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Abstract: This paper proves results concerning the fundamental group
of an affine curve over an algebraically closed field of characteristic p,
particularly concerning embedding problems and inertia groups. It is
shown that Galois covers of such curves can be modified so as to en-
large their Galois groups by quasi-p groups and to enlarge the p-part
of inertia groups; that embedding problems for unramified covers with
quasi-p group kernel can be solved with control on inertia; and that the
analogous result holds for tamely ramified covers of affine curves. In ad-
dition, a tame analog of the geometric Shafarevich Conjecture is shown,
and simplifications are given for the proofs of previous results including
Abhyankar’s Conjecture for general affine curves.

Section 1. Introduction.

Consider an affine curve U over an algebraically closed field k of characteristic p > 0. In
this paper we consider the Galois covers of U , and how they fit together, with particu-
lar attention to solving embedding problems, enlarging inertia groups, and strengthening
Abhyankar’s Conjecture.

The étale covers of an affine curve U form an inverse system, whose automorphisms
form the algebraic fundamental group π1(U). This fundamental group is known in char-
acteristic 0 [Gr, XIII, Cor. 2.12] but not in characteristic p > 0. An explicit description
of the set of finite quotients of π1(U) in characteristic p was conjectured in 1957 by Ab-
hyankar [Ab], and this conjecture was proven in [Ra] and [Ha3]. This gives a necessary
and sufficient condition for a finite group to be a Galois group of an étale cover of U . But
it does not indicate which covers are dominated by other covers having specified Galois
groups, nor which inertia groups can arise over points “at infinity”. These questions are
explored in the present paper.

In Section 2 below, it is shown that a characteristic p cover can be modified so as to
enlarge its Galois group by a specified quasi-p group (Theorem 2.1). This is then used to
obtain (Corollary 2.5) a quick proof of the (Strong) Abhyankar Conjecture. That result
states that if U is obtained by deleting r > 0 points from a smooth projective k-curve
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of genus g, then G is the Galois group of an étale cover of U if and only if the maximal
prime-to-p quotient of G can be generated by a set of ≤ 2g + r − 1 elements; and in this
case one can choose all but one infinite place to be tamely ramified (this last condition
being the “strong” part). Here we give a short proof of existence; the converse follows
from [Gr, XIII, Cor. 2.12].

Section 3 contains a result (Theorem 3.6) that allows a cover to be modified by en-
larging its wild ramification. This result strengthens a previous result of the author [Ha2,
Theorem 2], by permitting wild inertia groups whose orders need not be powers of p.

Theorems 2.1 and 3.6 are combined in Section 4, to obtain Theorem 4.1. This in turn
provides a simplified proof and a generalization of a result of Pop [Po, Theorem B] on
embedding problems with quasi-p kernel (Corollaries 4.2, 4.5, 4.6), as well as providing a
related result on tame solutions to quasi-p embedding problems (Theorem 4.4). Theorem
4.1 also yields a proof of a further strengthening of Abhyankar’s Conjecture (Corollary
4.7), in particular taking the unique wildly ramified fibre to have maximal possible wild
inertia (i.e. containing a Sylow p-subgroup). In a related situation, in which extra tamely
ramified points are allowed to be added, it is shown that all finite embedding problems can
be solved (Corollary 4.8), thus extending results of [Ha4], [Po], and [Ha5]. The generalized
tame fundamental group πt

1(U,Σ) is also studied (where covers are permitted to be tamely
ramified over Σ ⊂ U and are required to be étale elsewhere over U). It is shown (Theorem
4.9) that this group is projective (i.e. has cohomological dimension ≤ 1), and that if U −Σ
is finite then this group is free. In particular, this gives the Galois group of the maximal
extension of k(x) that is tamely ramified away from infinity, as well as giving the structure
of the analogous Galois group over Fp(x). This result can be regarded as a tame version
of the geometric Shafarevich Conjecture ([Ha4], [Po, Corollary to Theorem A]).

Concerning methods, there have been three main techniques employed in studying
covers of affine curves in characteristic p: patching, the p-embedding property, and semi-
stable reduction.

Patching methods, in rigid or formal geometry, permit cut-and-paste constructions
analogous to ones that can be performed on complex curves, and are useful in enlarging
Galois groups of covers (e.g. in [Ra], [Ha2], [Ha3], [Po]). Here we use a version of formal
patching that appeared in [HS], and which systematized the approach used in [Ha2].

The p-embedding property, in its simplest form, asserts that if H is a quotient of a
finite group G by a p-group, then any H-Galois étale cover of U is dominated by a G-Galois
étale cover. This was used in [Se2] to prove the solvable case of Abhyankar’s Conjecture
over the affine line, and stronger versions (imposing local conditions in rigid or formal
geometry) were used in [Ra], [Ha3], and [Po]. The present paper uses a more general but
more elementary “arithmetic” version of the p-embedding property with local conditions,
which was proven in [Ha6]. It is used here in order to dominate a given cover by a cover
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that can be patched to a quasi-p cover without introducing new branch points.
The technique of semi-stable reduction permits one to pass from covers in character-

istic 0 to covers in characteristic p, even when there is wild ramification. It was used in
the proof of Abhyankar’s Conjecture over the affine line [Ra], to handle the case in which
the previous two methods do not apply. This method is used indirectly here, in that the
main result of [Ra] is relied upon to obtain quasi-p covers of the affine line.

For further discussions of algebraic fundamental groups, patching methods, formal
and rigid geometry, embedding problems, and semi-stable reduction, see [BLS], [MM], and
[Vo].

Conventions and notation:

Throughout this paper, k denotes an algebraically closed field of characteristic p > 0.
If R is a ring of characteristic p, there is an Fp-linear map ℘ : R → R given by ℘(r) = rp−r.
Its image ℘(R) is an Fp-subspace of R.

For a point ξ on a scheme X, the total ring of fractions of the complete local ring
ÔX,ξ is denoted KX,ξ. If Y → X is a finite morphism , and ξ ∈ X, then KY,ξ will denote
the direct sum of KY,η, where η ranges over the (finitely many) points of Y over ξ. Thus
SpecKY,ξ is the fibre of Y → X over KX,ξ. If Z is a closed subset of an affine scheme
U = Spec A, defined by the ideal I ⊂ A, then ÔU,Z will denote the I-adic completion of
A. If the affine scheme U is an open subset of a scheme V , then we will also write ÔV,Z

for this completion (which depends only on V and Z, not on the choice of U).
Following [HS], a cover Y → X is a morphism of schemes that is finite and generically

separable. In particular, étale covers are covers in this sense. If G is a finite group, then
a G-Galois cover is a cover Y → X together with a homomorphism G → AutX(Y ) with
respect to which G acts simply transitively on each generic geometric fibre. If H is a
subgroup of G, and if Y → X is an H-Galois cover, then there is an induced G-Galois
cover IndG

HY → X, which consists of a disjoint union of [G : H] copies of Y , indexed by
the cosets of H in G. Reduced and irreducible covers Y → X and Z → X are linearly
disjoint if the function fields of Y and Z are linearly disjoint over the function field of X.

If G is a finite group and H is a subgroup of G, then the normalizer of H in G

is denoted NG(H). The normal closure of H in G is the smallest normal subgroup of
G containing H. The subgroup of G generated by its p-subgroups will be denoted by
p(G). This is a characteristic subgroup of G, and G/p(G) is the maximal prime-to-p
quotient of G. A finite group G is a quasi-p group if p(G) = G. According to Abhyankar’s
Conjecture, these are precisely the Galois groups of finite étale covers of A1

k, while the
finite Galois groups over an affine curve U are those G such that G/p(G) is a Galois group
over an “analogous complex curve” (i.e. a complex curve with the same genus and the
same number of punctures). The p-rank of a profinite group G is the dimension of the
Fp-vector space Hom(G, Z/pZ).
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Given finite or profinite groups Π,Γ, G, an embedding problem E for Π consists of
a pair of surjective group homomorphisms (α : Π → G, f : Γ → G). A weak [resp.
proper] solution to E consists of a group homomorphism [resp. epimorphism] β : Π → Γ
such that fβ = α. Here E is called non-trivial [resp. finite, resp. a p-embedding problem,
resp. a quasi-p embedding problem] if the kernel of f is non-trivial [resp. finite, resp. a
p-group, resp. a quasi-p group]. Also, E is called split if f has a section; such embedding
problems automatically have weak solutions. A profinite group Π is projective if every
finite embedding problem for Π has a weak solution. This is equivalent to cd(Π) ≤ 1
[Se1, I, 5.9, Proposition 45]. Similarly, if p is a prime, then the condition cdp(Π) ≤ 1 is
equivalent to every finite p-embedding problem for Π having a weak solution [Se1, I, 3.4,
Proposition 16].

If Π is the fundamental group of a pointed connected scheme (X, ξ), and G is a finite
group, then a surjection Π→→G corresponds to a pointed connected G-Galois étale cover
of (X, ξ). So giving an embedding problem (α : Π → G, f : Γ → G) for Π is equivalent to
giving a pointed G-Galois cover φ : (Y, η) → (X, ξ) together with a surjection f : Γ → G.
We call (φ, f) an embedding problem for (X, ξ); a weak [resp. proper] solution to such an
embedding problem is a pointed Γ-Galois cover [resp. connected cover] that dominates φ.
Such a solution corresponds to a solution to the embedding problem (α : Π → G, f : Γ →
G) for Π. In discussing fundamental groups, reference to the base points will generally
be suppressed, since the choice of base point does not affect the isomorphism class of the
fundamental group.

Acknowledgments. I would like to thank Kate Stevenson, Irene Bouw, and the referee for
helpful comments about the presentation in this paper.
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Section 2. Abhyankar’s conjecture and enlarging Galois groups.

The main result of this section (Theorem 2.1) shows that a Galois group over an affine
k-curve can be enlarged by a quasi-p group, provided that a group-theoretic normalization
condition is satisfied. The enlarged cover can be taken to “look like” the original cover at
all but one of the branch points, where wild inertia will in general be added. This result is
proven using formal patching [HS], the p-embedding property with local conditions [Ha6],
and Abhyankar’s Conjecture over the affine line [Ra]. As a special case, we obtain a quick
proof of Abhyankar’s Conjecture over general affine k-curves (Corollary 2.5).

Theorem 2.1. Let G be a finite group, let Y → X be a G-Galois cover of smooth

connected projective k-curves, and let ξ0 ∈ X. Let Γ be a finite group generated by G

and a quasi-p group Q such that G normalizes a Sylow p-subgroup P ⊂ Q. Let N be the

normal closure of Q in Γ. Then there is a smooth connected Γ-Galois cover Z → X such

that

(i) For every point ξ 6= ξ0 in X, the inertia groups of Y → X over ξ are also inertia

groups of Z → X over ξ;

(ii) For every inertia group I of Y → X over ξ0, there is an inertia group H of Z → X

over ξ0 having the same maximal prime-to-p quotient as I, and satisfying H ⊂ IP ;

and

(iii) Z/N ≈ Y/(G ∩N) as Γ/N -covers of X.

In order to prove this theorem, it suffices to show that the analogous assertion holds
for some overfield K ⊃ k. For then, the cover and its automorphisms are defined over
some k-subalgebra C ⊂ K of finite type over k. As a result, one obtains a family of covers
of X, parametrized by Spec C, such that the generic member satisfies the conclusion of
2.1. Specializing this family then gives a cover Z → X as desired. This strategy is carried
out in detail below. Specifically, in Proposition 2.3 we prove the analogous assertion for
the overfield K = k((t)), using formal geometry. After the proof of 2.3, we carry out the
above specialization procedure, in order to complete the proof of Theorem 2.1.

