
Section 4: Rigid patching

This section, like Section 3, discusses an approach to carrying over the ideas of Sec-

tion 2 from complex curves to more general curves. The approach here is due to Tate,

who introduced the notion of rigid analytic spaces. The idea here is to consider power

series that converge on metric neighborhoods on curves over a valued field, and to “rigid-

ify” the structure to obtain a notion of “analytic continuation”. Tate’s original point of

view, which is presented in Section 4.1, is rather intuitive. But the details of carrying it

out become somewhat complicated, as the reader will see (particularly with regard to the

precise method of rigidifying “wobbly spaces”). A simplified approach, due to Grauert,

Remmert, and Gerritzen, is discussed later in Section 4.1, including their approach to a

rigid analog of GAGA. Section 4.2 then discusses a later reinterpretation of rigid geometry

that is due to Raynaud, and which establishes a kind of “dictionary” between the formal

and rigid set-ups (and allows rigid GAGA to be deduced from formal GAGA). Applications

to the construction of Galois covers of curves are then presented in Section 4.3, includ-

ing a version of the (geometric) regular inverse Galois problem, and Pop’s Half Riemann

Existence Theorem. Additional applications of both rigid and formal geometry to Galois

theory appear afterwards, in Section 5.

Section 4.1. Tate’s rigid analytic spaces.

Another approach to generalizing complex analytic notions to spaces over other fields

is provided by Tate’s rigid analytic spaces. As in the formal approach discussed in Section

3, the rigid approach allows “small neighborhoods” of points, and permits objects (spaces,

maps, sheaves, covers) to be constructed by giving them locally and giving agreement on

overlaps (i.e. “patching”). Here the small neighborhoods are metric discs, rather than

formal neighborhoods of subvarieties, as in the formal patching approach.

This approach was introduced by Tate in [Ta], a 1962 manuscript which he never

submitted for publication. The manuscript was circulated in the 1960’s by IHES, with

the notation that it consisted of “private notes of J. Tate reproduced with(out) his per-

mission”. Later, the paper was published in Inventiones Mathematicae on the initiative

of the journal’s editors, who said in a footnote that they “believe that it is in the general

interests of the mathematical community to make these notes available to everyone”.

Tate’s approach was motivated by the problem of studying bad reduction of elliptic

curves (what we now know as the study of Tate curves; see e.g. [BGR, 9.7]). The idea

is to work over a field K that is complete with respect to a non-trivial non-archimedean

valuation — e.g. the p-adics, or the Laurent series over a coefficient field k. On spaces

defined over such a field K, one can consider discs defined with respect to the metric on

K; and one can consider “holomorphic functions” on those discs, viz. functions given by

power series that are convergent there. One then wants to work more globally by means of
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analytic continuation, and to carry over the classical results over
�

(e.g. those of Section 2

above) to this context. As a result, one hopes to obtain a GAGA-type result, a version

of Riemann Existence Theorem, the realization of all finite groups as Galois groups over

K(x), etc.

There are difficulties, however, that are caused by the fact that the topology on K is

totally disconnected. For example, on the affine K-line, consider the characteristic function

fD of the open unit disc |x| < 1; i.e. f(x) = 1 for |x| < 1, and f(x) = 0 for |x| ≥ 1. Then

this function is continuous, and in a neighborhood of each point x = x0 it is given by a

power series. (Namely, on the open disc of radius 1 about x = x0, it is identically 1 or

identically 0, depending on whether or not |x0| is less than 1.) This is quite contrary to the

situation over
�
, where a holomorphic function is “rigid”, in the sense that it is determined

by its values on any open disc. Thus, if one proceeds in the obvious way, objects will have

a strictly local character, and there will be no meaningful “patching”.

Tate used two ideas to deal with this problem. The first of these is to consider functions

that are locally given on closed discs, rather than on open discs, and to require agreement

on overlapping boundaries. Note, though, that because the metric is non-archimedean,

closed discs are in fact open sets. The second idea is to restrict the set of allowable maps

between spaces, by choosing a class of maps that fulfills certain properties and creates a

“rigid” situation.

Concerning the first of these ideas, let K{x} denote the subring of K[[x]] consisting

of power series that converge on the closed unit disc |x| ≤ 1. Because the metric is non-

archimedean, this ring consists precisely of those series
∑∞

i=0 aix
i for which ai → 0 as

i →∞. Similarly, the power series in K[[x1, . . . , xn]] that converge on the closed polydisc

where each |xi| ≤ 1 form the ring K{x1, . . . , xn} of series
∑

aix
i, where i ranges over n-

tuples of non-negative integers, and where ai → 0 as i →∞. As an example, if K = k((t))

for some field k, then K{x} = k[x][[t]][t−1]. (Verification of this equality is an exercise left

to the reader.)

If 0 < r1 ≤ r2, then we may also consider the closed annulus {x | r1 ≤ |x| ≤ r2}. Since

the metric is non-archimedean, this is an open subset, which we may consider even when

r1 = r2. In particular, in the case r1 = r2 = 1, we may consider the ring K{x, x−1} =

K{x, y}/(xy − 1) of functions converging on the annulus; this consists of doubly infinite

series
∑∞

i=−∞ aix
i such that ai → 0 as |i| → ∞. Similarly, we may consider the ring

K{x1, . . . , xn, x−1
1 , . . . , x−1

n } = K{x1, . . . , xn, y1, . . . , yn}/(xiyi − 1) of functions on the

“poly-annulus” |xi| = 1 (with i = 1, . . . , n). In the case that K = k((t)), we have that

K{x, x−1} = k[x, x−1][[t]][t−1]. (Verification of this is again left to the reader. In this

situation, the one-dimensional rings K{x} and K{x, x−1} are obtained by inverting t in

the two-dimensional rings k[x][[t]] and k[x, x−1][[t]]; cf. Figure 3.1.4 above.)

In order to consider more general analytic “varieties” over K, Tate considered quo-
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tients of the rings K{x1, . . . , xn} by ideals. He referred to such quotients by saying that

they were of topologically finite type; these are also now referred to as affinoid algebras

[BGR] or as Tate algebras [Ra1] (though the latter term is sometimes used only for the

ring K{x1, . . . , xn} itself [BGR]). Tate showed that a complete K-algebra A is an affinoid

algebra if and only if it is a finite extension of some K{x1, . . . , xn} [Ta, Theorem 4.4]; and

in this case A is Noetherian, every ideal is closed, and the residue field of every maximal

ideal is finite over K [Ta, Theorem 4.5]. The association A 7→ Max A is a contravariant

functor from affinoid algebras to sets, where MaxA is the maximal spectrum of A. (The

map MaxB → MaxA associated to φ : A → B is denoted by φ◦, and is called rigid.)

Since A/ξ is a finite extension L of K for any ξ ∈ MaxA, we may consider f(ξ) ∈ L and

|f(ξ)| ∈
�

for any f ∈ A (and thus regard A as a ring of functions on MaxA). By an

affinoid variety, we then mean a pair Sp A := (MaxA, A), where A is an affinoid algebra.

Tate defined an affine subset Y ⊂ MaxA to be a subset for which there is an affinoid

algebra AY that represents the functor hY : B 7→ {φ : A → B |φ◦(MaxB) ⊂ Y }; i.e. such

that hY (B) = Hom(AY , B). (This is called an affinoid subdomain in [BGR].) A special

affine subset Y ⊂ MaxA is a subset of the form

Y = {ξ ∈ MaxA : |fi(ξ)| ≤ 1 (∀i), |gj(ξ)| ≥ 1 (∀j)},

where (fi), (gj) are finite families of elements of A. (These are called Laurent domains in

[BGR].) Tate showed [Ta, Proposition 7.2] that every special affine subset is affine, viz. that

if Y is given by (fi), (gj) as above, then AY = A{fi; g
−1
j } := A{xi; yj}/(fi − xi, 1− gjyj).

Moreover if Y is an affine subset of MaxA, then the canonical map MaxAY → Y is a

bijection [Ta, Proposition 7.3]. In fact, it is a homeomorphism [Ta, Cor. 2 to Prop. 9.1], if

we give MaxA the topology in which a fundamental system of neighborhoods of a point

ξ0 is given by sets of the form Uε(g1, . . . , gn) = {ξ ∈ Max A : |gi(ξ)| < ε for 1 ≤ i ≤ n},

where ε > 0 and where g1, . . . , gn ∈ A satisfy gi(ξ0) = 0.

Tate defined Čech cohomology for coverings of affinoid varieties V = (MaxA, A) by

finitely many affine subsets, and proved his Acyclicity Theorem [Ta, Theorem 8.2], that

Hi( � ,O) = 0 for i > 0; here O is the presheaf that associates to any affine subset its

affinoid algebra, and � is a finite covering of V by special affine subsets. (In fact, this

holds even with a finite covering of V by affine subsets; see [BGR, §8.2, Theorem 1].) As a

consequence, for such a covering � of V and any A-module M of finite type, H0( � , M̃) is

isomorphic to M , and H i( � , M̃) = 0 for i > 0 [Ta, Theorem 8.7]; here M̃ is the presheaf

Y → M ⊗A AY for Y an affine subset of V . These are analogs of the usual facts for

the cohomology of affine varieties. Moreover, they imply that O and M̃ are sheaves. In

particular [BGR, §8.2, Corollary 2], if f, g ∈ A agree on each member Ui of a finite affine

covering of V , then they are equal; and if for every i we are given a function fi on Ui, with

agreements on the overlaps, then they may be “patched” — i.e. there is a function f ∈ A

which restricts to each fi.
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As might be expected, if U is an affine open subset of an affinoid variety V , then

the map AU → Γ(U,O) is injective. Unfortunately, it is not surjective, e.g. because of

characteristic functions like fD, mentioned at the beginning of this section. Moreover,

the functor A 7→ Max A is faithful, but not fully faithful [Ta, Corollary 2 to Proposition

9.3]; i.e. not every K-ringed space morphism between two affinoid varieties is induced by a

homomorphism between the corresponding rings of functions. Because of this phenomenon,

if one defines more global analytic K-spaces simply by considering ringed K-spaces that

are locally isomorphic to affinoid varieties, then one instead obtains a theory of “wobbly

analytic spaces”, rather than rigid ones.

In order to “rigidify” these wobbly spaces, Tate introduced the second of the two

ideas mentioned earlier — viz. shrinking the class of allowable morphisms between such

spaces, in such a way that in the case of affinoid varieties, the allowable morphisms are

precisely the rigid ones (i.e. those induced by homomorphisms of the underlying algebras).

He did this in a series of steps, which he said followed “fully and faithfully a plan furnished

by Grothendieck” [Ta, §10]. First, he defined [Ta, Definition 10.1] an h-structure θ on a

wobbly analytic space V to be a choice of a subset V θ(A) ⊂ Hom(MaxA, V ) (of structural

maps) for every affinoid K-algebra A, such that every point of V is in the image of some

open structural immersion, and such that the composition of a rigid map of affinoids with

a structural map is structural. An h-space is a wobbly analytic space together with an

h-structure, and a morphism of h-spaces (V, θ) → (V ′, θ′) is a ringed space morphism

V → V ′ which pulls back structural maps to structural maps. If V, V ′ are affinoid, then a

morphism of h-spaces between them is the same as a rigid morphism between them [Ta,

Corollary to Prop. 10.4].

Next, Tate defined a special covering of an h-space [Ta, Def. 10.9] to be one that is

obtained by taking a finite covering by special affine subsets, then repeating this process on

each of those subsets, a finite number of times. An h-space V is then said to be special [Ta,

Def. 10.12] if it has the property that a ringed space morphism MaxB → V is structural

if and only if its restriction to each member of any special covering of MaxB is structural.

An open covering of an h-space V is admissible if its pullback by any structural morphism

has a refinement that is a special covering. A semi-rigid analytic space V over K is a

special h-space that has an admissible covering by affine open h-spaces. Finally, a rigid

analytic space is a semi-rigid space V such that the above admissible covering has the

property that the intersection of any two members is semi-rigid [Ta, Definition 10.16].

This rather cumbersome approach to rigidifying “wobbly spaces” was simplified and

extended in a number of papers in the 1960’s and 1970’s, particularly in [GrRe1], [GrRe2],

[GG]. From this point of view, the key idea is that analytic continuation on rigid spaces

is permitted only with respect to “admissible” coverings by affinoid varieties, and where

the only morphisms permitted between affinoid varieties are the rigid ones (i.e. those
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induced by homomorphisms between the corresponding affinoid algebras). To make sense

of “admissibility”, the notion of Grothendieck topology was used.

Recall (e.g. from [Ar1] or [Mi]) that a Grothendieck topology is a generalization of a

classical topology on a space X, in which one replaces the collection of open sets U ⊂ X

by a collection of (admissible) maps U → X, and in which certain families of such maps

{Vi → U}i∈I are declared to be (admissible) coverings (of U). This notion was originally

introduced in order to provide a framework for the étale topology and for étale cohomology,

which for algebraic varieties behaves much like classical singular cohomology in algebraic

topology (unlike Zariski Čech cohomology).

In the case of rigid analytic spaces, a less general notion of Grothendieck topology is

needed, in which the maps U → X are just inclusions of (certain) subsets of X, so that

one speaks of “admissible subsets” of X [GuRo, §9.1]. According to the definition of a

Grothendieck topology, the admissible subsets U and the admissible coverings of the U ’s

satisfy several properties:

• the intersection of two admissible subsets is admissible;

• the singleton {U} is an admissible covering of a set U ;

• choosing an admissible covering of each member of an admissible covering to-

gether gives an admissible covering; and

• the intersection of an admissible covering of U with an admissible subset V ⊂ U

is an admissible covering of V .

Here, though, several additional conditions are imposed [BGR, p.339]:

• the empty set and X are admissible subsets of X;

• if V is a subset of an admissible U ⊂ X and if the restriction to V of every

member of some admissible covering of U is an admissible subset of X, then V is

an admissible subset of X; and

• a family of admissible subsets {Ui}i∈I whose union is an admissible subset U ,

and which admits a refinement that is an admissible covering of U , is itself an

admissible covering.

In this framework, a rigid analytic space is a locally ringed space (V,OV ) under a

Grothendieck topology as above, with respect to which V has an admissible covering

{Vi}i∈I where each (Vi,OV |Vi
) is an affinoid variety Sp Ai = (MaxAi, Ai). (Here Ai =

OV |Vi
.) A morphism of rigid analytic spaces (V,OV ) → (W,OW ) is a morphism (f, f∗) as

locally ringed spaces. Thus morphisms between affinoid spaces are required to be rigid (i.e.

of the form (φ◦, φ), for some algebra homomorphism φ), and global morphisms are locally

rigid with respect to an admissible covering. Analogously to the classical and formal cases,

a coherent sheaf F (of OV -modules) is an OV -module that is locally (with respect to an

admissible covering) of the form Or
V → Os

V → F → 0. In the case of an affinoid variety

Sp A = (MaxA, A), coherent sheaves are precisely those of the form M̃ , where M is a finite
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A-module [FP, III, 6.2].

Rigid analogs of key results in the classical and formal situations (cf. Sections 2.2

and 3.2 above) have been proven in this context. A rigid version of Cartan’s Lemma on

matrix factorization [FP, III, 6.3] asserts that if V = Sp A is an affinoid variety and f ∈ A,

and if we let V1 [resp. V2] be the set where |f | ≤ 1 [resp. |f | ≥ 1], then every invertible

matrix in GLn(O(V1 ∩ V2)) that is sufficiently close to the identity can be factored as

the product of invertible matrices over O(V1) and O(V2). There are also rigid analogs of

Cartan’s Theorems A and B, proven by Kiehl [Ki2]; they assert that a coherent sheaf F

is generated by its global sections, and that H i(V,F) = 0 for i > 0, for “quasi-Stein”

rigid analytic spaces V . (These are rigid spaces V that can be written as an increasing

union of affinoid open subsets Ui that form an admissible covering of V , and such that

O(Ui+1) is dense in O(Ui). Compare Cartan’s original version for complex Stein spaces

[Ca2] discussed in §2.2 above.) Kiehl also proved [Ki1] a rigid analog of Zariski’s Theorem

on Formal Functions [Hrt2, III, Thm. 11.1], which together with Cartan’s Theorem B (or

Theorem A) was used to obtain GAGA classically. And indeed, there is a rigid analog

of GAGA (or in this case, a “GRGA”: géométrie rigide et géométrie algébrique) [Köp],

asserting the equivalence between coherent rigid sheaves and coherent algebraic sheaves of

modules over a projective algebraic K-variety. Thus, to give a coherent sheaf over such

a variety, it suffices to give it over the members of an admissible covering (viewing the

variety as a rigid analytic space), and giving the patching data on the overlaps.

