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Abstract: Galois theory over
�
(x) is well-understood as a consequence of Riemann’s

Existence Theorem, which classifies the algebraic branched covers of the complex projective

line. The proof of that theorem uses analytic and topological methods, including the ability

to construct covers locally and to patch them together on the overlaps. To study the

Galois extensions of k(x) for other fields k, one would like to have an analog of Riemann’s

Existence Theorem for curves over k. Such a result remains out of reach, but partial results

in this direction can be proven using patching methods that are analogous to complex

patching, and which apply in more general contexts. One such method is formal patching,

in which formal completions of schemes play the role of small open sets. Another such

method is rigid patching, in which non-archimedean discs are used. Both methods yield the

realization of arbitrary finite groups as Galois groups over k(x) for various classes of fields

k, as well as more precise results concerning embedding problems and fundamental groups.

This manuscript describes such patching methods and their relationships to the classical

approach over
�
, and shows how these methods provide results about Galois groups and

fundamental groups.
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Section 1: Introduction

This manuscript discusses patching methods and their use in the study of Galois

groups and fundamental groups. There is a particular focus on Riemann’s Existence The-

orem and the inverse Galois problem, and their generalizations (both known and conjec-

tured). This first section provides an introduction, beginning with a brief overview of

the topic in Section 1.1. More background about Galois groups and fundamental groups

is provided in Section 1.2. Section 1.3 then discusses the overall structure of the paper,

briefly indicating the content of each later section.

Section 1.1. Overview.

Galois theory is algebraic in its origins, arising from the study of polynomial equations

and their solvability. But it has always had intimate connections to geometry. This is

evidenced, for example, when one speaks of an “icosahedral Galois extension” — meaning

a field extension whose Galois group is A5, the symmetry group of an icosahedron.

Much progress in Galois theory relies on connections to geometry, particularly on the

parallel between Galois groups and the theory of covering spaces and fundamental groups

in topology. This parallel is more than an analogy, with the group-theoretic and topological

approaches being brought together in the context of algebraic geometry. The realization

of all finite groups as Galois groups over
�
(x) is an early example of this approach.

In recent years, this approach has drawn heavily on the notion of patching, i.e. on

“cut-and-paste” constructions that build covers locally and then combine them to form a

global cover with desired symmetries. Classically this could be performed only for spaces

defined over
�
, in order to study Galois groups over fields like

�
(x). But by carrying

complex analytic methods over to other settings — most notably via formal and rigid

geometry — results in Galois theory have now been proven for a broad array of rings and

fields by means of patching methods.

This paper provides an overview of this approach to Galois theory via patching, both in

classical and non-classical contexts. A key theme in both contexts is Riemann’s Existence

Theorem. In the complex case, that result provides a classification of the finite Galois

extensions of the field
�
(x) and more generally of the function field K of any Riemann

surface X. (In the case K =
�
(x), X is the Riemann sphere, i.e. the complex projective

line
� 1� ). This classification relies on the correspondence between these field extensions and

the branched covers of X, and on the classification of the branched covers of X with given

branch locus B. This correspondence between field extensions and covers in turn proceeds

by proving the equivalence of covers in the algebraic, analytic, and topological senses, and

then relying on topology to classify the covering spaces of the complement of a finite set

B ⊂ X. In demonstrating this equivalence, one regards branched covers as being given

locally over discs, where the cover breaks up into a union of cyclic components, and where
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agreement on the overlaps is given in order to define the cover globally. Using “complex

patching” (specifically, Serre’s result GAGA), such an analytic cover in fact arises from a

cover of complex algebraic curves, given by polynomial equations.

This patching approach proves that every finite group is a Galois group over
�
(x)

and more generally over K as above, and it provides the structure of the absolute Galois

group of the field. Moreover, if one fixes a finite set of points B, the approach shows which

finite groups are Galois groups of covers with that branch locus, and how those groups fit

together as quotients of the fundamental group of X − B.

The success of this approach made it desirable to carry it over to other settings, in

order to study the Galois theory of other fields K — e.g. K = k(x) where k is a field other

than
�
, or even arithmetic fields K. In order to do this, one needs to carry over the notion

of patching. This is, if K is the function field of a scheme X (e.g. X = Spec R, where R

is an integral domain whose fraction field is K), then one would like to construct covers

of X locally, with agreement on the overlaps, and then be able to assert the existence of a

global cover that induces this local data. The difficulty is that one needs an appropriate

topology on X. Of course, there is the Zariski topology, but that is too coarse. Namely,

if U is a Zariski open subset of an irreducible scheme X, then giving a branched cover

V → U is already tantamount to giving a cover over all of X, since X −U is just a closed

subset of lower dimension (and one can take the normalization of X in V ). Instead, one

needs a finer notion, which behaves more like the complex metric topology in the classical

setting, and where one can speak of the ring of “holomorphic functions” on any open set

in this topology.

In this manuscript, after discussing the classical form of Riemann’s Existence Theorem

via GAGA for complex curves, we present two refinements of the Zariski topology that

allow patching constructions to take place in many (but not all) more general settings.

These approaches of formal and rigid patching are roughly equivalent to each other, but

they developed separately. Each relies on an analog of GAGA, whose proof parallels the

proof of Serre’s original GAGA. These approaches are then used to realize finite groups

as Galois groups over various function fields, and to show how these groups fit together in

the tower of all extensions of the field (corresponding to information about the structure

of the absolute Galois group — or of a fundamental group, if the branch locus is fixed).

Underlying this entire approach is the ability to pass back and forth between algebra

and geometry. This ability is based on the relationship between field extensions and covers,

with Galois groups of field extensions corresponding to groups of deck transformations of

covers, and with absolute Galois groups of fields playing a role analogous to fundamental

groups of spaces. This relationship is reviewed in Section 1.2 below, where basic termi-

nology is also introduced. (Readers who are familiar with this material may wish to skip

§1.2.) Section 1.3 then describes the structure of this paper as a whole.
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Section 1.2. Galois groups and fundamental groups.

Traditionally, Galois theory studies field extensions by means of symmetry groups

(viz. their Galois groups). Covering spaces can also be studied using symmetry groups

(viz. their groups of deck transformations). In fact, the two situations are quite parallel.

In the algebraic situation, the basic objects of study are field extensions L ⊃ K. To

such an extension, one associates its symmetry group, viz. the Galois group Gal(L/K),

consisting of automorphisms of L that fix all the elements of K. If L is a finite extension of

K of degree [L : K] = n, then the order of the Galois group is at most n; and the extension

is Galois if the order is exactly n, i.e. if the extension is as symmetric as possible. (For

finite extensions, this is equivalent to the usual definition in terms of being normal and

separable.)

In the geometric situation, one considers topological covering spaces f : Y → X.

There is the associated symmetry group Aut(Y/X) of deck transformations, consisting of

self-homeomorphisms φ of Y that preserve the map f (i.e. such that f ◦φ = f). If Y → X

is a finite cover of degree n, then the order of the covering group is at most n; and the

extension is “regular” (in the terminology of topology) if the order is exactly n, i.e. if the

cover is as symmetric as possible. To emphasize the parallel, we will refer to the covering

group Aut(Y/X) as the Galois group of the cover, and will call the symmetric covers Galois

rather than “regular” (and will instead reserve the latter word for another meaning that

is used in connection with covers in arithmetic algebraic geometry).

The parallel extends further: If L is a finite Galois extension of K with Galois group

G, then the intermediate extensions M of K are in bijection with the subgroups H of G;

namely a subgroup H corresponds to its fixed field M = LH , and an intermediate field

M corresponds to the Galois group H = Gal(L/M) ⊂ G. Moreover, M is Galois over

K if and only if H is normal in G; and in that case Gal(M/K) = G/H. Similarly, if

Y → X is a finite Galois cover with group G, then the intermediate covers Z → X are in

bijection with the subgroups H of G; namely a subgroup H corresponds to the quotient

space Z = Y/H, and an intermediate cover Z → X corresponds to the Galois group

H = Gal(Y/Z) ⊂ G. Moreover, Z → X is Galois if and only if H is normal in G; and in

that case Gal(Z/X) = G/H. Thus in both the algebraic and geometric contexts, there is

a “Fundamental Theorem of Galois Theory”.

The reason behind this parallel can be illustrated by a simple example. Let X and Y

be two copies of
�
−{0}, with complex parameters x and y respectively, and let f : Y → X

be given by x = yn, for some integer n > 1. This is a degree n Galois cover whose Galois

group is the cyclic group Cn of order n, where the generator of the Galois group takes
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y 7→ ζny (with ζn ∈
�

being a primitive nth root of unity). If one views X and Y not just

as topological spaces, but as copies of the affine variety
� 1� − {0}, then f is the morphism

corresponding to the inclusion of function fields,
�
(x) ↪→

�
(y), given by x 7→ yn. This

inclusion is a Galois field extension of degree n whose Galois group is Cn, whose generator

acts by y 7→ ζny. (Strictly speaking, if the Galois group of covers acts on the left, then the

Galois group of fields acts on the right.)

In this example, the Fundamental Theorem for covering spaces implies the Funda-

mental Theorem for the extension of function fields, since intermediate covers Z → X

correspond to intermediate field extensions M ⊃
�
(x) (where M is the function field of

Z). More generally, one can consider Galois covers of schemes that are not necessarily

defined over
�
, and in that context have both algebraic and geometric forms of Galois

theory.

In order to extend the idea of covering space to this setting, one needs to define a

class of finite morphisms f : Y → X that generalizes the class of covering spaces (in the

complex metric topology) for complex varieties. The condition of being a covering space

in the Zariski topology does not do this, since an irreducible scheme X will not have any

irreducible covers in this sense, other than the identity map. (Namely, if Y → X is evenly

covered over a dense open set, then it is a disjoint union of copies of X, globally.) Instead

one uses the notion of finite étale covers, i.e. finite morphisms f : Y → X such that

locally at every point of Y , the scheme Y is given over X by m polynomials f1, . . . , fm

in m variables y1, . . . , ym, and such that the Jacobian determinant (∂fi/∂yj) is locally

invertible. The point is that for spaces over
�
, this condition is equivalent to f having

a local section near every point (by the Inverse Function Theorem, where “local section”

means in the complex metric); and for a finite morphism, satisfying this latter condition

is equivalent to being a finite covering space (in the complex metric sense).

For finite étale covers of an irreducible scheme X, one then has a Fundamental The-

orem of Galois Theory as above. If one restricts to complex varieties, one obtains the

geometric situation discussed above. And if one restricts to X of the form Spec K (for

some field K), then one recovers Galois theory for field extensions (with Spec L→ Spec K

corresponding to a field extension L ⊃ K).

As in the classical situation, one can consider fundamental groups. Namely, let X

be an irreducible normal scheme, and let K be the function field of X red (or just of X,

if X has no nilpotents). Also, let K̄ be the separable closure of K (so just the algebraic

closure of K, if X has characteristic 0). Then the function fields of the (reduced) finite

étale Galois covers of X form a direct system of extensions of K contained in K̄, and so

the covers form an inverse system — as do their Galois groups. In the complex case, this

system of groups is precisely the one obtained by taking the finite quotients of the classical

topological fundamental group of X. More generally, the algebraic (or étale) fundamental
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group of the scheme X is defined to be the inverse limit of this inverse system of finite

groups (or equivalently, the automorphism group of the inverse system of covers); this is a

profinite group whose finite quotients precisely form the above inverse system. This group

is denoted by πét
1 (X); it is the profinite completion of the topological fundamental group

πtop
1 (X), in the special case of complex varieties X. (Thus, for X =

� 1� − {0}, πét
1 (X) is

ˆ� rather than just
�
.) When working in the algebraic context, one generally just writes

π1(X) for πét
1 (X).

As in the classical situation, one may also consider branched covers. For Riemann

surfaces X, giving a branched cover of X is equivalent to giving a covering space of X−B,

where the finite set B is the branch locus of the cover (i.e. where it is not étale). More

generally, we can define a finite branched cover (or for short, a cover) of a scheme X to be

a finite morphism Y → X that is generically separable. Most often, one restricts to the

case that X and Y are normal integral schemes. In this case, the finite branched covers of

X are in natural bijection with the finite separable field extensions of the function field of

K. The notions of “Galois” and “Galois group” carry over to this situation: The Galois

group Gal(Y/X) of a branched cover f : Y → X consists of the self-automorphisms of Y

that preserve f . And a finite branched cover Y → X is Galois if X and Y are irreducible,

and if the degree of the automorphism group is equal to the degree of f . Sometimes one

wants to allow X or Y to be reducible, or even disconnected; and sometimes one wants to

make explicit the identification of a given finite group G (e.g. the abstract group D5) with

the Galois group of a cover. In this situation, one speaks of a G-Galois cover f : Y → X;

this means a cover together with a homomorphism α : G →∼ Gal(Y/X) such that via α,

the group G acts simply transitively on a generic geometric fibre.