Remark. (a) In fact, even more is true in Theorem 2.1: There are many choices of the
Γ-Galois cover Z → X there, viz. as many as the cardinality of the base field k. The
reason is that in the specialization argument just alluded to, there are that many points of
Spec C; and these points give that many distinct specializations. See Theorem 4.1 below
(which subsumes Theorem 2.1) for details. The key step in the proof of this cardinality
assertion appears in Lemma 3.5, which is used in Theorem 3.6 and thereby in Theorem
4.1. As a consequence of this cardinality assertion, we are afterwards able to determine
the structure of certain fundamental groups, in Theorem 4.9.

(b) Theorem 2.1 allows one to “expand” a given Galois group by constructing a
related cover whose group Γ is generated by the original group G together with elements
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of p-power order. As a special case, one can consider a split quasi-p embedding problem
E = (α : Π → G, f : Γ → G) for Π = π1(X − B), where B ⊂ X contains ξ0 and the
branch locus of Y → X, and where α corresponds to the cover Y → X. With respect to
a splitting of f , we may regard G as a subgroup of Γ. If this copy of G in Γ normalizes
a Sylow-p subgroup of Γ, then Theorem 2.1 asserts that there is a proper solution to this
embedding problem such that the corresponding Γ-Galois cover Z → X has the property
that Z → Y is unramified away from ξ0. Conversely, from an assertion on the solvability
of quasi-p embedding problems (as in [Po]), one can deduce a result similar to Theorem
2.1; see Remark (b) after Corollary 4.2 below for a further discussion of this point.

We begin by proving a lemma about branch loci of p-covers.

Lemma 2.2. Let p be a prime number, and let P be a finite p-group. Let Ũ → U be a

P -Galois cover of schemes, with U regular and Ũ normal. Let V be an irreducible closed

subset of U . Suppose the cover Ũ → U is étale away from V and is totally ramified over

some closed point ν ∈ V . Then Ũ → U is totally ramified over every point of V .

Proof. Let Ṽ ⊂ Ũ be an irreducible component of the inverse image of V under Ũ → U .
Let I ⊂ P be the inertia group of Ũ → U at the generic point of Ṽ .

Suppose that I is a proper subgroup of P . Since P is a p-group, it follows from
[Sc,6.4.10] that I is contained in a proper normal subgroup J of P . The P/J-Galois cover
Ũ/J → U is then still totally ramified at ν, and étale away from V ; and it is also étale
over the generic point of V . Thus Ũ/J → U is étale in codimension 1. Since Ũ is normal,
so is Ũ/J . Since also U is regular, Purity of Branch Locus [Na, 41.1] applies, and asserts
that Ũ → U is étale everywhere. But this P/J-Galois cover is totally ramified at ν, and
P/J is non-trivial. This is a contradiction.

So in fact I = P . This shows that Ũ → U is totally ramified over the generic point
of V . Hence it is totally ramified over every point of V , since the set of totally ramified
points is closed.

Proposition 2.3. Under the hypotheses of Theorem 2.1, there is an absolutely irreducible

Γ-Galois cover Zt → Xt := X ×k k((t)) that is normal and is k((t))-smooth away from

ξ0t := ξ0 × k((t)), such that the following conditions hold:

(i) For every point ξ 6= ξ0 in X, the inertia groups of Y → X over ξ are also inertia

groups of Zt → Xt over ξt := ξ × k((t)).
(ii) For every point η0 of Y over ξ0 with inertia group I ⊂ G, there is a point ζ0t of

Zt over ξ0t with inertia group H ⊂ IP ⊂ Γ such that ÔZt,ζ0t
contains ÔȲt,η̄0t

as

an ÔXt,ξ0t
-subalgebra, where η̄0 is the image of η0 in Ȳ = Y/(G ∩ P ), and where

Ȳt = Ȳ ×k k((t)) and η̄0t = η̄0 ×k k((t)).
(iii) Zt/N ≈ Y/(G ∩N)× k((t)) as Γ/N -covers of Xt.
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The proof of the proposition will proceed in several steps. In Step 1, we construct an
auxiliary G̃-Galois cover of X defined over k((s)), where G̃ is the subgroup of Γ generated
by P and G. This cover will be constructed so as to dominate the Ḡ := G/(G ∩ P )-
Galois cover Y/(G∩P )×k k((s)), using [Ha6] to guarantee a solution to this p-embedding
problem (even with prescribed behavior over finitely many specified points δ — yielding a
compatibility condition for Step 2). In Step 2, we construct the desired Γ-Galois cover of
Xt = X ×k k((t)). To do this, we take the blow up Xt of X ×k k[[t]] at some closed points
δ; this has exceptional divisors Sδ which we view as copies of the s-line, and it contains
a copy of X (viz. the proper transform of (t = 0)). Away from ξ0 we identify the formal
completion of Xt along X with X×k k[[s]]. A G̃-Galois cover of Xt is constructed by formal
patching, so that its restriction to this formal completion consists of disjoint copies of the
G̃-Galois cover from Step 1; and the restriction to each Sδ consists of copies of a Q-Galois
cover W of the line, branched only at the point δ where Sδ meets X. (Here W exists by
[Ra], and the patching is possible because local compatibility near δ was insured by Step
1.) The general fibre of this cover of Xt is then a Γ-Galois cover Zt → Xt. Finally, in Step
3, we verify that Zt → Xt has all the required properties.

Proof of 2.3. We begin by fixing notation. Let G̃ be the subgroup of Γ generated by
P and G, and let Ḡ = G̃/P = G/(G ∩ P ). Thus Ȳ := Y/(G ∩ P ) is a Ḡ-Galois cover.
Let X ′ = X − {ξ0}; this is an affine curve Spec R′. For any scheme V equipped with a
morphism to X, let V ′ denote V ×X X ′. Let s, t be transcendentals, and for any k-scheme
V , let Vs denote V ×k k((s)) and Vt denote V ×k k((t)). Thus Y ′

s → X ′
s is a G-Galois cover

of affine k((s))-curves that dominates the Ḡ-Galois cover Ȳ ′
s = Ȳ ′ ×k k((s)) → X ′

s. By
Riemann-Roch, we may choose a non-constant function r ∈ R′ on X ′ all of whose zeroes
are simple, and such that the zero locus D ⊂ X ′ of r is disjoint from the branch locus B

of Y → X. For each δ ∈ D, let uδ be a uniformizer for X at δ. Let X ′′ = X − D, and
write X ′′ = Spec R′′; thus r̄ := r−1 ∈ R′′, and R′[r̄] = R′′[r] = O(X ′ ∩X ′′).

Step 1: Construction of a G̃-Galois cover over k((s)).

Let S be a copy of the projective k-line, with parameter s. Since k is algebraically
closed, the Abhyankar Conjecture for the affine k-line holds [Ra]. So there is a smooth
connected Q-Galois cover W → S which is ramified only over s = 0. Moreover, by [Ra],
this cover may be chosen so that its inertia groups over (s = 0) are the Sylow p-subgroups
of Q. In particular, one of the inertia groups, say at ω ∈ W , is equal to P . The extension
of local fields k((s)) = KP1,0 ⊂ KW,ω over (s = 0) is thus P -Galois and totally ramified.

We now apply [Ha6, Theorem 5.6] to the cover Ȳ ′
s → X ′

s in order to obtain a connected
G̃-Galois cover Ỹ ′

s → X ′
s that is étale over Ȳ ′

s and has specified behavior over finitely many
local fields — viz. those at the points of B′

s and Ds. Specifically, Ỹ ′
s → X ′

s can be taken
to have the following properties: it is étale away from B′

s; it dominates the Ḡ-Galois
cover Ȳ ′

s → X ′
s; the P -Galois cover Ỹ ′

s → Ȳ ′
s is étale; for each β ∈ B′, its fibre over
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KX′
s,βs

is given by the G̃-Galois extension IndG̃
GKY ′

s ,βs
; and for each δ ∈ D, its fibre over

KX′
s,δs = k((s))((uδ)) is given by the G̃-Galois extension IndG̃

P KW,ω((uδ)). (This last
condition provides compatibility with the Q-Galois cover W → S, and will allow Ỹ ′

s to be
patched to W in Step 2 below.) Thus for any ξ ∈ X ′, the inertia groups of Y ′ → X ′ over
ξ are also inertia groups of Ỹ ′

s → X ′
s over ξs, and these groups are trivial for ξ 6∈ B′.

The above Galois covers Y ′
s , Ȳ ′

s , Ỹ ′
s of X ′

s are defined over k((s)), and have Ga-
lois groups G, Ḡ, G̃ respectively. The normalizations Y ′s, Ȳ ′s, Ỹ ′s of X ′

s := X ′ × k[[s]] =
Spec(R′⊗k k[[s]]) in these three covers are Galois covers of X ′

s, defined over the ring k[[s]];
they have the same respective Galois groups as the above k((s))-covers, which are their
generic fibres. Here Y ′s = Y ′×k[[s]] and Y ′

s = Y ′×k((s)). So the cover Y ′
s → X ′

s splits com-
pletely over δs for δ ∈ D, since the same holds for Y ′ → X ′ over δ. Also, Ȳ ′s = Y ′s/(G∩P ),
and its closed fibre is Ȳ ′ = Y ′/(G ∩ P ), which is irreducible. The normal G̃-Galois cover
Ỹ ′s → X ′

s dominates Ȳ ′s → X ′
s, and it corresponds to a normal G̃-Galois extension Ã′ of

the ring O(X ′
s) = R′ ⊗k k[[s]]. The P -Galois cover Ỹ ′s → Ȳ ′s is étale on its general fibre,

and is totally ramified over each point δ ∈ D on the closed fibre, since over δs the cover
agrees with the discrete valuation field KW,ω (which as a P -Galois extension of k((s)) is
totally ramified). Hence Ỹ ′s → Ȳ ′s is totally ramified all along its closed fibre, by Lemma
2.2. Thus the closed fibre of Ỹ ′s is irreducible.

Step 2: Construction of a Γ-Galois cover over k((t)).

Let T be the affine k-line with parameter t, and let Σ be the blow-up of X × T

with respect to the ideal (r, t) ⊂ R′[t]. Thus Σ → X × T is an isomorphism away from
D × (t = 0), and over each of those points the inverse image is an exceptional divisor Sδ,
viz. a copy of the projective k-line S with parameter s := t/r = r̄t. Here s is a well-defined
morphism Σ → S. Writing Xs = Σ ×S k[[s]], where we identify k[[s]] with the complete
local ring of S at (s = 0), we have that X ′

s (from the end of Step 1) agrees with Xs×X X ′.
Let Xt = Σ×T k[[t]]. This is a projective curve over k[[t]] whose closed fibre consists

of the proper transform of X × (t = 0) (which we identify with X) and the projective lines
Sδ, where X and Sδ meet at the point δ on X. The general fibre of Xt is Xt = X × k((t)).
Observe that if ξ ∈ X ′, viewed as a point on the closed fibre of Σ over (t = 0), then
ÔXt,ξ = ÔΣ,ξ = ÔXs,ξ ≈ ÔX,ξ[[s]].