As in Sections 2 and 3 above, it would be desirable to use these results in order to

obtain a version of Riemann’s Existence Theorem, which would classify covers. Ideally,

this should be precise enough to give an explicit description of the tower of Galois groups

of covers of a given space; and that description should be analogous to Corollary 2.1.2,

the explicit form of the classical Riemann’s Existence Theorem given at the beginning of

Section 2.1. Unfortunately, to give such an explicit description, one needs to have a notion

of a “topological fundamental group”, and one needs to be able to compute that group

explicitly. But unlike the complex case, one does not have such a notion, or computation,

over more general fields K (in particular, because we cannot speak of “loops”). Thus,

in this context, one does not have a full analog of Riemann’s Existence Theorem 2.1.1,

because one cannot assert an equivalence between finite rigid analytic covering maps and

finite topological covering spaces. Still, one can ask for an analog of the first part of

Theorem, 2.1.1 viz. an equivalence between finite étale covers of an algebraic curve V over

K, and finite analytic covering maps of V (viewed as a rigid analytic space).

Such a result has been obtained (with some restrictions) by Lütkebohmert [Lü2]. As

in the proof of the complex version (see Section 2.2), the proof proceeds using GAGA

(here, the rigid version discussed above). Namely, as in the complex case, once one has

the equivalence of categories that GAGA provides for sheaves of modules, one also obtains
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an equivalence (as a purely formal consequence) for sheaves of algebras, and hence for

branched covers. But as in the complex case, GAGA applies to projective curves, but not

to affine curves. So GAGA shows that there is an equivalence between branched (algebraic)

covers of a projective K-curve X, and rigid analytic branched covers of the curve. Then

to prove the desired portion of Riemann’s Existence Theorem, it remains to show (both in

the algebraic and rigid analytic settings) that covers of X branched only at a finite set B

are equivalent to unramified covers of V = X − B (i.e. that every unramified cover of V

extends uniquely to a branched cover of X). In Section 2.2, we saw that this is immediate

in the algebraic context, and follows easily from complex analysis in the analytic setting.

But in the rigid analytic setting, this extension result for rigid analytic covers is harder,

and moreover requires that the characteristic of K is 0.

Specifically, if char K = 0, then unramified rigid covers of an affine K-curve V = X−B

do extend (uniquely) to rigid branched covers of the projective curve X; and so finite étale

covers of V are equivalent to finite unramified rigid analytic covers of V . Moreover this

generalizes to higher dimensions, where V is any K-scheme that is locally of finite type

over K [Lü2, Theorem 3.1]. But there are counterexamples, even for curves, if char K = p.

For example, let K = k((t)), let V be the affine x-line over K, and consider the rigid

unramified covering map W → V given by yp − y =
∑∞

i=1 t(p+1)i

xpi

. Then this map does

not extend to a finite (branched) cover of the projective line, and so is not induced by any

algebraic cover of V [Lü2, Example 2.10]. On the other hand, if one restricts attention to

tamely ramified covers, then the desired equivalence between rigid and algebraic unramified

covers does hold [Lü2, Theorem 4.1]. (Note that the above wildly ramified example does

not contradict rigid GAGA, since that result applies in the projective case, whereas this

example is affine.)

Still, we do not have an explicit description of the rigid analytic covers of a given

curve (even apart from the difficulty with wildly ramified covers); so this result does not

give explicit information about Galois groups and fundamental groups for K-curves (as a

full rigid analog of Corollary 2.1.2 would). We return to this issue in Section 4.3, after

considering another approach to rigid analytic spaces in Section 4.2.

Section 4.2. Rigid geometry via formal geometry.

Tate’s rigid analytic spaces can be reinterpreted in terms of Grothendieck’s formal

schemes. This reinterpretation was outlined by Raynaud in [Ra1], and worked out in

greater detail by Bosch, Lütkebohmert, and Raynaud in [Lü1], [BLü1], [BLü2], [BLüR1],

[BLüR2]. (See also [Ra2, §3]; and Chapters 1 and 2, by M. Garuti [Ga] and Y. Henrio

[He], in [BLoR].) As Tate said in [Ta], his approach was motivated by a suggestion of

Grothendieck; and according to the introduction to [BLü1], Grothendieck’s goal was to

associate a generic fibre to a formal scheme of finite type. So this approach may actually

be closer to Grothendieck’s original intent than the more analytic framework discussed
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above.

The basic idea of this approach can be seen by revisiting examples from Sections

3.2 and 4.1. In Example 3.2.3, it was seen that k[x][[t]] is the ring of formal functions

along the affine x-line in the x, t-plane over a field k, or equivalently that its spectrum

is a formal thickening of the affine x-line. The corresponding ring for the affine x−1-line

(i.e. the formal thickening of the projective x-line minus x = 0) is k[x−1][[t]], and the ring

corresponding to the overlap (i.e. the formal thickening of
� 1 − {0,∞}) is k[x, x−1][[t]].

On the other hand, as seen in Section 4.1, if t is inverted in each of these three rings, one

obtains the rings of functions on three affinoids over K = k((t)): the disc |x| ≤ 1; the disc

|x−1| ≤ 1 (i.e. |x| ≥ 1 together with the point at infinity); and the “annulus” |x| = 1. In

each of these two contexts (formal and rigid), the first two sets cover the projective line

(over R := k[[t]] and K = frac R, respectively), and the third set is their “overlap”. The

ring of holomorphic functions on an affinoid set over K can (at least in this example) be

viewed as the localization, with respect to t, of the ring of formal functions on an affine

open subset of the closed fibre on an R-scheme. Correspondingly, an affinoid can be viewed

as the generic fibre of the spectrum of the ring of formal functions (in the above example,

a curve being the general fibre of a surface). Intuitively, then, a rigid analytic space over

K is the general fibre of a (formal) scheme over R. (See Figure 4.2.1.)

x= 1

U1

x= 0

x=t

U2

x= 1

x= 1/t

x= 8

x=1

U0

Figure 4.2.1: A rigid covering of
� 1

K (viewed as a sphere, in analogy with the

complex case). The patches U1, U2 are discs around 0 and ∞, with rings of

functions k[x][[t]][1/t] and k[1/x][[t]][1/t] (see §4.1). The overlap U0 is an annulus

containing the point x = 1, with ring of functions k[x, 1/x][[t]][1/t]. Compare

Fig. 3.1.4 and see Example 4.2.3 below.

The actual correspondence between formal schemes and rigid analytic spaces is a bit

more complicated, because of several issues. The first concerns which base rings and fields

are involved. Formal schemes are defined over complete local rings R, while rigid analytic

spaces are defined over complete valuation fields K. The fraction field of a complete

discrete valuation ring R is a discrete valuation field K, and every such K arises from
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such an R. But general valuation fields are not fraction fields of complete local rings, and

the fraction fields of general complete local rings are not valuation fields. So in stating

the correspondence, we restrict here to the case of a complete discrete valuation ring R,

say with maximal ideal � (though one can consider, somewhat more generally, a complete

height 1 valuation ring R).

Secondly, in order for a formal space to induce a rigid space, it must locally induce

affinoid K-algebras, i.e. K-algebras that are of topologically finite type. Correspondingly,

we say that an R-algebra A is of topologically finite type if it is a quotient of the � -

adic completion of some R[x1, . . . , xn]. Observe that this � -adic completion is a subring

of R[[x1, . . . , xn]], and in fact consists precisely of those power series
∑

i∈ � n aix
i, where

ai → 0 as i →∞. It is then easy to verify that A⊗R K is an affinoid K-algebra, for any

R-algebra A that is of topologically finite type. (This is in contrast to the full rings of

power series, where K[[x1, . . . , xn]] is much larger than R[[x1, . . . , xn]] ⊗R K.) A formal

R-scheme V is locally of topologically finite type if in a neighborhood of every point, the

structure sheaf OV is given by an R-algebra that is of topologically finite type. Such a

formal scheme is said it be of topologically finite type if in addition it is quasi-compact.

Thus formal schemes that are of topologically finite type induce quasi-compact rigid spaces.

The condition of a formal R-scheme V being locally of topologically finite type in

turn implies that the corresponding R/ � n-schemes Vn are locally Noetherian (since the

structure sheaf is locally a quotient of some (R/ � n)[x1, . . . , xn]). Thus each Vn is quasi-

separated, by [Gr4, IV, Cor. 1.2.8]; and hence so is V and so is the induced rigid space.

On the other hand, not every rigid space is necessarily quasi-separated; so in order to get

an equivalence between formal and rigid spaces, we will need to restrict attention to rigid

spaces that are quasi-separated (this being a very mild finiteness condition).

A third issue concerns the fact that non-isomorphic R-schemes can have K-isomorphic

general fibres. For example, let V be a proper R-scheme, where R is a complete discrete

valuation ring. Let V0 be the closed fibre of V , and let W be a closed subset of V0. Let Ṽ

be the blow up of V along W (as a scheme). Then V and Ṽ have the same general fibre.

But they are not isomorphic as R-schemes (if the codimension of W in V is at least 2),

since Ṽ has an exceptional divisor over the blown up points. Hence they do not correspond

to isomorphic formal schemes.

In order to deal with this third issue, the strategy is to regard two R-schemes as

equivalent if they have a common admissible blow-up (i.e. a blow up at a closed subset of

the closed fibre). Thus given two R-schemes V, V ′, to give a morphism from the equivalence

class of V to that of V ′ is to give an admissible blow up Ṽ → V together with a morphism

of R-schemes Ṽ → V ′. Here V, Ṽ , V ′ induce formal R-schemes V, Ṽ,V ′ (given by the direct

limit of the fibres Vn, Ṽn, V ′
n over � n), and we regard the induced pair (Ṽ → V, Ṽ → V ′) as

a morphism between the equivalence classes of V,V ′. Equivalently, we are considering
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morphisms from the class of V to the class of V ′, in the localization of the category

of formal R-schemes with respect to the class of admissible formal blow-ups Ṽ → V.

(The localization is the category in which those blow-ups are formally inverted. Such a

localization automatically exists, according to [Hrt1]; though to be set-theoretically precise,

one may wish to work within a larger “universe” [We, Remark 10.3.3].)

Here, for a formal scheme V induced by a proper R-scheme V , one can correspondingly

define admissible blow-ups of V as the morphisms of formal schemes induced by admissible

blow-ups of V . Alternatively, and for a more general formal R-scheme V, admissible blow-

ups can be defined directly, despite the fact that the topological space underlying V is

just the closed fibre of the associated R-scheme (if there is one). Namely, the blow-up can

be defined algebraically, analogously to the usual definition for schemes. First, observe

that if A is a complete R-algebra, then the closed subsets of the closed fibre of Spec A

correspond to ideals of A that are open in the topology induced by that of R. Now recall

[Hrt2, Chap. II, p.163] that if V is a Noetherian scheme, and I is a coherent sheaf of

ideals on V , then the blow-up of V at I is ProjJ , where J is the sheaf of graded algebras

J =
⊕

d≥0 I
d. So given a formal R-scheme V and a sheaf I of open ideals of OV , define

the blow-up of V along I to be the formal scheme associated to the direct system of R/ � n-

schemes ProjJn, where Jn =
⊕

d≥0(I
d ⊗OV

OV/ � n). We call such a blow-up of the

formal scheme V admissible. This agrees with the previous definition, for formal schemes

V induced by R-schemes V .

A fourth issue, which is similar to the third, is that an R-scheme V may have an

irreducible component that is contained in the closed fibre V0. In that case, the general

fibre of V “does not see” that component, and so cannot determine V (or the induced formal

scheme). So we avoid this case, by requiring that the formal scheme V have the property

that its structure sheaf OV has no � -torsion. We call the formal scheme V admissible if it

has this property and is of locally of topologically finite type. (So quasi-compact admissible

is the same as � -torsion-free plus topologically finite type.)

With these restrictions and adjustments, the equivalence between formal and rigid

spaces takes place. Consider an admissible formal R-scheme V, whose underlying topo-

logical space is a k-scheme V0 (where k = R/ � ). For any affine open subset U ⊂ V0,

let A be the ring of formal functions along U . So A is topologically of finite type, and

has no � -torsion; and A ⊗R K is an affinoid K-algebra. In the notation of Section 4.1,

Sp A = (MaxA, A) is an affinoid variety. This construction is compatible with shrinking

U , and so from V we obtain a rigid analytic space, which we denote by V rig. There is then

the following key theorem of Raynaud [Ra1] (see also [BLü1, Theorem 4.1], for details):

Theorem 4.2.2. (Raynaud) Let R be a complete valuation ring of height 1 with fraction

field K. Let ForR be the category of quasi-compact admissible formal R-schemes, and let

For′R be the localization of ForR with respect to admissible formal blow-ups. Let RigK be
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the category of quasi-compact quasi-separated rigid analytic K-spaces. Then the functor

rig : ForR → RigK given by V 7→ Vrig induces an equivalence of categories For′R → RigK .

(Alternatively, the conclusion of the theorem could be stated by saying that rig : ForR →

RigK is a localizing functor with respect to all admissible blow-ups, rather than speaking

in terms of For′R.)

In particular, if V is a proper R-scheme, and if V is the associated formal scheme,

then Vrig is the rigid analytic space corresponding to the generic fibre VK of V .

More generally, one can turn the above result around and make it a definition, to

make sense of rigid analytic spaces over the fraction field K of a Noetherian complete

local ring R which is not necessarily a valuation ring (e.g. k[[x1, . . . , xn]], where k is a field

and n > 1). That is, for such a ring R and fraction field K, one can simply define the

category RigK of rigid analytic K-spaces to be the category For′R, obtained by localizing

the category ForR of formal R-schemes with respect to admissible blow-ups [Ra1], [BLü1],

[Ga]. The point is that formal schemes make sense in this context, and thus the notion of

rigid spaces can be extended to this situation as well. (Of course, by Raynaud’s theorem,

the two definitions are equivalent in the case that R is a complete discrete valuation ring.)

The advantage to Raynaud’s approach to rigid analytic spaces is it permits them to

be studied using Grothendieck’s results on formal schemes in EGA [Gr4]. It also permits

the use of results in EGA on proper schemes over complete local rings, because of the

equivalence of those schemes with formal schemes via by Grothendieck’s Existence Theorem

([Gr2], [Gr4, III, Cor. 5.1.6]; see also Section 3.2 above). In particular, Grothendieck’s

Existence Theorem and Raynaud’s theorem above together imply the rigid GAGA result

(for projective spaces) discussed in Section 4.1 above. Moreover, Raynaud’s approach

permits the use of the rigid point of view over more general fields than Tate’s original

approach did, though with some loss of analytic flavor. Indeed, from this point of view,

the rigid and formal contexts are not so different, though there is a difference in terms of

intuition. Another difference is that in the formal context one works on a fixed R-model of

a space, whereas in the rigid context one works just over K (and thus blow-ups are already

included in the geometry).

We conclude this discussion by giving two examples comparing formal and rigid GAGA

on the line, beginning with the motivating situation discussed earlier:

Example 4.2.3. Let k be a field; R = k[[t]]; K = k((t)); and V =
� 1

R. Let x be a

parameter on V , and y = x−1. So V is covered by two copies of the affine line over R,

the x-line and the y-line, intersecting where x, y 6= 0. Letting V be the formal scheme

associated to V , there is the induced rigid analytic space V rig := Vrig, viz.
� 1

K . According

to rigid GAGA, giving a coherent sheaf on V rig is equivalent to giving finite modules

over (the rings of functions on) the admissible sets U1 : |x| ≤ 1 and U2 : |y| ≤ 1, with

agreement on the overlap U0 : |x| = |y| = 1. Here U1 = Sp K{x}, U2 = Sp K{y}, and
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U0 = Sp K{x, y}/(xy − 1). Geometrically (and intuitively), U1 and U2 are discs centered

around x = 0,∞ respectively (the “south and north poles”), and U0 is an annulus (a band

around the “equator”, if
� 1

K is viewed as a “sphere”; see Figure 4.2.1 above).

On the formal level, U1 is the general fibre of S1 = Spec k[x][[t]], the formal thickening

of the affine x-line (which pinches down near x = ∞). Similarly, U2 is the general fibre

of S2 = Spec k[y][[t]], the formal thickening of the affine y-line (which pinches down near

x = 0). And U0 is the general fibre of S0 = Spec k[x, x−1][[t]], the formal thickening

of the line with both 0 and ∞ deleted (and which pinches down near both points —

cf. Figure 3.1.4). According to formal GAGA (i.e. Grothendieck’s Existence Theorem;

cf. Theorems 3.2.1 and 3.2.4), giving a coherent sheaf on V is equivalent to giving finite

modules over S1 and S2 with agreement on the “overlap” S0.

In the formal context, even less data is needed in order to construct a coherent sheaf

on V — and this permits more general constructions to be performed (e.g. see [Ha6]).

Namely, let Ŝ1 = Spec k[[x, t]], the complete local neighborhood of x = t = 0. Let

Ŝ0 = Spec k((x))[[t]], the “overlap” of Ŝ1 with S2. (See Figure 3.2.9, where Ŝ1, S2, Ŝ0

are denoted by W ∗, U∗, W ′∗, respectively.) Then according to Theorem 3.2.8, giving a

coherent sheaf on V is equivalent to giving finite modules over Ŝ1 and S2 together with

agreement over Ŝ0. On the rigid level, the generic fibres of Ŝ1 and S2 are Û1 : |x| < 1 and

U2 : |x| ≥ 1. Those subsets of V rig do not intersect, and moreover Û1 is not an affinoid set.

The result in the formal situation suggests that the generic fibre of Ŝ0, corresponding to

k((x))((t)), forms a “glue” that connects Û1 and U2; but this cannot be formulated within

the rigid framework.