Thus in order to understand the Galois theory of an integral scheme X, one would like

to classify the finite étale covers of X in terms of their branch loci, ramification behavior,

and Galois groups; and also to describe how they fit together in the tower of covers. In the

classical case of complex curves (Riemann surfaces), this is accomplished by Riemann’s

Existence Theorem (discussed in Section 2.1 below). A key goal is to carry this result

over to more general contexts. Such a classification would in particular give an explicit

description of the profinite group π1(X), and also of the set πA(X) of finite quotients of

π1(X) (i.e. the Galois groups of finite étale covers of X). Similarly, on the generic level

(where arbitrary branching is allowed), one would like to have an explicit description of

the absolute Galois group GK = Gal(Ks/K) of the function field K of X (where Ks is the

separable closure of K). This in turn would provide an explicit description of the finite

quotients of GK , i.e. the Galois groups of finite field extensions of K.

Beyond the above parallel between field extensions and covers, there is a second con-

nection between those two theories, relating to fields of definition of covers. The issue

can be illustrated by a variant on the simple example given earlier. As before, let X and
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Y be two copies of
�
− {0}, with complex parameters x and y respectively; let n > 1

be an integer; and this time let f : Y → X be given by x = πyn (where π is the usual

transcendental constant). Again, the cover is Galois, with cyclic Galois group generated

by g : y 7→ ζny. This cover, along with its Galois action, is defined by polynomials over
�
; but after a change of variables z = π1/ny, the cover is given by polyomials over ¯�

(viz.

zn = x, and g : z 7→ ζnz). In fact, if X is any curve that can be defined over ¯�
(e.g.

if X is the complement of finitely many
�

-points in
� 1), then any finite étale cover of

the induced complex curve X � can in fact itself be defined over ¯�
(along with its Galois

action, in the G-Galois case; see Remark 2.1.6 below). And since there are only finitely

many polynomials involved, it can even be defined over some number field K.

The key question here is what this number field is, in terms of the topology of the

cover. By Riemann’s Existence Theorem, the Galois covers of a given base X are classified;

e.g. those over
� 1 − {0, 1,∞} correspond to the finite quotients of the free group on two

generators. So in that case, given a finite group G together with a pair of generators, what

is the number field K over which the corresponding G-Galois cover of
� 1 − {0, 1,∞} is

defined? Actually, this field of definitionK is not uniquely determined, although there is an

“ideal candidate” forK, motivated by Galois theory. Namely, if ω ∈ G � := Gal( ¯�
/

�
), then

ω acts on the set of (isomorphism classes of) G-Galois covers, by acting on the coefficients.

If a G-Galois cover is defined over a number field K, then any ω ∈ Gal( ¯�
/K) ⊂ Gal( ¯�

/
�

)

must carry this G-Galois cover to itself. So we may consider the field of moduli M for

the G-Galois cover, defined to be the fixed field of all the ω’s in G � that carry the G-

Galois cover to itself. This is then contained in every field of definition of the G-Galois

cover. Moreover it is the intersection of the fields of definition; and in key cases (e.g. if

G is abelian or has trivial center) it is the unique minimal field of definition [CH]. One

can then investigate the relationship between the (arithmetic) Galois theory of M and the

(geometric) Galois theory of the given cover.

In particular, if X is a Zariski open subset of the Riemann sphere
� 1� , and if M is

known to be the minimal field of definition of the given G-Galois cover, then G is a Galois

group over M(x) — and hence over the field M , by Hilbert’s Irreducibility Theorem [FJ,

Chapter 11]. The most important special case is that of finite simple groups G such that

M ⊂
�

(ζn) for some n, for some G-Galois cover of X =
� 1 −{0, 1,∞}. Many examples of

such simple groups and covers have been found, using the technique of rigidity, developed

in work of Matzat, Thompson, Belyi, Fried, Feit, Shih, and others. In each such case, the

group has thus been realized as a Galois group over some explicit
�

(ζn), the most dramatic

example being Thompson’s realization [Th], over
�

itself, of the monster group, the largest

of the 26 sporadic finite simple groups (having order ≈ 8 · 1053). See the books [Se7], [Vö],

and [MM] for much more about rigidity. (Note that the name rigidity is related to the

same term in the theory of local systems and differential equations [Ka], but is unrelated

8



to the notion of rigid spaces discussed elsewhere in this paper.)

Thus Galois theory appears in the theory of covering spaces in two ways — in a

geometric form, coming from the parallel between covering groups and Galois groups of

field extensions, and in an arithmetic form, coming from fields of definition. This situation

can be expressed in another way, via the fundamental exact sequence

1 → π1(X̄) → π1(X) → Gk → 1.

Here X is a geometrically connected variety over a field k; Gk is the absolute Galois group

Gal(k̄/k); and X̄ = X ×k k̄, the space obtained by regarding X over k̄. The kernel π1(X̄)

is the geometric part of the fundamental group, while the cokernel Gk = π1(Spec k) is the

arithmetic part. There is a natural outer action of Gk on π1(X̄), obtained by lifting an

element of Gk to π1(X) and conjugating; and this action corresponds to the action of the

absolute Galois group on covers, discussed just above in connection with fields of moduli.

Moreover, this exact sequence splits if X has a point ξ defined over k (by applying π1 to

Spec k = {ξ} ↪→ X), and in that case there is a true action of Gk on π1(X̄).

For a given cover Y → X of irreducible varieties over a base field k, one can separate

out the arithmetic and geometric parts by letting ` be the algebraic closure of the function

field of X in the function field of Y . The given cover then factors as Y → X` → X,

where X` = X ×k `. Here X` → X is a purely arithmetic extension, coming just from

an extension of constants; one sometimes refers to it as a constant extension. The cover

Y → X` is purely geometric, in the sense that the base field ` of X` is algebraically closed

in the function field of Y ; and so Y is in fact geometrically irreducible (i.e. even Y ×` k̄ is

irreducible). One says that Y → X` is a regular cover of `-curves (or that Y is “regular

over `”; note that this use of the word “regular” is unrelated to the topological notion of

“regularity” mentioned at the beginning of this Section 1.2.) Algebraically, we say that

the function field of Y is a regular extension of that of X`, as an `-algebra (or that the

function field of Y is “regular over `”). Of course if a field k is algebraically closed, then

every cover of a k-variety (and every Galois extension of k(x)) is automatically regular

over k.

This paper will discuss methods of patching to construct complex covers, and how

those methods can be carried over to covers defined over various other classes of fields.

One of those classes will be that of algebraically closed fields. But there will be other

classes as well (particularly complete fields and “large” fields), for which the fields need

not be algebraically closed. In those settings, we will be particularly interested in regular

covers. In particular, in carrying over to those situations the fact that every finite group is

a Galois group over
�
(x), it will be of interest to show that a field k has the property that

every finite group is the Galois group of a regular extension of k(x); this is the “regular

inverse Galois problem” over k.
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Section 1.3. Structure of this manuscript.

This paper is intended as an introduction to patching methods and their use in Galois

theory. The main applications are to Riemann’s Existence Theorem and related prob-

lems, particularly finding fundamental groups and solving the inverse Galois problem over

curves. This is first done in Section 2 in the classical situation of complex curves (Rie-

mann surfaces), using patching in the complex topology. Guided by the presentation in

Section 2, later sections describe non-classical patching methods that apply to curves over

other fields, and use these methods to obtain analogs of results and proofs that were pre-

sented in Section 2. In particular, Sections 3 and 4 each parallel Section 2, with Section 3

discussing patching methods using formal schemes, and Section 4 discussing patching us-

ing rigid analytic spaces. In each of these cases, the context provides enough structure

to carry over results and proofs from the classical situation of Section 2 to the new situ-

ation. Although a full analog of Riemann’s Existence Theorem remains unknown in the

non-classical settings, the partial analogs that are obtained are sufficient to solve the geo-

metric inverse Galois problem in these settings. Further results about Galois groups and

fundamental groups are presented in Section 5, using both formal and rigid methods.

Section 2 begins in §2.1 with a presentation of Riemann’s Existence Theorem for

complex curves (Theorem 2.1.1). There, an equivalence between algebraic, analytic, and

topological notions of covers provides an explicit classification of the covers of a given

base (Corollary 2.1.2). As a consequence, one solves the inverse Galois problem over
�
(x)

(Corollary 2.1.4). Section 2.2 shows how Riemann’s Existence Theorem follows from Serre’s

result GAGA (Theorem 2.1.1), which gives an equivalence between coherent sheaves in the

algebraic and analytic settings (basically, between the set-up in Hartshorne [Hrt2] and the

one in Griffiths-Harris [GH]). The bulk of §2.2 is devoted to proving GAGA, by showing

that the two theories behave in analogous ways (e.g. that their cohomology theories agree,

and that sufficient twisting provides a sheaf that is generated by its global sections). This

proof follows that of Serre [Se3]. Specific examples of complex covers are considered in

§2.3, including ones obtained by taking copies of the base and pasting along slits; these are

designed to emphasize the “patching” nature of GAGA and Riemann’s Existence Theorem,

and to motivate what comes after.

Section 3 treats formal patching, a method to extend complex patching to more general

situations. The origins of this approach, going back to Zariski, are presented in §3.1,

along with the original motivation of “analytic continuation” along subvarieties. Related

results of Ferrand-Raynaud and Artin, which permit patching constructions consistent

with Zariski’s original point of view, are also presented here. Grothendieck’s extension

of Zariski’s viewpoint is presented in §3.2, where formal schemes are discussed. The key

result presented here is Grothendieck’s Existence Theorem, or GFGA (Theorem 3.2.1),

which is a formal analog of GAGA. We present a proof here which closely parallels Serre’s

10



proof of complex GAGA that appeared in Section 2. Afterwards, a strengthening of this

result, due to the author, is shown, first for curves (Theorem 3.2.8) and then in higher

dimensions (Theorem 3.2.12). Applications to covers and Galois theory are then given in

§3.3. These include the author’s result that every finite group can be regularly realized

over the fraction field of a complete local ring other than a field (Theorem 3.3.1); the

corollary that the same is true for algebraically closed fields of arbitrary characteristic

(Corollary 3.3.5); and Pop’s extension of this corollary to “large fields” (Theorem 3.3.6).

There is also an example that illustrates the connection to complex “slit” covers that were

considered in §2.3.

Section 4 considers a parallel approach, viz. rigid patching. Tate’s original view of this

approach is presented in §4.1. Unlike formal patching, which is motivated by considerations

of abstract varieties and schemes, this viewpoint uses an intuition that remains closer to

the original analytic approach. On the other hand, there are technical difficulties to be

overcome, relating to the non-uniqueness of analytic continuation with respect to a non-

archimedean metric. Tate’s original method of dealing with this (via the introduction of

“rigidifying data”) is given in §4.1, and the status of rigid GAGA from this point of view

is discussed. Then §4.2 presents a reinterpretation of rigid geometry from the point of

view of formal geometry, along the lines introduced by Raynaud and worked out later by

him and by Bosch and Lütkebohmert. This point of view allows rigid GAGA to “come

for free” as a consequence of the formal version. It also establishes a partial dictionary

between the formal and rigid approaches, allowing one to use the formal machinery together

with the rigid intuition. Applications to covers and Galois theory are then given in §4.3

— in particular the regular realization of groups over complete fields (Theorem 4.3.1,

paralleling Theorem 3.3.1); and Pop’s “Half Riemann Existence Theorem” for henselian

fields (Theorem 4.3.3), classifying “slit covers” in an arithmetic context.

Section 5 uses both formal and rigid methods to consider results that go further in the

direction of a full Riemann’s Existence Theorem in general contexts. In order to go be-

yond the realization of individual Galois groups, §5.1 discusses embedding problems for the

purpose of seeing how Galois groups “fit together” in the tower of all covers. In particular,

a result of the author and Pop is presented, giving the structure of the absolute Galois

group of the function field of a curve over an algebraically closed field (Theorem 5.1.1).