The homomorphism k[[s]] → R′′[[t]] = ÔXt,X′′ , given by s 7→ r̄t, induces a homo-
morphism from O(X ′

s) = R′ ⊗k k[[s]] to R′ ⊗k R′′[[t]] and hence to R′′[[t]][r] (using the
map R′ → R′[r̄] = R′′[r]). So we may form the tensor product Ã := Ã′ ⊗O(X ′

s) R′′[[t]][r],
which is G̃-Galois and flat over R′′[[t]][r] because Ã′ is G̃-Galois and flat over O(X ′

s). Thus
ÔXt,X′′ = R′′[[t]] ⊂ R′′[[t]][r] is a subring of Ã, and its integral closure ÃX in Ã is a
G̃-Galois extension of R′′[[t]]. For δ ∈ D, viewed as a point on X in the closed fibre of Xt,
let Ãδ = Ã′⊗O(X ′

s) ÔXs,δ = Ã′⊗O(X ′
s) ÔXt,δ. Thus (in the notation of [HS, §1, p. 275]) ÃX

and Ãδ agree over the complete local ring ÔXt,δ,pδ
= KX,δ[[s]] = KX,δ[[t]], where pδ = (s)

is the height one prime of ÔXt,δ whose closure in Xt is X. The corresponding statement
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then holds for the induced Γ-Galois algebras EX = IndΓ
G̃

ÃX and Eδ = IndΓ
G̃

Ãδ.
Let S′′δ = Sδ − {δ} ⊂ Sδ and let W ′′ be the inverse image of S′′δ under W → S →∼ Sδ

(so W ′′ is independent of δ). Thus ÔXt,S′′
δ

= k[s̄][[t]], where ss̄ = 1. Define ÃSδ
=

ÔW ′′ ⊗ÔS′′
δ

ÔXt,S′′
δ

= ÔW ′′ [[t]] and let ESδ
= IndΓ

QÃSδ
. The fibre of Ỹ ′

s → X ′
s was

constructed to agree over δs with the extension k((s)) ⊂ KW,ω, so ESδ
and Eδ agree over

δs, i.e. at the residue field of the height one prime qδ = (uδ) ⊂ ÔXt,δ whose closure in Xt is
Sδ. Since two étale extensions of a power series ring that agree over the residue field must
themselves agree [Gr, I, Théorème 6.1], it follows that ESδ

and Eδ agree over the complete
local ring ÔXt,δ,qδ

= k((s))[[t]].
The singular locus of the closed fibre of Xt is the set D, whose complement in the

closed fibre is X ′′ ∪ S′′, where S′′ =
⋃

δ S′′δ . By the above compatibilities at pδ and qδ,
we may apply the Corollary to the Patching Theorem [HS, Theorem 1] to the Γ-Galois
extensions Eδ of ÔΣ,δ and EX × ES of ÔXt,X′′∪S′′ . The conclusion is that that there is a
Γ-Galois cover Zt → Xt whose restrictions to ÔXt,X′′ , ÔXt,S′′

δ
, and ÔΣ,δ agree with EX ,

ESδ
, and Eδ respectively, compatibly with the above identifications. In particular, Zt is

a normal variety. Its general fibre is a normal Γ-Galois cover of k((t))-curves, Zt → Xt =
X × k((t)) = Xt ×k[[t]] k((t)).

Step 3: Verification of the desired properties of the Γ-Galois cover, over k((t)).

Absolute irreducibility of Zt: Pick δ ∈ D and let ζ ∈ Zt be the point over δ that
corresponds to the closed point of the identity copy of Spec Ãδ in Spec Eδ = IndΓ

G̃
Spec Ãδ.

In the inverse image of X ′ ⊂ Xt under Zt → Xt, there is a unique irreducible component
passing through ζ, viz. the closed fibre of the identity copy of Ỹ ′s (which is indeed irre-
ducible, as shown at the end of Step 1). The decomposition group of this component is G̃.
Also, the inverse image of Sδ has a unique irreducible component passing through ζ, viz.
the identity copy of W , with decomposition group Q. Since G̃ and Q generate Γ, it follows
that Γ is the decomposition group of the connected component of Zt containing ζ; i.e. that
the Γ-Galois cover Zt → Xt is connected. Since Zt is normal, it is also irreducible, as is
its generic fibre Zt. The same argument shows that this irreducibility is preserved after
passing to a finite extension of k((t)); i.e. Zt is an absolutely irreducible k((t))-variety.

Smoothness and condition (i): If ξ ∈ X ′ − D, we may identify ξt in Xt with ξs in
Xs. Also, in this situation, the complete localizations of ÃX and Ã′ at ξ agree. Hence Zt,
which is given near ξ by EX = IndΓ

G̃
ÃX , locally consists of copies of Ỹ ′s = Spec Ã′.

In particular, in the case that ξ = β ∈ B′ ⊂ X ′−D, the generic fibre Ỹ ′
s of Ỹ ′s consists

locally of copies of Y ′
s near βs. Hence the inertia groups of Y → X over ξ are also inertia

groups of Ỹ ′
s → X ′

s over ξs = ξt, and hence of Zt → Xt over ξt, as desired. Moreover, in
this case, Zt is k((t))-smooth along the fibre over βt since Y is smooth on the fibre over β.

On the other hand, if ξ ∈ X ′ −B′ −D, then the inertia groups of Y → X over ξ are
trivial, and hence so are those of Ȳ ′

s → X ′
s over ξs = ξt; those of Spec ÃX → Spec ÔXt,X′′
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over ξt; and so also those of Zt → Xt over ξt. Since Xt is k((t))-smooth at ξt, it follows
that Zt is k((t))-smooth over that point.

The remaining possibility is that ξ = δ ∈ D. In this case, the cover W ′′ → S′′δ is étale;
hence so is the extension ÔXt,S′′

δ
⊂ ÃSδ

, and so is Zt → Xt over δ × k[[t]]. So the inertia
groups of Zt → Xt over δt, like those of Y → X over δ, are trivial. Again, it follows that
Zt is k((t))-smooth there.

Condition (ii): Since the G̃-Galois cover Ỹ ′s → X ′
s dominates the Ḡ-Galois cover

Ȳ ′s = Y ′s/(G ∩ P ) → X ′
s, it follows that the G̃-Galois cover Spec ÃX → Spec ÔXt,X′′

obtained above from Ỹ ′s dominates the Ḡ-Galois cover Spec ĀX → Spec ÔXt,X′′ that is
similarly obtained from Ȳ ′s. But Spec ĀX = Ȳ ×X ÔXt,X′′ . So if I is the inertia group of
Y → X at a point η0 over ξ0, then Ī := I/(I ∩ P ) is the inertia group of Spec ĀX at the
induced point η̄0t; and the complete local ring of Spec ĀX at η̄0t is an ÔXt,X′′ -subalgebra
of the complete local ring of Spec ÃX at any point over η̄0t. Hence any inertia group H

of Spec ÃX → ÔXt,X′′ over η̄0t is contained in IP , with Ī = IP/P as its quotient under
G̃→→Ḡ = G̃/P . The kernels of I→→Ī and H→→Ī are p-groups, so I and H have the same
maximal prime-to-p quotient. Now the inertia groups and complete local rings of Zt over
ξ0t ∈ Xt are the same as those of Zt over ξ0t ∈ Xt, which in turn are the same as those
of Spec EX = IndΓ

G̃
Spec ÃX over ξ0t ∈ Spec ÔXt,X′′ . Also, the complete local rings of Ȳt

over ξ0t ∈ Xt are the same as those of Spec ĀX over ξ0t ∈ Spec ÔXt,X′′ . So H is an inertia
group of Zt → Xt = X × k((t)) over ξ0t, and the complete local rings of Zt over ξ0t ∈ Xt

dominate those of Ȳt over ξ0t.

Condition (iii): Observe that in the special case that Q is trivial, the cover Zt is simply
Y × k((t)), since in that case W and P are trivial. More generally, for arbitrary Q, the
above construction is compatible with taking quotients. In particular, Zt → X × k((t))
has the property that its quotient Zt/N → X×k((t)) is the Γ/N -Galois cover obtained by
applying the construction to the G/(G∩N)-cover Y/(G∩N) → X and the trivial quasi-p
group. (Here G/(G ∩ N) ≈ Γ/N .) So by the above observation, Zt/N is isomorphic to
Y/(G ∩N)× k((t)) as Γ/N -covers of X × k((t)).

Remark. The above proof combined patching methods with a result on the existence
of solutions to p-embedding problems with prescribed local behavior. As mentioned in
the introduction, such a strategy has been employed previously in related results ([Ra],
[Ha3], [Po]). In [Ra] (on Abhyankar’s Conjecture for the affine line) and in [Po] (on solving
embedding problems with quasi-p kernel), the notion of “local behavior” was in the context
of rigid geometry. The p-embedding result used in those papers was proven in [Ra, §4] in the
language of “Runge pairs”, and the idea was to specify the behavior of the cover over given
affinoid discs. In [Ha3] (on Abhyankar’s Conjecture for affine curves), “local behavior” was
in the sense of formal geometry, and referred to agreement over complete local rings of
dimension 2. The existence of such solutions to p-embedding problems was proven in [Ha3]
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by means of results in [Ha1] on p-covers of affine curves. In the present paper, the notion
of “local behavior” has a more arithmetic sense, in terms of agreement over finitely many
points. Since the base field (here, a Laurent series field) is not algebraically closed, this
type of local behavior provides non-trivial information; and it is sufficient to carry out the
desired strategy without additional reliance on formal or rigid geometry. The p-embedding
result used in the above proof was proven in [Ha6], which used a strategy that paralleled
the proof of the p-embedding result in [Ra, §4]. The proof in [Ha6] also drew on related
ideas that had appeared previously in Serre’s proof of Abhyankar’s Conjecture for solvable
groups over the affine line [Se2], as well as in the proof of a result of Katz and Gabber
[Ka, §2] on cyclic-by-p covers of curves (which in turn generalized the key result in [Ha1],
though by a different proof).

Using the above proposition and the fact that k is algebraically closed, we conclude
the proof of Theorem 2.1:

Proof of 2.1. Consider the Γ-Galois cover Zt → X ×k((t)) given by Proposition 2.3. Since
this cover is of finite type over its base, it descends to a Γ-Galois cover Z → X ×k C for
some k-algebra C ⊂ k((t)) of finite type. Here we may assume that C is a integral domain,
say with fraction field K. Since the asserted properties for Zt → X × k((t)) are of finite
type, we may choose this descended cover so that its generic fibre ZK → XK has the same
properties, though over K instead of k((t)). (The assertion about complete local rings in
property (ii) is of finite type because it is equivalent to saying that the normalization of
Ȳt ×Xt

Zt is étale over Zt.)
More precisely, we may choose the descent so that ZK is absolutely irreducible, normal,

and K-smooth away from ξ0 ×K, and so that properties (i)-(iii) of Proposition 2.3 hold
with k((t)) replaced by K. Replacing Spec C by a Zariski dense open subset, we may
assume that (i)-(iii) of Proposition 2.3 hold (with k((t)) replaced by k) for each fibre
Zγ → X, where γ ranges over the closed points of the k-variety Spec C. Each such fibre is
also smooth away from ξ0, since Z is. By [Ha2, Proposition 5] (or by the Bertini-Noether
theorem [FJ, Proposition 9.29]), there exists a k-point γ ∈ Spec C such that the fibre
Zγ → X is irreducible. Its normalization Z → X is a smooth connected k-curve which
agrees with Zγ → X over X ′ = X − {ξ0}, by smoothness of Zγ there. So condition (i)
of Theorem 2.1 holds for Z → X. Condition (iii) of Theorem 2.1 holds for Zγ → X and
hence for Z → X, since it holds generically and both sides are smooth. Finally, condition
(ii) of Proposition 2.3 (over k) holds for Zγ → X and hence for Z → X. So if I is any
inertia group of Y → X over ξ0, and Ī is the corresponding inertia group of Ȳ → X, then
Ī is a quotient of an inertia group H of Z over ξ0. Thus I and H have the same maximal
prime-to-p quotient. This shows that (ii) of Theorem 2.1 holds.
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Remarks. (a) The above proof of Theorem 2.1 actually shows more, viz. that the asserted
cover Z → X can be chosen to have the property that its complete local rings over ξ0

dominate those of Ȳ = Y/(G ∩ P ) → X over ξ0, viewed as Galois ÔX,ξo
-algebras. With

such a choice, we have that Ī = I/(I ∩ P ) is a quotient of H.
(b) The statement of Theorem 2.1 can be strengthened to assert that H = IP in part

(ii) of the theorem. This is shown in Theorem 4.1.
(c) In the formal patching results of [HS], cited above, the category P(T ) of projective

OT -modules is considered. More precisely, this consists of “sheaves of projective OT -
modules” (i.e. OT -modules which assign, to each affine open set U = Spec A, a projective
A-module). Unless T itself is affine, this is not the same as the category of “projective
sheaves of OT -modules” (i.e. projective objects in the category of all OT -modules).