Example 4.2.4. With notation as in Example 4.2.3, rigid GAGA says that to give a

coherent sheaf on V rig =
� 1

K is equivalent to giving finite modules over the two discs

|x| ≤ 1 and |y| ≤ c−1, and over the annulus c ≤ |x| ≤ 1; here 0 < c = |t| < 1, and the

annulus is the overlap of the two discs. Writing z = ty = t/x, the rings of functions on

these three sets are K{x}, K{z}, and K{x, z}/(xz − t).

To consider the corresponding formal situation, let Ṽ be the blow-up of V at the

closed point x = t = 0. Writing xz = t, the closed fibre of Ṽ consists of the projective

x-line over k (the proper transform of the closed fibre of V ) and the projective z-line over

k (the exceptional divisor), meeting at the “origin” O : x = z = t = 0. The three affinoid

open sets above are then the generic fibres associated to the formal schemes obtained by

respectively deleting from the closed fibre of Ṽ the point x = ∞ (which is where z = 0); the

point z = ∞ (where x = 0); and both of these points. And by Grothendieck’s Existence

Theorem, giving compatible formal coherent modules over each of these sets is equivalent

to giving a coherent module over V .

But as in Example 4.2.3, less is needed in the formal context. Namely, let X ′ and

Z ′ be the projective x- and z-lines over k, with the points (x = 0) and (z = 0) respec-
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tively deleted. Consider the rings of formal functions along X ′ and Z ′, viz. k[x−1][[t]]

and k[z−1][[t]] respectively, and their spectra T1, T2. Consider also the spectrum T3 of

k[[x, z, t]]/(xz − t), the complete local ring of V at O. Here T1 and T2 are disjoint, while

the “overlap” of T1 and T3 [resp. of T2 and T3] is the spectrum T1,3 of k((x))[[t]] [resp.

T2,3 of k((z))[[t]]]. By Theorem 3.2.8, giving finite modules over T1, T2, T3 that agree on

the two “overlaps” is equivalent to giving a coherent module over V . The generic fibres

of T1 and T2 are the sets |y| ≤ 1 and |x| ≤ c, and that of T3 is c < |x| < 1. These three

sets are disjoint, though the formal set-up provides “glue” (in the form of T1,3 and T2,3)

connecting T3 to T1 and to T2. This is a special case of Example 3.2.11. (Alternatively, one

could use Theorem 3.2.12, taking V to be the projective x-line over k[[t]], taking Ṽ to be

the blow-up of V at x = t = 0, and identifying the exceptional divisor with the projective

z-line over k. See Example 3.2.13.)

More generally, in the rigid set-up, one can consider the annulus cn ≤ |x| ≤ 1 in
� 1

K

(where K = k((t)) and c = |t| as above, and where n is a positive integer). If one writes

u = tn/x, then this is the intersection of the two admissible sets |x| ≤ 1 and |u| ≤ 1. This

annulus is said to have thickness (or épaisseur) equal to n. The corresponding situation in

the formal framework can be arrived at by taking the projective x-line V over R = k[[t]];

blowing this up at the point x = t = 0 (obtaining a parameter z = t/x on the exceptional

divisor E); blowing that up at the point z = ∞ on E (thereby obtaining a parameter

z′ = t/z−1 = t2/x on the new exceptional divisor); and repeating the process for a total

of n blow-ups. The analogs of Examples 4.2.3 and 4.2.4 above can then be considered

similarly.

Section 4.3. Rigid patching and constructing covers.

Rigid geometry, like formal geometry, provides a framework within which patching

constructions can be carried out in order to construct covers of curves, and thereby ob-

tain Galois groups over curves. Ideally, one would like to obtain a version of Riemann’s

Existence Theorem analogous to that stated for complex curves in Section 2.1. But while

a kind of “Riemann’s Existence Theorem” for rigid spaces was obtained by Lütkebohmert

[Lü2] (see Section 4.1 above), that result does not say which Galois groups arise, due to

a lack of topological information. Still, as in the formal case, one can show by a patching

construction that every finite group is a Galois group of a branched cover with enough

branch points, and show a “Half Riemann Existence Theorem” that is analogous to the

classification of slit covers of complex curves (see Section 2.3).

Namely, Serre observed in a 1990 talk in Bordeaux that there should be a rigid proof

of Theorem 3.3.1 above (on the realizability of every finite group as a Galois group over

the fraction field K of a complete local domain R [Ha4]), when the base ring R is complete

with respect to a non-archimedean absolute value. Given the connection between rigid

and formal schemes discussed in Section 4.2 (especially in the case of complete discrete
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valuation rings), this would seem quite plausible. Shortly afterwards, in [Se7, §8.4.4], Serre

outlined such a proof in the case that K =
�

p . A more detailed argument was carried out

by Liu for complete non-archimedean fields with an absolute value, in a manuscript that

was written in 1992 and that appeared later in [Li], after circulating privately for a few

years. (Concerning complete archimedean fields, the complex case was discussed in Section

2 above, and the real case is handled in [Se7, §8.4.3], via the complex case; cf. also [DF]

for the real case.)

The rigid version of Theorem 3.3.1 is as follows:

Theorem 4.3.1. Let K be a field that is complete with respect to a non-trivial non-

archimedean absolute value. Let G be a finite group. Then there is a G-Galois irreducible

branched cover Y →
� 1

K such that the fibre over some K-point of
� 1

K is totally split.

Here the totally split condition is that the fibre consists of unramified K-points. This

property (which takes the place of the mock cover hypothesis of Theorem 3.3.1) forces the

cover to be regular, in the sense that K is algebraically closed in the function field K(Y ) of

Y . (Namely, if L is the algebraic closure of K in K(Y ), then L is contained in the integral

closure in K(Y ) of the local ring Oξ of any closed point ξ ∈
� 1

K ; and so it is contained in

the residue field of each closed point of Y .) Thus Theorem 3.3.1 is recaptured, for such

fields K.

Proof sketch of Theorem 4.3.1. The proof proceeds analogously to that of Theorem 3.3.1.

Namely, first one proves the result explicitly in the special case that the group is a cyclic

group. In [Se7, §8.4.4], Serre does this by using an argument involving tori [Se7, §4.2] to

show that cyclic groups are Galois groups of branched covers of the line; one can then

obtain a totally split fibre by twisting, e.g. as in [HV, Lemma 4.2(a)]. Or (as in [Li]) one

can proceed as in the original proof for the cyclic case in the formal setting [Ha4, Lemma

2.1], which used ideas of Saltman [Slt]; cf. Proposition 3.3.3 above.

To prove the theorem in the general case, cyclic covers are patched together to produce

a cover with the desired group, in a rigid analog of the proof of Theorem 3.3.1. Namely,

let g1, . . . , gr be generators of G. For each i, let Hi be the cyclic subgroup of G generated

by gi, and let fi : Yi →
� 1

K be a Hi-Galois cover that is totally split over a point ξi.

By the Implicit Function Theorem over complete fields, for each i there is a closed disc

D̄i about ξi such that the inverse image f−1
i (D̄i) is a disjoint union of copies of D̄i. Let

Di be the corresponding open disc about ξi, let Ūi =
� 1

K − Di, and let Ui =
� 1

K − D̄i.

After a change of variables, we may assume that the Ūi’s are pairwise disjoint affinoid

sets. For each i, let V̄i → Ūi be the pullback of fi to Ūi. Then V̄i is an Hi-Galois cover

whose restriction over Ūi − Ui = D̄i − Di is trivial. Inducing from Hi to G (by taking a

disjoint union of copies, indexed by the cosets of Hi), we obtain a corresponding G-Galois

disconnected cover W̄i = IndG
Hi

V̄i → Ūi. Also, let Ū0 =
� 1

K −
⋃r

j=1 Uj =
⋂r

j=1 D̄j , and

let W̄0 → Ū0 be the trivial G-cover IndG
1 Ū0. We now apply rigid GAGA (see Sections 4.1
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and 4.2), though for covers rather than for modules (that form following automatically, as

in Theorem 3.2.4, via the General Principle 2.2.4). Namely, we patch together the covers

W̄i → Ūi (i = 0, . . . , r) along the overlaps Ūi ∩ Ū0 = Ūi −Ui (i = 1, . . . , r), where they are

trivial. One then checks that the resulting G-Galois cover is as desired (and in particular

is irreducible, because the gi’s generate G); and this yields the theorem.

As in Section 3.3, Theorem 4.3.1 extends to the class of large fields, such as the

algebraic p-adics and the field of totally real algebraic numbers. Namely, as in the passage

to Theorem 3.3.6, there is the following result of Pop:

Corollary 4.3.2. [Po4] If k is a large field, then every finite group is the Galois group of

a Galois field extension of k(x). Moreover this extension may be chosen to be regular, and

with a totally split fibre.

Namely, by Theorem 4.3.1, there is a G-Galois extension of k((t))(x), and this descends

to a regular G-Galois extension of the fraction field of A[x] with a totally split fibre over

x = 0, for some k(t)-subalgebra A ⊂ k((t)) of finite type. By the Bertini-Noether Theorem

[FJ, Prop. 9.29], we may assume that every specialization of A to a k-point gives a G-Galois

regular field extension of k(x); and such a specialization exists on V := Spec A since k is

large and since V contains a k((t))-point.

The construction in the proof of Theorem 4.3.1, like the one used in proving the

corresponding result using formal geometry, can be regarded as analogous to the slit cover

construction of complex covers described in Section 2.3 (and see the discussion at the end

of Section 3.3 for the analogy with the formal setting). In fact, rather than considering

covers (and Galois groups) one at a time, a whole tower of covers (and Galois groups) can

be considered, as in the “analytic half Riemann Existence Theorem” 2.3.5. In the present

setting (unlike the situation over
�
), the absolute Galois group GK of the valued field K

comes into play, since it acts on the geometric fundamental group (i.e. the fundamental

group of the punctured line after base-change to the separable closure K s of K). This

construction of a tower of compatible covers has been carried out by Pop in [Po2] (where the

term “half Riemann Existence Theorem” was also introduced). Also, rather than requiring

K to be complete, Pop required K merely to be henselian (and cf. Example 3.3.2(d), for

comments about deducing the henselian case of that result from the complete case via

Artin’s Approximation Theorem).

In Pop’s result, as in the case of complex slit covers, one chooses as a branch locus a

closed subset S ⊂
� 1

K whose base change to Ks consists of finitely many pairs of nearby

points. That is, S is a disjoint union of two closed subsets S = S1 ∪ S2 of
� 1

K such that

Ss
1 := S1 ×K Ks = {ξ1, . . . , ξr} and Ss

2 := S2 ×K Ks = {η1, . . . , ηr}, where the ξi and ηj

are distinct Ks-points, and where each ξi is closer to the corresponding ηi than it is to any

other ξj . Such a set S is called pairwise adjusted. Note that the sets Ss
1 and Ss

2 are each
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GK -invariant, and that GK acts on the sets Ss
1 and Ss

2 compatibly (i.e. if α ∈ GK satisfies

α(ξi) = ξj , then α(ηi) = ηj). Now let U =
� 1

K − S and U s = U ×K Ks =
� 1

Ks − Ss, and

recall the fundamental exact sequence

1 → π1(U
s) → π1(U) → GK → 1. (∗)

In this situation, let Π be the free profinite group F̂r of rank r if the valued field K is in the

equal characteristic case; this is the free product of r copies of the group ˆ� , in the category

of profinite groups. If K is in the unequal characteristic case with residue characteristic

p > 0, then let Π be the free product F̂r[p] of r copies of the group ˆ� /
�

p, in the category

of profinite groups. (Note that this free product is not a pro-prime-to-p group if r > 1,

and in particular is much larger than the free pro-prime-to-p group of rank r.) Define an

action of GK on Π by letting α ∈ GK take the jth generator gj of Π to g
χ(α−1)
i ; here i

is the unique index such that α(ξi) = ξj , and χ : GK → ˆ� ∗ is the cyclotomic character

(taking γ 7→ m if γ(ζ) = ζm for all roots of unity ζ). There is then the following result of

Pop (and see Remark 4.3.4(c) below for an even stronger version):

Theorem 4.3.3. (Half Riemann Existence Theorem with Galois action [Po2]) Let K be

a henselian valued field of rank 1, let S ⊂
� 1

K be a pairwise adjusted subset of degree 2r

as above, and let U =
� 1

K − S. Then the fundamental exact sequence (∗) has a quotient

1 → Π → Π×||GK → GK → 1, (∗∗)

where Π is defined as above and where the semi-direct product is taken with respect to

the above action of GK on Π.

Proof sketch of Theorem 4.3.3. In the case that the field K is complete, the proof of The-

orem 4.3.3 follows a strategy that is similar to that of Theorem 4.3.1. As in Theorem 4.3.1

(and Theorem 3.3.1), the proof relies on the construction of cyclic covers that are trivial

outside a small neighborhood (in an appropriate sense), and which can then be patched.

The key new ingredient is that one must show that the construction is functorial, and in

particular is compatible with forming towers. Concerning this last point, after passing to

the maximal cyclotomic extension Kcycl of K, one can construct a tower of regular covers

by patching together local cyclic covers that are Kummer or Artin-Schreier. These can

be constructed compatibly with respect to the action of Gal(Kcycl/K), since S is pair-

wise adjusted; and the resulting tower, viewed as a tower of covers of U , has the desired

properties.

The henselian case is then deduced from the complete case. This is done by first

observing that the absolute Galois groups of K and of its completion K̂ are canonically

isomorphic (because K is henselian). Then, writing K̂s for the separable closure of K̂, it

is checked that every finite branched cover of the K̂s-line that results from the patching
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construction is defined over the separable closure Ks of K. (Namely, consider a finite

quotient Q of Π, generated by cyclic subgroups Ci. The patching construction over K̂

yields a Q-Galois cover Y →
� 1

K̂s
that is constructed using cyclic building blocks Zi

Ci→
� 1

which are each defined over Ks. Let Z →
� 1 be the fibre product of the Zi’s; this is

Galois with group H =
∏

Ci. Pulling back the Q-cover Y →
� 1

K̂s
via ZK̂s

H
→

� 1
K̂s

gives an

unramified Q-cover Y ′ of the projective curve ZK̂s ; here Y ′ is also a Q×H-Galois branched

cover of
� 1

K̂s
. By Grothendieck’s specialization isomorphism [Gr5, XIII], Y ′ descends to a

Q-cover of ZKs whose composition with ZKs →
� 1

Ks is Q×H-Galois. Hence Y descends

to a Q-cover of
� 1

Ks .) Since the Galois actions of GK and GK̂ are the same, the result in

the general henselian case follows.

Remark 4.3.4. (a) The hypotheses of Theorem 4.3.3 are easily satisified; i.e. there are

many choices of pairwise adjusted subsets. Namely, let f ∈ K[x] be any irreducible

separable monic polynomial, and let g ∈ K[x] be chosen so that it is monic of the same

degree, and so that its coefficients are sufficiently close to those of f . Then the zero locus of

fg in
� 1

K is a pairwise adjusted subset, by continuity of the roots [La, II, §2, Proposition 4].

Repeating this construction with finitely many polynomials fi and then taking the union

of the resulting sets gives a general pairwise adjusted subset. Note that in the case that

K is separably closed, the construction is particularly simple: One may take an arbitrary

set S1 = {ξ1, . . . , ξr} of K-points in
� 1

K , and any set S2 = {η1, . . . , ηr} of K-points such

that each ηi is sufficiently close to ξi. This recovers the slit cover construction of Section

2.3 in the case K =
�
.

(b) In the equal characteristic case, if K contains all of the roots of unity (of order

prime to p, if char K = p 6= 0), then Theorem 4.3.3 shows that the free profinite group F̂r

on r generators is a quotient of π1(U). (Namely, the cyclotomic character acts trivially in

this case, and so the semi-direct product in (∗∗) is just a direct product.) Since arbitrarily

large pairwise adjusted subsets S exist by Remark (a), this shows that F̂r is a quotient of

the absolute Galois group of K(x) for each r ∈ � . A similar result holds in the unequal

characteristic case (0, p) if K contains the prime-to-p roots of unity, namely that the free

pro-prime-to-p group F̂ ′
r of rank r ∈ � is a quotient of π1(U) and of GK(x). But the full

group F̂r is not a quotient of π1(U) or GK(x) in the unequal characteristic case; cf. [Po2]

and Remark (c) below.

(c) The result in [Po2] asserts even more. First of all, the ith generator of Π generates

an inertia group over ξi and over ηi, for each i = 1, . . . , r. This is as in the case of ana-

lytic and formal slit covers discussed at the ends of Sections 2.3 and 3.3 above. Second,

in the unequal characteristic case (0, p), the assertion of Theorem 4.3.3 may be improved

somewhat, by replacing the group Π = F̂r[p] by the free product of r copies of the group
ˆ� /pe �

p (in the category of profinite groups), for a certain non-negative integer e. (Specifi-

cally, e = max (0, e′), where e′ is the largest integer such that |ξi−ηi| < |p|e
′+1/(p−1)|ξi−ξj |
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for all i 6= j.) This group lies in between the group F̂r and its quotient F̂r[p]; and in the

case that K contains all the prime-to-p roots of unity, this group is then a quotient of

π1(U) and GK(x) (like F̂r[p] but unlike F̂r). See [Po2] for details.