This result relies on showing that finite embedding problems over such curves have proper

solutions. That fact about embedding problems does not extend to more general fields,

but we present Pop’s result that it holds for split embedding problems over large fields

(Theorem 5.1.9). Section 5.2 presents Colliot-Thélène’s result on the existence of covers of

the line with given Galois group and a given fibre, in the case of a large base field (Theo-

rem 5.2.1). Both this result and Pop’s Theorem 5.1.9 can be subsumed by a single result,

due to the author and Pop; this appears as Theorem 5.2.3. The classification of covers
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with given branch locus is taken up in §5.3, where Abhyankar’s Conjecture (Theorem 5.3.1,

proven by Raynaud and the author) is discussed, along with Pop’s strengthening in terms

of embedding problems (Theorem 5.3.4). Possible generalizations to higher dimensional

spaces are discussed, along with connections to embedding problems for such spaces and

their function fields. As a higher dimensional local application, it is shown that every finite

split embedding problem over
�
((x, y)) has a proper solution. But as discussed there, most

related problems in higher dimension, including the situation for the rational function field
�
(x, y), remain open.

This manuscript is adapted, in part, from lectures given by the author at workshops

at MSRI during the fall 1999 semester program on Galois groups and fundamental groups.

Like those lectures, this paper seeks to give an overall view of its subject to beginners

and outsiders, as well as to researchers in Galois theory who would benefit from a general

presentation, including new and recent results. It follows an approach that emphasizes

the historical background and motivations, the geometric intuition, and the connections

between various approaches to patching — in particular stressing the parallels between

the proofs in the complex analytic and formal contexts, and between the frameworks in

the formal and rigid situations. The manuscript ties together results that have appeared

in disparate locations in the literature, and highlights key themes that have recurred in

a variety of contexts. In doing so, the emphasis is on presenting the main themes first,

and afterwards discussing the ingredients in the proofs (thus following, to some extent, the

organization of a lecture series).

Certain results that have been stated in the literature in a number of special cases

are given here in a more natural, or more general, setting (e.g. see Theorems 3.2.8, 3.2.12,

5.1.9, 5.1.10, and 5.2.3). Quite a number of remarks are given, describing open problems,

difficulties, new directions, and alterative versions of results or proofs. In particular, there

is a discussion in Section 5.3 of the higher dimensional situation, which is just beginning

to be understood. A new result in the local case is shown there (Theorem 5.3.9), and the

global analog is posed.

The only prerequisite for this paper is a general familiarity with concepts in algebraic

geometry along the lines of Hartshorne [Hrt2], although some exposure to arithmetic no-

tions would also be helpful. Extensive references are provided for further exploration, in

particular the books on inverse Galois theory by Serre [Se7], Völklein [Vö], and Malle-

Matzat [MM], and the book on fundamental groups in algebraic geometry edited by Bost,

Loeser, and Raynaud [BLoR].
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Section 2: Complex patching

This section presents the classical use of complex patching methods in studying Galois

branched covers of Riemann surfaces, and it motivates the non-classical patching methods

discussed in the later sections of this manuscript. Section 2.1 begins with the central result,

Riemann’s Existence Theorem, which classifies covers. In its initial version, it shows the

equivalence between algebraic covers and topological covers; but since topological covers

can be classified group-theoretically, so can algebraic covers. It is the desire to classify

algebraic covers (and correspondingly, field extensions) so concretely that provides much

of the motivation in this manuscript.

The key ingredient in the proof of Riemann’s Existence Theorem is Serre’s result

GAGA. This is proven in Section 2.2, using an argument that will itself motivate the proof

of a key result in Section 3 (formal GAGA). Some readers may wish to skip Section 2.2

on first reading, and go directly to Section 2.3, where examples of Riemann’s Existence

Theorem are given. These examples show how topological covers can be constructed by

building them locally and then patching; and the “slit cover” example there will motivate

constructions that will appear in analogous contexts later, in Sections 3 and 4.

Section 2.1. Riemann’s Existence Theorem

Algebraic varieties over the complex numbers can be studied topologically and ana-

lytically, as well as algebraically. This permits the use of tools that are not available for

varieties over more general fields and rings. But in order to use these tools, one needs a

link between the objects that exist in the algebraic, analytic, and topological categories.

In the case of fundamental groups, this link is the correspondence between covers in the

three settings. Specifically, in the case of complex algebraic curves, the key result is

Theorem 2.1.1. (Riemann’s Existence Theorem) LetX be a smooth connected com-

plex algebraic curve, which we also regard as a complex analytic space and as a topological

space with respect to the classical topology. Then the following categories are equivalent:

(i) Finite étale covers of the variety X;

(ii) Finite analytic covering maps of X;

(iii) Finite covering spaces of the topological space X.

(Strictly speaking, one should write Xan in (ii) and Xtop in (iii), for the associated analytic

and topological spaces.)

Using this theorem, results about topological fundamental groups, which can be ob-

tained via loops or covering spaces, can be translated into results about étale covers and

étale fundamental groups. In particular, there is the following corollary concerning Zariski

open subsets of the complex projective line (corresponding analytically to complements of

finite sets in the Riemann sphere):
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Corollary 2.1.2. (Explicit form of Riemann’s Existence Theorem) Let r ≥ 0, let ξ1, . . . , ξr
∈

� 1� , and let X =
� 1� − {ξ1, . . . , ξr}. Let G be a finite group, and let C be the set of

equivalence classes of r-tuples g = (g1, . . . , gr) ∈ Gr such that g1, . . . , gr generate G and

satisfy g1 · · · gr = 1. Here we declare two such r-tuples g, g′ to be equivalent if they are

uniformly conjugate (i.e. if there is an h ∈ G such that for 1 ≤ i ≤ r we have g′i = hgih
−1).

Then there is a bijection between the G-Galois connected finite étale covers of X and the

elements of C. Moreover this correspondence is functorial under the operation of taking

quotients of G, and also under the operation of deleting more points from
� 1� .

Namely, the topological fundamental group of X is given by

πtop
1 (X) = 〈x1, . . . , xr | x1 · · ·xr = 1〉,

where the xi’s correspond to loops around the ξi’s, from some base point ξ0 ∈ X. The

fundamental group can be identified with the Galois group (of deck transformations) of the

universal cover, and the finite quotients of π1 can be identified with pointed finite Galois

covers of X. To give a quotient map π1→→G is equivalent to giving the images of the xi’s,

i.e. giving gi’s as above. Making a different choice of base point on the cover (still lying

over ξ0) uniformly conjugates the gi’s. So the elements of C are in natural bijection with

G-Galois connected covering spaces of X; and by Riemann’s Existence Theorem these are

in natural bijection with G-Galois connected finite étale covers of X.

In the situation of Corollary 2.1.2, the uniform conjugacy class of (g1, . . . , gr) is called

the branch cycle description of the corresponding cover of X [Fr1]. It has the property

that the corresponding branched cover of
� 1� contains points η1, . . . , ηr over ξ1, . . . , ξr re-

spectively, such that gi generates the inertia group of ηi over ξi. (See [Fr1] and Section 2.3

below for a further discussion of this.)

The corollary can also be stated for more general complex algebraic curves. Namely

if X is obtained by deleting r points from a smooth connected complex projective curve of

genus γ, then the topological fundamental group of X is generated by elements x1, . . . , xr,

y1, . . . , yγ, z1, . . . , zγ , subject to the relation x1 · · ·xr[y1, z1] · · · [yγ , zγ ] = 1, where the y’s

and z’s correspond to loops around the “handles” of the topological surface X. The

generalization of the corollary then replaces C by the set of equivalence classes of (r+2γ)-

tuples of generators that satisfy this longer relation.

Note that the above results are stated only for finite covers, whereas the topological

results are a consequence of the fact that the fundamental group is isomorphic to the

Galois group of the universal cover (which is of infinite degree, unless X =
� 1� or

� 1� ).

Unfortunately, the universal cover is not algebraic — e.g. if E is a complex elliptic curve,

then the universal covering map
�
→ E is not a morphism of varieties (only of topological

spaces and of complex analytic spaces). As a result, in algebraic geometry there is no

“universal étale cover”; only a “pro-universal cover”, consisting of the inverse system of
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finite covers. The étale fundamental group is thus defined to be the automorphism group

of this inverse system; and for complex varieties, this is then the profinite completion of

the topological fundamental group. By Corollary 2.1.2 and this definition, we have the

following result, which some authors also refer to as “Riemann’s Existence Theorem”:

Corollary 2.1.3. Let r ≥ 1, and let S = {ξ1, . . . , ξr} be a set of r distinct points in
� 1� . Then the étale fundamental group of X =

� 1� − S is the profinite group Πr on

generators x1, . . . , xr subject to the single relation x1 · · ·xr = 1. This is isomorphic to the

free profinite group on r − 1 generators.

Also note that there is a bijection between finite field extensions of
�
(x) and connected

finite étale covers of (variable) Zariski open subsets of
� 1� . The reverse direction is obtained

by taking function fields; and the forward direction is obtained by considering the integral

closure of
�
[x] in the extension field, taking its spectrum and the corresponding morphism

to the complex affine line, and then deleting points where the morphism is not étale.

Under this bijection, Galois field extensions correspond to Galois finite étale covers. The

corresponding statements remain true for general complex connected projective curves and

their function fields.

Reinterpreting Corollary 2.1.2 via this bijection, we obtain a correspondence between

field extensions and tuples of group elements (which is referred to as the “algebraic version

of Riemann’s Existence Theorem” in [Vö, Thm.2.13]). From this point of view, we obtain

as an easy consequence the following result in the Galois theory of field extensions:

Corollary 2.1.4. The inverse Galois problem holds over
�
(x). That is, for every finite

group G, there is a finite Galois field extension K of
�
(x) such that the Galois group

Gal(K/
�
(x)) is isomorphic to G.

In this context, we say for short that “every finite group is a Galois group over
�
(x)”.

Corollary 2.1.4 is immediate from Corollary 2.1.2, since for every finite group G we

may pick a set of generators g1, . . . , gr ∈ G whose product is 1, and a set of distinct points

ξ1, . . . , ξr ∈
� 1� ; and then obtain a connected G-Galois étale cover of X =

� 1� −{ξ1, . . . , ξr}.

The corresponding extension of function fields is then the desired extension K of
�
(x).

(Similarly, if K0 is any field of transcendence degree 1 over
�
, we may prove the inverse

Galois problem over K0 by applying the generalization of Corollary 2.1.2 to the complex

projective curve with function field K0, minus r points.)

Even more is true:

Corollary 2.1.5. The absolute Galois group of
�
(x) is a free profinite group, of rank

equal to the cardinality of
�
.

This follows from the fact that the correspondences in Corollary 2.1.2 are compatible

with quotient maps and with deleting more points. For then, one can deduce that the
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absolute Galois group is the inverse limit of the étale fundamental groups of
� 1� −S, where

S ranges over finite sets of points. The result then follows from Corollary 2.1.3, since

πet
1 (

� 1� − S) is free profinite on cardS − 1 generators; see [Do] for details.

Remark 2.1.6. Corollaries 2.1.4 and 2.1.5 also hold for ¯�
(x), and this fact can be deduced

from a refinement of Riemann’s Existence Theorem. Namely, consider a smooth curve V

defined over ¯�
, and let X = V � be the base change of V to

�
(i.e. the “same” curve,

viewed over the complex numbers). Then every finite étale cover of X is induced from

a finite étale cover of V (along with its automorphism group). In particular, take V to

be an open subset of
� 1. Then there is a bijection between topological covering spaces of

S2−(r points) and finite étale covers of
� 1

¯� −(r points), where S2 is the sphere. This yields

the analogs of Corollaries 2.1.4 and 2.1.5 for ¯�
.

This refinement of Riemann’s Existence Theorem can be proven by first observing

that a finite étale Galois cover f : Y → X is defined over some subalgebra A ⊂
�

that is of

finite type over ¯�
. That is, there are finitely many equations that define the cover (along

with its automorphism group, and the property of being étale); and their coefficients all lie

in such an A, thereby defining a finite étale Galois cover fA : Y → X := X×¯� A. This cover

can be regarded as a family of covers of X, parametrized by T := Spec A. The inclusion

i : A ↪→
�

defines a
�
-point ξ of T , and the fibre over this point is (tautologically) the given

cover f : Y → X. Meanwhile, let κ be a ¯�
-point of T , and consider the corresponding fibre

g : W → V . Both ξ and κ define
�
-points on T � = T ×¯�

�
, corresponding to two fibres

of a connected family of finite étale covers of X. But in any continuous connected family

of covering spaces of a constant base, the fibres are the same (because π1(X1 × X2) =

π1(X1)×π1(X2) in topology). Thus the complex cover induced by g : W → V agrees with

f : Y → X, as desired.