Recall the following elementary group-theoretic lemma from [Ha3]:

Lemma 2.4 [Ha3, Lemma 5.3] Let Γ be a finite group, let Q = p(Γ), and let π : Γ → Γ/Q

be the natural quotient map. Let P be a Sylow p-subgroup of Γ, and let Γ′ = NΓ(P ).
Then Γ′ contains a subgroup F having order prime to p, such that π(F ) = Γ/Q.

Using the above, we obtain a proof of the Strong Abhyankar Conjecture [Ha3, Theorem
6.2]:

Corollary 2.5. (Strong Abhyankar Conjecture) Let X be a smooth connected projective

k-curve of genus g ≥ 0, let B ⊂ X be a set of r > 0 points, and let ξ0 ∈ B. Let Γ be a

finite group such that Γ/p(Γ) has a generating set of at most 2g + r − 1 elements. Then

there is a smooth connected Γ-Galois cover Z → X that is unramified outside B and is

tamely ramified away from ξ0.

Proof. Let Q = p(Γ), which is a normal subgroup of Γ. Let P be a Sylow p-subgroup
of Γ (or equivalently, of Q, since Q = p(Γ)). Let a1, . . . , an be generators of Γ/Q, with
n ≤ 2g + r − 1.

By Lemma 2.4, there is a prime-to-p subgroup G ⊂ Γ that normalizes P and surjects
onto Γ/Q (i.e. G and Q generate Γ). By this surjectivity, there are elements g1, . . . , gn ∈ G

that map to a1, . . . , an respectively, modulo Q. Replacing G by its subgroup generated by
g1, . . . , gn, we may assume that G has a generating set of n ≤ 2g + r − 1 elements.

Since G has order prime to p, by [Gr, XIII, Cor. 2.12] there is a smooth connected
G-Galois cover Y → X that is unramified away from B, and is at most tamely ramified
over B. Applying Theorem 2.1, we obtain a smooth connected Γ-Galois cover Z → X

whose inertia groups away from ξ0 agree with those of Y → X. So Z → X is unramified
away from B and is tamely ramified away from ξ0.

See Corollary 4.7 below for a stronger version of this result.
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Section 3. Enlarging inertia groups.

This section considers the problem of modifying a cover by enlarging inertia groups, in-
cluding the possibility of adding new branch points, and enlarging the Galois group by the
new inertia. A result of this sort appeared at [Ha2, Theorem 2], using formal patching, and
giving information toward Abhyankar’s Conjecture. Here, in Theorem 3.6, more general
modifications are obtained, viz. cyclic-by-p inertia groups can be enlarged by expanding
the p-part (rather than just enlarging inertia groups that are p-groups, as in [Ha2]).

The proofs in this section, like those of Section 2, use formal patching [HS] and the
p-embedding property [Ha6]. But this section can be read independently of Section 2. The
key results of the two sections (Theorems 2.1 and 3.6) will be combined in Section 4, to
prove Theorem 4.1.

Theorem 3.6 shows that it is possible to enlarge both Galois groups and the p-parts of
inertia groups, with connectivity guaranteed provided that enough inertia is allowed. As
in Section 2 above, the strategy is to constuct the desired cover over a Laurent series field
k((t)); then to descend the cover to a finite-type k-subalgebra A ⊂ k((t)); and finally to
specialize to a k-point of Spec A in order to obtain the desired cover of X defined over k

itself. The cover defined over k((t)) is obtained as the generic fibre of a cover over k[[t]]
which is constructed using formal patching. Namely, this cover is constructed locally, near
each branch point, in Proposition 3.4. These local covers are then patched to a disjoint
union of copies of the original cover (base changed from k to k[[t]]) away from the branch
locus. This last step is carried out in the proof of Theorem 3.6.

We begin with some preliminary results, used in the proofs of Proposition 3.4 and
Theorem 3.6.

Lemma 3.1. Let R be an integral domain of characteristic p, and suppose that R/℘(R)
is infinite. Let P be a non-trivial normal p-subgroup of a finite group G, and let Y → X =
Spec R be a connected G/P -Galois étale cover. Then there are infinitely many connected

G-Galois étale covers Z → X that dominate Y → X and are linearly disjoint over Y .

Proof. Let H = G/P , let Π = π1(X), and let α : Π→→H correspond to the H-Galois
cover Y → X. The map α and the exact sequence 1 → P → G → H → 1 define a finite
p-embedding problem for Π := π1(X), whose proper solutions correspond to covers Z → X

as above. Since V := R/℘(R) is infinite, and hence infinite dimensional as an Fp-vector
space, there are infinitely many non-isomorphic Z/pZ-Galois étale covers of X := Spec R

(viz. given by yp− y = a, where a ∈ R ranges over a lift to R of a Z/pZ-basis of the vector
space V ). So Π := π1(Spec R) has infinite p-rank. By [Ha6, Corollary 3.3(c)], cdp(Π) ≤ 1.
So by [Ha6, Theorem 2.3], every finite p-embedding problem for Π has a proper solution.
Thus such a Z exists.

To complete the proof, it suffices to show that for every n > 0 there are n such covers
Z1, . . . , Zn that are linearly disjoint as P -Galois covers of Y (and hence are non-isomorphic
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since P is non-trivial). For this, consider the n-fold fibre power of G over H, i.e. the group
Gn

H = {(g1, . . . , gn) ∈ Gn | ḡ1 = · · · = ḡn ∈ H}, where ḡ ∈ H denotes the image of g ∈ G

under G→→H. We have an exact sequence 1 → Pn → Gn
H → H → 1, and by the previous

paragraph there is a connected étale Gn
H -Galois cover Z → X that dominates Y → X. Let

Zi = Z/Ni, where Ni is the kernel of the ith coordinate projection Gn
H→→G. Thus each

Zi → X is a connected étale G-Galois cover that dominates Y , and their fibre product
over Y (viz. Z) is irreducible. So their function fields K(Zi) are Galois over K(Y ), and
their compositum over K(Y ) is equal to their tensor product over K(Y ). In particular the
degree of this compositum over K(Y ) is the product of the degrees [K(Zi)/K(Y )]. So by
[FJ, Cor. 9.2], the covers Z1, . . . , Zn are linearly disjoint over Y .

Examples 3.2. (a) Lemma 3.1 holds for X an irreducible affine variety of finite type over
a field of characteristic p, other than a point, since X has infinite p-rank by [Ha6, Cor. 3.7].

(b) Lemma 3.1 also holds for the case R = F ((x)), with F any field of characteristic p,
since the elements xi (with i > 0, and i prime to p) are Fp-linearly independent in R/℘(R)
— which is thus infinite.

Lemma 3.3. Let R = k[[x]], let S0 be a normal integral affine k-scheme of finite type,

and let S = S0 ×k R. Let P be a finite p-group, and let T → S be a normal P -Galois

cover that is totally ramified over (x = 0) and is unramified elsewhere. For σ ∈ S0, let Tσ

be the normalization of the fibre of T → S over σR := σ ×k R.

(a) Then for all σ in a dense open subset of S0, the P -Galois cover Tσ → Spec k[[x]]
is totally ramified over the closed point.

(b) For any σ ∈ S0, the pullback Tσ → SpecKS0,σ[[x]] is a P -Galois cover which is

totally ramified over the closed point.

Proof. (a) For σ ∈ S0, let Iσ ⊂ P be an inertia group of Tσ → Spec k[[x]] over the closed
point. Also, let Φ be the Frattini subgroup of P . Then Iσ and Φ generate P if and only
if Iσ = P (i.e. if and only if Tσ → Spec k[[x]] is totally ramified), since Φ is the set of
non-generators of P [Sc, 7.3.2]. But also, Iσ and Φ generate P if and only if the P/Φ-
Galois cover Tσ/Φ → Spec k[[x]] is totally ramified. So it suffices to prove the result with
P replaced by P/Φ; i.e. we may assume that P is an elementary abelian p-group (Z/pZ)m.
Treating each factor separately, we are reduced to the case that P = Z/pZ, which we now
assume.

The general fibre of T → S is an étale cover of SK = S ×R K, where K = k((x)). So
writing S0 = Spec A, this fibre is given by an equation yp−y = α, where α ∈ AK := A⊗kK.
Here α is uniquely determined modulo ℘(AK). Pick h ≥ 0 such that xph

α ∈ AR := A⊗k R.
Then modulo the subgroup ℘(AK)+AR ⊂ AK , the element α may uniquely be written in
the form

∑ph

i=ph−1+1 aix
−i, with ai ∈ A (because for 1 ≤ i ≤ ph−1, ax−i ≡ apx−ip modulo
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℘(AK)). Here not all ai = 0, since α cannot be chosen in AR (because the cover is not
étale over X). Now if σ ∈ S, then the general fibre of the above cover over σ is given
by yp − y = α(σ), where α(σ) ≡

∑ph

i=ph−1+1 ai(σ)x−i modulo ℘
(
k((x))

)
+ k[[x]]. (Here

ai(σ) ∈ k denotes the reduction of ai ∈ A modulo the maximal ideal corresponding to
σ ∈ S0.) So Tσ → Spec k[[x]] is unramified if and only if α(σ) ∈ ℘

(
k((x))

)
+ k[[x]]. By

the uniqueness of the above summation in its congruence class modulo ℘
(
k((x))

)
+ k[[x]],

being unramified is thus equivalent to the condition that each ai(σ) = 0. Since not all the
elements ai ∈ A are zero, the simultaneous vanishing of the ai’s occurs only on a proper
closed subset of S0. Elsewhere, the normalized specialization to σ is ramified over the
closed fibre, and hence totally ramified (since P = Z/pZ).

(b) Preserving the notation from part (a), we are again reduced to the case that
P = Z/pZ, with the general fibre of T → S being given by yp − y = α, where α ≡∑ph

i=ph−1+1 aix
−i modulo ℘

(
k((x))

)
+ k[[x]], and where not all ai equal 0 in A. Since A ⊂

Kσ, some ai 6= 0 ∈ Kσ. Again by the uniqueness of the above summation representation
of α in its congruence class (this time over Kσ), it follows that α 6∈ ℘

(
Kσ((x))

)
+Kσ[[x]],

and hence that the cover Tσ → SpecKσ[[x]] is not étale. Since the Galois group is Z/pZ,
the cover is totally ramified over its closed point.

The following result is a variant of the Lemma to Theorem 2 in [Ha2, §2]. The most
important difference is that cyclic-by-p groups are allowed here, and not just p-groups, as
in [Ha2, §2].

Proposition 3.4. Let G′ be a finite group of the form P ′×|| C, where P ′ is a p-group and

C is a cyclic group of order prime-to-p. Let G be a subgroup of G′ of the form P×|| C,

where P is a subgroup of P ′. Let N ⊂ P ′ be a non-trivial normal subgroup of G′ such

that N,P generate P ′. Let L be a G-Galois field extension of K = k((x)). Then there is

an irreducible normal G′-Galois cover Z → A1
k[[x]] of the t-line over k[[x]] such that

(i) the cover has branch locus (x = 0), over which it is totally ramified;

(ii) on the locus of (t = 0), the fibre over Spec K is isomorphic to IndG′

G Spec L;

(iii) Z/N ×k[[x]] k((x)) ≈ (Spec L)/(N ∩G)×k k[t] as a G′/N -Galois cover of A1
k((x));

(iv) the pullback to Spec k[[x, t]][1/x] is not isomorphic to IndG′

G Spec L×K k[[x, t]][1/x],
as a G′-Galois cover.

Proof. First consider the special case that N ∩ P = 1, i.e. P ′ = N×|| P . This is equivalent
to supposing that N ∩G = 1, i.e. G′ = N×|| G. In this case, the inclusion G ↪→ G′ induces
an isomorphism G →∼ G′/N .