(d) The construction of cyclic extensions given in Section 3.3 can be recovered from

the above result, in the case that the extension is of degree n prime to the characteristic

of K. Namely, given a cyclic group C = 〈c〉 of order n, consider a primitive element

for K ′ := K(ζn) as an extension of K; this corresponds to a K ′-point ξ = ξ1 of
� 1,

and Gal(K ′/K) acts simply transitively on the GK -orbit {ξ1, . . . , ξs} of ξ. Take η = η1

sufficiently close to ξ to satisfy continuity of the roots [La, II, §2, Proposition 4] (and also

to satisfy the inequality in Remark (c) above, in the mixed characteristic case (0, p) if

p|n); and let its orbit be {η1, . . . , ηs}. Let U ⊂
� 1

K be the complement of the ξi’s and

ηi’s. Consider the surjection Π→→C given by gj 7→ cχ(α−1) = c−α(ζn) if α ∈ Gal(K ′/K) is

the element taking ξ to ξj . Then in the quotient C×||GK of Π×||GK (and hence of π1(U)),

the action of GK on C is trivial; i.e. the quotient is just C × GK . So it in turn has a

quotient isomorphic to C; and this corresponds to the cyclic cover constructed in the proof

of Proposition 3.3.3. (In the case that n is instead a power of p = char K, one uses Witt

vectors in the construction; and again one obtains cyclic covers of degree n, since the action

of GK via χ is automatically trivial on a p-group quotient of Π.)

(e) The main assertion in Theorem 4.3.1 above (and in Theorem 3.3.1), that every

finite group G is a Galois group over K(x), can be recaptured from the Half Riemann Ex-

istence Theorem. Namely, by choosing elements ci that generate G, and applying Remark

(d) separately to each ci, one obtains a quotient of Π×||GK of the form G×||GK , in which

the semi-direct product is actually a direct product. So G is a quotient of π1(U).

Unfortunately, the above approach (like that of Section 3.3) does not provide an ex-

plicit description, in terms of generators and relations, of the full fundamental group (or at

least the tame fundamental group) of an arbitrary affine K-curve U . Such a full “Riemann’s

Existence Theorem” would generalize the explicit classical result over
�

(Corollary 2.1.2),

unlike Lütkebohmert’s result [Lü] discussed at the end of Section 4.1 (which is inexplicit)

and the above result (which gives only a big quotient of π1(U)).

At the moment such a full, explicit result (or even a conjecture about its exact state-

ment) seems far out of reach, even in key special cases. For example, if K is algebraically

closed of characteristic p, the profinite groups π1(
� 1

K ) and πt
1(

� 1
K−{0, 1,∞}) are unknown.

And if K is a p-adic field, the tower of all Galois branched covers of
� 1

K remains mysterious,

while little is understood about Galois branched covers of
� 1

K with good reduction and

their associated Galois groups. (Note that the covers constructed above and in Section 3.3

have models over
�

p in which the closed fibres are quite singular — as is clear from the

mock cover construction of Section 3.3.) For p > 3, a wildly ramified cover of
� 1�

p
cannot

have good reduction over
�

p (or even over the maximal unramified extension of
�

p) [Co,
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p.247, Remark 3]; and so
�
/p cannot be such a Galois group. But it is unknown whether

every finite group G is the Galois group of a cover of
� 1

K with good reduction over K, for

some totally ramified extension K of
�

p (depending on G); if so, this would imply that

every finite group is a Galois group over the field
�

p(x) (cf. Proposition 3.3.9).

See Section 5 for a further discussion of results in the direction of a generalized Rie-

mann’s Existence Theorem.

In the rigid patching constructions above, and in the analogous formal patching con-

structions in Section 3.3, the full generality of rigid analytic spaces and formal schemes is

not needed in order to obtain the results in Galois theory. Namely, the rigid analytic spaces

and formal schemes that arise in these proofs are induced from algebraic varieties; and so

less machinery is needed in order to prove the results of these sections than might first

appear. Haran and Völklein (and later Jarden) have developed an approach to patching

that goes further, and which seeks to omit all unnecessary geometric objects. Namely, in

[HV], the authors created a context of “algebraic patching” in which everything is phrased

in terms of rings and fields (viz. the rings of functions on formal or rigid patches, and their

fractions fields), and in which the geometric and analytic viewpoints are suppressed. That

set-up was then used to reprove Corollary 4.3.2 above on realizing Galois groups regularly

over large fields [HV, Theorem 4.4], as well as to prove additional related Galois results (in

[HV], [HJ1], and [HJ2]). For covers of curves, it appears that the formal patching, rigid

patching, and algebraic patching methods are essentially interchangeable, in terms of what

they are capable of showing. The main differences concern the intuition and the precise

machinery involved; and these are basically matters of individual mathematical taste. In

other applications, it may turn out that one or another of these methods is better suited.
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Section 5: Toward Riemann’s Existence Theorem

Sections 3 and 4 showed how formal and rigid patching methods can be used to

establish analogs of GAGA, and to realize all finite groups as Galois groups of covers,

in rather general settings. This section pursues these ideas further, in the direction of a

sought-after “Riemann’s Existence Theorem” that would classify covers in terms of group-

theoretic data, corresponding to the Galois group, the inertia groups, and how the covers fit

together in a tower. Central to this section is the notion of “embedding problems”, which

will be used in studying this tower. In particular, Section 5.1 uses embedding problems

to give the structure of the absolute Galois group of the function field of a curve over an

algebraically closed field (which can be regarded as the geometric case of a conjecture of

Shafarevich). Section 5.2 relates patching and embedding problems to arithmetic lifting

problems, in which one considers the existence of a cover with a given Galois group and

a given fibre (over a non-algebraically closed base field). In doing so, it relies on results

from Section 5.1. Section 5.3 considers Abhyankar’s Conjecture on fundamental groups in

characteristic p, along with strengthenings and generalizations that relate to embedding

problems and patching. These results move further in the direction of a full “Riemann’s

Existence Theorem”, although the full classification of covers in terms of groups remains

unknown.

Section 5.1. Embedding problems and the geometric case of Shafarevich’s Conjecture.

The motivation for introducing patching methods into Galois theory was to prove

results about Galois groups and fundamental groups for varieties that are not necessarily

defined over
�
. Complex patching methods, combined with topology, permitted a quite

explicit description of the tower of covers of a given complex curve U (Riemann’s Existence

Theorem 2.1.1 and 2.1.2). In particular, this approach showed what the fundamental group

of U is, and thus which finite groups are Galois groups of unramified covers of U . Analogous

formal and rigid patching methods were applied (in Sections 3 and 4) to the study of curves

over certain other coefficient fields, in particular large fields. Without restriction on the

branch locus, it was shown that every finite group is a Galois group over the function field

of the curve (Sections 3.3 and 4.3), and Pop’s “Half Riemann’s Existence Theorem” gave

an explicit description of a big part of the tower of covers for certain special choices of

branch locus (Section 4.3). Further results about Galois groups over an arbitrary affine

curve have also been obtained (see Section 5.3 below), but an explicit description of the

full tower of covers, and of the full fundamental group, remain out of reach for now.

Nevertheless, if one does not restrict the branch locus, then patching methods can be

used to find the birational analog of the fundamental group, in the case of curves over an

algebraically closed field k — i.e. to find the absolute Galois group of the function field

of a k-curve X. And here, unlike the situation with the fundamental group of an affine
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k-curve, the absolute Galois group turns out to be free even in characteristic p > 0.

In the case k =
�

and X =
� 1� , this result was proven in [Do] using the classical

form of Riemann’s Existence Theorem (see Corollary 2.1.5). For more general fields, it

was proven independently by the author [Ha10] and by F. Pop [Po1], [Po3]:

Theorem 5.1.1. Let X be an irreducible curve over an algebraically closed field k of

arbitrary characteristic. Then the absolute Galois group of the function field of X is the

free profinite group of rank equal to the cardinality of k.

In particular, the absolute Galois group of k(x) is free profinite of rank equal to card k.

Theorem 5.1.1 implies the geometric case of Shafarevich’s Conjecture. In the form orig-

inally posed by Shafarevich, the conjecture says that the absolute Galois group Gal( ¯�
/

� ab)

of
� ab is free profinite of countable rank. Here

� ab denotes the maximal abelian extension

of
�

, or equivalently (by the Kronecker-Weber theorem) the maximal cyclotomic extension

of
�

(i.e.
�

with all the roots of unity adjoined). The conjecture was later generalized to

say that if K is any global field and Kcycl is its maximal cyclotomic extension, then the

absolute Galois group of Kcycl is free profinite of countable rank. (See Remark 3.3.8(b).)

The arithmetic case of this conjecture (the case where K is a number field) is still open,

but the geometric case (the case where K is the function field of a curve X over a finite

field F ) follows from Theorem 5.1.1, by considering passage to the algebraic closure F̄ of

F . Namely, in this situation, F̄ = ¯�
p where p = char F , and so the function field K̄ of

X̄ := X ×F F̄ is equal to Kcycl; and in this case Theorem 5.1.1, applied to the K̄-curve

X̄, asserts the conclusion of Shafarevich’s Conjecture.

Theorem 5.1.1 above is proven using the notion of embedding problems. Recall that

an embedding problem E for a profinite group Π is a pair of surjective group homomor-

phisms (α : Π → G, f : Γ → G). A weak [resp. proper] solution to E consists of a group

homomorphism [resp. epimorphism] β : Π → Γ such that fβ = α:

Π
β?

↙




y

α

1 −→ N −→ Γ
f
−→ G −→ 1

An embedding problem E is finite if Γ is finite; it is split if f has a section; it is non-trivial

if N = kerf is non-trivial; it is a p-embedding problem if kerf is a p-group. A profinite

group Π is projective if every finite embedding problem for Π has a weak solution.

In terms of Galois theory, if Π is the absolute Galois group of a field K, then giving

a G-Galois field extension L of K is equivalent to giving a surjective homomorphism

α : Π → G. For such an L, giving a proper solution to E as above is equivalent to giving

a Γ-Galois field extension F of K together with an embedding of L into F as a G-Galois
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K-algebra. (Here the G-action on L agrees with the one induced by restricting the action

of Γ to the image of the embedding.) Giving a weak solution to E is the same, except

that F need only be a separable K-algebra, not a field extension (and so it can be a direct

product of finitely many fields). In this field-theoretic context we refer to an embedding

problem for K.

If K is the function field of a geometrically irreducible k-scheme X, then the field

extensions L and F correspond to branched covers Y → X and Z → X which are G-

Galois and Γ-Galois respectively, such that Z dominates Y . Here Y is irreducible; and

Z is also irreducible in the case of a proper solution. If the algebraic closure of k in the

function fields of Y and Z are equal (i.e. if there is no extension of constants from Y to

Z), we say that the solution is regular.

By considering embedding problems for a field K, or over a scheme X, one can study

not only which finite groups are Galois groups over K or X, but how the extensions

or covers fit together in the tower of all finite Galois groups. As a result, one can obtain

information about absolute Galois groups and fundamental groups. In particular, in the key

special case that X is the projective line and k is countable (e.g. if k = ¯�
p), Theorem 5.1.1

follows from the following three results about embedding problems:

Theorem 5.1.2. (Iwasawa [Iw,p.567], [FJ,Cor.24.2]) Let Π be a profinite group of count-

ably infinite rank. Then Π is a free profinite group if and only if every finite embedding

problem for Π has a proper solution.

Theorem 5.1.3. (Serre [Se6, Prop. 1]) If U is an affine curve over an algebraically closed

field k, then the profinite group π1(U) is projective.

Theorem 5.1.4. (Harbater [Ha10], Pop [Po1], [Po3]) If k is an algebraically closed field,

and K is the function field of an irreducible k-curve X, then every finite split embedding

problem for K has a proper solution.

Concerning these three results which will be used in proving Theorem 5.1.1: The-

orem 5.1.2 is entirely group-theoretic (and rank refers to the minimal cardinality of any

generating set). The proof of Theorem 5.1.3 is cohomological, and in fact the assertion

in [Se6] is stated in terms of cohomological dimension (that cd(π1(X)) ≤ 1, which implies

projectivity by [Se4, I, 5.9, Proposition 45]). Theorem 5.1.4 is a strengthening of Theo-

rem 3.3.1, and like that result it is proven using patching. (Theorem 5.1.4 will be discussed

in more detail below.)

Using these results, Theorem 5.1.1 can easily be shown in the case that the alge-

braically closed field k is countable. Namely, let Π be the absolute Galois group of k(x).

Then the profinite group Π has at most countable rank, since the countable field k(x)

has only countably many finite field extensions; and Π has infinite rank, since every finite

group is a quotient of Π (as seen in Section 3.3). So Theorem 5.1.2 applies, and it suffices
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to show that every finite embedding problem E for Π is properly solvable. Say E is given by

(α : Π → G, f : Γ → G), with f corresponding to a G-Galois branched cover Y → X. This

cover is étale over an affine dense open subset U ⊂ X, and α factors through π1(U) (since

quotients of π1 classify unramified covers). Writing this map as αU : π1(U) → G, consider

the finite embedding problem EU = (αU : π1(U) → G, f : Γ → G). By Theorem 5.1.3, this

has a weak solution βU : π1(U) → Γ, say with image H ⊂ Γ (which surjects onto G under

f). Let N be the kernel of f , and Γ1 be the semidirect product N×||H with respect to the

conjugation action of H on N . The multiplication map (n, h) 7→ nh ∈ Γ is an epimorphism

m : Γ1 → Γ, and the projection map h : Γ1 → H is surjective with kernel N . The surjec-

tion βU : π1(U) → H corresponds to an H-Galois branched cover Y1 → X (unramified over

U). This in turn corresponds to a surjective group homomorphism β : Π → H. By The-

orem 5.1.4, the split embedding problem (β : Π → H, h : Γ1 → H) has a proper solution.

That solution corresponds to an irreducible Γ1-Galois cover Z1 → X that dominates Y1;

and composing the corresponding surjection Π → Γ1 with m : Γ1 → Γ provides a proper

solution to the original embedding problem E .

Remark 5.1.5. The above argument actually requires less than Theorem 5.1.3; viz. it

suffices to use Tsen’s Theorem [Ri, Proposition V.5.2] that if k is algebraically closed then

the absolute Galois group of k(x) has cohomological dimension 1. For then, by writing X

in Theorem 5.1.1 as a branched cover of
� 1

k , it follows that the absolute Galois group of its

function field is also of cohomological dimension 1 [Se4, I, 3.3, Proposition 14], and hence

is projective [Se4, I, 5.9, Proposition 45]. One can then proceed as before.

But by using Theorem 5.1.3 as in the argument above, one obtains additional informa-

tion about the branch locus of the solution to the embedding problem. Namely, one sees

in the above argument that the H-Galois cover Y1 → X remains étale over U . In applying

Theorem 5.1.4 to pass to a Γ1-cover (and thence to a Γ-cover), one typically obtains new

branch points. But a sharp upper bound can be found on the number of additional branch

points [Ha11], using Abhyankar’s Conjecture (discussed in Section 5.3).

Before turning to the general case of Theorem 5.1.1 (where k is allowed to be un-

countable), we sketch the proof of Theorem 5.1.4:

Proof sketch of Theorem 5.1.4. Let Π be the absolute Galois group of K. Consider a finite

split embedding problem E = (α : Π → G, f : Γ → G) for K, with s a section of f , and

with f corresponding to a G-Galois branched cover Y → X. Let N = ker(f), and let

n1, . . . , nr be generators of N . Thus Γ is generated by s(G) and the ni’s. Pick r closed

points ξi ∈ X that are not branch points of Y → X. Thus Y → X splits completely over

each ξi, since k is algebraically closed. Let k′ = k((t)), and let X ′ = X ×k k′ and similarly

for Y ′ and ξ′i. Pick small neighborhoods X ′
i around each of the points ξ′i on X ′. (Here,

if one works in the rigid context, one takes t-adic closed discs. If one works in the formal

context, one blows up at the points ξ′i, and proceeds as in Example 3.2.11 or 3.2.13, using
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Theorem 3.2.8 or 3.2.12. See also Example 4.2.4.) Over these neighborhoods, build cyclic

covers Z ′
i → X ′

i with group Ni = 〈ni〉 (branched at ξ′i and possibly other points; cf. the

proof of Proposition 3.3.3, using the presence of prime-to-p roots of unity). Let Y ′
0 → X ′

0 be

the restriction of Y ′ → X ′ away from the above neighborhoods (viz. over the complement

of the corresponding open discs if one works rigidly, and over the general fibre of the formal

completion at the complement of the ξi’s if one works formally). Via the section s of f , the

Galois group G of Y ′
0 → X ′

0 may be identified with s(G) ⊂ Γ. The induced Γ-Galois covers

IndΓ
Ni

Z ′i → Z ′i and IndΓ
s(G)Y

′
0 → X ′

0 agree over the (rigid or formal) overlap. Hence by

(rigid or formal) GAGA, these patch together to form a Γ-Galois cover Z ′ → X ′. (In the

formal case, one uses Theorem 3.2.8 rather than Theorem 3.2.1, since the agreement is not

on the completion along a Zariski open set.) This cover is connected since Γ is generated

by s(G) and the ni’s; it dominates Y ′ → X ′ since it does on each patch; and it is branched

at each ξ′i. As in the proof of Corollary 3.3.5, one may now specialize from k′ to k using

that k is algebraically closed, obtaining a Γ-Galois cover Z → X that dominates Y → X.