Using ideas of this type, Grothendieck proved a stronger result [Gr5, XIII, Cor. 2.12],

showing that Riemann’s Existence Theorem carries over from
�

to any algebraically closed

field of characteristic 0. But in fact, Corollaries 2.1.4 and 2.1.5 even carry over to charac-

teristic p > 0; see Sections 3.3 and 5.1 below.

The assertions in Corollaries 2.1.2-2.1.5 above (and the analogous results for ¯�
(x)

mentioned in the above remark) are purely algebraic in nature. It would therefore be

desirable to have purely algebraic proofs of these assertions — and this would also have

the consequence of permitting generalizations of these results to a variety of other con-

texts beyond those considered in [Gr5, XIII]. Unfortunately, no purely algebraic proofs

of these results are known. Instead, the only known proofs rely on Riemann’s Existence

Theorem 2.1.1, which (because it states an equivalence involving algebraic, analytic, and

topological objects) is inherently non-algebraic in nature.

Concerning the proof of Riemann’s Existence Theorem 2.1.1, the easy part is the

equivalence of (ii) and (iii). Namely, there is a forgetful functor from the category in (ii)
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to the one in (iii). We wish to show that the functor induces a surjection on isomorphism

classes of objects, and bijections on morphisms between corresponding pairs of objects.

(Together these automatically guarantee injectivity on isomorphism classes of objects.) In

the case of objects, consider a topological covering space f : Y → X. The space X is evenly

covered by Y ; i.e. X is a union of open discs Di such that f−1(Di) is a disjoint union of

finitely many connected open subsets Dij of Y , each mapping homeomorphically onto Di.

By giving each Dij the same analytic structure as Di, and using the same identifications

on the overlapping Dij ’s as on the overlapping Di’s, we give Y the structure of a Riemann

surface, i.e. a complex manifold of dimension 1; and f : Y → X is an object in (ii)

whose underlying topological cover is the one we were given. This shows surjectivity on

isomorphism classes. Injectivity on morphisms is trivial, and surjectivity on morphisms

follows from surjectivity on objects, since if f : Y → X and g : Z → X are analytic

covering spaces and if φ : Y → Z is an morphism of topological covers (i.e. gφ = f), then

φ is itself a topological cover (of Z), hence a morphism of analytic curves and thus of

analytic covers.

With regard to the equivalence of (i) and (ii), observe first of all that while the objects

in (ii) and (iii) are covering spaces with respect to the metric topology, those in item (i) are

finite étale covers rather than covering spaces with respect to the Zariski topology (since

those are all trivial, because non-empty Zariski open subsets are dense). And indeed, if one

forgets the algebraic structure and retains just the analytic (or topological) structure, then

a finite étale cover of complex curves is a covering space in the metric topology, because of

the Inverse Function Theorem. Thus every object in (i) yields an object in (ii). (Note also

that finite étale covers can be regarded as “covering spaces in the étale topology”, making

the parallels between (i), (ii), (iii) look a bit closer.)

The deeper and more difficult part of the proof of Riemann’s Existence Theorem is

going from (ii) to (i) — and in particular, showing that every finite analytic cover of an

algebraic curve is itself algebraic. One approach to this is to show that every compact

Riemann surface (i.e. compact one-dimensional complex manifold) is in fact a complex al-

gebraic curve, with enough meromorphic functions to separate points. See [Vö, Chaps. 5,6]

for a detailed treatment of this approach. Another approach is to use Serre’s result GAGA

(“géométrie algébrique et géométrie analytique”), from the paper [Se3] of the same name.

That result permits the use of “analytic patching” in complex algebraic geometry; i.e. con-

structing analytic objects locally so as to agree on overlaps, and then concluding that there

is a global algebraic object that induces the local structures compatibly. It is this approach

that we describe next, and it is this approach that motivates much of the discussion in the

later parts of this paper.

Section 2.2. GAGA

Serre’s result GAGA [Se3] permits the construction of sheaves of modules over a
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complex projective algebraic curve, in the Zariski topology, by constructing the sheaf

analytically, in the classical complex metric topology. From this assertion about sheaves of

modules, the corresponding result follows for sheaves of algebras, and therefore for covers.

This is turn leads to a proof of Riemann’s Existence Theorem, as discussed below.

GAGA allows one to pass from an object whose definition is inherently infinite in

nature (viz. an analytic space, where functions are defined in terms of limits) to one whose

definition is finite in nature (viz. an algebraic variety, based on polynomials). Intuitively,

the idea is that the result is stated only for spaces that are projective, and hence com-

pact (in the metric topology); and this compactness provides the finiteness condition that

permits us to pass from the analytic to the algebraic.

To make this more precise, let X be a complex algebraic variety, with the Zariski

topology, and let O = OX be its structure sheaf — so that (X,O) is a locally ringed space.

Meanwhile, let Xh be the space X with the complex metric topology, and let H = HX be

the corresponding structure sheaf, which assigns to any metric open set U ⊂ X the ring

H(U) of holomorphic functions on U . So (Xh,H) is also a locally ringed space, called the

complex analytic space associated to (X,O); this is a Riemann surface if X is a smooth

complex algebraic curve.

The sheaves considered in GAGA satisfy a finiteness condition, in both the algebraic

and the analytic situations. Recall that for a scheme X with structure sheaf O, a sheaf F

of O-modules is locally of finite type if it is locally generated by finitely many sections. It is

locally of finite presentation if it is locally of finite type and moreover in a neighborhood of

each point there is some finite generating set of sections whose module of relations is finitely

generated. This condition is the same as saying that F is locally (in the Zariski topology)

of the form Om → On → F → 0. The sheaf F is coherent if the above condition holds

for every finite generating set of sections in some neighborhood of any given point. If X

is locally Noetherian (e.g. if it is a complex algebraic variety), then locally any submodule

of a finitely generated module is finitely generated; and so in this situation, coherence is

equivalent to local finite presentation.

There are similar definitions for complex analytic spaces. Specifically, let X be a

complex algebraic variety with associated analytic space Xh, and let F be a sheaf of H-

modules. Then the conditions of F being locally of finite type, locally of finite presentation,

and coherent are defined exactly as above, but with respect to H and the complex metric

topology rather than with respect to O and the Zariski topology. As before, saying that a

sheaf of H-modules F is locally of finite presentation is the same as saying that it locally

has the form Hm → Hn → F → 0 (in the metric topology). And it is again the case that

for such a space, being coherent is equivalent to being locally of finite presentation; but

the reason for this is subtler than before because Xh is not locally Noetherian (i.e. the

ring of holomorphic functions on a small open set is not Noetherian). In this situation,
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the equivalence between the two conditions follows from a result of Oka [GH, pp.695-

696]: If r1, . . . , re generate the module of relations among a collection of sections of Hn

in the stalk over a point, then they generate the module of relations among those sections

in some metric open neighborhood of the point. Oka’s result implies the equivalence

between coherence and local finite presentation, because the stalks of H are Noetherian

[GH, p.679]. (For a proof of Oka’s result, see [Ca2, XV, §§4-5]; note that the terminology

there is somewhat different.)

The main point of GAGA is that every coherent sheaf of H-modules on Xh comes

from a (unique) coherent sheaf of O-modules on X, via a natural passage from O-modules

to H-modules. More precisely, we may associate, to any sheaf F of O-modules on X, a

sheaf Fh of H-modules on Xh. Following [Se3], this is done as follows: First, let O′ be

the sheaf of rings on Xh given by O′(U) = lim
→

V

O(V ), where V ranges over the set ZU

of Zariski open subsets V ⊂ X such that V ⊃ U . (For example, if U is an open disc

in
� 1� , then O′(U) is the ring of rational functions with no poles in U .) Similarly, for

every sheaf F of O-modules on X, we can define a sheaf F ′ of O′-modules on Xh by

F ′(U) = lim
→

V

F(V ), where again V ranges over ZU . Then define Fh, a sheaf of H-modules

on Xh, by Fh(U) = F ′(U)⊗O′ H. For example, Oh = H. The assignment F 7→ Fh is an

exact functor; so if Om → On → F → 0 on a Zariski open subset U , then we also have

Hm → Hn → Fh → 0. Thus if F is coherent, then so is Fh.

Theorem 2.2.1. (GAGA) [Se3] Let X be a complex projective variety. Then the

functor F 7→ Fh, from the category of coherent OX -modules to the category of coherent

HX -modules, is an equivalence of categories.

There are two main ingredients in proving GAGA. The first of these (Theorem 2.2.2

below) is that that functor F 7→ Fh preserves cohomology. This result, due to Serre [Se3,

§12, Théorème 1], allows one to pass back and forth more freely between the algebraic

and analytic settings. Namely, on (X,O) and (Xh,H), as on any locally ringed space, we

can consider Čech cohomology of sheaves. In fact, given any topological space X, a sheaf

of abelian groups F on X, and an open covering U = {Uα} of X, we can define the ith

Čech cohomology group Ȟi(U ,F) as in [Hrt2, Chap III, §4]. We then define H i(X,F) =

lim
→

U

Ȟi(U ,F), where U ranges over all open coverings of X in the given topology. For

schemes X and coherent (or quasi-coherent) sheaves F , this Čech cohomology agrees with

the (derived functor) cohomology considered in Hartshorne [Hrt2, Chap. III, §2], because

of [Hrt2, Chap. III, Theorem 4.5]. Meanwhile, for analytic spaces, Čech cohomology is the

cohomology considered in Griffiths-Harris [GH, p.39], and also agrees with analytic derived

functor cohomology (cf. [Hrt2, p.211]).

Theorem 2.2.2. [Se3] Let X be a complex projective variety, and F a coherent sheaf on
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X. Then the natural map ε : Hq(X,F)→ Hq(Xh,Fh) is an isomorphism for every q ≥ 0.

The second main ingredient in the proof of GAGA is the following result of Serre and

Cartan:

Theorem 2.2.3. Let X =
� r� or (

� r� )h, and let M be a coherent sheaf on X. Then for

n� 0, the twisted sheaf M(n) is generated by finitely many global sections.

In the algebraic case (i.e. for X =
� r� ), this is due to Serre, and is from his paper

“FAC” [Se2]; cf. [Hrt2, Chap. II, Theorem 5.17]. In the analytic case (i.e. for X = (
� r� )h),

this is Cartan’s “Theorem A” [Ca, exp. XVIII]; cf. [GH, p.700]. Recall that the condition

that a sheaf F is generated by finitely many global sections means that it is a quotient of

a free module of finite rank; i.e. that there is a surjection ON→→F in the algebraic case,

and HN→→F in the analytic case, for some integer N > 0 (where the exponent indicates a

direct sum of N copies).

Proof of Theorem 2.2.1 (GAGA). The proof will rely on Theorems 2.2.2 and 2.2.3 above,

the proofs of which will be discussed afterwards.

Step 1: We show that the functor F → Fh induces bijections on morphisms. That is, if

F ,G are coherentOX -modules, then the natural map φ : HomOX
(F ,G) → HomHX

(Fh,Gh)

is an isomorphism of groups.

To accomplish this, let S = HomOX
(F ,G); i.e. S is the sheaf of OX -modules asso-

ciated to the presheaf U 7→ HomOX
(F(U),G(U)). Similarly, let T = HomHX

(Fh,Gh).

There is then a natural morphism ι : Sh → T of (sheaves of) H-modules, inducing

ι∗ : H0(Xh,Sh) → H0(Xh, T ). Let ε : H0(X,S) → H0(Xh,Sh) be as in Theorem 2.2.2

above. With respect to the identifications H0(X,S) = HomOX
(F ,G) and H0(Xh, T ) =

HomHX
(Fh,Gh), the composition ι∗ε : HomOX

(F ,G) → HomHX
(Fh,Gh) is the natural

map φ taking f ∈ HomOX
(F ,G) to fh ∈ HomHX

(Fh,Gh). We want to show that φ is an

isomorphism. Since ε is an isomorphism (by Theorem 2.2.2), it suffices to show that ι∗ is

also — which will follow from showing that ι : Sh → T is an isomorphism. That in turn

can be checked on stalks. Here, the stalks of S, Sh, and T at a point ξ are given by

Sξ = HomOX,ξ
(Fξ,Gξ), Sh

ξ = HomOX,ξ
(Fξ,Gξ)⊗OX,ξ

HX,ξ,

Tξ = HomHX,ξ
(Fξ ⊗OX,ξ

Hξ,Gξ ⊗OX,ξ
Hξ).