Let n be the order of the cyclic group C, let x′ = x1/n in an algebraic closure of K,
and let K ′ = K[x′] = k((x′)). Note that K ′ is the only C-Galois field extension of K, since
n is prime to p and since k is algebraically closed. Let X = A1

k[[x]] and let X ′ = A1
k[[x′]].

Consider the connected G-Galois étale cover V = Spec L[t] → U := A1
K . Let Uα ⊂ U be
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the locus of (t = αx), for α ∈ k. Consider the (possibly disconnected) G′-Galois cover
W0 = IndG′

G Spec L → U0. By Lemma 3.1 and Example 3.2(b), there is a connected G′-
Galois étale cover W1 → U1 that dominates the G-Galois étale cover Spec L → U1 and
is linearly disjoint from W0 → U0 over Spec L (and in particular is non-isomorphic to
W0 → U0). Thus W1 is the spectrum of a G′-Galois field extension of K that dominates
L. Applying [Ha6, Theorem 3.11], there is a connected G′-Galois étale cover W → U that
dominates V → U and restricts to Wi → Ui for i = 0, 1. Let Z be the normalization
of X in W . Thus Z → X is an irreducible normal G′-Galois cover which is étale away
from the locus of (x = 0). Moreover Z/N ≈ Y as a G-Galois cover of X, where Y is the
normalization of X in V . So Z/P ′ ≈ Y/P ≈ X ′ as a C-Galois cover of X, since its general
fibre corresponds to the (unique) C-Galois field extension K ′/K.

We claim that Z → X is totally ramified over (x = 0). Since Y/P ≈ X ′ → X is
totally ramified there, it suffices to show that the P ′-Galois cover Z → X ′ = A1

k[[x′]] is
totally ramified there. So let I ⊂ P ′ be an inertia group over the general point of the
closed fibre of X ′. If I is a proper subgroup of P ′, then it is contained in a proper normal
subgroup E of P ′ [Sc,6.4.10]. The P ′/E-Galois cover Z/E → X ′ is then unramified over
the general point of the closed fibre (x = 0), as well as being unramified off of the closed
fibre. By Purity of Branch Locus [Na,41.1], it follows that Z/E → X ′ is étale. But its
restriction to the locus (t = x) corresponds to a connected normal P ′/E-Galois cover of
Spec k[[x′]] (viz. the normalization of k[[xi]] in W1/E). Since k[[x′]] is a complete discrete
valuation ring with an algebraically closed residue field, this P ′/E-Galois cover must be
totally ramified at its closed point — and hence Z/E → X ′ is also totally ramified over
the closed point of (t = x), i.e. at the point (x = t = 0). This is a contradiction; showing
that I = P ′ and that Z → X is totally ramified along (x = 0). This shows (i).

Assertion (ii) follows from the fact that on the locus of (t = 0), the general fibre of
Z0 → Spec k[[x]] is W0 = IndG′

G Spec L → U0. Assertion (iii) is immediate from the fact
that the G′-Galois cover W → U dominates the G-Galois cover V → U . Assertion (iv)
follows from the fact that the fibers W0 and W1 over (t = 0) and (t = x) are linearly
disjoint over Spec L. This completes the proof in the special case that N ∩ P is trivial.

In the general case, let G̃′ = N×|| G, where the semidirect product is taken with respect
to the conjugation action of G on N in G′. Let P̃ ′ = N×|| P ⊂ G̃′. Thus G̃′ ≈ P̃ ′×|| C.
There is a surjection G̃′→→G′ given by the identity inclusion on each factor, restricting to
P̃ ′→→P ′; let H / G̃′ be the common kernel. We may regard N,G as subgroups of G̃′ that
intersect trivially, and which each meet H trivially. Applying the above special case of
the proposition, with G̃′, P̃ ′ playing the roles of G′, P ′, we obtain an irreducible normal
G̃′-Galois cover Z̃ → A1

k[[x]] satisfying the analogs of (i)-(iv). Let Z = Z̃/H, so that
Z̃ ≈ Z ×Z/N Z̃/N . Then the G′-Galois cover Z → A1

k[[x]] satisfies conditions (i)-(iii)
because Z̃ does. Condition (iv) follows from the fact that the fibres of Z̃ → Z̃/N over
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U0 and U1 are linearly disjoint over their bases (i.e. W0 and W1 are linearly disjoint over
Spec L), and hence the fibres of Z → Z/N over U0 and U1 are linearly disjoint over their
bases.

If X is a k-variety, and K is a field containing k, then there is a natural morphism
π : XK := X ×k K → X. So for every k-point ξ of X, we may consider the fibre π−1(ξ)
of XK over ξ. Similarly, if f : Y → X is a morphism of k-schemes, we may consider the
fibre of fK : YK → XK over a k-point ξ of X, viz. (πfK)−1(ξ) → π−1(ξ).

Lemma 3.5. Let X be an irreducible affine k-variety, let XK = X×kK where K = k((x)),
let P be a p-group, and let YK → XK be a connected P -Galois étale cover which is not

isomorphic to Spec L ×K XK → XK for any P -Galois field extension L/K. Then the

cardinality of the set of isomorphism classes of fibres of YK → XK over k-points of X is

equal to the cardinality of k.

Proof. Let κ be the cardinality of k. Since the k-points of X form a set of cardinality κ,
it suffices to show that there are at least κ distinct fibres, up to isomorphism.

Let ZK → XK be the maximal subcover of YK → XK that is induced from a field
extension of K; i.e. which is of the form ZK = Spec M ×K XK → XK for some field
extension M/K. Thus ZK = YK/N , for some non-trivial normal subgroup N / P , where
P/N = Gal(M/K). Since k is algebraically closed, M is also a Laurent series field over
k. So replacing K by M and XK by ZK , we may assume that no non-trivial subcover of
YK → XK is induced from a field extension of K.

Let E be a maximal (proper) subgroup of the p-group P ; thus E is normal in P of
index p [Sc, 6.4.9, 7.2.8]. Replacing P by P/E and YK by YK/E, we are reduced to the
case that P is cyclic of order p. So writing X = Spec R, we may assume that YK → XK

is given by an Artin-Schreier extension yp − y =
∑n

i=m rix
−i, where 0 ≤ m ≤ n and each

ri ∈ R. Replacing R by the étale extension given by zp − z = r0, we may assume that
r0 = 0, or equivalently that m > 0. Since the extension is not altered if a term rix

−i is
replaced by its pth power, we may assume for some h > 0 that m = ph−1 + 1 and n = ph

(as in the proof of Lemma 3.3).
Since YK → XK is not induced from a field extension of K, some ri does not lie in

k ⊂ R. This ri thus defines a dominating map X → A1
k, say with dense image U ⊂ A1

k.
If ξ1, ξ2 are k-points of X that map to distinct points of U , then the corresponding Artin-
Schreier equations of the corresponding fibres of YK → XK are different. Because of
the choice of m,n above, different Artin-Schreier equations give rise to non-isomorphic
P -Galois covers (as in the proof of Lemma 3.3; i.e. since no two elements of the form∑n

i=m cix
−i, with ci ∈ k, can differ by an element of the form ap−a). Since the cardinality

of U is equal to κ, it follows that there are at least this many non-isomorphic fibres, as
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desired.

The following result strengthens [Ha2, Theorem 2], by allowing more general inertia
groups, and also by adding the more technical part (c) (which will be useful in Section 4).

Theorem 3.6. Let G be a finite group, let H be a subgroup of G, and let Y → X be an

H-Galois cover of smooth connected projective k-curves, unramified outside a non-empty

finite set B = {ξ1, . . . , ξr} ⊂ X. For each i let Hi ⊂ H be an inertia group over ξi, so that

Hi = Pi×|| Ci for some p-subgroup Pi ⊂ H and some cyclic group Ci that is of order prime

to p. For each i suppose that H ′
i = P ′

i×|| Ci is a subgroup of G that contains Hi, where P ′
i

is a p-subgroup of G containing Pi.

(a) Then there is a G-Galois cover Z → X of smooth k-curves that is unramified away

from B, such that H ′
i is an inertia group over ξi for all i.

(b) We may take Z to be connected provided that G is generated by H,H ′
1, . . . ,H

′
n.

(c) If N is a normal subgroup of G such that P ′
i ⊂ NPi for all i, then Z may be chosen

so that Z/N ≈ Y/(N ∩ H) as G/N -Galois covers of X. Moreover, if some N ∩ P ′
i 6= 1,

then the cardinality of the set of isomorphism classes of such G-Galois covers Z → X is

equal to the cardinality of k.

Proof. (a) Let xi be a local uniformizer at ξi ∈ X, so that we may identify Ri := ÔX,ξi

with k[[xi]] and Ki := KX,ξi
with k((xi)). The affine curve X0 := X − B is of the

form X0 = Spec R0; let X∗
0 = Spec R0[[t]]. For 1 ≤ i ≤ r, let Xi = Spec ÔX,ξi

and let
X∗

i = Spec ÔX,ξi
[[t]] = Spec ÔA1

R
,(ξi,0), the spectrum of the complete local ring at the

point (ξi, 0) ∈ A1
R. For i = 0, . . . , r, let Yi = Y ×X Xi and Y ∗

i = Y ×X X∗
i . Also let

X∗ = X ×k k[[t]], Y ∗ = Y ×k k[[t]], and B∗ = B ×k k[[t]]; and let X◦ = X ×k k((t)) and
ξ◦i = ξi ×k k((t)), for i = 1, . . . , r.

For i = 1, . . . , r, let ηi ∈ Y be a point over ξi ∈ X at which the inertia group of
Y → X is Hi. Let Li = KY,ηi , an Hi-Galois field extension of K. Proposition 3.4 then
yields an irreducible normal H ′

i-Galois cover Wi → A1
Ri

which is totally ramified over

{ξi} × A1
k and is étale elsewhere, and which on (t = 0) agrees with IndH′

i

Hi
Spec Li over

Spec Ki. This lifts to an agreement of Wi with IndH′
1

H1
Spec Li[[t]] over Spec Ki[[t]], since a

power series deformation of an étale cover is unique, by [Gr, I, Corollaire 6.2]. (Moreover,
for any normal subgroup N ′

i / P ′
i which is a supplement of Pi, e.g. P ′

i itself, the cover Wi

may be chosen so as to satisfy the condition corresponding to (iii) of Proposition 3.4, and
also the condition corresponding to (iv) of Proposition 3.4 if N ′

i is non-trivial. We will
return to this in the proof of (c).) By Lemma 3.3(b), for i = 1, . . . , r the pullback of the
H ′

i-Galois cover Wi → A1
Ri

over k((t))[[xi]] is totally ramified over the closed point; and so
the inertia group and decomposition groups there are equal to H ′

i. Let W ∗
i = Wi×A1

Ri

X∗
i ;

this is an H ′
i-Galois cover of X∗

i .
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By [HS, Corollary to Theorem 1], there is a normal G-Galois cover Z∗ → X∗ that
agrees with IndG

H Y ∗
0 over X∗

0 and agrees with each IndG
H′

i
W ∗

i over X∗
i (for 1 ≤ i ≤ r),

compatibly with the above identification of IndH′
i

Hi
Spec Li[[t]] with the pullback of Wi over

Spec Ki[[t]]. Thus this cover is unramified away from B∗, with H ′
i equal to the inertia

group and to the decomposition group at the k((t))-point η◦i := ηi ×k k((t)) over ξ◦i , for
each i > 1. Let Z◦ → X◦ be the generic fibre of Z∗ → X∗, and let Zs → X be the
special fibre. By the uniqueness assertion of [HS, Corollary to Theorem 1] in the case
m = 0 (i.e. no deformation variables), the normalization of Zs is isomorphic to IndG

H Y ;
i.e. it is a disjoint union of copies of Y , which are indexed by the cosets of H in G, and
which respectively map to the irreducible components of Zs. Moreover, the point ηi on
the identity irreducible component Z1

s ⊂ Zs, viewed as a point of Zs, has inertia group
H ′

i ⊂ G. Hence the decomposition group of the connected component of Zs containing Z1
s

contains H and each H ′
i; and thus Zs is connected if G is generated by H,H ′

1, . . . ,H
′
r.