This corresponds to a proper solution to E .

Remark 5.1.6. (a) The above proof also shows that one has some control over the position

of the new branch points of Z → X. Namely, the branch locus contains the points ξi, and

these points can be taken arbitrarily among non-branch points of Y → X. In particular,

any given point of X can be taken to be a branch point of Z → X above (by choosing it to

be one of the ξi’s). More precise versions of this fact appear in [Ha10, Theorem 3.5] and

[Po3, Theorem A], where formal and rigid methods are respectively used.

(b) As a consequence of Remark (a), it follows that the set of (isomorphism classes

of) solutions to the split embedding problem has cardinality equal to that of k.

(c) The above proof of Theorem 5.1.4 also gives information about inertia of the

constructed cover Z → X. Namely, if I ⊂ G is the inertia group of Y → X at a point

η ∈ Y over ξ ∈ X, then s(I) ⊂ Γ is an inertia group of Z → X at a point ζ ∈ Z over η

(and the other inertia groups over ξ are the conjugates of s(I).

(d) Adjustments to the above construction give additional flexibility in controlling the

properties of Z → X. In particular, if char k = p > 0 and if I ′ ⊂ Γ is the extension of s(I)

by a p-group, then one may build Z so that I ′ is an inertia group over ξ at a point over η

(with notation as in Remark (c)). In addition, rather than considering a split embedding

problem, i.e. a group Γ generated by a normal subgroup N and a complement s(G), one

can more generally consider a group Γ generated by two subgroups H and G, where we are

given a G-Galois cover Y → X. The assertion then says that this cover can be modified

to produce a Γ-Galois cover Z → X with control as above on the branch locus and inertia

groups. In particular, one can add additional branch points to a cover, and one can modify

a cover by enlarging an inertia group from a p-subgroup of the Galois group to a larger

p-subgroup. (See [Ha6, Theorem 2] and [Ha13, Theorem 3.6], where formal patching is
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used to prove these assertions.)

(e) The ability to add branch points was used in [MR] to show that for any finite

group G and any smooth connected curve X over an algebraically closed field k, there is

a G-Galois branched cover Y → X such that G is the full group of automorphisms of Y .

The idea is that if one first takes an arbitrary G-Galois cover of X (by Corollary 3.3.5);

then one can adjust it by adding new branch points and thereby killing automorphisms

that are not in G.

To prove the general case of Theorem 5.1.1, one replaces Theorem 5.1.2 above by a

result of Melnikov and Chatzidakis (see [Ja, Lemma 2.1]):

Theorem 5.1.7. Let Π be a profinite group and let m be an infinite cardinal. Then Π is

a free profinite group of rank m if and only if every non-trivial finite embedding problem

for Π has exactly m proper solutions.

Namely, by Remark 5.1.6(b) above, in the situation of Theorem 5.1.1 the number of

proper solutions to any finite split embedding problem is card k. Proceeding as in the proof

of Theorem 5.1.1 in the countable case, one obtains that every finite embedding problem

for Π has card k proper solutions. So Π is free profinite of that rank by Theorem 5.1.7,

and this proves Theorem 5.1.1.

Remark 5.1.8. By refining the proof of Theorem 5.1.1 (in particular modifying The-

orems 5.1.3 and 5.1.4 above), one can prove a tame analog of that result [Ha13, Theo-

rem 4.9(b)]: If X is an affine curve with function field K, consider the maximal extension

Ω of K that is at most tamely ramified over each point of X. Then Gal(Ω/K) is a free

profinite group, of rank equal to the cardinality of k.

Theorem 5.1.4 above extends from algebraically closed fields to arbitrary large fields

(cf. Section 3.3), according to the following result of Pop:

Theorem 5.1.9. (Pop [Po1, Theorem 2.7]) If k is a large field, and K is the function field

of a geometrically irreducible k-curve X, then every finite split embedding problem for K

has a proper regular solution.

Namely, the above proof of Theorem 5.1.4 showed that result for an algebraically closed

field k by first proving it for the Laurent series field K = k((t)), and then specializing from

K to k, using that k is algebraically closed. In order to prove Theorem 5.1.9, one does

the same in this more general context, using that k is large in order to specialize from

K = k((t)) to k (as in Sections 3.3 and 4.3). A difficulty is that since k need not be

algebraically closed, one can no longer choose the extra branch points ξi ∈ X arbitrarily

(as one could in the above proof of Theorem 5.1.4, where ξi and the points of its fibre were

automatically k-rational). Still, one can proceed as in the proofs of Theorems 3.3.1, 4.3.1,
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and 4.3.3 — viz. using cyclic covers branched at clusters of points constructed in the proof

of Proposition 3.3.3.

Since an arbitrary large field k is not algebraically closed, one would also like to know

that the Γ-Galois cover Z → X has the property that Z → Y is regular (i.e. Z and Y

have the same ground field `, or equivalently the algebraic closures of k in the function

fields of Y and Z are equal). This can be achieved by using that in the construction using

formal patching, the closed fibre of the cover Z → Y over K is a mock cover (as in the

proof of Theorem 3.3.1). Alternatively, from the rigid point of view, one can observe from

the patching construction (as in the proof of Theorem 4.3.1) that Z may be chosen so

that Z → Y has a totally split fibre over η ∈ Y , if η has been chosen (in advance) to

be an `-point of Y that lies over a k-point ξ of X. This then implies regularity, as in

Theorem 4.3.1. (If there is no such point η ∈ Y , then one can first base-change to a finite

Galois extension k̃ of k where there is such a point; and then construct a regular solution

Z̃ → Ỹ = Y ×k k̃ which is compatible with the Gal(k̃/k)-action, and so which descends to

a regular solution Z → Y .)

Remarks 5.1.6(a) and (b) above no longer hold for curves over an arbitrary large field

(nor does Theorem 5.1.1 — see below); but Remark 5.1.6(c) still applies in this situation.

So the argument in the case of an arbitrary large field gives the following more precise form

of Theorem 5.1.9 (where one looks at the actual curve X, rather than just at its function

field):

Theorem 5.1.10. Let k be a large field, let X be a geometrically irreducible smooth

k-curve, let f : Γ → G be a surjection of finite groups with a section s, and let Y → X be

a G-Galois connected branched cover of smooth curves.

(a) Then there is a smooth connected Γ-Galois branched cover Z → X that dominates

the G-Galois cover Y → X, such that Z → Y is regular.

(b) Let ξ be a k-point of X which is not a branch point of Y → X, and let η be a

closed point of Y over ξ with decomposition group G1 ⊂ G. Then the cover Z → X in (a)

may be chosen so that it is totally split over η, and so that there is a point ζ ∈ Z over η

whose decomposition group over ξ is s(G1) ⊂ Γ.

Remark 5.1.11. (a) In [Po1], the above result was stated for a slightly smaller class of

fields (those with a “universal local-global principle”); but in fact, all that was used is that

the field is large. Also, the result there did not assert 5.1.10(b), though this can be deduced

from the proof. The result was stated for large fields in [Po4, Main Theorem A], but only

in the case that X =
� 1

k and Y =
� 1

` . (Both proofs used rigid patching.) The fact that

the fibre over η can be chosen to be totally split first appeared explicitly in [HJ1, Theorem

6.4], in the case that X =
� 1

k and Y =
� 1

` ; and in [HJ2, Proposition 4.2] if X =
� 1

k and Y

is arbitrary. The proofs there used “algebraic patching” (cf. the comments at the end of

Section 4.3).
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(b) A possible strengthening of Theorem 5.1.10(b) would be to allow one to specify

the decomposition group of ζ as a given subgroup G′
1 ⊂ Γ that maps isomorphically onto

G1 ⊂ G via f (rather than having to take G′
1 = s(G1), as in the statement above). It

would be interesting to know if this strengthening is true.

As a consequence of Theorem 5.1.9, we have:

Corollary 5.1.12. Let k be a Hilbertian large field, with absolute Galois group Gk.

(a) Then every finite split embedding problem for Gk has a proper solution.

(b) If k is also countable, and if Gk is projective, then Gk is isomorphic to the free

profinite group of countable rank.

Proof. (a) Every such embedding problem for Gk gives a split embedding problem for

Gk(x). That problem has a proper solution by Theorem 5.1.9. Since k is Hilbertian, that

solution can be specialized to a proper solution of the given embedding problem.

(b) Since Gk is projective, the conclusion of part (a) implies that every finite em-

bedding problem for Gk has a proper solution (as in the proof of Theorem 5.1.1 above,

using semi-direct products). Also, Gk is of countably infinite rank (again as in the proof

of Theorem 5.1.1). So Theorem 5.1.2 implies the conclusion.

Remark 5.1.13. (a) Part (a) of Corollary 5.1.12 appeared in [Po3, Main Theorem B] and

[HJ1, Thm.6.5(a)] . As a special case of part (b) of the corollary, one has that if k is a

countable Hilbertian PAC field (see Example 3.3.7(c)), then Gk is free profinite of countable

rank. This is because PAC fields are large, and because their absolute fundamental groups

are projective (because they are of cohomological dimension ≤ 1 [Ax2, §14, Lemma 2]).

This special case had been a conjecture of Roquette, and it was proven as above in [Po3,

Thm. 1] and [HJ1, Thm. 6.6] (following a proof in [FV2] in the characteristic 0 case, using

the classical complex analytic form of Riemann’s Existence Theorem).

(b) As remarked in Section 3.3, it is unknown whether
� ab is large. But it is Hilbertian

([Vö, Corollary 1.28], [FJ, Theorem 15.6]) and countable (being contained in ¯�
), and its

absolute Galois group is projective (being of cohomological dimension 1 by [Se4, II, 3.3,

Proposition 9]). So if it is indeed large, then part (b) of the corollary would imply that its

absolute Galois group is free profinite of countable rank — i.e. the original (arithmetic)

form of Shafarevich’s Conjecture would hold. Among other things, this would imply that

every finite group is a Galois group over
� ab .

The solvable version of Shafarevich’s Conjecture has been shown; i.e. the maximal

pro-solvable quotient of G �
ab is the free prosolvable group of countable rank [Iw]. More

generally, if k is Hilbertian and Gk is projective, then every finite embedding problem for

Gk with solvable kernel has a proper solution [Vö, Corollary 8.25]. This result does not

require k to be large, and it does not use patching.
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(c) It has been conjectured by Dèbes and Deschamps [DD] that Theorem 5.1.9 and

Corollary 5.1.12 remain true even if the ground field is not large. Specifically, they con-

jecture that for any field k, every finite split embedding problem for Gk(x) has a proper

regular solution; and hence that if k is Hilbertian, then every finite split embedding prob-

lem for Gk has a proper solution. This is a very strong conjecture, in particular implying

an affirmative answer to the Regular Inverse Galois Problem (i.e. that every finite group

is a regular Galois group over k(x) for every field k). But it also seems very far away from

being proven.

As mentioned above, Theorem 5.1.1 does not hold if the algebraically closed field k is

replaced by an arbitrary large field. This is because if K is the function field of a k-curve

X, then its absolute Galois group GK is not even projective (much less free) if k is not

separably closed. That is, not every finite embedding problem for K has a weak solution

— and so certainly not a proper solution, as would be required in order to be free.

This can be seen by using the equivalence between the condition that a profinite

group Π is projective and the condition that it has cohomological dimension ≤ 1 [Se4, I;

5.9, Proposition 45 and 3.4, Proposition 16]. Namely, if k is not separably closed, then

its absolute Galois group Gk is non-trivial, and so Gk has cohomological dimension > 0

[Se4, I, 3.3, Corollaire 2 to Proposition 14]. Since the function field K is of finite type over

k and of transcendence degree 1 over k, it follows that GK has cohomological dimension

> 1. (This is by [Se4, II, 4.2, Proposition 11] in the case that cd Gk is finite; and by [Ax1]

and [Se4, II, 4.1, Proposition 10(ii)] if cd Gk is infinite.) So GK is not projective.

But as Theorem 5.1.9 shows, every finite split embedding problem for GK has a

proper solution, if K is the function field of a curve over an arbitrary large field k. Thus

(as in the proof of Theorem 1 above, via semi-direct products), it follows that any finite

embedding problem for GK that has a weak solution must also have a proper solution. So

Theorem 5.1.9 can be regarded as saying that GK is “as close as possible” to being free,

given that it is not projective.

Section 5.2. Arithmetic lifting, embedding problems, and patching.

In realizing Galois groups over a Hilbertian field k like
�

or
� ab , the main method

is to realize the group as a regular Galois group over K = k(x), and then to specialize

from K to k using that k is Hilbertian. That is, one constructs a Galois branched cover

Y →
� 1

k such that k is algebraically closed in the function field of Y , and then obtains a

Galois extension of k with the same group by considering an irreducible fibre of the cover

over a k-point of
� 1

k (which exists by the Hilbertian hypothesis). To date, essentially all

simple groups that have been realized as Galois groups over
�

or
� ab have been realized

by this method.

The use of this method has led to the question of whether, given a finite Galois

extension ` of a field k, there is a finite regular Galois extension L of K = k(x) with the
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same group G, of which the given extension is a specialization. If so, then one says that

the field k and group G satisfy the arithmetic lifting property. (Of course if one did not

require regularity, then one could just take L to be `(x).)

The question of when this property holds was first raised by S. Beckmann [Be], who

showed that it does hold in the case that k =
�

and G is either an abelian group or a

symmetric group. Later, E. Black [Bl1] [Bl2] [Bl3] showed that the property holds for

certain more general classes of groups over Hilbertian fields, particularly certain semi-

direct products such as dihedral groups Dn with n odd. Black also conjectured that the

arithmetic lifting property holds for all finite groups over all fields, and proving this has

come to be known as the Beckmann-Black problem (or BB). It was later shown by Dèbes

[Dè] that an affirmative answer to BB over every field would imply an affirmative answer

to the Regular Inverse Galois Problem (RIGP) over every field (i.e. that for every field k

and every finite group G, there is a regular Galois extension of k(x) with group G). On

the other hand, knowing BB for a given field k does not automatically give RIGP over k,

since one needs to be given a Galois extension of the given field in order to apply BB.

Colliot-Thélène has considered a strong form of arithmetic lifting (or BB): Suppose

we are given a field k and a finite group G, and a G-Galois k-algebra A (i.e. a finite direct

sum of finite separable field extensions of k, on which G acts faithfully with fixed field k).

In this situation, is there a regular G-Galois field extension L of k(x) that specializes to

A? Equivalently, suppose that H is a subgroup of G and ` is an H-Galois field extension

of k. Then the question is whether there is a regular G-Galois field extension of k(x)

such that some specialization to k yields A := `⊕(G:H) (where the copies of ` are indexed

by the cosets of H in G). In geometric terms, the question is whether there is a regular

G-Galois branched cover Y →
� 1

k with a given fibre IndG
H Spec ` — i.e. such that over

some unramified k-point of the line, there is a point of Y with given decomposition group

H ⊂ G and given residue field ` (which is a given H-Galois field extension of k).

If, in the strong form of BB, one takes A to be a G-Galois field extension ` of k, then

one recovers the original BB. At the other extreme, if one takes A to be a direct sum of

copies of k (indexed by the elements of G), then one is asking the question of whether there

is a G-Galois regular field extension of k(x) with a totally split fibre. (Thus the strong

form of BB over a given field k implies RIGP for that field.) In the case that k is a large

field, this totally split case of strong BB does hold; indeed, this is precisely the content of

Theorem 4.3.1.

Colliot-Thélène showed that the strong form of BB holds in general for large fields k:

Theorem 5.2.1. [CT] If k is a large field, G is a finite group, and A is a G-Galois k-

algebra, then there is a G-Galois regular branched cover of X =
� 1

k whose fibre over a

given k-point agrees with Spec A (as a G-Galois k-algebra).

Remark 5.2.2. As noted in Remark 5.1.13(b), it is unknown whether
� ab is large. But if
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it is, then Theorem 5.2.1 would imply that it has the (strong) arithmetic lifting property for

every finite group — and so every finite Galois group over
� ab would be the specialization

of a regular Galois branched cover of the line over
� ab . On the other hand,

�
is not large,

and so Theorem 5.2.1 does not apply to it. And although it is known that every finite

solvable group is a Galois group over
�

(Shafarevich’s Theorem [NSW, Chap. IX, §5]), it

is not known whether every such group is the Galois group of a regular branched cover of
� 1� — much less that the arithmetic lifting property holds for these groups over

�
.

Colliot-Thélène’s proof used a different form of patching, and relied on work of Kollár

[Kol] on rationally connected varieties. The basic idea is to construct a “comb” of projective

lines on a surface, i.e. a tree of
� 1’s in which one component meets all the others, none of

which meet each other. A degenerate cover of the comb is then constructed by building it

over the components, and the cover is then deformed to a non-degenerate cover of a nearby

irreducible curve of genus 0 with the desired properties.