Now the local ring HX,ξ is flat over OX,ξ, since the inclusion OX,ξ ↪→ HX,ξ becomes

an isomorphism upon completion (with both rings having completion
�
[[x]], where x =

(x1, . . . , xn) is a system of local parameters at ξ). So by [Bo, I, §2.10, Prop. 11], we may

“pull the tensor across the Hom” here; i.e. Sh
ξ → Tξ is an isomorphism.

Step 2: We show that the functor F → Fh is essentially surjective, i.e. is surjective

on isomorphism classes (and together with Step 1, this implies that it is bijective on

isomorphism classes).
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First we reduce to the case X =
� r� , by taking an embedding j : X ↪→

� r� , considering

the direct image sheaf j∗F on
� r� , and using that (j∗F)h is canonically isomorphic to

j∗(F
h). Next, say that M is a coherent sheaf on Xh, i.e. a coherent H-module. By

Theorem 2.2.3, there is a surjection HM → M(m) → 0 for some integers m,M ; and so

H(−m)M →M → 0. Let the sheaf N be the kernel of this latter surjection. Then N is

a coherent H-module, and so there is similarly a surjection H(−n)N → N → 0 for some

n,N . Combining, we have an exact sequence H(−n)N g
→ H(−m)M → M → 0. Now

H(−n)N = (O(−n)N )h and H(−m)M = (O(−m)M )h. So by Step 1, g = fh for some

f ∈ Hom(O(−n)N ),O(−m)M ). Let F = cokf . So O(−n)N f
→ O(−m)M → F → 0 is

exact, and hence so is H(−n)N g
→ H(−m)M → Fh → 0, using g = fh. Thus M≈ Fh.

Having proven GAGA, we now use it to finish the proof of Riemann’s Existence

Theorem for complex algebraic curves X. Two steps are needed. The first is to pass

from an assertion about modules over a projective curve (or a projective variety) X to an

assertion about branched covers of X. The second step is to pass from branched covers of

a projective curve X to (unramified) covering spaces over a Zariski open subset of X.

For the first of these steps, observe that the equivalence between algebraic and analytic

coherent modules, stated in GAGA, automatically implies the corresponding equivalence

between algebraic and analytic coherent algebras (i.e. sheaves of algebras that are coherent

as sheaves of modules). The reason is that an R-algebra A is an R-module together

with some additional structure, given by module homomorphisms (viz. a product map

µ : A ⊗R A → A and an identity 1 : R → A) and relations which can be given by

commutative diagrams (corresponding to the associative, commutative, distributive, and

identity properties); and the same holds locally for sheaves of algebras. The equivalence of

categories F 7→ Fh in GAGA is compatible with tensor product (i.e. it is an equivalence

of tensor categories); so the additional algebra structure carries over under the equivalence

— and thus the analog of GAGA for coherent algebras holds. Under this equivalence,

generically separable OX -algebras correspond to generically separable HX -algebras (using

that H(U) is faithfully flat over O(U) for a Zariski open subset U ⊂ X, because the

inclusion of stalks becomes an isomorphism upon completion). So taking spectra, we also

obtain an equivalence between algebraic branched covers and analytic branched covers.

This formal argument can be summarized informally in the following

General Principle 2.2.4. An equivalence of tensor categories of modules induces a

corresponding equivalence of categories of algebras, of branched covers, and of Galois

branched covers for any given finite Galois group.

The last point (about Galois covers) holds because an equivalence of categories between

covers automatically preserves the Galois group.

In order to obtain Riemann’s Existence Theorem, one more step is needed, viz. passage
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from branched covers of a curve X to étale (or unramified) covers of an open subset of

X. For this, recall that an algebraic branched cover is locally a covering space (in the

metric topology) precisely where it is étale, by the Inverse Function Theorem. Conversely,

an étale cover of a Zariski open subset of X extends to an algebraic branched cover of X

(by taking the normalization in the function field of the cover). Such an extension also

exists for analytic covers of curves, since it exists locally over curves. (Namely, a finite

covering space of the punctured disc 0 < |z| < 1 extends to an analytic branched cover

of the disc |z| < 1, since the covering map — being bounded and holomorphic — has

a removable singularity [Ru, Theorem 10.20].) Thus the above equivalence for branched

covers induces an equivalence of categories between finite étale covers of a smooth complex

algebraic curve X, and finite analytic covering maps to Xh. That is, the categories (i) and

(ii) in Riemann’s Existence Theorem are equivalent; and this completes the proof of that

theorem.

Apart from Riemann’s Existence Theorem, GAGA has a number of other applications,

including several proven in [Se3]. Serre showed there that if V is a smooth projective variety

over a number field K, and if X is the complex variety obtained from V via an embedding

j : K ↪→
�
, then the Betti numbers of X are independent of the choice of j [Se3, Cor.

to Prop. 12]. Serre also used GAGA to obtain a proof of Chow’s Theorem [Ch] that

every closed analytic subset of
� n� is algebraic [Se3, Prop. 13], as well as several corollaries

of that result. In addition, he showed that if X is a projective algebraic variety, then

the natural map H1(X,GLn(
�
)) → H1(Xh,GLn(

�
)h) is bijective [Se3, Prop. 18]. As a

consequence, the set of isomorphism classes of rank n algebraic vector bundles over X (in

the Zariski topology) is in natural bijection with the set of isomorphism classes of rank n

analytic vector bundles over Xh (in the metric topology). In a way, this is surprising, since

the corresponding assertion for covers is false (because all covering spaces in the Zariski

topology are trivial, over an irreducible complex variety).

Having completed the proofs of GAGA and Riemann’s Existence Theorem, we return

to the proofs of Theorems 2.2.2 and 2.2.3.

Proof of Theorem 2.2.2. First we reduce to the case X =
� r� as in Step 2 of the proof of

Theorem 2.2.1, using that Hq(X,F) = Hq(
� r� , j∗F) if j : X ↪→

� r� , and similarly for Xh.

Second, we verify the result directly for the case F = O and Fh = H, for all q ≥ 0.

The case q = 0 is clear, since then both sides are just
�
, because X is projective (and hence

compact). On the other hand if q > 0, then Hq(X,O) = 0 by the (algebraic) cohomology

of projective space [Hrt2, Chap. III, Theorem 5.1], and Hq(Xh,H) = 0 via Dolbeault’s

Theorem [GH, p.45].

Third, we verify the result for the sheaf O(n) on X =
� r� . This step uses induction

on the dimension r, where the case r = 0 is trivial. Assuming the result for r− 1, we need
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to show it for r. This is done by induction on |n|; for ease of presentation, assume n > 0

(the other case being similar). Let E be a hyperplane in
� r� ; thus E ≈

� r−1� . Tensoring

the exact sequence 0 → O(−1) → O → OE → 0 with O(n), we obtain an associated long

exact sequence (∗) which includes, in part:

Hq−1(E,OE(n)) → Hq(X,O(n−1)) → Hq(X,O(n)) → Hq(E,OE(n)) → Hq(X,O(n−1))

Similarly, replacing O by H, we obtain an analogous long exact sequence (∗)h; and there

are (commuting) maps ε from each term in (∗) to the corresponding term in (∗)h. By the

inductive hypotheses, the map ε is an isomorphism on each of the outer four terms above.

So by the Five Lemma, ε is an isomorphism on Hq(X,O(n)).

Fourth, we handle the general case. By a vanishing theorem of Grothendieck ([Gr1];

see also [Hrt2, Chap. III, Theorem 2.7]), the qth cohomology vanishes for a Noetherian

topological space of dimension n if q > n. (Cf. [Hrt2, p.5] for the definition of dimension.)

So we can proceed by descending induction on q. Since F is coherent, it is a quotient of a

sheaf E =
⊕

iO(ni) [Hrt2, Chap. II, Cor. 5.18], say with kernel N . The associated long

exact sequence includes, in part:

Hq(X,N )→ Hq(X, E)→ Hq(X,F)→ Hq+1(X,N ) → Hq+1(X, E)

The (commuting) homomorphisms ε map from these terms to the corresponding terms of

the analogous long exact sequence of coherent H-modules on Xh. On the five terms above,

the second map ε is an isomorphism by the previous step; and the fourth and fifth maps

ε are isomorphisms by the descending inductive hypothesis. So by the Five Lemma, the

middle ε map is surjective. This gives the surjectivity part of the result, for an arbitrary

coherent sheaf F . In particular, surjectivity holds with F replaced by N . That is, on the

first of the five terms in the exact sequence above, the map ε is surjective. So by the Five

Lemma, the middle ε is injective; so it is an isomorphism.

Concerning Theorem 2.2.3, that result is equivalent to the following assertion:

Theorem 2.2.5. Let X =
� r� or (

� r� )h, and let M be a coherent sheaf on X. Then there

is an n0 such that for all n ≥ n0 and all q > 0, we have Hq(X,M(n)) = 0.

In the algebraic setting, Theorem 2.2.5 is due to Serre; cf. [Hrt2, Chap. III, Theorem

5.2]. In the analytic setting, this is Cartan’s “Theorem B” ([Se1], exp. XVIII of [Ca2]); cf.

also [GH, p.700].

The proof of Theorem 2.2.3 is easier in the algebraic situation than in the analytic one.

In the former case, the proof proceeds by choosing generators of stalks Mξ; multiplying

each by an appropriate monomial to get a global section of some M(n); and using quasi-

compactness to require only finitely many sections overall (also cf. [Hrt2, Chapter II, proof
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of Theorem 5.17]). But this strategy fails in the analytic case because the local sections

are not rational, or even meromorphic; and so one cannot simply clear denominators to

get a global section of a twisting of M.

The proof in the analytic case proves Cartan’s Theorems A and B (i.e. 2.2.3 and 2.2.5)

together, by induction on r. Denoting these assertions in dimension r by (Ar) and (Br),

the proof in ([Se1], exp. XIX of [Ca3]) proceeds by showing that (Ar−1) + (Br−1) ⇒ (Ar)

and that (Ar) ⇒ (Br). Since the results are trivial for r = 0, the two theorems then follow;

and as a result, GAGA follows as well. Serre’s later argument in [Se3] is a variant on this

inductive proof that simultaneously proves GAGA and Theorems A and B (i.e. Theorems

2.2.1, 2.2.3, and 2.2.5 above).

Theorems A and B were preceded by a non-projective version of those results, viz.

for polydiscs in
� r , and more generally for Stein spaces (exp. XVIII and XIX of [Ca2]; cf.

also [GuR, pp. 207, 243]). There too, the two theorems are essentially equivalent. Also,

no twisting is needed for Theorem B in the earlier version because the spaces were not

projective there.

The proof of Theorem A in this earlier setting uses an “analytic patching” argument,

applied to overlapping compact sets K ′, K ′′ on a Stein space X. In that situation, one

considers metric neighborhoods U ′, U ′′ of K ′, K ′′ respectively, and one chooses generating

sections f ′1, . . . , f
′
k ∈ M(U ′) and f ′′1 , . . . , f

′′
k ∈ M(U ′′) for the given sheaf M on U ′, U ′′

respectively. From this data, one produces generating sections g1, . . . , gk ∈ M(U), where

U is an open neighborhood of K = K ′ ∪ K ′′. This is done via Cartan’s Lemma on

matrix factorization, which says (for appropriate choice of K ′, K ′′) that every element

A ∈ GLn(K ′ ∩ K ′′) can be factored as a product of an element B ∈ GLn(K ′) and an

element C ∈ GLn(K ′′). That lemma, which can be viewed as a multiplicative matrix

analog of Cousin’s Theorem [GuRo, p.32], had been proven earlier in [Ca1], with this

application in mind; and a special case had been shown even earlier in [Bi]. See also

[GuRo, Chap. VI, §E]. (Cartan’s Lemma is also sometimes called Cartan’s “attaching

theorem”, where attaching is used in essentially the same sense as patching here.)