Since the cover Z∗ → X∗ and the above properties are of finite type, there is a k-
subalgebra A ⊂ k[[t]] of finite type and a normal G-Galois cover ZA → XA = X ×k S,
where S = Spec A, together with a (frac A)-point ηA,i over the general point of ξi×k S for
each i, such that ZA → XA induces Z∗ → X∗ over k[[t]] and hence induces Z◦ → X◦ over
k((t)); such that ηA,i specializes to η◦i ; such that the inertia group and the decomposition
group at ηA,i are equal to H ′

i; such that over the point s ∈ S mapping to the closed
point of Spec k[[t]], the fibre of ZA → XA is isomorphic to Zs → X; and such that the
cover ZA → XA is unramified away from BA := B ×k S. For each i = 1, . . . , r, the
pullback ZA,i = ZA ×X Xi is a G-Galois cover of Xi ×k S with a section over {ξi} × S,
corresponding to ηA,i. Let Z̄A,i be the connected component of ZA,i containing ηA,i. Thus
Z̄A,i → Xi ×k S is an H ′

i-Galois cover that is totally ramified over {ξi} × S, and we have
an isomorphism ZA,i ≈ IndG

H′
i
Z̄A,i of G-Galois covers of Xi ×k S. Applying Lemma 3.3(a)

to Z̄A,i → Xi ×k S, we have that the normalization of the fibre of Z̄A,i over σ is totally
ramified over the closed point of Xi, for all σ in some dense open subset Ui ⊂ S. Let U

be the intersection of the subsets U1, . . . , Ur. Then U is a dense open subset of S, and
for every σ ∈ U , the normalization of the fibre of ZA over σ has the property that the
inertia group is H ′

i at a point over ξi (viz. at the specialization of the point ηA,i to σ).
This normalized fibre is then the desired cover Z → X.

(b) If G is generated by H,H ′
1, . . . ,H

′
r, then as observed above, the closed fibre Zs of

Z∗ is connected. Hence so is Z∗, since each connected component of Z∗ must meet the
closed fibre, being finite over X∗. Since Z∗ is unibranched over ξ∗i (because W ∗

i is totally
ramified over the general point of (xi = 0)), and is smooth elsewhere, it follows that Z∗

is irreducible. Hence so is its dense open subset Z◦. The same holds for the pullback of
Z◦ by any finite field extension F of k((t)), by considering the integral closure of k[[t]] in
F and using that the normalized base change of W ∗

i to F remains totally ramified over
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the general point of (xi = 0). That is, Z◦ is absolutely irreducible. Hence so is ZA. By
the Bertini-Noether theorem [FJ, Proposition 9.29], it follows that after shrinking U , the
fibre of ZA over any σ ∈ U will be irreducible. So Z → X above will be irreducible, if the
choice of σ is taken within this smaller dense open subset.

(c) Let Ni = N ∩Pi and N ′
i = N ∩P ′

i . Thus Ni is a normal subgroup of P ′
i which is a

supplement to Pi in P ′
i . So, as noted in the proof of (a), the cover Wi may be chosen so that

Wi/N
′
i ×k[[xi]] k((xi)) ≈ (Spec Li)/N ′

i ×k k[t] as H ′
i/N

′
i -Galois covers of A1

k((xi))
(condition

(iii) of 3.4; here H ′
i/N

′
i ≈ Hi/Ni). Let Ȳi be the normalization of Xi in Spec Li; thus

Yi = IndH
Hi

Ȳi. Here Wi/N
′
i and Ȳi/Ni ×k k[t] are normal H ′

i/N
′
i -Galois covers of A1

k[[xi]]

whose general fibres agree; so they are isomorphic. Completing along (t = 0), we have that
Z∗/N agrees over X∗

i with (IndG
H′

i
W ∗

i )/N ≈ IndG/N
Hi/Ni

Ȳ ∗
i /Ni, for 1 ≤ i ≤ r, where Ȳ ∗

i =

Ȳi×k[[xi]] k[[xi, t]]; and similarly Z∗/N agrees over X∗
0 with IndG/N

H/(N∩H) Y ∗
0 /(N ∩H), since

Z∗ → X∗ agrees with IndG
H Y ∗

0 over X∗
0 . Moreover these agreements are compatible with

the previous identifications. So by the uniqueness assertion in [HS, Corollary to Theorem
1], it follows that Z∗/N ≈ (IndG

HY ∗)/N as G/N -Galois covers of X∗, and similarly over
X◦. So ZA may be chosen so that ZA/N ≈ (IndG

HY ×k S)/N ≈ Y/(N ∩ H) ×k S as
G/N -Galois covers of XA. Hence Z → X, which is the normalized fibre of ZA → XA over
σ, has the property that Z/N ≈ Y/(N ∩H) as G/N -Galois covers of X. This proves the
first part of (c).

For the second part of (c), assume that some N ′
i 6= 1. Since there are at most κ

non-isomorphic covers of X, it suffices to show that there are at least κ covers with the
desired properties — or in particular that there are κ non-isomorphic fibres Zσ → X (with
σ ∈ U) in the construction in the proof of (a) above. As noted in the proof of (a), by
Proposition 3.4(iv) we may choose Wi so that its restriction to X∗

i −ξ∗i is not induced from
its closed fibre. So then the same holds for the restriction of Z∗ → X∗ to X∗

i − ξ∗i , since
Z∗ restricts to copies of W ∗

i over X∗
i . Hence the general fibre of ZA,i → XA,i := Xi ×k S

is not isotrivial, i.e. is not induced by the fibre over a k-point of S. Now Z∗
i ≈ IndG

H′
i
W ∗

i

and ZA,i ≈ IndG
H′

i
Z̄A,i, with Z̄A,i inducing W ∗

i over X∗
i . Also, W ∗

i /N ′
i ≈ Ȳ ∗

i /Ni. So in
(a), we may choose ZA so that Z̄A,i/N

′
i ≈ (Ȳi/Ni)×k S. Since N ′

i ⊂ P ′
i and P ′

i ∩Hi = Pi,
we also have Z̄A,i/P ′

i ≈ (Ȳi/Pi)×k S, and there is a P ′
i -Galois cover Z̄A,i → (Ȳi/Pi)×k S.

Its general fibre Z̄◦
A,i → LPi

i ×k S is a P ′
i -Galois étale cover of K-curves, and we may

apply Lemma 3.5 to the restriction of this cover to LPi
i ×k U . The conclusion is that the

fibres over k-points σ of U ⊂ S yield a set of isomorphism classes of P ′
i -Galois covers

Z̄◦
σ,i → Spec(LPi

i ) having cardinality κ. But for σ ∈ U , Z◦
σ,i = IndG

Hi
Z̄◦

σ,i is the restriction
of Zσ → X to the general fibre of Xi. Hence the fibres Zσ → X, as σ ranges over U , also
form a set of cardinality at least (and hence exactly) κ.

Remarks. (a) The above proof shows that when the hypotheses of (b) and (c) of The-
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orem 3.6 are simultaneously satisfied, we may choose Z → X so as to satisfy both extra
conditions simultaneously.

(b) The hypotheses of part (c) of Theorem 3.6 are both necessary and sufficient.
Namely, for the first part of (c), if Z/N ≈ Y/(N ∩ H) then these two covers have the
same inertia groups over ξi, and hence P ′

i ⊂ NPi. For the second part of (c), if all
N ∩ P ′

i = 1, then Z → Z/N ≈ Y/(N ∩ H) is a tamely ramified N -Galois cover of the
connected projective k-curve Y/(N ∩H) with branch locus contained in the inverse image
of B ⊂ X. But there are only finitely many such covers, by [Gr, XIII, Cor. 2.12]. (Note
also that the hypothesis of the second part of (c) is satisfied if some P ′

i 6= Pi.)
(c) As with Theorem 2.1, a key special case of Theorem 3.6 is that of split quasi-p

embedding problems (taking G = Q×|| H for some quasi-p group Q, generated by the p-
subgroups Pi of G). And as in Theorem 2.1, there is a partial converse, in which part of
Theorem 3.6 can be deduced from this special case. See Remark (b) after Corollary 4.2
below for a further discussion of this point.

Section 4. Embedding problems and enlarging Galois groups.

By combining Theorems 2.1 and 3.6, we obtain Theorem 4.1 below, which allows enlarging
the Galois group of a cover by a quasi-p group and also enlarging inertia groups. Using
this, we obtain a number of consequences concerning covers of curves in characteristic p

and how they fit together. In particular we strengthen a result of Pop [Po], proving the
existence of solutions to quasi-p embedding problems (Corollary 4.6) which moreover can
be chosen so as to preserve tameness over a given affine curve (Theorem 4.4). We also
prove a strengthening of Abhyankar’s Conjecture (Corollary 4.7), prove a tame analog
of the geometric Shafarevich Conjecture (Theorem 4.9), and obtain the structure of the
Galois group of the maximal extension of a function field over Fp that is tamely ramified
at all but a specified finite set of places (Corollary 4.10).

Theorem 4.1. In the situation of Theorem 2.1, let I be an inertia group of Y → X over

ξ0. Then Z → X may be chosen so that the subgroup of Γ generated by I and P is an

inertia group of Z → X over ξ0. Moreover, if Q is non-trivial, then up to isomorphism

there are card(k) distinct choices of Z → X.

Proof. Let Z0 → X be the Γ-Galois cover given by Theorem 2.1. Thus there is an inertia
group H0 of Z0 → X over ξ0 such that H0 ⊂ IP and H0 has the same maximal prime-to-p
quotient as I. So writing I = PI×|| C and H0 = P0×|| C, where PI and P0 are the Sylow
p-subgroups of I and H0 respectively, we have that P0 ⊂ P ′

0 := PPI . Here P ′
0 is a p-

subgroup of G̃, the subgroup of Γ generated by G and P (in which P is normal). Consider
the cyclic-by-p subgroup of G̃ given by H ′

0 := P ′
0×|| C = IP . Applying Theorem 3.6 with

the roles of G, H, Y,N there played by Γ,Γ, Z0, Q̄, we obtain (in card(k) distinct ways,
provided Q 6= 1) a smooth connected Γ-Galois cover Z → X whose inertia groups away
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from ξ0 are the same as those of Z0 → X over the respective points; H ′
0 is an inertia group

over ξ0; and Z/Q̄ ≈ Z0/Q̄. (Here, as in the statement of Theorem 2.1, Q̄ is the normal
closure of the quasi-p group Q.) Hence properties (i) - (iii) of Theorem 2.1, which held for
Z0, remain true for Z, and moreover (ii) is strengthened so that IP is an inertia group of
Z → X over ξ0.

As a special case of Theorem 4.1, we obtain the following result of F. Pop [Po, second
half of Theorem B]:

Corollary 4.2 Let Γ be a finite group of the form Q×|| G, where Q is a quasi-p group.

Suppose that the subgroup G ⊂ Γ normalizes a Sylow p-subgroup of Q. Let π : Y → X be

a G-Galois branched cover of smooth connected projective k-curves and let ξ0 ∈ X. Then

there is a smooth connected Γ-Galois cover Z → X such that Z/Q ≈ Y as G-Galois covers,

such that Z → Y is unramified away from π−1(ξ0), and such that the inertia groups of

Z → Y over π−1(ξ0) are the Sylow p-subgroups of Q.