Colliot-Thélène’s proof required that k be of characteristic 0 (because Kollár’s work

assumed that), but other proofs have been found that do not need this. In particular,

Moret-Bailly [MB2] used a formal patching argument to prove this result. A proof using

rigid patching can be obtained from Colliot-Thélène’s argument by replacing the “spine”

of the comb by an affinoid set U0 as in the proof of Theorem 4.3.1, and the “teeth” of the

comb by affinoids U1, . . . , Ur as in that proof (appropriately chosen). And a proof using

“algebraic patching” (cf. the end of Section 4.3) has been found by Haran and Jarden

[HJ2].

Yet another proof of Theorem 5.2.1 above can be obtained from Pop’s result on solv-

ability of split embedding problems over large fields (Theorem 5.1.9, in the more precise

form Theorem 5.1.10 — which of course was also proven using patching). This proof,

which was found by Pop and the author, requires only the special case of Theorem 5.1.10

in which the given cover of
� 1

k is purely arithmetic (i.e. of the form
� 1

` ; this was the case

considered in [Po4] and [HJ1]). Namely, under the hypotheses of Theorem 5.2.1 above,

we may write A = `⊕(G:H), where ` is an H-Galois field extension of k for some subgroup

H ⊂ G. Let Γ = G×||H, where the semidirect product is formed with respect to the conju-

gation action of H on G. Thus there is a surjection f : Γ → H (given by second projection)

with a splitting s (given by second inclusion). Consider the H-Galois cover Y → X, where

X =
� 1

k and Y =
� 1

` . Let ξ be a k-point of X. By hypothesis, there is a closed point η

on Y =
� 1

` whose residue field is ` and whose decomposition group over ξ is H. So by

Theorem 5.1.10, there is a regular connected G-Galois cover Z → Y which is totally split

over η, such that the composition Z → X is Γ-Galois and such that 1×||H = s(H) ⊂ Γ

is the decomposition group over ξ of some point ζ ∈ Z over η. Viewing G as a quotient

of Γ via the multiplication map m : Γ = G×||H → G, we may consider the intermediate

G-Galois cover W → X (i.e. W = Z/N , where N = ker m). It is then straightforward to
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check that the cover W → X satisfies the conclusion of Theorem 5.2.1.

The arithmetic lifting result Theorem 5.2.1 above, and the split embedding problem

result Theorem 5.2.10, both generalize Theorem 4.3.1 (that one can realize any finite

group as a Galois group over a curve defined over a given large field, with a totally split

fibre). In fact, those two generalizations can themselves be simultaneously generalized, by

the following joint result of F. Pop and the author, concerning the solvability of a split

embedding problem with a prescribed fibre. We first introduce some terminology.

As in Theorem 5.1.10, let X be a geometrically irreducible smooth curve over a field

k, let f : Γ → G be a surjection of finite groups, and let Y → X be a G-Galois connected

branched cover of smooth curves. Let ξ be an unramified k-point of X, and let η be a

closed point of Y over ξ with decomposition group G1 ⊂ G and residue field ` ⊃ k. Let

Γ1 be a subgroup of Γ such that f(Γ1) = G1, and let λ be a Γ1-Galois field extension

of k that contains `. We say that this data constitutes a fibred embedding problem E for

X. The problem E is split if f has a section s. A proper solution to a fibred embedding

problem E as above consists of a smooth connected Γ-Galois branched cover Z → X that

dominates the G-Galois cover Y → X, such that there is a closed point ζ of Z over η which

has residue field λ and whose decomposition group over ξ is Γ1 ⊂ Γ. A solution to E is

regular if Z → Y is regular (i.e. the algebraic closures of k in the function fields of Y and

Z are equal.

Theorem 5.2.3. Let k be a large field, let X be a geometrically irreducible smooth k-

curve, and consider a fibred split embedding problem E as above, with data f : Γ → G, s,

Y → X, ξ ∈ X, η ∈ Y , G1 ⊂ G, λ ⊃ ` ⊃ k. Assume that Γ1 = Gal(λ/k) contains s(G1).

Let k′ be the algebraic closure of k in the function field of Y , let X ′ = X ×k k′ and let

E = Gal(Y/X ′) ⊂ G. Assume that s(E) commutes with N1 = ker(f : Γ1 → G1). Then E

has a proper regular solution.
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Figure 5.2.4: The set-up in the statement of Theorem 5.2.3.

In other words, given a split embedding problem for a curve over a large field, there

is a proper regular solution with a given fibre, assuming appropriate hypothesis (on Γ1,
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E and N1). Taking the special case Γ1 = G1 in Theorem 5.2.3 (i.e. taking N1 = 1), one

recovers Theorem 5.1.10. And taking the special case G = 1 in Theorem 5.2.3, one recovers

Theorem 5.2.1 above. (Note that the “G” in Theorem 5.2.1 corresponds to the group Γ

in Theorem 5.2.3. Also, the “A” in 5.2.1 is IndΓ
Γ1

λ = λ⊕(Γ:Γ1), in the notation of 5.1.3.)

More generally, taking E = 1 in Theorem 5.2.3 (but not necessarily taking G to be trivial),

one obtains the result in the case that the given cover Y → X is purely arithmetic, i.e. of

the form Y = X ×k k′. The result in that case is a generalization of Theorem 5.2.1 — viz.

instead of requiring the desired cover Z → X in Theorem 5.2.1 to be regular, it can be

chosen so that the algebraic closure of k in the function field of Z is a given subfield k′ of A

that is Galois over k (and also X need not be
� 1). Note that in each of these special cases,

the hypothesis on s(E) commuting with N1 is automatically satisfied, because either E or

N1 is trivial in each case. (On the other hand, the condition Γ1 ⊃ s(G1) is still assumed.)

Theorem 5.2.3, like Theorem 5.2.1 above, can in fact be deduced from Theorem 5.1.10,

by a strengthening of the proof of Theorem 5.2.1 given above:

Proof of Theorem 5.2.3. The G-Galois cover Y → X factors as Y → X ′ → X, where the E-

Galois cover Y → X ′ is regular, and X ′ → X is purely arithmetic (induced by extension of

constants from k to k′). Let Ḡ = Gal(k′/k); we may then identify Gal(X ′/X) = G/E with

Ḡ. For any field F containing k′, let XF = X ′ ×k′ F = X ×k F and let YF = Y ×k′ F . So

we may identify E = Gal(Y`/X`) = Gal(Yλ/Xλ); and Ḡ is a quotient of G1 = Gal(X`/X).

Since Y` = X` ×X′ Y , it follows that Gal(Y`/X) = G1 ×Ḡ G (fibre product of groups);

similarly Gal(Yλ/X) = Γ1 ×Ḡ G, and Y → X is the subcover of Yλ → X corresponding to

the second projection map G1 ×Ḡ G → G. (See Figure 5.2.5.)
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Figure 5.2.5: The situation in the proof of Theorem 5.2.3.

Let ξ` be the unique closed point of X` over ξ ∈ X. Then ξ` ∈ X` and η ∈ Y each

have residue field ` and decomposition group G1 over ξ. So the fibre of Y` → Y over

η is totally split, with each point having residue field `; the points of this fibre lie over

ξ` ∈ X` and over η ∈ Y ; and the local fields of X` and Y at ξ` and η (i.e. the fraction

fields of the complete local rings) are isomorphic over X ′. So at one of the points in this
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fibre (say η`), the decomposition group over ξ ∈ X is equal to the diagonal subgroup

G1 ×G1
G1 ⊂ G1 ×Ḡ G. (At the other points of the fibre, the decomposition group is of

the form {(g1, ι(g1)) | g1 ∈ G1}, where ι is an inner automorphism of G1.) Similarly, there

is a point ηλ ∈ Yλ over η` ∈ Y` whose residue field is λ and whose decomposition group

over ξ ∈ X is Γ1 ×G1
G1 ⊂ Γ1 ×Ḡ G.

Since E = ker(G → Ḡ), every element of Γ1 ×Ḡ G can uniquely be written as

(γ1, f(γ1)e), with γ1 ∈ Γ1 and e ∈ E. Consider the map σ : Γ1 ×Ḡ G → Γ1 ×Ḡ Γ

given by σ(γ1, f(γ1)e) = (γ1, γ1s(e)). Since s(E) commutes with N1, direct computation

shows that σ is a homomorphism, and hence is a section of (1, f) : Γ1 ×Ḡ Γ → Γ1 ×Ḡ G.

We may now apply Theorem 5.1.10 to the surjection (1, f) and its section σ, to the

cover Yλ → X, to the k-point ξ ∈ X, and to the point ηλ ∈ Yλ over ξ with decomposition

group Γ1 ×G1
G1. The conclusion of that result is that there is a smooth connected

Γ1 ×Ḡ Γ-Galois cover Zλ → X that dominates the Γ1 ×Ḡ G-Galois cover Yλ → X with

Zλ → Yλ regular, together with a point ζλ ∈ Zλ whose decomposition group over ξ is

σ(Γ1 ×G1
G1) = Γ1 ×Γ1

Γ1 = ∆Γ1
, the diagonal of Γ1 in Γ1 ×Ḡ Γ. Let Z → X be the

intermediate Γ-Galois cover corresponding to the second projection map Γ1×Ḡ Γ → Γ, and

let ζ ∈ Z be the image of ζλ ∈ Zλ. Then Z → X dominates the G-Galois cover Y → X;

the decomposition group of ζ is Γ1 ⊂ Γ and the residue field is λ; and ζ lies over η ∈ Y . So

Z → X and the point ζ define a proper solution to the split embedding problem E . The

solution is regular, i.e. Z → Y is regular, since the pullback Zλ → Yλ is regular.

Remark 5.2.6. (a) Theorem 5.2.3 can be regarded as a step toward an “arithmetic

Riemann’s Existence Theorem” for covers of curves over a large field. Namely, such a result

should classify the branched covers of such a curve, in terms of how they fit together (e.g.

with respect to embedding problems), and in terms of their arithmetic and their geometry,

including information about decomposition groups and inertia groups (the latter of which

Theorem 5.2.3 does not discuss).

(b) In Remark 5.1.11(b), it was asked if Theorem 5.1.10 can be generalized, to allow

one to require the decomposition group there to be an arbitrary subgroup of Γ that maps

isomorphically onto G1 under f (rather than being required to take s(G1) for the decompo-

sition group). If it can, then the above proof of Theorem 5.2.3 could be simplified, and the

statement of Theorem 5.2.3 could be strengthened. Namely, the subgroup Γ1 ⊂ Γ could be

allowed to be chosen more generally, viz. as any subgroup of Γ whose image under f is G1.

And the assumption that s(E) commutes with N1 could also be dropped — since one could

then replace the section σ in the above proof by the section (id, s), while still requiring the

decomposition group at ζλ to be ∆Γ1
. But on the other hand there might in general be

a cohomological obstruction, which would vanish if the containment and commutativity

assumptions are retained.
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Section 5.3. Abhyankar’s Conjecture and embedding problems.

The main theme in this manuscript has been the use of patching methods to prove

results in the direction of Riemann’s Existence Theorem for curves that are not necessarily

defined over
�
. Such a result should classify the unramified covers of such a curve U , and

in particular provide an explicit description of the fundamental group of U , as a profinite

group.

While the full statement of Riemann’s Existence Theorem is known only for curves

over an algebraically closed field of characteristic 0, partial versions have been discussed

above. In particular, if one allows arbitrary branching to occur, there is the Geometric

Shafarevich Conjecture (Section 5.1); and if one instead takes U to be the complement of a

well chosen branch locus and if one restricts attention to a particular class of covers, then

there is the Half Riemann Existence Theorem (Section 4.3).

Another way to weaken Riemann’s Existence Theorem is to ask for the set πA(U) of

finite Galois groups of unramified covers of U ; i.e., for the set of finite quotients of π1(U),

up to isomorphism. A finitely generated profinite group Π is in fact determined by its set of

finite quotients [FJ, Proposition 15.4]; and π1(U) is finitely generated (as a profinite group)

if the base field has characteristic 0. But in characteristic p, if U is affine, then π1(U) is

not finitely generated (see below), and πA(U) does not determine π1(U). In this situation,

π1(U) remains unknown; but at least πA(U) is known if the base field is algebraically

closed. Moreover, πA(U) depends only on the type (g, r) of U (where U = X − S, with X

a smooth connected projective curve of genus g ≥ 0, and S is a set of r > 0 points of X).

Namely, this 1957 conjecture of Abhyankar [Ab1] was proven by Raynaud [Ra2] and the

author [Ha7] using patching and other methods:

Theorem 5.3.1. (Abhyankar’s Conjecture) (Raynaud, Harbater) Let k be an alge-

braically closed field of characteristic p > 0, and let U be a smooth connected affine curve

over k of type (g, r). Then a finite group G is in πA(U) if and only if each prime-to-p

quotient of G has a generating set of at most 2g + r − 1 elements.

Recall that for complex curves U of type (g, r), a finite group G is in πA(U) if and

only if G has a generating set of at most 2g + r − 1 elements. The same assertion is false

in characteristic p > 0, e.g. since any affine curve has infinitely many Artin-Schreier covers

(cyclic of order p), and hence has Galois groups of the form (
�

/p
�
)s for arbitrarily large s.

(This implies the above comment that π1(U) is not finitely generated.) The above theorem

can be interpreted as saying that “away from p”, the complex result carries over; and that

every finite group consistent with this principle must occur as a Galois group over U .

In the theorem, the assertion about every prime-to-p quotient of G can be replaced

by the same assertion about the maximal prime-to-p quotient of G — i.e. the group Ḡ :=

G/p(G), where p(G) is the subgroup of G generated by the elements of p-power order (or
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equivalently, by the p-subgroups of G; or again equivalently, by the Sylow p-subgroups of

G).

In the case that U =
� 1

k , Theorem 5.3.1 says that πA(
� 1

k ) consists precisely of the

quasi-p groups, viz. the groups G such that G = p(G) (i.e. that are generated by their

Sylow p-subgroups). This class of groups includes in particular all p-groups, and all finite

simple groups of order divisible by p.

Remark 5.3.2. (a) Prior to Theorem 5.3.1 being proven, Serre had shown a partial result

[Se6, Théorème 1]: that if Q is a quasi-p group and if N /Q is a solvable normal subgroup

of Q such that the (quasi-p) group Q̄ := Q/N is a Galois group over
� 1

k (i.e. Q̄ ∈ πA(
� 1

k )),

then Q is also a Galois group over
� 1

k . Due to the solvability assumption, the proof was

able to proceed cohomologically, without patching; it relied in particular on the fact that

π1(U) is projective (Theorem 5.1.3 above, also due to Serre). Serre’s result [Se6, Thm. 1]

implied in particular that Theorem 5.3.1 above is true for solvable groups over the affine

line. Serre’s proof actually showed more: that if N is a p-group, then a given Q̄-cover

Y →
� 1 can be dominated by a Q-cover (i.e. the corresponding p-embedding problem can

be properly solved); but that if N has order prime-to-p, then the embedding problem need

not have a proper solution (i.e. the asserted Q-Galois cover of
� 1 cannot necessarily be

chosen so as to dominate the given Q̄-Galois cover Y →
� 1).

(b) More generally, by extending the methods of [Se6], the author showed [Ha12] that

if U is any affine variety other than a point, over an arbitrary field of characteristic p, then

every finite p-embedding problem for π1(U) has a proper solution. Moreover, this solution

can be chosen so as to have prescribed local behavior. For example, if V ⊂ U is a proper

closed subset, then the proper solution over U can be chosen so that it restricts to a given

weak solution over V . (Cf. Theorem 5.2.3 above, for such fibred embedding problems in a

related but somewhat different context.) And if U is a curve, then the proper solution can

be chosen so as to restrict to given weak solutions over the fraction fields of the complete

local rings at finitely many points.

Proof sketch of Theorem 5.3.1. In the case U =
� 1 , the theorem was proven by Raynaud

[Ra2], using in particular rigid patching methods. The proof proceeded by induction on

the order of G, and considered three cases. In Case 1, the group G is assumed to have

a non-trivial normal p-subgroup N ; and using Serre’s result that embedding problems

for π1(U) with p-group kernel can be properly solved (Remark (a) above), the desired

conclusion for G follows from the corresponding fact for G/N . When not in Case 1, one

picks a Sylow p-subgroup P , and considers all the quasi-p subgroups Q ⊂ G such that

Q ∩ P is a Sylow p-subgroup of Q. Case 2 is the situation in which these Q’s generate

G. In this case, by induction each of the Q’s is a Galois group over
� 1 ; and using rigid

patching it follows that G is also. (Or one could use formal patching for this step, viz.

Theorem 3.2.8; see e.g. [HS, Theorem 6].) Case 3 is the remaining case, where Cases 1
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and 2 do not apply. Then, one builds a G-Galois branched cover of the line in mixed

characteristic having p-power inertia groups. The closed fibre of the semi-stable model is

a reducible curve that maps down to a tree of projective lines in characteristic p. Using a

careful combinatorial analysis of the situation, it turns out that over one of the terminal

components of the tree (a copy of the projective line), one finds an irreducible G-Galois

cover that is branched at just one point — and hence is an étale cover of the affine line,

as desired. Moreover, by adjusting the cover, we may assume that the inertia groups

over infinity (of the corresponding branched cover of
� 1

k) are the Sylow p-subgroups of Q.