Cartan’s Lemma can be used to prove these earlier versions of Theorems A and B by

taking bases f ′i and f ′′i over U ′ and U ′′, and letting A be the transition matrix between

them (i.e. ~f ′ = A~f ′′, where ~f ′ and ~f ′′ are the column vectors with entries f ′i and f ′′i
respectively). The generators gi as above can then be defined as the sections that differ

from the f ′’s by B−1 and from the f ′′’s by C (i.e. ~g = B−1 ~f = C ~f ′′). The gi’s are

then well-defined wherever either the f ′’s or f ′′’s are — and hence in a neighborhood of

K = K ′ ∪K ′′. This matrix factorization strategy also appears elsewhere, e.g. classically,

concerning the Riemann-Hilbert problem, in which one attempts to find a system of linear

differential equations whose monodromy representation of the fundamental group is a given

representation (this being a differential analog of the inverse Galois problem for covers).
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This use of Cartan’s Lemma also suggests another way of restating GAGA, in the

case where a projective variety X is covered by two open subsets X1, X2 that are strictly

contained in X. The point is that if one gives coherent analytic (sheaves of) modules

over X1 and over X2 together with an isomorphism on the overlap, then there is a unique

coherent algebraic module over X that induces the given data compatibly. Of course by

definition of coherent sheaves, there is such an analytic module over X (and similarly, we

can always reduce to the case of two metric open subsets X1, X2); but the assertion is that

it is algebraic.

To state this compactly, we introduce some categorical terminology. If A,B, C are

categories, with functors f : A → C and g : B → C, then the 2-fibre product of A and B

over C (with respect to f, g) is the category A×C B in which an object is a pair (A,B) ∈

A × B together with an isomorphism ι : f(A) →∼ g(B) in C; and in which a morphism

(A,B; ι) → (A′, B′; ι′) is a pair of morphisms A → A′ and B → B′ that are compatible

with the ι’s. For any variety [resp. analytic space] X, let
�

(X) denote the category of

algebraic [resp. analytic] coherent modules on X. (Similarly, for any ring R, we write
�

(R) for the category of finitely presented R-modules. This is the same as
�

(Spec R).)

In this language, GAGA and its generalizations to algebras and covers can be restated as:

Theorem 2.2.6. Let X be a complex projective algebraic variety, with metric open

subsets X1, X2 such that X = X1 ∪ X2; let X0 be their intersection. Then the natural

base change functor
�

(X) →
�

(X1)× � (X0)
�

(X2)

is an equivalence of categories. Moreover the same holds if
�

is replaced by the category of

finite algebras, or of finite branched covers, or of Galois covers with a given Galois group.

Here X is regarded as an algebraic variety, and the Xi’s as analytic spaces (so that

the left hand side of the equivalence consists of algebraic modules, and the objects on the

right hand side consist of analytic modules). In the case of curves, each Xi is contained

in an affine open subset Ui, so coherent sheaves of modules on Xi can be identified with

coherent modules over the ring H(Xi); thus we may identify the categories
�

(Xi) and
�

(H(Xi)).

The approach in Theorem 2.2.6 will be useful in considering analogs of GAGA in

Sections 3 and 4 below.

Section 2.3. Complex patching and constructing covers.

Consider a Zariski open subset of the Riemann sphere, say U =
� 1� − {ξ1, . . . , ξr}.

By Riemann’s Existence Theorem, every finite covering space of U is given by an étale

morphism of complex algebraic curves. Equivalently, every finite branched cover of
� 1� ,

branched only at S = {ξ1, . . . , ξr}, is given by a finite dominating morphism from a smooth

complex projective curve Y to
� 1� . As discussed in Section 2.1, passage from topological
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to analytic covers is the easier step, but it requires knowledge of what topological covering

spaces exist (essentially via knowledge of the fundamental group, which is understood via

loops). Passage from analytic covers to algebraic covers is deeper, and can be achieved

using GAGA, as discussed in Section 2.2.

Here we consider how covers can be constructed from this point of view using complex

analytic patching, keeping an eye on possible generalizations. In particular, we raise the

question of how to use these ideas to understand covers of curves that are not defined over

the complex numbers.

We begin by elaborating on the bijection described in Corollary 2.1.2.

Taking U =
� 1� − {ξ1, . . . , ξr} as above, choose a base point ξ0 ∈ U . The topologi-

cal fundamental group π1(U, ξ0) is then the discrete group 〈x1, . . . , xr |x1 · · ·xr = 1〉, as

discussed in Section 2.1. Up to isomorphism, the fundamental group is independent of

the choice of ξ0, and so the mention of the base point is often suppressed; but fixing a

base point allows us to analyze the fundamental group more carefully. Namely, we may

choose a “bouquet of loops” at ξ0 (in M. Fried’s terminology [Fr1]), consisting of a set of

counterclockwise loops σ1, . . . , σr at ξ0, where σj winds once around ξj and winds around

no other ξk; where the support of the σj ’s are disjoint except at ξ0; where σ1 · · ·σr is

homotopic to the identity; and where the homotopy classes of the σj ’s (viz. the xj ’s) gen-

erate π1(U, ξ0). In particular, we can choose σj to consist of a path φj from ξ0 to a point

ξ′j near ξj , followed by a counterclockwise loop λj around ξj, followed by φ−1
j . The term

“bouquet” is natural with this choice of loops (e.g. in the case that ξ0 = 0 and ξj = ejπi/r,

with j = 1, . . . , r, and where each φj is a line segment from ξ0 to (1− ε)ξj for some small

positive value of ε).

Let f : V → U be a finite Galois covering space, say with Galois group G. Then π1(V )

is a subgroup N of finite index in π1(U), and G = π1(U)/N . Let g1, . . . , gr ∈ G be the

images of x1, . . . , xr ∈ π1(U), and let mj be the order of gj . Thus (g1, . . . , gr) is the branch

cycle description of V → U ; i.e. the G-Galois cover V → U corresponds to the uniform

conjugacy class of (g1, . . . , gr) in Corollary 2.1.2. By Riemann’s Existence Theorem 2.1.1,

the cover V → U can be given by polynomial equations and regarded as a finite étale cover.

Taking the normalization of
� 1� in V , we obtain a smooth projective curve Y containing

V as a Zariski open subset, and a G-Galois connected branched covering map f : Y →
� 1�

which is branched only over S = {ξ1, . . . , ξr}.

In the above notation, with σj = φjλjφ
−1
j (and multiplying paths from left to right),

we can extend φj to a path ψj from ξ0 to ξj in
� 1� . The path ψj can be lifted to a path

ψ̃j in Y from a base point η0 ∈ Y over ξ0, to a point ηj ∈ Y over ξj . The element gj

generates the inertia group Aj of ηj (i.e. the stablizer of ηj in the group G). If Xj is a

simply connected open neighborhood of ξj that contains no other ξk, then the topological

fundamental group ofXj−{ξj} is isomorphic to
�
. So f−1(Xj) is a union of homeomorphic
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connected components, each of which is Galois and cyclic of order mj over Xj, branched

only at ξj. The component Yj of f−1(Xj) that contains ηj has stablizer Aj = 〈gj〉 ⊂ G, and

by Kummer theory it is given by an equation of the form s
mj

j = tj , if tj is a uniformizer on

Xj at ξj. Moreover gj acts by gj(sj) = e2πi/mjsj . So f−1(Xj) is a (typically disconnected)

G-Galois cover ofXj, consisting of a disjoint union of copies of themj-cyclic cover Yj → Xj,

indexed by the left cosets of Aj in G. We say that f−1(Xj) is the G-Galois branched cover

of Xj that is induced by the Aj-Galois cover Yj → Xj; and we write f−1(Xj) = IndG
Aj
Yj.

Similarly, if U ′ is a simply connected open subset of U (and so U ′ does not contain any

branch points ξj), then f−1(U ′) is the trivial G-Galois cover of U ′, consisting of |G| copies

of U ′ permuted simply transitively by the elements of G; this cover is IndG
1 U
′.

Since the complex affine line is simply connected, the smallest example of the above

situation is the case r = 2. By a projective linear change of variables, we may assume

that the branch points are at 0,∞. The fundamental group of U =
� 1� −{0,∞} is infinite

cyclic, so a finite étale cover is cyclic, say with Galois group Cm; and the cover has branch

cycle description (g, g−1) = (g, gm−1) for some generator g of the cyclic group Cm. This

cover is given over U by the single equation ym = x. So no patching is needed in this case.

(If we instead take two branch points x = c0, x = c1, with c0, c1 ∈
�
, then the equation is

ym = (x− c0)(x− c1)
m−1 over

� 1� minus the two branch points.)

The next simplest case is that of r = 3. This is the first really interesting case, and in

fact it is key to understanding cases with r > 3. By a projective linear transformation we

may assume that the branch locus is {0, 1,∞}. We consider this case next in more detail:

Example 2.3.1. We give a “recipe” for constructing Galois covers of U =
� 1� − {0, 1,∞}

via patching, in terms of the branch cycle description of the given cover.

The topological fundamental group of U is 〈α, β, γ |αβγ = 1〉, and this is isomorphic

to the free group on two generators, viz. α, β. If we take z = 1/2 as the base point for

the fundamental group, then these generators can be taken to be counterclockwise loops

at 1/2 around 0, 1, respectively. The paths ψ0, ψ1 as above can be taken to be the real

line segments connecting the base point to 0, 1 respectively, and ψ∞ can be taken to be

the vertical path from 1/2 to “1/2 + i∞”.

Let G be a finite group generated by two elements a, b. Let c = (ab)−1, so that abc = 1.

Consider the connected G-Galois covering space f : V → U with branch cycle description

(a, b, c), and the corresponding branched cover Y → P 1� branched at S. As above, after

choosing a base point η ∈ Y over 1/2 ∈
� 1� and lifting the paths ψj, we obtain points η0,

η1, η∞ over 0, 1,∞, with cyclic stabilizers A0 = 〈a〉, A1 = 〈b〉, A∞ = 〈c〉 respectively. Let

ι be the path in
� 1� from 0 to 1 corresponding to the real interval [0, 1], and let ι̃ be the

unique path in Y that lifts ι and passes through η. Observe that the initial point of ι̃ is

η0, and the final point is η1.

Consider the simply connected neighborhoods X0 = {z ∈
�
|Re z < 2/3} of 0, and
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X1 = {z ∈
�
|Re z > 1/3} of 1. We have that X0∪X1 =

�
, and U ′ := X0∩X1 is contained

in U . Also, U = U0 ∪ U1, where Uj = Xj − {j} for j = 0, 1. By the above discussion,

f−1(X0) = IndG
A0
Y0, where Y0 → X0 is a cyclic cover branched only at 0, and given by

the equation ym
0 = x (where m is the order of a). Similarly f−1(X1) = IndG

A1
Y1, where

the branched cover Y1 → X1 is given by yn
1 = x − 1 (where n is the order of b). Since

the overlap U ′ = X0 ∩X1 does not meet the branch locus S, we have that f−1(U ′) is the

trivial G-Galois cover IndG
1 U
′. These induced covers have connected components that are

respectively indexed by the left cosets of A0, A1, 1; and the identity coset corresponds to

the component respectively containing η0, η1, η. Observe that the identity component of

IndG
1 U

′ is contained in the identity components of the other two induced covers, because

ι̃ passes through η0, η1, η.

Turning this around, we obtain the desired “patching recipe” for constructing the

G-Galois cover of U with given branch cycle description (a, b, c): Over the above open sets

U0 and U1, take the induced covers IndG
A0
V0 and IndG

A1
V1, where V0 → U0 and V1 → U1

are respectively given by ym
0 = x and yn

1 = x − 1, and where A0 = 〈a〉, A1 = 〈b〉. Pick a

point η over 1/2 on the identity components of each of these two induced covers; thus g(η)

is a well-defined point on each of these induced covers, for any g ∈ G. The induced covers

each restrict to the trivial G-Galois cover on the overlap U ′ = U0 ∩U1; now paste together

the components of these trivial covers by identifying, for each g ∈ G, the component of

IndG
A0
V0 containing g(η) with the component of IndG

A1
V1 containing that point. The result

is the desired cover V → U .

The above example begins with a group G and a branch cycle description (a, b, c), and

constructs the cover V → U =
� 1� −{0, 1,∞} with that branch cycle description. In doing

so, it gives the cover locally in terms of equations over two topological open discs U0 and

U1, and instructions for patching on the overlap. Thus it gives the cover analytically (not

algebraically, since the Ui’s are not Zariski open subsets).

The simplest specific instance of the above example uses the cyclic group C3 = 〈g〉

of order 3, and branch cycle description (g, g, g). Over U0 the cover is given by (one copy

of) y3
0 = x; and over U1 it is given by y3

1 = x − 1. Here, over Ui, the generator g acts

by g(yi) = ζ3yi, where ζ3 = e2πi/3. By GAGA, the cover can be described algebraically,

i.e. by polynomials over Zariski open sets. And in this particular example, this can even

be done globally over U , by the single equation z3 = x(x − 1) (where g(z) = ζ3z). Here

z = y0f0(x) on U0, where f0(x) is the holomorphic function on U0 such that f0(0) = −1

and f3
0 = x − 1; explicitly, f0(x) = −1 + 1

3x + 1
9x

2 + · · · in a neighborhood of x = 0.