Proof. Theorem 4.1 provides a smooth connected Γ-Galois cover Z → X satisfying con-
ditions (i)-(iii) of 2.1, with H = IP in (ii). By (iii), Z/Q ≈ Y as a G-Galois cover of X,
using that Q̄ = Q since Q is normal in Γ. By (i), it follows that Z → Y is unramified away
from π−1(ξ0). By (ii) with H = IP = P×|| I ⊂ Q×|| G = Γ, one of the inertia groups over
π−1(ξ0) is equal to P , and the others are its conjugates — i.e. they range over the Sylow
p-subgroups of Q.

Remark. (a) As Theorem 4.1 shows, if Q 6= 1 then there are card(k) non-isomorphic
choices of the asserted cover Z → X in Corollary 4.2.

(b) Much of Theorem 4.1 (and hence of its weaker form, Theorem 2.1) can be deduced
formally from its special case, Corollary 4.2. Namely, in the situation of Theorem 4.1, let
E be the fibre product of G and Γ over F := Γ/N = G/(G ∩ N). Then the exact
sequence 1 → N → E → G → 1 is split (via the diagonal). So the given G-Galois cover
Y → X, together with this exact sequence, gives a split quasi-p embedding problem for
Π := π1(X −B), where B contains ξ0 and the branch locus of Y → X. By Corollary 4.2,
there is a proper solution to this problem corresponding to a connected E-Galois cover
W → X dominating Y → X, such that the inertia groups of W → Y are trivial away
from ξ0 and are Sylow p-subgroups of E over ξ0. The Γ-Galois intermediate cover Z → X

then has the desired properties, except possibly for (i) of Theorem 2.1. Instead, we have
a somewhat weaker condition on the inertia groups away from ξ0, viz. that the inertia
groups of Z → X over ξ 6= ξ0 are isomorphic to those of Y → X there. The issue is that
Z → Y is unramified there, so the inertia groups are isomorphic; but we do not know from
4.2 that the inertia groups of Y → X (viewed as subgroups of G ⊂ Γ) are also inertia
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groups of Z → X. The proof of Corollary 4.2 in [Po] does show a bit more than what
is asserted there: that there is a section s of Γ → G such that if I is an inertia group of
Y → X over ξ 6= ξ0, then s(I) is an inertia group of Z → X over ξ. But this section
s is generally not the given splitting of Γ = Q×|| G corresponding to the given inclusion
G ↪→ Γ. So this still does not give the full strength of (i) of 2.1. But apart from this (and
from the assertion on cardinality), the rest of Theorem 4.1 (and the corresponding parts
of Theorem 2.1) can be deduced from Corollary 4.2, i.e. from [Po, Theorem B]. Similarly,
in Theorem 3.6, one can obtain a G-Galois cover from the given data and from Corollary
4.2. But using this approach one cannot also obtain the desired inertia groups even up to
isomorphism (since in [Po, Theorem B] the inertia groups of the “new part” of the cover
are either trivial or Sylow p-subgroups, whereas Theorem 3.6 allows much more flexibility
in controlling inertia).

As another consequence of Theorem 4.1, we obtain Theorem 4.4 below. First we prove
a variant on the group-theoretic Lemma 2.4:

Lemma 4.3. Let Γ be a finite group, let Q be a normal quasi-p subgroup of Γ, and let

π : Γ → Γ/Q be the natural quotient map. Let P be a Sylow p-subgroup of Q, and let

Γ′ = NΓ(P ). Then π(Γ′) = Γ/Q.

Proof. Let G = Γ/Q. We want to show that π(Γ′) = G. To see this, let g ∈ G; we
will show that π(γ′) = g for some γ′ ∈ Γ′. By definition of G, we know that there is a
γ ∈ Γ such that π(γ) = g. Since P is a Sylow p-subgroup of Q and since Q is normal, it
follows that γPγ−1 is also a Sylow p-subgroup of Q. Since Sylow p-subgroups of Q are
conjugate in Q, there must be an element q ∈ Q ⊂ Γ such that q(γPγ−1)q−1 = P . Let
γ′ = qγ. Thus γ′Pγ′−1 = P , and so γ′ ∈ NΓ(P ) = Γ′. Also, π(γ′) = π(q)π(γ) = g. So γ′

is as desired, proving the result.

Theorem 4.4. Let Γ be a finite group, Q a normal quasi-p subgroup of Γ, and G = Γ/Q.

Let π : Y → X be a G-Galois cover of smooth connected projective k-curves that is étale

away from B ⊂ X. Suppose that Y → X is tamely ramified away from a non-empty subset

S ⊂ B. Then there is a smooth connected Γ-Galois cover Z → X which is étale away from

B and tamely ramified away from S, such that Y ≈ Z/Q as G-Galois covers, and such that

each inertia group over S contains a Sylow p-subgroup of Q. Moreover there are card(k)
non-isomorphic choices of Z → X if Q 6= 1.

Proof. We have a short exact sequence 1 → Q → Γ → G → 1. Let P be a Sylow
p-subgroup of Q, and let Q′ = NQ(P ) and Γ′ = NΓ(P ) be the normalizers of P in
Q and in Γ. By Lemma 4.3, we have exact sequences 1 → Q′ → Γ′ → G → 1 and
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1 → Q′/P → Γ′/P → G → 1.
Let U = X−S, let U ′ = X−B ⊂ U , and let V, V ′ be the inverse images of U,U ′ under

Y → X. Thus V → U [resp. V ′ → U ′] is a tamely ramified [resp. unramified] G-Galois
cover of smooth connected affine k-curves. The étale cover V ′ → U ′ corresponds to a
surjective homomorphism α : π1(U ′)→→G. By [Se2, Prop. 1], cd(π1(U ′)) ≤ 1. So there is a
homomorphism β : π1(U ′) → Γ′/P such that the composition of β with the map Γ′/P→→G

is equal to α. Let F̄ ⊂ Γ′/P be the image of β. The surjection β : π1(U ′)→→F̄ corresponds
to a smooth connected F̄ -Galois étale cover W̄ ′ → U ′, dominating the G-Galois étale cover
V ′ → U ′. Let W̄ be the normalization of U in W̄ ′. Thus W̄ → U is a smooth connected
F̄ -Galois cover which dominates the G-Galois cover V → U .

Now W̄ → V is a (connected) Galois cover whose group is F̄ ∩ (Q′/P ) = ker(F̄→→G).
Since P is a Sylow p-subgroup of Q and hence of Q′, this intersection is of order prime to
p. So W̄ → V is (at most) tamely ramified. Hence so is the F̄ -Galois cover W̄ → U .

Let F be the inverse image of F̄ under Γ→→Γ/P . So F ⊂ Γ′, and we have an exact
sequence 1 → P → F → F̄ → 1. By [Ha6, Theorem 5.14] (in the case r = 0), the tamely
ramified smooth connected F̄ -Galois cover W̄ → U is dominated by a tamely ramified
smooth connected F -Galois cover W0 → U having the same branch locus. Thus W0 → U

dominates V → U ; i.e. V ≈ W0/(F ∩Q) as G-Galois covers of U .
Let Z0 be the normalization of X (or equivalently, of Y ) in W0. Thus Z0 → X is

an F -Galois cover of smooth connected k-curves such that Y ≈ Z0/(F ∩ Q) as G-Galois
covers of X. Choose ξ0 ∈ S = X − U . Since F → F̄ and F̄ → G are surjective, so
is F → G = Γ/Q. Thus F and the quasi-p group Q generate G. Also, F normalizes
the Sylow p-subgroup P of Q, since F ⊂ Γ′. So by Theorem 4.1 (with F,Z0 playing the
role of G, Y in Theorem 2.1, and using that Q is normal in Γ here), there is a smooth
connected Γ-Galois cover Z → X such that Z/Q ≈ Z0/(F ∩Q) ≈ Y ; such that for every
ξ ∈ U ⊂ X − {ξ0}, the inertia groups of Y → X over ξ are also inertia groups of Z → X

over ξ; and such that the inertia groups over ξ0 contain the conjugates of P . In particular,
Z → X is tamely ramified away from S and is unramified away from B. So Z → X is as
desired. If Q 6= 1 then by Theorem 4.1 there are card(k) distinct choices of Z → X.

Restricting to an affine open subset, we have:

Corollary 4.5. Let Γ be a finite group, Q a normal quasi-p subgroup of Γ, and G = Γ/Q.

Let V → U be a G-Galois tamely ramified cover of smooth connected affine k-curves. Then

there is a smooth connected tamely ramified Γ-Galois cover W → U such that V = W/Q

and such that W → V is étale away from the ramification locus of V → U . If Q 6= 1 there

are card(k) non-isomorphic choices of W → U .

Proof. Let B0 ⊂ U be the branch locus of V → U . Thus B0 is a finite subset of U and
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V → U is tamely ramified over the points of B0. Let X be the smooth completion of U , let
Y be the normalization of X in V , let S = X−U , and let B = B0∪S. Theorem 4.4 yields a
smooth connected Γ-Galois cover Z → X that dominates Y → X, is unramified away from
B, and is tamely ramified away from S. Let W be the inverse image of U under Z → X.
Then W → U is a smooth connected Γ-Galois étale cover that is tamely ramified, and is
unramified away from the branch locus of V → U . So W → U is as asserted, yielding the
first assertion. The second assertion follows from the cardinality assertion of Theorem 4.4,
since non-isomorphic covers Z → X yield non-isomorphic restrictions W → U .

Remark. (a) Abhyankar’s Conjecture and the above result might lead one to suspect
that if Γ is a quasi-p group and G = Γ/N is a quotient (which is thus necessarily quasi-p),
then any connected G-Galois étale cover V → U of affine curves should be dominated
by a connected Γ-Galois étale cover W → U . But actually, this is not the case, as is
shown in [Se2]. In fact, N can be of order prime-to-p; and if moreover U = A1 and N

is an elementary abelian `-group (for some prime ` 6= p), then [Se2, Prop. 2] provides a
necessary and sufficient condition for such a W to exist. But when this condition fails,
[Se2] shows that there is some other connected G-Galois étale cover of the line which is
dominated by a W (proving Abhyankar’s Conjecture in that case).

(b) The above corollary does not apply if U is replaced by a projective curve, as can
be seen by taking the curve P1 and the groups Γ = Q = Z/pZ, G = 1. For then there are
no connected tamely ramified Γ-Galois covers of the line.

Corollary 4.6. All finite quasi-p embedding problems over smooth connected affine k-

curves may be solved properly, and in card(k) non-isomorphic ways if the embedding

problem is non-trivial.

Proof. To give such an embedding problem is to give the following data: a finite group
Γ, a quasi-p subgroup Q ⊂ Γ, and a Γ-Galois étale cover V → U of smooth connected
affine k-curves. A proper solution consists of a Γ-Galois étale cover W → U of smooth
connected k-curves that dominates V → U . This exists by Corollary 4.5 (and in card(k)
non-isomorphic ways if the embedding problem is non-trivial), since the cover W → U

there is étale because the ramification locus of V → U is empty.

Remark. (a) The first half of [Po, Theorem B] is the existence part of Corollary 4.6 in the
special case that the quasi-p embedding problem is split; i.e. that the corresponding exact
sequence 1 → Q → Γ → G → 1 splits. That half of [Po, Theorem B], unlike the other
half (Corollary 4.2 above), does not require that the quotient group normalize a Sylow
p-subgroup of the quasi-p part Q, but it also does not yield the conclusion concerning
inertia. (In the restatement of [Po, Theorem B] appearing at [Ha5, Theorem 5.2], the
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normalization hypothesis was not included. So the inertia condition in the conclusion,
which was not used in the sequel, should also have been omitted from that assertion.)

(b) The proof of Corollary 4.5, and hence that of Corollary 4.6, relies on the assumption
of dimension 1, in order to have that cd ≤ 1. This raises the question of whether or not
these assertions nevertheless hold for higher dimensional affine k-varieties U of finite type.
In fact, they do not. Namely, such a generalization would imply the “higher dimensional
Abhyankar Conjecture” asserting that a finite group Γ is the Galois group of a connected
étale cover of U if and only if its maximal prime-to-p quotient Γ/p(Γ) is. But by [HP],
this conjecture fails in general, in dimension greater than 1 (even for the complement of
the two axes in A2). Hence so do the higher dimensional generalizations of Corollaries 4.5
and 4.6.