(Namely, by Abhyankar’s Lemma, after pulling back by a Kummer cover yn − x, we may

assume that the inertia groups over infinity are p-groups. We may then enlarge this inertia

to become Sylow, using Remark 5.1.6(d) above.)

The general case of the theorem was proven in [Ha7], by using the above case of the

affine line, together with formal patching and embedding problems. (See also the simplified

presentation in [Ha13], where more is shown.) For the proof, one first recalls that the result

was shown by Grothendieck [Gr5, XIII, Cor. 2.12] in the case that the group is of order

prime to p. Using this together with formal patching (Theorem 3.2.8), it is possible to

reduce to the key case that U =
� 1

k − {0}, where G/p(G) is cyclic of prime-to-p order.

(For that reduction, one patches a prime-to-p cover of the original curve together with a

cyclic-by-p cover of
� 1

k−{0}, to obtain a cover of the original curve with the desired group.)

Once in this case, by group theory one can find a prime-to-p cyclic subgroup Ḡ ⊂ G that

normalizes a Sylow p-subgroup P of G and that surjects onto G/p(G). Here G is a quotient

of the semi-direct product Γ := p(G)×|| Ḡ (formed with respect to the conjugation action

of Ḡ on p(G)); so replacing G by Γ we may assume that G = p(G)×|| Ḡ with Ḡ ≈ G/p(G).

Letting n = |Ḡ|, there is a Ḡ-Galois étale cover V → UK given by yn = x, where K = k((t))

and UK = A1
K−{0}. Using the proper solvability of p-embedding problems with prescribed

local behavior (Remark 5.3.2(b) above), one can obtain a P×|| Ḡ-Galois étale cover Ṽ → UK

whose behavior over one of the (unramified) K-points ξK of UK can be given in advance.

Specifically, one first considers a p(G)-Galois étale cover W →
� 1

k (given by the first case

of the result, with Sylow p-subgroups as inertia over ∞), and restricts to the local field

at a ramification point with inertia group P (this being a P -Galois field extension of the

local field K = k((t)) at ∞ on
� 1

k). It is this P -Galois extension of K that one uses for the

prescribed local behavior over the K-point ξK , in applying the p-embedding result. As a

consequence, the P×|| Ḡ-Galois cover Ṽ → UK (near ξK) has local compatibility with W

(near ∞). This compatibility makes it possible for the two covers Ṽ and W to be patched

using Theorem 3.2.8 or 3.2.12 (after blowing up; see Examples 3.2.11, 3.2.13, and 4.2.4).

As a result we obtain a G-Galois cover of UK (viz. the generic fibre of a cover of Uk[[t]]).

This cover is irreducible because the Galois groups of Ṽ and W (viz. P×|| Ḡ and p(G))

together generate G. Since k is algebraically closed, one may specialize from K to k (as in
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Corollary 3.3.5) to obtain the desired cover of U .

Remark 5.3.3. (a) The proof of Theorem 5.3.1 actually shows more, concerning inertia

groups: Write U = X − S for a smooth connected projective k-curve X and finite set S,

and let ξ ∈ S. Then in the situation of the theorem, the G-Galois étale cover of U may

be chosen so that the corresponding branched cover of X is tamely ramified away from ξ.

(This was referred to as the “Strong Abhyankar Conjecture” in [Ha7], where it is proven.)

Note that it is necessary, in general, to allow at least one wildly ramified point. Namely,

if G cannot itself be generated by 2g + r − 1 elements or fewer, then G is not a Galois

group of a tamely ramified cover of X that is étale over U , because the tame fundamental

group πt
1(U) is a quotient of the free profinite group on 2g + r − 1 generators [Gr5, XIII,

Cor. 2.12].

(b) It would be even more desirable, along the lines of a possible Riemann’s Existence

Theorem over k, to determine precisely which subgroups of G can be the inertia groups

over the points of S, for a G-Galois cover of a given U (with S as in Remark (a) above).

This problem is open, however, even in the case that U =
� 1

k . In that case, the unique

branch point ∞ must be wildly ramified, since there are no non-trivial tamely ramified

covers of
� 1 (by [Gr5, XIII, Cor. 2.12]). By the general theory of extensions of discrete

valuation rings [Se5], any inertia group of a branched cover of a k-curve is of the form

I = P×||C, where P is a p-group (not necessarily Sylow in the Galois group) and C is

cyclic of order prime to p. As noted above, it is known [Ra2] that if P is a Sylow p-

subgroup of a quasi-p group Q, then there is a Q-Galois étale cover of
� 1 such that P is

an inertia group over infinity (and this fact was used in the proof of the general case of

Theorem 5.3.1, in order to be able to patch together the P×|| Ḡ-cover with the p(G)-cover).

More generally, for any subgroup I ⊂ Q of the form P×||C, a necessary condition for I to

be an inertia group over ∞ for a Q-Galois étale cover Y →
� 1

k is that the conjugates of P

generate Q. (For if not, they generate a normal subgroup N / Q such that Y/N →
� 1 is a

non-trivial tamely ramified cover; but
� 1 has no such covers, and this is a contradiction.)

Abhyankar has conjectured that the converse holds (i.e. that every I ⊂ Q satisfying the

necessary condition will be an inertia group over infinity, for some Q-Galois étale cover

of the line). This remains open, although some partial results in this direction have been

found by R. Pries and I. Bouw [Pr2], [BP].

(c) The results of Sections 3.3 and 4.3 suggest that Abhyankar’s Conjecture may

hold for affine curves over large fields of characteristic p, not just over algebraically closed

fields of characteristic p — since patching is possible over such fields, and various Galois

realization results can be extended to these fields. But this generalization of Abhyankar’s

Conjecture remains open. The difficulty is that in the proof of Case 3 of Theorem 5.3.1 for� 1
k , one considers a branched cover of

� 1
R , where R is a complete discrete valuation ring

of mixed characteristic with residue field k. For such a cover, the semi-stable model might
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be defined only over a finite extension R′ of R (and not over R itself); and the residue field

of R′ could be strictly larger than k. Thus the construction in the proof might yield only

a Galois cover of the k′-line, for some finite extension k′ of k.

(d) As noted above before Theorem 5.3.1, for an affine k-curve U , the fundamental

group π1(U) is not finitely generated (as a profinite group), and is therefore not determined

by πA(U). And indeed, the structure of π1(U) is unknown, even for U =
� 1

k (although

Theorem 5.3.4 below gives some information about how the finite quotients of π1 “fit

together”). In fact, it is easy to see that π1(
� 1

k ) depends on the cardinality of the alge-

braically closed field k of characteristic p; viz. the p-rank of π1 is equal to this cardinality

(using Artin-Schreier extensions). Moreover, Tamagawa has shown [Tm2] that if k, k′ are

non-isomorphic countable algebraically closed fields of characteristic p with k = ¯�
p , then

π1(
� 1

k ) and π1(
� 1

k′ ) are non-isomorphic as profinite groups. (It is unknown whether this

remains true even if k is chosen strictly larger than ¯�
p .) Tamagawa also showed in [Tm2]

that if k = ¯�
p , then two open subsets of

� 1
k have isomorphic π1’s if and only if they are iso-

morphic as schemes. More generally, given arbitrary affine curves U, U ′ over algebraically

closed fields k, k′ of non-zero characteristic, it is an open question whether the condition

π1(U) ≈ π1(U
′) implies that k ≈ k′ and U ≈ U ′. This question, which can be regarded as

an algebraically closed analog of Grothendieck’s anabelian conjecture for affine curves over

finitely generated fields [Gr6], was essentially posed by the author in [Ha8, Question 1.9];

and the results in [Tm2] (which relied on the anabelian conjecture in the finitely generated

case [Tm1], [Mo]) can be regarded as the first real progress in this direction.

(e) Theorem 5.3.1 holds only for affine curves, and is false for projective curves.

Namely, if X is a smooth projective k-curve of genus g, then π1(X) is a quotient of the

fundamental group of a smooth projective complex curve of genus g (which has generators

a1, b1, . . . , ag, bg subject to the single relation
∏

[ai, bi] = 1 [Gr5, XIII, Cor. 2.12]). So

if g > 0 and if Q is a quasi-p group whose minimal generating set has more than 2g

generators, then Q is not in πA(X). Also, the p-rank of a smooth projective k-curve of

genus g is at most g, and so (
�
/p

�
)g+1 is also not in πA(X). But both Q and (

�
/p

�
)g+1

trivially have the property that every prime-to-p quotient has at most 2g − 1 generators

(since the only prime-to-p quotient of either group is the trivial group). So both of these

groups provide counterexamples to Theorem 5.3.1 over the projective curve X. (In the

case of genus 0, we have X =
� 1

k , and π1(X) is trivial.)

(f) Another difference between the affine and projective cases concerns the relationship

between πA and π1. As discussed in Remark (c) above, Theorem 5.3.1 gives πA but not

π1 for an affine curve, the difficulty being that πA does not determine π1 because π1 of

an affine curve is not a finitely generated profinite group. On the other hand, if X is a

projective curve, then π1(X) is a finitely generated profinite group, and so it is determined

by πA(X). Unfortunately, unlike the situation for affine curves, πA(X) is unknown when
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X is projective of genus > 1 (cf. Remark (d)), and so this does not provide a way of finding

π1(X) in this case. A similar situation holds for the tame fundamental group πt
1(U), where

U = X−S is an affine curve (and where the tame fundamental group classifies covers of X

that are unramified over U , and at most tamely ramified over S). Namely, this group is also

a finitely generated profinite group, and is a quotient of the corresponding fundamental

group of a complex curve. But the structure of this group, and the set πt
A(U) of its finite

quotients, are both unknown, even for
� 1

k − {0, 1,∞}. (Note that πt
A(

� 1
k − {0, 1,∞}) is

strictly smaller than the set of Galois groups of covers of
� 1� − {0, 1,∞} with prime-to-p

inertia, because tamely ramified covers of
� 1

k with given degree and inertia groups will

generally have lower p-rank than the corresponding covers of
� 1� — and hence will have

fewer unramified p-covers.) On the other hand, partial information about the structure

of πA(X) and πt
A(U) has been found by formal and rigid patching methods ([St1], [HS1],

[Sa1]) and by using representation theory to solve embedding problems ([St2], [PS]).

Following the proof of Theorem 5.3.1, Pop used similar methods to prove a stronger

version of the result, in terms of embedding problems:

Theorem 5.3.4. (Pop [Po3]) Let k be an algebraically closed field of characteristic p > 0,

and let U be a smooth connected affine curve over k. Then every finite embedding problem

for π1(U) that has quasi-p kernel is properly solvable.

That is, given a finite group Γ and a quasi-p normal subgroup N of Γ, and given a

Galois étale cover V → U with group G := Γ/N , there is a Galois étale cover W → U with

group Γ that dominates V . Theorem 5.3.1 is contained in the assertion of Theorem 5.3.4,

by taking N = p(Γ). (On the other hand, Pop’s proof of 5.3.4 relies on the fact that

5.3.1 holds in the case U =
� 1 ; his proof then somewhat parallels that of the general

case of 5.3.1, though using rigid rather than formal methods, and performing an improved

construction in order to obtain the stronger conclusion.) Note that Theorem 5.3.4 provides

information about the structure of π1(U) (i.e. how the covers “fit together in towers”),

unlike Theorem 5.3.1, which just concerned πA(U) (i.e. what covering groups can exist in

isolation).

Actually, Theorem 5.3.4 was stated in [Po3] only for split embedding problems with

quasi-p kernel. But one can easily deduce the general case from that one, proceeding

as in the proof of Theorem 5.1.1, via Theorem 5.1.3 there. See also [CL] and [Sa2], i.e.

Chapters 15 and 16 in [BLoR], for more about the proofs of Theorems 5.3.1 and 5.3.4,

presented from a rigid point of view. (More about the proof of Theorem 5.3.1 can be

found in [Ha9, §3].)

Remark 5.3.5. (a) Theorem 5.3.4 can be generalized from étale covers to tamely ramified

covers [Ha13, Theorem 4.4]. Namely, with G = Γ/N as above, suppose that V → U is a

tamely ramified G-Galois cover of U with branch locus B ⊂ U . Then there is a Γ-Galois
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cover W → U that dominates V , and is tamely ramified over B and étale elsewhere over

U . (Note that no assertions are made here, or in Theorem 5.3.4, about the behavior over

points in the complement of U in its smooth completion.)

(b) In Theorem 5.3.4, for an embedding problem E = (α : π1(U) → G, f : Γ → G), one

cannot replace the assumption that ker f is quasi-p by the assumption that Γ is quasi-p.

This follows from Remark 5.3.2(a), concerning Serre’s results in [Se6].

(c) Theorems 5.3.1 and 5.3.4 both deal only with finite Galois groups and embedding

problems. It is unknown which infinite quasi-p profinite groups can arise as Galois groups,

and which embedding problems with infinite quasi-p kernel have proper solutions. For

example, let G be the free product
�

p ∗
�

p (in the category of profinite groups). This is

an infinite quasi-p group, and so every finite quotient of G is a Galois group over
� 1 . But

it is unknown whether G itself is a Galois group over
� 1 (or equivalently, whether G is a

quotient of π1(
� 1)).

Theorem 5.3.4 raises the question of which finite embedding problems for π1(U) are

properly solvable, where U is an affine variety (of any dimension) in characteristic p —

and in particular, whether every finite embedding problem for U with a quasi-p kernel is

properly solvable. For example, one can ask this for affine varieties U of finite type over

an algebraically closed field k of characteristic p, i.e. whether Pop’s result remains true in

higher dimensions.

Abhyankar had previously posed a weaker form of this question as a conjecture, paral-

leling his conjecture for curves (i.e. Theorem 5.3.1). Namely, in [Ab3], he proposed that if

U is the complement of a normal crossing divisor D in
� n

k (where k is algebraically closed

of characteristic p), then G ∈ πA(U) if and only if G/p(G) ∈ πA(U � ), where U � is an

“analogous complex space”. That is, if D has irreducible components D1, . . . , Dr of de-

grees d1, . . . , dr, then one takes U � to be the complement in
� n� of a normal crossing divisor

consisting of r components of degrees d1, . . . , dr. It is known (by [Za1], [Za3], [Fu2]) that

π1(U � ) is the abelian group A(d1, . . . , dr) on generators g1, . . . , gr satisfying
∑

digi = 0

(writing additively). It is also known (by [Ab2], [Fu2]) that the prime-to-p groups in πA(U)

are precisely the prime-to-p quotients of A(d1, . . . , dr). Thus Abhyankar’s conjecture in

[Ab3] is a special case of a more general conjecture that G ∈ πA(U) ⇔ G/p(G) ∈ πA(U)

for any affine k-variety U of finite type. This in turn would follow from an affirmative

answer to the question asked in the previous paragraph.

Abhyankar also posed a local version of this conjecture in [Ab3], viz. that if U =

Spec k[[x1, . . . , xn]][(x1 · · ·xr)
−1] (where n > 1 and 1 ≤ r ≤ n), then a finite group G is

in πA(U) if and only if G/p(G) is in πA(U � ); here U � = Spec
�
[[x1 , . . . , xn]][(x1 · · ·xr)

−1].

(Note that this fails if r = 0, since then πA(U) is trivial by Hensel’s Lemma. It also fails if

n = 1, since in that case the only quasi-p groups in πA(U) are p-groups, by the structure

of Galois groups over complete discrete valuation fields [Se5].) Now πA(U � ) consists of

100



the finite abelian groups on r generators (via Abhyankar’s Lemma; cf. [HP, § 3]), and the

prime-to-p groups in πA(U � ) are the finite abelian prime-to-p groups on r generators. So

this conjecture is again equivalent to asserting that G ∈ πA(U) ⇔ G/p(G) ∈ πA(U).

Abhyankar’s higher dimensional global conjecture is easily seen to hold in some special

cases, e.g. if D is a union of one or two hyperplanes (since it then reduces immediately to

Theorem 5.3.1). Using patching, one can show that the higher dimensional local conjecture

holds for r = 1 [HS2]. But perhaps surprisingly, both the global and local conjectures fail

in general, because some groups that satisfy the conditions of the conjectures nevertheless

fail to arise as Galois groups of covers. In particular, the global conjecture fails for
� 2

k

minus three lines crossing normally, and the local conjecture fails for n = r = 2 [HP]. Thus

not every embedding problem with quasi-p kernel can be solved for π1(U), in general.

Remark 5.3.6. The main reason that the higher dimensional conjecture fails in general is

that the group-theoretic reduction in the proof of the general case of Theorem 5.3.1 does

not work in the more general situation. That is, it is possible that G/p(G) ∈ πA(U) but

that G is not a quotient of a group G̃ of the form G̃ = p(G)×|| Ḡ, with Ḡ a prime-to-p

group in πA(U). (Cf. the group-theoretic examples of Guralnick in [HP].) Moreover, even

if there is such a G̃, it might not be possible to choose it such that Ḡ normalizes a Sylow

p-subgroup of p(G) (or equivalently, of G), as was done in the proof of Theorem 5.3.1.