Similarly, z = y1f1(x) on U1, where f1(x) is the holomorphic function on U1 such that

f1(1) = 1 and f3
1 = x; here f1(x) = 1 + 1

3(x − 1) − 1
9 (x − 1)2 + · · · in a neighborhood of

x = 1. (Note that for this very simple cover, the global equation can be written down by

inspection. But in general, for non-abelian groups, the global polynomial equations are
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not at all obvious from the local ones, though by GAGA they must exist.)

Example 2.3.1 requires GAGA in order to pass from the analytic equations (locally, on

metric open subsets) to algebraic equations that are valid on a Zariski open dense subset.

In addition, it uses ideas of topology — in particular, knowledge of the fundamental group,

and the existence of open sets that overlap and together cover the space U . In later sections

of this paper, we will discuss the problem of performing analogous constructions over fields

other than
�
, in order to understand covers of algebraic curves over those fields. For that,

we will see that often an analog of GAGA exists — and that analog will permit passage

from “analytic” covers to algebraic ones. A difficulty that has not yet been overcome,

however, is how to find analogs of the notions from topology — both regarding explicit

descriptions of fundamental groups and regarding the need for having overlapping open sets

(which in non-archimedean contexts do not exist in a non-trivial way). One way around

this problem is to consider only certain types of covers, for which GAGA alone suffices (i.e.

where the information from topology is not required). The next example illustrates this.

Example 2.3.2. Let G be a finite group, with generators g1, . . . , gr (whose product need

not be 1). Let S = {ξ1, . . . , ξ2r} be a set of 2r distinct points in
� 1� , and consider the

G-Galois covering space V → U =
� 1� − S with branch cycle description

(g1, g
−1
1 , g2, g

−1
2 , . . . , gr, g

−1
r ), (∗)

with respect to a bouquet of loops σ1, . . . , σ2r at a base point ξ0 ∈ U . Let Y →
� 1� be the

corresponding branched cover. This cover is well defined since the product of the entries

of (∗) is 1, and it is connected since the entries of (∗) generate G. The cover can be

obtained by a “cut-and-paste” construction as follows: Choose disjoint simple (i.e. non-

self-intersecting) paths s1, . . . , sr in
� 1� , where sj begins at ξ2j−1 and ends at ξ2j . Take

|G| distinct copies of
� 1� , indexed by the elements of G. Redefine the topology on the

disjoint union of these copies by identifying the right hand edge of a “slit” along sj on

the gth copy of
� 1� to the left hand edge of the “slit” along sj on the ggjth copy of

� 1�

(with the orientation as one proceeds along the slits). The resulting space maps to
� 1�

in the obvious way, and away from S it is the G-Galois covering space of
� 1� − S with

branch cycle description (∗). Because of this construction, we will call covers of this type

slit covers [Ha1, 2.4]. (The corresponding branch cycle descriptions (∗) have been referred

to as “Harbater-Mumford representatives” [Fr3].)

Now choose disjoint simply connected open subsets Xj ⊂
� 1� for j = 1, . . . , r, such that

ξ2j−1, ξ2j ∈ Xj. (If ξ2j−1 and ξ2j are sufficiently close for all j, relative to their distances

to the other ξk’s, then the Xj ’s can be taken to be discs.) In the above cut-and-paste

construction, the paths s1, . . . , sr can be chosen so that the support of sj is contained in

Xj , for each j. Each Xj contains a strictly smaller simply connected open set X∗j (e.g. a

smaller disc) which also contains the support of sj, and whose closure X̄∗j is contained in
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Xj . Let U ′ =
� 1� −

⋃

X̄∗j . In the cut-and-paste construction of V → U , we have that the

topology of the disjoint union of the |G| copies of
� 1� is unaffected outside of the union of

the X∗j ’s; and so the restriction of V → U to U ′ is a trivial cover, viz. IndG
1 U

′. Suppose

that ξj is not the point x = ∞ on
� 1� ; thus ξj corresponds to a point x = cj , with cj ∈

�
.

Let mj be the order of gj , and let Aj be the subgroup of G generated by gj. Then the

restriction of V → U to Uj = Xj ∩U is given by IndG
Aj
Vj , where Vj → Uj is the Aj-Galois

étale cover given by y
mj

j = (x − c2j−1)(x − c2j)
mj−1 (as in the two branch point case,

discussed just before Example 2.3.1).

s2s1

ξ0

ξ2 ξ3 ξ41
ξ

σ1 σ2 σ3
σ4

Figure 2.3.3: Base of a slit cover of
� 1� with slits s1 from ξ1 to ξ2, and s2 from

ξ3 to ξ4; and with generators g1, g2, corresponding to the loops σ1, σ3, respectively.

(Here the inverses g−1
1 , g−1

2 correspond to the loops σ2, σ4.)

As a result, we obtain the following recipe for obtaining slit covers by analytic patching:

Given G and generators g1, . . . , gr (whose product need not be 1), let Aj = 〈gj〉, and let

mj be the order of gj . Take r disjoint open discs Xj , choose smaller open discs X∗j ⊂ Xj,

and for each j pick two points ξ2j−1, ξ2j ∈ X∗j . Over Uj = Xj − {ξ2j−1, ξ2j}, let Vj be

the Aj-Galois cover given by y
mj

j = (x − c2j−1)(x − c2j)
mj−1. The restriction of Vj to

Oj := Xj − X̄∗j is trivial, and we identify it with the Aj-Galois cover Ind
Aj

1 Oj . This

identifies the restriction of IndG
Aj
Vj over Oj with IndG

1 Oj — which is also the restriction

of the trivial cover IndG
1 U

′ of U ′ =
� 1� −

⋃

X̄∗j to Oj . Taking the union of the trivial

G-Galois cover IndG
1 U

′ of U ′ with the induced covers IndG
Aj
Vj , with respect to these

identifications, we obtain the slit G-Galois étale cover of U =
� 1� − {ξ1, . . . , ξ2r} with

description (g1, g
−1
1 , g2, g

−1
2 , . . . , gr, g

−1
r ).
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The slit covers that occur in Example 2.3.2 can also be understood in terms of de-

generation of covers — and this point of view will be useful later on, in more general

settings. Consider the G-Galois slit cover V → U =
� 1� − S with branch cycle description

(∗) as in Example 2.3.2; here S = {ξ1, . . . , ξ2r} and sj is a simple path connecting ξ2j−1

to ξ2j , with the various sj ’s having disjoint support. This cover may be completed to a

G-Galois branched cover Y →
� 1� , with branch locus S, by taking the normalization of

� 1�

in (the function field of) V . Now deform this branched cover by allowing each point ξ2j to

move along the path sj backwards toward ξ2j−1. This yields a one (real) parameter family

of irreducible G-Galois slit covers Yt →
� 1� , each of which is trivial outside of a union of

(shrinking) simply connected open sets containing ξ2j−1 and (the moving) ξ2j. In the limit,

when ξ2j collides with ξ2j−1, we obtain a finite map Y0 →
� 1� which is unramified away

from S′ := {ξ1, ξ3, . . . , ξ2r−1}, such that Y0 is connected; G acts on Y0 over
� 1� , and acts

simply transitively away from S ′; and the map is a trivial cover away from S ′. In fact, Y0

is a union of |G| copies of
� 1� , indexed by the elements of G, such that the gth copy meets

the ggjth copy over ξ2j−1. The map Y0 →
� 1� is a mock cover [Ha1, §3], i.e. is finite and

generically unramified, and such that each irreducible component of Y0 maps isomorphi-

cally onto the base (here,
� 1� ). This degeneration procedure can be reversed: starting with

a connected G-Galois mock cover which is built in an essentially combinatorial manner in

terms of the data g1, . . . , gr, one can then deform it near each branch point to obtain an

irreducible G-Galois branched cover branched at 2r points with branch cycle description

(g1, g
−1
1 , g2, g

−1
2 , . . . , gr, g

−1
r ). This is one perspective on the key construction in the next

section, on formal patching.

e
(012)

(021)

(01)

(02)

e

(01)

(021)

(02)

(12)

(12)

(012)

η2η1
Figure 2.3.4: A mock cover of the line, with Galois group S3, branched at two

points η1, η2. The sheets are labeled by the elements of S3. The cyclic subgroups

〈(01)〉, 〈(012)〉 are the stablizers on the identity sheet over η1, η2, respectively.

As discussed before Example 2.3.2, slit covers do not require topological input — i.e.

knowledge of the explicit structure of topological fundamental groups, or the existence of

overlapping open discs containing different branch points — unlike the general three-point
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cover in Example 2.3.1. Without this topological input, for general covers one obtains only

the equivalence of algebraic and analytic covers in Riemann’s Existence Theorem — and

in particular, we do not obtain the corollaries to Riemann’s Existence Theorem in Section

2.1. But one can obtain those corollaries as they relate to slit covers, without topological

input. Since only half of the entries of the branch cycle description can be specified for

a slit cover, such results can be regarded as a “Half Riemann Existence Theorem”; and

can be used to motivate analogous results about fundamental groups for curves that are

not defined over
�
, where there are no “loops” or overlapping open discs. (Indeed, the

term “half Riemann Existence Theorem” was first coined by F. Pop to refer to such an

analogous result [Po2, Main Theorem]; cf. §4.3 below). In particular, we have the following

variant on Corollary 2.1.3:

Theorem 2.3.5. (Analytic half Riemann Existence Theorem) Let r ≥ 1, let S =

{ξ1, . . . , ξ2r} be a set of 2r distinct points in
� 1� , and let U =

� 1� − S. Let F̂r be the

free profinite group on generators x1, . . . , xr. Then F̂r is a quotient of the étale fundamen-

tal group of U .

Namely, let G be any finite quotient of F̂r. That is, G is a finite group together

with generators g1, . . . , gr. Consider the G-Galois slit cover with branch cycle description

(g1, g
−1
1 , g2, g

−1
2 , . . . , gr, g

−1
r ). As G and its generators vary, these covers form an inverse

subsystem of the full inverse system of covers of U ; and the inverse limit of their Galois

groups is F̂r.

Here, in order for this inverse system to make sense, one can first fix a bouquet of

loops around the points of S; or one can fix a set of disjoint simple paths sj from ξ2j−1 to

ξ2j and consider the corresponding set of slit covers. But to give a non-topological proof

of this result (which of course is a special case of Corollary 2.1.3), one can instead give

compatible local Kummer equations for the slit covers and then use GAGA; or one can

use the deformation construction starting from mock covers, as sketched above. These

approaches are in fact equivalent, and will be discussed in the next section in a more

general setting.

Observe that the above “half Riemann Existence Theorem” is sufficient to prove the

inverse Galois problem over
�
(x), which appeared above, as Corollary 2.1.4 of (the full)

Riemann’s Existence Theorem. Namely, for any finite group G, pick a set of r generators

of G (for some r), and pick a set S of 2r points in
� 1� . Then G is the Galois group of

an unramified Galois cover of
� 1� − S; and taking function fields yields a G-Galois field

extension of
�
(x).

The above discussion relating to Example 2.3.2 brings up the question of constructing

covers of algebraic curves defined over fields other than
�
, and of proving at least part of

Riemann’s Existence Theorem for curves over more general fields. Even if the topological
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input can be eliminated (as discussed above), it is still necessary to have a form of GAGA

to pass from “analytic” objects to algebraic ones. The “analytic” objects will be defined

over a topology that is finer than the Zariski topology, and with respect to which modules

and covers can be constructed locally and patched. It will also be necessary to have a

structure sheaf of “analytic” functions on the space under this topology.

One initially tempting approach to this might be to use the étale topology; but un-

fortunately, this does not really help. One difficulty with this is that a direct analog of

GAGA does not hold in the étale topology. Namely, in order to descend a module from the

étale topology to the Zariski topology, one needs to satisfy a descent criterion [Gr5, Chap.

VIII, §1]. In the language of Theorem 2.2.6, this says that one needs not just agreement

on the overlap X1×X X2 between the given étale open sets, but also on the “self-overlaps”

X1 ×X X1 and X2 ×X X2, which together satisfy a compatibility condition. (See also

[Gr3], in which descent is viewed as a special case of patching, or “recollement”.) A sec-

ond difficulty is that in order to give étale open sets Xi → X, one needs to understand

covers of X; and so this introduces an issue of circularity into the strategy for studying

and constructing covers.