The above results give an improved version of the Strong Abhyankar Conjecture for
curves (Corollary 2.5 above), in which the wild inertia is taken to be as large as possible,
and in which the maximal prime-to-p subcover is specified in advance:

Corollary 4.7. Let X be a smooth connected projective k-curve of genus g ≥ 0, let

B ⊂ X be a set of r > 0 points, and let ξ0 ∈ B. Let Γ be a finite group such that Γ/p(Γ)
has a generating set of at most 2g + r − 1 elements.

(a) Then there is a smooth connected Γ-Galois cover Z → X that is unramified

outside B, is tamely ramified away from ξ0, and whose inertia groups over ξ0 contain

Sylow p-subgroups of Γ.

(b) Moreover, the maximal prime-to-p subcover Y = Z/p(Γ) → X may be specified

in advance, and (if p divides the order of Γ) there are card(k) non-isomorphic choices of

Z → X dominating each specified choice of Y → X.

Proof. (a) By [Gr, XIII, Cor. 2.12], there is a smooth connected Γ/p(Γ)-Galois étale cover
V → U := X − B. Let Y be the normalization of X in V . Thus Y → X is a smooth
connected Γ/p(Γ)-Galois cover which is étale away from B. This cover is Galois of degree
prime to p, so it is at most tamely ramified over B. Taking S = {ξ0} and applying Theorem
4.4, we obtain a smooth connected Γ-Galois cover Z → X having the desired properties,
and such that Z/p(Γ) ≈ Y as a Γ/p(Γ)-Galois cover of X. (Here we use that Γ and p(Γ)
have the same Sylow p-subgroups.)

(b) In the proof of (a), we may choose arbitrarily the smooth connected Γ/p(Γ)-Galois
cover Y → X which is unramified outside B. Doing so, we then obtain Z → X having the
required properties and satisfying Y ≈ Z/p(Γ). So the first part of assertion (b) holds. The
second part of (b) follows from the cardinality assertion of Theorem 4.4, since p(Γ) 6= 1 if
and only if the order of Γ is divisible by p.
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As another consequence of Corollary 4.5, we are able to strengthen a result of [Ha4]
and [Po] on solving embedding problems for branched covers. According to [Ha4, Theorem
3.6] and [Po, Theorem A], arbitrary finite embedding problems can be solved if additional
branch points are allowed (and whose positions can be taken to avoid a given finite set of
points). By using Corollary 4.5 above, this result can be strengthened to show that the
new cover can be taken to be tamely ramified over the given cover:

Corollary 4.8. Let Γ be a finite group, N a normal subgroup of Γ, and G = Γ/N . Let

V → U be a G-Galois tamely ramified cover of smooth connected affine k-curves, and let

T ⊂ U be a finite set that is disjoint from the branch locus of V → U . Then there is a

smooth connected tamely ramified Γ-Galois cover W → U such that V = W/N and such

that W → V is étale over T . Moreover, if N is non-trivial, then the set of isomorphism

classes of such covers has cardinality equal to that of the field k.

Proof. Let κ be the cardinality of k. Let Q = p(N) and let N̄ = N/Q, which has order
prime to p. Since Q is a characteristic subgroup of N / Γ, it is a normal subgroup of Γ.
Let N̄ = N/Q and Γ̄ = Γ/Q. Thus there are exact sequences 1 → Q → Γ → Γ̄ → 1 and
1 → N̄ → Γ̄ → G → 1.

By [Ha4, Theorem 3.6(a)] or [Po, Theorem A], there is a smooth connected Γ̄-Galois
cover W̄ → U that dominates the G-Galois cover V → U and is étale over T . Moreover, by
[Ha4, Theorem 3.6(b)], there are κ such covers up to isomorphism if N̄ 6= 1. Since V → U

is tamely ramified over U and since the order of N̄ = Gal(W̄/V ) is prime to p, it follows
that each such W̄ → U is tamely ramified over U .

By Corollary 4.5, for each such choice of W̄ → U , there is a smooth connected tamely
ramified Γ-Galois cover W → U that dominates the Γ̄-Galois cover W̄ → U and which is
étale away from the ramification locus of W̄ → U . Moreover, by that result, if Q 6= 1 then
there are κ such covers up to isomorphism. Each choice of W → U dominates the given
G-Galois cover V → U (since W̄ → U does), and each is étale over T since the branch
locus of W̄ → U is disjoint from T .

Thus a desired cover W → U exists. If N is non-trivial, then at least one of Q and N̄

is non-trivial, and so there are κ such covers W → U up to isomorphism.

Following [Ha6], if U is a connected normal curve, and if Σ is a subset of U , then let
πt

1(U,Σ) denote the Galois group of the maximal extension of the function field of U that is
at most tamely ramified over the places in Σ, and is étale over all places corresponding to
other points of U . According to [Ha6, Corollary 5.16(a)], if U is affine over an arbitrary field
of characteristic p (not necessarily algebraically closed), and if Σ is a proper closed subset
of U , then cdp(πt

1(U,Σ)) ≤ 1. In our situation here, where the base field k is algebraically
closed, more is true, as is shown in the next result. Part (a) strengthens the result from
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[Ha6] in the case that U is affine, to allow the full cohomological dimension, not just the p-
cohomological dimension, and to allow arbitrary Σ. That it, all finite embedding problems
for πt

1(U,Σ) have a weak solution. Part (b) provides a tame version of the geometric
Shafarevich Conjecture that the absolute Galois group of the function field of U is free,
and more generally that the fundamental group π1(US) of the semi-localization at S is free
for S ⊂ U finite ([Ha4, Theorem 4.4], [Po, Cor. to Theorem A]).

Theorem 4.9. Let U be a smooth connected affine k-curve and let Σ ⊂ U .

(a) Then cd(πt
1(U,Σ)) ≤ 1, or equivalently the group πt

1(U,Σ) is projective. Again

equivalently, every embedding problem for πt
1(U,Σ) has a weak solution.

(b) If U − Σ is finite then πt
1(U,Σ) is a free profinite group on card(k) generators.

Proof. (a) Let 1 → N → Γ → G → 1 be a short exact sequence of finite groups, and
let α : πt

1(U,Σ)→→G be a surjective homomorphism, corresponding to a smooth connected
G-Galois tamely ramified cover V → U that is étale away from Σ. We wish to find a (not
necessarily surjective) homomorphism β : πt

1(U,Σ) → Γ that lifts α. This is equivalent
to finding a (possibly disconnected) smooth Γ-Galois tamely ramified cover W → U that
dominates V → U and is étale away from Σ.

Let Q = p(N), let N̄ = N/Q, and let Γ̄ = Γ/Q. Let B ⊂ Σ be the branch locus of V →
U . Let U ′ = U−B and let V ′ ⊂ V be the inverse image of U ′ under V → U . Thus V ′ → U ′

is a smooth connected G-Galois étale cover, corresponding to a surjection α′ : π1(U ′)→→G

that is compatible with α. Since U ′ is an affine curve over the algebraically closed field k, we
have that cd(π1(U ′)) ≤ 1 [Se2, Proposition 1]. Thus there is homomorphism β̄′ : π1(U ′) →
Γ̄ that lifts α′, say with image Γ̄0 ⊂ Γ̄. The surjection β̄′ : π1(U ′) → Γ̄0 corresponds to
a smooth connected Γ̄0-Galois étale cover W̄ ′

0 → U ′ that dominates V ′ → U ′. Taking the
normalization of U in W̄ ′

0, we obtain a smooth connected Γ̄0-Galois cover W̄0 → U that
dominates V → U and is étale away from B. Here W̄0 → V is an N̄0-Galois cover, where
N̄0 = N̄ ∩ Γ̄0 = ker(Γ̄0→→G). Since p is prime to the order of N̄ and hence of N̄0, the cover
W̄0 → V is tamely ramified. Since V → U is also tamely ramified, so is W̄0 → U . Let
Γ0 be the inverse image of Γ̄0 under Γ→→Γ̄. Thus 1 → Q → Γ0 → Γ̄0 → 1 is exact. By
Corollary 4.5, there is a smooth connected tamely ramified Γ0-Galois cover W0 → U that
dominates W̄0 → U and is étale away from B. Let W = IndΓ

Γ0
W0. Then W → U is as

desired.
(b) By a result of O. Melnikov and Z. Chatzidakis [Ja, Lemma 2.1], a profinite group F

is free of rank κ (for κ an infinite cardinal) if and only if every non-trivial finite embedding
problem for F has exactly κ proper solutions. So it suffices to show that if 1 → N →
Γ → G → 1 is a short exact sequence of finite groups with N 6= 1, and if V → U is a
smooth connected G-Galois tamely ramified cover that is étale away from Σ, then there are
κ choices of a smooth connected Γ-Galois tamely ramified cover W → U that dominates
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V → U and is étale away from Σ. This is just the assertion of Corollary 4.8, taking
T = U − Σ.

Corollary 4.10. Let q be a power of a prime number p and let U be a smooth geometrically

connected affine curve over the finite field Fq.

(a) If S is a finite subset of U , then the fundamental group π1(US) of the semi-

localization of U at S is isomorphic to a semi-direct product F̂ω×|| Ẑ, where F̂ω is the free

profinite group of countable rank.

(b) If Σ is a dense open subset of U , then πt
1(U,Σ) is isomorphic to a semi-direct

product F̂ω×|| Ẑ.

Proof. (a) The algebraic closure k of Fq is countably infinite, so by the geometric case of the
Shafarevich Conjecture ([Ha4, Theorem 4.4], [Po, Cor. to Theorem A]), the fundamental
group of (US)k := US ×Fq

k is isomorphic to F̂ω . Also, GFq
≈ Ẑ, generated by Frobenius.

So the fundamental exact sequence 1 → π1((US)k) → π1(US) → GFq
→ 1 from Galois

theory takes the form 1 → F̂ω → π1(US) → Ẑ → 1. Choosing any element of π1(US) lying
over a topological generator of Ẑ provides a splitting, yielding the semi-direct product
representation.

(b) By Galois theory and the definition of πt
1, there is a quotient homomorphism

πt
1(U,Σ)→→GFq

≈ Ẑ with kernel πt
1(Uk,Σ). So by Theorem 4.9(b) we obtain the exact

sequence 1 → F̂ω → πt
1(U,Σ) → Ẑ → 1. Again, since the cokernel of the exact sequence is

pro-cyclic, there is a splitting yielding the desired semi-direct product representation.

In particular, taking U = Σ = A1
Fq

, S = ∅, we have that the absolute Galois group of

Fq(t) is of the form F̂ω×|| Ẑ, as is the Galois group of the maximal extension of Fq(t) that
is tamely ramified over every finite place. The first of these two facts may be regarded as
evidence for the conjecture that every finite group is a Galois group over Fq(t), and the
second fact may be regarded as suggesting:

Conjecture 4.11. For every prime power q, and for every finite group G, there is a

G-Galois field extension of Fq(t) that is at most tamely ramified over every finite place.

This conjecture is a function field analog of a conjecture of B. Birch, that every finite
group is the Galois group of a tamely ramified field extension of Q.
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d’Abhyankar. Invent. Math. 116 (1994), 425-462.

[Sc] W.R. Scott, “Group Theory.” Prentice-Hall, Englewood Cliffs, NJ, 1964.
[Se1] J.-P. Serre. “Cohomologie Galoisienne.” Lecture Notes in Mathematics, Vol. 5,

Springer-Verlag, Berlin-Heidelberg-New York, 1964.
[Se2] J.-P. Serre. Construction de revêtements étales de la droite affine en caractéristique
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