifK is the func-
tion field of a smooth projective curve over a very large fieldk, then the absolute
Galois group ofK is quasi-free. This can also be strengthened, as follows:

Theorem 7.2 If K is the function field of a smooth projective curve X0 over a large
field k, then the absolute Galois group of K is semi-free.

Proof By a recent result of Pop (see [10, Proposition 3.3]), every large field is very
large. So the assumption onk in [11, Corollary 4.4] can be (a priori) weakened from
very large to large. Concerning the strengthening of the conclusion, this can be done
in a similar way to what was done above for Theorem 7.1. Namely, [11, Corollary 4.4]
followed from [11, Theorem 4.3], which was a variant of [11, Theorem 4.1] in which
the field k̂ = k((t)) was replaced by a more general large fieldF. As in the case of
Theorem 7.1, to prove 7.2 it suffices to show that the proper solutionsZ0 → X0 in
[11, Theorem 4.3] can be chosen so as to be linearly disjoint over Y0; and for this it
suffices to show that they can be chosen so that eachZ0→ Y0 has no non-trivial étale
subcovers.

Theorem 4.3 of [11] was proven using [11, Theorem 4.1], by taking k = F;
obtaining a proper solution for the function field of the induced curveX̄ := X0 ×F R
over R = k[[ t]]; descending fromR to a k-algebraA of finite type, corresponding
to a k-variety V; considering the descendedΓ-Galois coverZA → XA as a family
of Γ-Galois covers ofX0 parametrized byV; and then specializing tok-points ofV
(thereby obtaining solutions overX0) using thatk is (very) large. To prove the desired
strong form of [11, Theorem 4.3], observe that in the contextof the above use of
[11, Theorem 4.1], the branch points (which can be varied arbitrarily modulo some
sufficiently high power oft) can be chosen so as not to be constant; i.e. not of the
form P′ ×k k̂ with P′ a point ofX0. As a result, the the varying branch locus of the
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family of Γ-Galois covers ofX0 parametrized byV is base-point free. So as in the
proof of the strong form of [11, Theorem 4.1], the specialized covers can be chosen
to have no non-trivial étale subcovers; and hence they are linearly disjoint. This shows
that [11, Theorem 4.3] can be strengthened as claimed to include the desired linear
disjointness assertion; and hence Theorem 7.2, the strong form of [11, Corollary 4.4],
also holds. ⊓⊔

8 Fields with free absolute Galois groups

We present two families of fields having free absolute Galoisgroups. For each we use
Theorem 3.6 to reduce the proof of freeness to proving that the group is semi-free and
projective.

The semi-freeness follows from the Diamond Theorem (Main Theorem, Case VI)
together with the semi-freeness of the absolute Galois group of the base field, which
was established in the previous section. The projectivity is achieved by different
means (here we just quote it).

8.1 Fields containing the maximal abelian extension ofk((x, t))

We follow [10] to find fields with free absolute Galois group. Let us start with a
general fact and then give some concrete examples.

Corollary 8.1 Let K = k((x, y)), where k is separably closed and let L be a separable
extension of K. If L contains the maximal abelian extension of K, and its absolute
Galois groupGal(L) satisfies one of the cases of the Main Theorem as a subgroup of
Gal(K), thenGal(L) is a free profinite group.

Proof The group Gal(K) is semi-free of rankmby Theorem 7.1. Hence so is Gal(L).
Also, Gal(L) is projective [10, Theorem 4.4] (see also [3]). Thus, Theorem 3.6 yields
that Gal(L) is free. ⊓⊔

Example 8.2Let K = k((x, y)), wherek is separably closed. LetE be a Galois ex-
tension ofK not containing the maximal abelian extensionKab of K. Let L be any
subextension ofEKab/Kab. We claim that Gal(L) is free of rank equal to the cardinal-
ity of L.