And in fact, a condition of the above type is necessary in order that G ∈ πA(U), if U is

the complement of x1 · · ·xi = 0 (in either the local or global case; cf. [HP]).

This suggests that a group G should lie in πA(U) if it satisfies these additional condi-

tions, as well as the condition that G/p(G) ∈ πA(U). One might wish to parallel the proof

of the general case of Theorem 5.3.1, using higher dimensional patching (Theorem 3.2.12)

together with the result on embedding problems with p-group kernel ([Ha12], which holds

in arbitrary dimension). Unfortunately, there is another difficulty: The strategy for curves

used that for every quasi-p group Q there is a Q-Galois étale cover of
� 1

k such that the

fibre over infinity (of the corresponding branched cover of
� 1

k) consists of a disjoint union

of points whose inertia groups are Sylow p-subgroups of Q (cf. Case 1 of the proof of

Theorem 5.3.1). But the higher dimensional analog of this is false; in fact, for n > 1,

every branched cover of
� n

k that is étale over
� n

k must have the property that its fibre over

the hyperplane at infinity is connected [Hrt2, III, Cor. 7.9]. This then interferes with the

desired patching, on the overlap.

One can also consider birational variants of the above questions, in studying the

absolute Galois groups of kn := k(x1, . . . , xn) and k∗n := k((x1, . . . , xn)). Here k is an

algebraically closed field of characteristic p ≥ 0; n > 1; and k((x1, . . . , xn)) denotes the

fraction field of k[[x1, . . . , xn]]. Of course every finite group is a Galois group over kn, since

this is true for k(x1) (see Corollary 3.3.5) and one may base-change to kn. Also, every

finite group is a Galois group over k∗n, by Example 3.3.2(c). But this does not determine
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the structure of the absolute Galois groups of kn and k∗n.

In the one-dimensional analog, the absolute Galois group of k(x) is a free profinite

group (of rank equal to the cardinality of k), by the geometric case of Shafarevich’s Con-

jecture (Section 5.1). But for n > 1, the absolute Galois group of kn has cohomological

dimension > 1 [Se4, II, 4.1, Proposition 11], and so is not projective [Se4, I, 3.4, Proposi-

tion 16]. That is, not every finite split embedding problem for Gkn
has a weak solution;

and therefore Gkn
is not free.

This can also be seen explicitly as in the following argument, which also applies to k∗n:

Proposition 5.3.7. Let k be an algebraically closed field of characteristic p ≥ 0, let

n > 1, and let K = kn or k∗n as above. Then not every finite embedding problem for the

absolute Galois group GK is weakly solvable. Equivalently, there is a surjection G → A of

finite groups, and an A-Galois field extension K ′ of K, such that K ′ is not contained in

any H-Galois field extension L of K for any H ⊂ G.

Proof. First suppose that char k 6= 2. Let G be the quaternion group of order 8, and let A

be the quotient of G by its center Z = {±1}. Thus A = G/Z ≈ C2
2 , say with generators a, b

which are commuting involutions. Consider the surjection GK → A corresponding to the

A-Galois field extension K ′ given by u2 = x1, v
2 = x2. Suppose that this field extension is

contained in an H-Galois extension L/K as in the statement of the proposition. Then A

is a quotient of H. But no proper subgroup of G surjects onto A; so actually H = G.

Let F = k((x1)) · · · ((xn)), and let F ′ [resp. E] be the compositum of F and K ′ [resp.

F and L] in some algebraic closure of F . Thus E is a Galois field extension of F , and its

Galois group G′ is a subgroup of G. Moreover E contains F ′, which is an A-Galois field

extension of F (being given by u2 = x1, v
2 = x2). Thus A is a quotient of G′, and hence

G′ = G. But the maximal prime-to-p quotient of the absolute Galois group GF is abelian

[HP, Prop. 2.4], and so G cannot be a Galois group over F (using that p 6= 2). This is a

contradiction, proving the result in this case.

On the other hand, if char k = 2, then one can replace the quaternion group in the

above argument by a similar group of order prime to 2. Namely, let ` be any odd prime.

Then there is a group G of order `3 whose center Z is cyclic of order `; such that G/Z ≈ C2
` ;

and such that no proper subgroup of G surjects onto G/Z. (See [As, 23.13]; such a group

is called an extraspecial group of order `3.) The proof then proceeds as before.

Remark 5.3.8. The above proof also applies to the field K = k((x1, . . . , xn))(y), by

using the extension u2 = x1, v
2 = y. So its absolute Galois group GK is not projective,

and hence not free. (This can alternatively be seen by using [Se4, II, 4.1, Proposition 11]).

Note that this field K has the property that every finite group is a Galois group over K (by

Theorem 3.3.1), even though GK is not free or even projective. In fact if n = 1, then every

finite split embedding problem has a proper solution (by Theorem 5.1.9). Thus in this
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case, once a finite embedding problem has a weak solution, it automatically has a proper

solution. In this sense, the absolute Galois group of k((x))(y) is “as close as possible to

being free” without being projective.

Motivated by the above proposition and remark, it would be desirable to know whether

the absolute Galois groups of kn := k(x1, . . . , xn) and k∗n := k((x1, . . . , xn)) are “as close as

possible to being free” without being projective. (Here k is still algebraically closed and n >

1.) In other words, does every finite split embedding problem for Gkn
or Gk∗n have a proper

solution? The former case can be regarded as a birational analog of the question asked

previously concerning quasi-p embedding problems in the higher dimensional Abhyankar

Conjecture; it can also be considered a weak version of a higher dimensional geometric

Shafarevich Conjecture. In this case, the question remains open, even for
�
(x, y). In the

latter case, the answer is affirmative for
�
((x, y)), as the following result shows. The proof

follows a strategy from [HS2], viz. blowing up Spec
�
[[x, y]] at the closed point to obtain

a more global object, and then patching (here using Theorem 3.2.12).

Theorem 5.3.9. Every finite split embedding problem over
�
((x, y)) has a proper solu-

tion.

Proof. Let L be a finite Galois extension of
�
((x, y)), with group G, and let Γ be a semi-

direct product N×||G for some finite group N . Let R =
�
[[x, y]] and let S be the integral

closure of R in L, and write X∗ := Spec R and Z∗ := Spec S. We want to show that there

is an irreducible normal Γ-Galois branched cover W ∗ → X∗ that dominates the G-Galois

branched cover Z∗ → X∗.

Case 1: S/R is ramified only over (x = 0).

Let n be the ramification index of Z∗ → X∗ over the generic point of (x = 0), and

consider the normalized pullback of Z∗ → X∗ via Spec R[z]/(zn − x) → X∗. By Abh-

yankar’s Lemma and Purity of Branch Locus, the resulting cover of Spec R[z]/(zn − x) =

Spec
�
[[z, y]] is unramified and hence trivial. Thus S ≈ R[z]/(zn − x), and G is cyclic of

order n.

Now consider the projective y-line over
�
((x)), and the G-Galois cover of this line

Z◦ →
� 1�

((x)) that is given by the constant extension zn = x. Applying Pop’s Theo-

rem 5.1.10 to the split embedding problem given by this cover and the group homomor-

phism Γ → G, we obtain a regular irreducible (hence geometrically irreducible) Γ-Galois

cover W ◦ →
� 1�

((x)) that dominates Z◦ →
� 1�

((x)) and is such that W ◦ → Z◦ is totally

split over y = ∞. Consider the normalization W of
� 1�

[[x]] in W ◦; this is a Γ-Galois

cover of
� 1�

[[x]] that dominates Z, the normalization of
� 1�

[[x]] in Z◦. The branch locus

of W →
� 1�

[[x]] consists of finitely many irreducible components. After a change of vari-

ables y′ = xmy on
� 1�

((x)) , we may assume that every branch component passes through

the closed point (x, y), and that no branch component other than (x) passes through any
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other point on the closed fibre of
� 1�

[[x]] . Again using Abhyankar’s Lemma and Purity of

Branch Locus, we conclude that the restriction of W over
�
[y−1 ][[x]] is a disjoint union of

components given by wN = x for some multiple N of n, with each reduced component of

the closed fibre of W being a complex line. Since W ◦ → Z◦ is split over y = ∞, it follows

that N = n. Thus the pullback of W → Z over
�
[y−1 ][[x]] is a trivial cover.

Since the general fibre of W →
� 1�

[[x]] is geometrically irreducible, the closed fibre is

connected, by Zariski’s Connectedness Theorem [Hrt2, III, Cor. 11.3]. So by the previous

paragraph, the components of the closed fibre of W all meet at a single point over (x =

y = 0). So the pullback W ∗ of W →
� 1�

[[x]] over Spec
�
[[x, y]] is connected; and since W is

normal, it follows that W ∗ is also normal and hence is irreducible. So W ∗ → Spec
�
[[x, y]]

is an irreducible Γ-Galois cover. Moreover W ∗/N is isomorphic to Spec S over Spec R,

since each is given by zn = x. So it is a proper solution to the given embedding problem.

Note that in this case, the proof shows more: that G is the cyclic group Cn, and that

over
�
((y))[[x]], the pullback of W ∗ → Z∗ is trivial (since the same is true over

�
[y−1 ][[x]]).

Case 2: General case.

Let B be the branch locus of Z∗ → X∗, and let C be the tangent cone to B at the

closed point (x, y). Thus C is a union of finitely many “lines” (ax + by) through (x, y) in

X∗. After a change of variables of the form y′ = y − cx, we may assume that C does not

contain the locus of (y = 0).

Let X̃ be the blow-up of X∗ at the closed point (x, y). Let E be the exceptional

divisor; this is a copy of
� 1� , with parameter t = y/x. Let τ ∈ T be the closed point

(x = y = t = 0); this is where E meets the proper transform of (y = 0). Let Z̃ → X̃ be

the normalized pullback of Z∗ → X∗. By the previous paragraph, this is unramified in a

neighborhood of τ except possibly along E. So over the complete local ring ÔX̃,τ =
�
[[x, t]]

of τ in X̃, the pullback Z̃∗ → X̃∗ := Spec ÔX̃,τ of Z̃ → X̃ is ramified only over (x = 0).

We will construct a Γ-Galois cover W̃ → X̃ dominating Z̃. (See Figs. 5.3.10 and 5.3.11.)

Let Z̃∗0 be a connected component of Z̃∗. Thus Z̃∗0 → X̃∗ is Galois with group G0 ⊂ G,

and Z̃∗ = IndG
G0

Z̃∗0 . Let Γ0 ⊂ Γ be the subgroup generated by N and G0 (identifying

N with N×|| 1 ⊂ Γ, and G with 1×||G ⊂ Γ). Thus Γ0 = N×||G0. By Case 1, there is a

regular irreducible normal Γ0-Galois cover W̃ ∗
0 → X̃∗ that dominates Z̃∗0 , and such that

the pullback of W̃ ∗
0 → Z̃∗0 over X̃ ′ = Spec

�
((t))[[x]] is trivial. That is, W̃ ′

0 := W̃ ∗
0 ×X̃∗ X̃ ′

is the trivial N -Galois cover of Z̃ ′0 := Z̃∗0 ×X̃∗ X̃ ′, and the Γ0-Galois cover W̃ ′
0 → X̃ ′ is

just IndΓ0

G0
Z̃ ′0. Thus the Γ-Galois cover W̃ ∗ := IndΓ

Γ0
W̃ ∗

0 → X̃∗ has the property that

its pullback W̃ ′ := W̃ ∗ ×X̃∗ X̃ ′ is just IndΓ
G0

Z̃ ′0 = IndΓ
G Z̃ ′, where Z̃ ′ = IndG

G0
Z̃ ′0 is the

pullback Z̃∗ ×X̃∗ X̃ ′.

Let U = E−{τ}, and let X ′ be the completion of X̃ along U ; i.e. X ′ = Spec
�
[s][[y]],

where s = x/y = 1/t. Let Z ′ = Z̃ ×X̃ X ′, and let W ′ = IndΓ
G Z ′. Thus the pullback

Z ′×X′ X̃ ′ can be identified with Z̃ ′ = IndG
G0

Z̃ ′0 as G-Galois covers of X̃ ′; and the pullback
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Figure 5.3.10: Picture of the situation in Case 2 of the proof of Theorem 5.3.9.

The space X∗, shown as a disc, is blown up, producing X̃, with an exceptional

divisor E (which meets the proper transform of y = 0 at the point τ). The proof

proceeds by building the desired cover over formal patches: X ′, the completion

along E−{τ}; and X̃∗, the completion at τ . These two patches are shaded above,

with the doubly shaded region X̃ ′ being the “overlap”.

W ′ ×X′ X̃ ′ can be identified with W̃ ′ = IndΓ
G0

Z̃ ′0, as Γ-Galois covers of X̃ ′.

Now apply the formal patching result Theorem 3.2.12, with A = R, V = Ṽ = X̃, f =

identity, and the finite set of closed points of V being just {τ}. Using the equivalence of

categories for covers, we conclude that there is a unique Γ-Galois cover W̃ → X̃ whose

pullbacks to X̃∗ and to X ′ are given respectively by W̃ ∗ = IndΓ
Γ0

W̃ ∗
0 → X̃∗ and W ′ → X ′,

compatibly with the above identification over X̃ ′ with W̃ ′ = IndΓ
G0

Z̃ ′0 → X̃ ′. The quotient

W̃/N can be identified with Z̃ as a G-Galois cover, since we have compatible identifications

of their pullbacks over X̃∗, X ′, and their “overlap” X̃ ′, and because of the uniqueness

assertion of the patching theorem. Also, W̃ is normal, since normality is a local property

and since W̃ ∗ and W ′ are normal. Let W̃0 be the connected component of W̃ whose

pullback to X̃∗ contains W̃ ∗
0 . Its Galois group Γ1 over X̃ surjects onto G = Gal(Z̃/X̃),

and Γ1 contains Gal(W̃ ∗
0 /X̃∗) = Γ0 ⊃ N×|| 1. So Γ1 is all of Γ, and so W̃0 = W̃ . That is,
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Figure 5.3.11: Diagram illustrating the patching situation in Case 2 of the proof

of Theorem 5.3.9. In order to construct a Γ-Galois cover W̃ → X̃, the restrictions

W ′ → X ′ and W̃ ∗ → X̃∗ are first constructed, so as to induce the same “overlap”

W̃ ′ → X̃ ′. Formal patching is then used to obtain W̃ .

W̃ is connected, and hence irreducible (being normal).

Now let W ∗ → X∗ be the normalization of X∗ in W̃ . This is then a connected

normal Γ-Galois cover that dominates Z∗ (since Z∗ is the normalization of X∗ in Z̃). It

is irreducible because it is connected and normal. So it provides a proper solution to the

given embedding problem.

Remark 5.3.12. (a) Observe that the above theorem would also follow from Theo-

rem 5.1.9, if it were known that
�
((x, y)) is large. (Namely, given a split embedding

problem over
�
((x, y)), one could apply Theorem 5.1.9 to the induced constant split em-

bedding problem over
�
((x, y))(t); and then one could specialize the proper solution to an

extension of
�
((x, y)), using that that field is separably Hilbertian by Weissauer’s Theorem

[FJ, Theorem 14.17].) But it is unknown whether
�
((x, y)) is large. (Cf. Example 3.3.7(d).)

(b) It would be desirable to generalize the above result, e.g. by allowing more Laurent

series variables, and by replacing
�

by an algebraically closed field of arbitrary charac-

teristic (or even by an arbitrary large field). Note that the above proof uses Kummer

theory and Abhyankar’s Lemma, and so one would somehow need to treat the case of wild

ramification.

The ultimate goal remains that of proving a full analog of Riemann’s Existence Theo-

rem — classifying covers via their Galois groups and inertia groups, and determining how

they fit together into the tower of covers. This goal, however, has so far been achieved in

full only for curves over algebraically closed fields of characteristic 0 (where it is deduced
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from the complex result, which relied on topological methods). As seen above, the weaker

goal of finding π1 as a profinite group, and finding absolute Galois groups of function fields,

also remains open in most cases, although the absolute Galois group of the function field

is known for curves over algebraically closed fields (Theorem 5.1.1), and partial results are

known for other fields (e.g. Theorem 5.1.9, 5.3.4, and 5.3.9). The still weaker, but difficult,

goal of finding πA has been achieved for affine curves over algebraically closed fields of

arbitrary characteristic (Theorem 5.3.1 above), and the goal of finding which groups are

Galois groups over the function field is settled for curves over large fields and fraction

fields of complete local rings (Theorems 3.3.1 and 3.3.6) and partially for curves over fi-

nite fields (Proposition 3.3.9). But the structure of the absolute Galois groups of most

familiar fields remains undetermined (e.g. for number fields and function fields of several

variables over
�
), and the inverse Galois problem over

�
remains open. The strategy used

in Theorem 5.3.9 above, though, may suggest an approach to higher dimensional geometric

fields; and Remark 3.3.8(a) suggests a possible strategy in the number field case. These

and other patching methods described here may help further attack these open problems,

on the way toward achieving a full generalization of Riemann’s Existence Theorem.
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