To see this, first note that Gal(K) is semi-free (Theorem 7.1). IfL = Kab, then by
[10, Theorem 4.6(b)] it follows that Gal(L) is free. (Equivalently, this follows from
Main Theorem Case V together with Corollary 8.1.)

Now consider the caseL , Kab. SinceKab * E andKab ⊆ L, it follows thatL *
E. Furthermore,E/K andKab/K are Galois. Hence by the Galois correspondence,
M = Gal(L) satisfies Case VI of the Main Theorem withF = Gal(K), M1 = Gal(E),
andM2 = Gal(Kab). By Corollary 8.1, Gal(L) is free.

Gal(Kab)

Gal(L)

Gal(K)

Gal(E) ∩Gal(Kab) Gal(E)
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8.2 Jarden’s example – extension of roots

This example is adapted from [14]. Letk be a PAC field of characteristicp ≥ 0 and
K = k(x). LetF ⊆ k[x] ⊆ K be the set of all monic irreducible polynomials. For each
f ∈ F choose a set of compatible roots

{ f
1
n | p ∤ n} ⊆ Ks.

(Here compatible means that (f
1

nn′ )n = f
1
n′ for all n, n′ prime top.) Let

L = K( f
1
n | f ∈ F andp ∤ n).

Note thatL/K is Galois if and only ifK contains all roots of unity. Thus in general
L/K is not Galois. In what follows we show that Gal(L) is free of rank equal to the
cardinality ofL.

Fact 1 Gal(L) is projective.

This fact follows from a theorem of Pop (see Theorems 10.4.9 and 11.6.4 in [14]).

Lemma 8.3 There exist Galois extensions L1, L2 of K such that L⊆ L1L2, but L* Li ,
i = 1, 2.

Proof Let L0 denote the extension ofK generated by all roots of unity. Let

L1 = L0(x
1
n | p ∤ n) andL2 = L0( f

1
n | f ∈ F r {x} andp ∤ n).

Clearly L1, L2 are Galois extensions ofK. It is obvious thatL ⊆ L1L2. Choose an
integerm > 1 that is not divisible byp. Since (x+ 1)

1
m < L1 we get thatL * L1; and

similarly x
1
m < L2 implies thatL * L2. ⊓⊔

Theorem 8.4 Gal(L) is free of rank equal to the cardinality of L.

Proof By Theorem 3.6 it suffices to show that Gal(L) is both projective and semi-free
of rank equal to the cardinality ofL. We already mentioned that Gal(L) is projective
(Fact 1).

Theorem 7.2 implies that Gal(K) is semi-free of rankm := |K| = |L|. (Recall that
k is PAC, and in particular large.) Taking absolute Galois groups of the fieldsL1, L2

in the above lemma establishes the condition of Case VI of theMain Theorem, thus
Gal(L) is semi-free of rankm. ⊓⊔

In fact, even more is true. Namely, we have learned from Pop that the proof of his
theorem (referred to above) applies more broadly. In particular, it applies in the case
thatk = F((t)) for some separably closed fieldF (using that this fieldk, like a PAC
field, has projective absolute Galois group and “satisfies a universal local-global prin-
ciple”). Following the same construction as above, we againdeduce that the resulting
field L has free absolute Galois group of rank|L|. Note that by Corollary 25.4.8 of [4],
this also implies that the absolute Galois group ofF((t))(x)ab is free forF separably
closed.
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Moreover, ifk′ is the field obtained fromk by adjoining a set of compatiblenth

roots to all the non-zero elements ofk, then Pop’s argument also shows thatL′ := Lk′

has projective absolute Galois group in the case thatk is a local field such asFp((t))
or Qp. (Here the adjunction of additional roots is to deal with thefact that Gal(k) is
no longer projective.) Since Lemma 8.3 then holds withL replaced byL′ (and with
Li in the proof replaced by its compositum withk′), the above proof of Theorem 8.4
then shows that Gal(L′) is a free profinite group.

Acknowledgements We thank Moshe Jarden for the suggestion to consider Case IIIof the Main Theorem.
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