Two other approaches have proven quite useful, though, for large classes of base fields

(though not for all fields). These are the Zariski-Grothendieck notion of formal geometry,

and Tate’s notion of rigid geometry. Those approaches will be discused in the following

sections.

Section 3: Formal patching

This section and the next describe approaches to carrying over the ideas of Section 2 to

algebraic curves that are defined over fields other than
�
. The present section uses formal

schemes rather than complex curves, in order to obtain analogs of complex analytic notions

that can be used to obtain results in Galois theory. The idea goes back to Zariski; and

his notion of a “formal holomorphic function”, which uses formal power series rather than

convergent power series, is presented in Section 3.1. Grothendieck’s strengthening of this

notion is presented in Section 3.2, including his formal analog of Serre’s result GAGA (and

the proof presented here parallels that of GAGA, presented in Section 2.2). These ideas

are used in Section 3.3 to solve the geometric inverse Galois problem over various fields,

using ideas motivated by the slit cover construction of Section 2.3. Further applications of

these ideas are presented later, in Section 5.

Section 3.1. Zariski’s formal holomorphic functions.

In order to generalize analytic notions to varieties over fields other than
�
, one needs

to have “small open neighborhoods”, and not just Zariski open sets. One also needs to

have a notion of (“analytic”) functions on those neighborhoods.
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Unfortunately, if there is no metric on the ground field, then one cannot consider discs

around the origin in
� 1

k , for example, or the rings of power series that converge on those

discs. But one can consider the ring of all formal power series, regarded as analytic (or

holomorphic) functions on the spectrum of the complete local ring at the origin (which

we regard as a “very small neighborhood” of that point). And in general, given a variety

V and a point ν ∈ V , we can consider the elements of the complete local ring ÔV,ν as

holomorphic functions on Spec ÔV,ν .

While this point of view can be used to study local behaviors of varieties near a point,

it does not suffice in order to study more global behaviors locally and then to “patch” (as

one would want to do in analogs of GAGA and Riemann’s Existence Theorem), because

these “neighborhoods” each contain only one closed point. The issue is that a notion of

“analytic continuation” of holomorphic functions is necessary for that, so that holomorphic

functions near one point can also be regarded as holomorphic functions near neighboring

points.

This issue was Zariski’s main focus during the period of 1945-1950, and it grew out

of ideas that arose from his previous work on resolution of singularities. The question

was how to extend a holomorphic function from the complete local ring at a point ν ∈ V

to points in a neighborhood. As he said later in a preface to his collected works [Za5,

pp. xii-xiii], “I sensed the probable existence of such an extension provided the analytic

continuation were carried out along an algebraic subvariety W of V .” That is, if W is a

Zariski closed subset of V , then it should make sense to speak of “holomorphic functions”

in a “formal neighborhood” of W in V .

These formal holomorphic functions were defined as follows ([Za4, Part I]; see also

[Ar5, p.3]): Let W be a Zariski closed subset of a variety V . First, suppose that V is

affine, say with ring of functions R, so that W ⊂ V is defined by an ideal I ⊂ R. Consider

the ring of rational functions g on V that are regular along W ; this is a metric space with

respect to the I-adic metric. The space of strongly holomorphic functions f along W (in

V ) is defined to be the metric completion of this space (viz. it is the space of equivalence

classes of Cauchy sequences of such functions g). This space is also a ring, and can be

identified with the inverse limit lim
←
R/In.

More generally, whether or not V is affine, one can define a (formal) holomorphic

function along W to be a function given locally in this manner. That is, it is defined to be

an element {fω} ∈
∏

ω∈W ÔV,ω such that there is a Zariski affine open covering {Vi}i∈I of

V together with a choice of a strongly holomorphic function {fi}i∈I along Wi := W ∩ Vi

in Vi (for each i ∈ I), such that fω is the image of fi in ÔV,ω whenever ω ∈ Wi. These

functions also form a ring, denoted ÔV,W . Note that ÔV,W is the complete local ring ÔV,ω

if W = {ω}. Also, if U is an affine open subset of W , and U = Ũ ∩W for some open

subset Ũ ⊂ V , then the ring ÔŨ ,U depends only on U , and not on the choice of Ũ ; so we
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also denote this ring by ÔV,U , and call it the ring of holomorphic functions along U in V .

Remark 3.1.1. Nowadays, if I is an ideal in a ring R, then the I-adic completion of

R is defined to be the inverse limit lim
←
R/In. This modern notion of formal completion

is equivalent to Zariski’s above notion of metric completion via Cauchy sequences, which

he first gave in [Za2, §5]. But Zariski’s approach more closely paralleled completions

in analysis, and fit in with his view of formal holomorphic functions as being analogs

of complex analytic functions. (Prior to his giving this definition, completions of rings

were defined only with respect to maximal ideals.) In connection with his introduction

of this definition, Zariski also introduced the class of rings we now know as Zariski rings

(and which Zariski had called “semi-local rings”): viz. rings R together with a non-zero

ideal I such that every element of 1 + I is a unit in R [Za2, Def. 1] . Equivalently [Za2,

Theorem 5], these are the I-adic rings such that I is contained in (what we now call) the

Jacobson radical of R. Moreover, every I-adically complete ring is a Zariski ring [Za2, Cor.

to Thm. 4]; so the ring of strictly holomorphic functions on a closed subset of an affine

variety is a Zariski ring.

A deep fact proven by Zariski [Za4, §9, Thm. 10] is that every holomorphic function

along a closed subvariety of an affine scheme is strongly holomorphic. So those two rings

of functions agree, in the affine case; and the ring of holomorphic functions along W =

Spec R/I in V = Spec R can be identified with the formal completion lim
←
R/In of R with

respect to I.

Example 3.1.2. Consider the x-axis W ≈
� 1

k in the x, t-plane V =
� 2 . Then W is

defined by the ideal I = (t), and the ring of holomorphic functions along W in V is

A1 := k[x][[t]]. Note that every element of A1 can be regarded as an element in ÔW,ν for

every point ν ∈W ; and in this way can be regarded as an analytic continuation of (local)

functions along the x-axis. Intuitively, the spectrum S1 of A1 can be viewed as a thin

tubular neighborhood of W in V , which “pinches down” as x→∞. For example, observe

that the elements x and x− t are non-units in A1, and so each defines a proper ideal of A1;

and correspondingly, their loci in S1 = Spec A1 are non-empty (and meet the x-axis at

the origin). On the other hand, 1− xt is a unit in A1, with inverse 1 + xt+ x2t2 · · ·, so its

locus in S1 is empty; and geometrically, its locus in V (which is a hyperbola) approaches

the x-axis only as x → ∞, and so misses the (“pinched down”) spectrum of A1. One

can similarly consider the ring A2 = k[x−1][[t]]; its spectrum S2 is a thin neighborhood of
� 1

k − (x = 0) which “pinches down” near x = t = 0. (See Figure 3.1.4.)

Example 3.1.3. Let V ′ be the complement of the t-axis (x = 0) in the x, t-plane
� 2 ,

and let W ′ ⊂ V ′ be the locus of t = 0. Then the ring of holomorphic functions along

W ′ in V ′ is A0 := k[x, x−1][[t]]. Geometrically, this is a thin tubular neighborhood of W ′

in V ′, which “pinches down” in two places, viz. as x approaches either 0 or ∞. (Again,
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see Figure 3.1.4.) Observe that Spec A0 is not a Zariski open subset of Spec A1, where

A1 is as in Example 3.1.2. In particular, A0 is much larger than the ring A1[x
−1]; e.g.

∑∞
n=1 x

−ntn is an element of A0 but not of A1[x
−1]. Intuitively, S0 := Spec A0 can be

viewed as an “analytic open subset” of S1 = Spec A1 but not a Zariski open subset — and

similarly for S0 and S2 = Spec A2 in Example 3.1.2. Moreover S0 can be regarded as the

“overlap” of S1 and S2 in
� 1

k[[t]]. This will be made more precise below.
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Figure 3.1.4: A covering of
� 1

k[[t]] (lower left) by two formal patches, S1 =

Spec k[x][[t]] and S2 = Spec k[1/x][[t]]. The “overlap” S0 is Spec k[x, 1/x][[t]].

See Examples 3.1.2 and 3.1.3.

Remark 3.1.5. Just as the ring A0 = k[x, x−1][[t]] in Example 3.1.3 is much larger than

A1[x
−1], where A1 = k[x][[t]] as in Example 3.1.2, it is similarly the case that the ring A1

is much larger than the ring T := k[[t]][x] (e.g.
∑∞

n=1 x
ntn is in A1 but not in T ). The

scheme Spec T can be identified with the affine line over the complete local ring k[[t]], and

is a Zariski open subset of
� 1

k[[t]] (given by x 6= ∞). This projective line over k[[t]] can

be viewed as a thin but uniformly wide tubular neighborhood of the projective x-line
� 1

k ,

and its affine open subset Spec T can correspondingly be viewed as a uniformly wide thin

tubular neighborhood of the x-axis
� 1

k (with no “pinching down” near infinity). As in

Example 2, we have here that Spec A1 is not a Zariski open subset of Spec T , and instead

it can be viewed as an “analytic open subset” of Spec T .

Using these ideas, Zariski proved his Fundamental Theorem on formal holomorphic

functions [Za4, §11, p.50]: If f : V ′ → V is a projective morphism of varieties, with V

normal and with the function field of V algebraically closed in that of V ′, and if W ′ =

f−1(W ) for some closed subset W ⊂ V , then the natural map ÔV,W → ÔV ′,W ′ is an

isomorphism. (See [Ar5, pp.5-6] for a sketch of the proof.) This result in turn yielded

Zariski’s Connectedness Theorem [Za4, §20, Thm. 14] (cf. also [Hrt2, III, Cor. 11.3]), and

implied Zariski’s Main Theorem (cf. [Hrt2, III, Cor. 11.4]).
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The above general discussion suggests that it should be possible to prove an analog

of GAGA that would permit patching of modules using formal completions. And indeed,

there is the following assertion, which is essentially a result of Ferrand and Raynaud (cf.

[FR, Prop. 4.2]). Here the notation is as at the end of Section 2.2 above, and this result

can be viewed as analogous to the version of GAGA given by Theorem 2.2.6.

Proposition 3.1.6. (Ferrand-Raynaud) Let R be a Noetherian ring, let V be the affine

scheme SpecR, let W be a closed subset of V , and let V ◦ = V −W . Let R∗ be the ring of

holomorphic functions along W in V , and let W ∗ = Spec R∗. Also let W ◦ = W ∗ ×V V ◦.

Then the base change functor

�
(V ) →

�
(W ∗)× � (W◦)

�
(V ◦)

is an equivalence of categories.

Here R∗ is the I-adic completion of R, where I is the ideal of W in V . Intuitively, we

regard W ∗ = Spec R∗ as a “formal neighborhood” of W in V , and we regard W ◦ as the

“intersection” of W ∗ with V ◦ (i.e. the “complement” of W in W ∗).

Remark 3.1.7. The above result is essentially a special case of the assertion in [FR,

Prop. 4.2]. That result was stated in terms of cartesian diagram of categories, which is

equivalent to an assertion concerning 2-fibre products (i.e. the way Proposition 3.1.6 above

is stated). The main difference between the above result and [FR, Prop. 4.2] is that the

latter result allows W ∗ more generally to be any scheme for which there is a flat morphism

f : W ∗ → V such that the pullback fW : W ∗ ×V W → W is an isomorphism — which

is the case in the situation of Proposition 3.1.6 above. Actually, though, [FR, Prop. 4.2]

assumes that f : W ∗ → V is faithfully flat (unlike the situation in Proposition 3.1.6). But

this extra faithfulness hypothesis is unnecessary for their proof; and in any event, given a

flat morphism f : W ∗ → V such that fW is an isomorphism, one can replace W ∗ by the

disjoint union of W ∗ and V ◦, which is then faithfully flat — and applying [FR, Prop. 4.2]

to that new W ∗ gives the desired conclusion for the original W ∗.

The following result of Artin [Ar4, Theorem 2.6] generalizes Proposition 3.1.6:

Proposition 3.1.8. In the situation of Proposition 3.1.6, let Ṽ be a scheme and let

f : Ṽ → V be a morphism of finite type. Let W̃ ∗, Ṽ ◦, W̃ ◦ be the pullbacks of W ∗, V ◦,W ◦

with respect to f . Then the base change functor

�
(Ṽ ) →

�
(W̃ ∗)× � (W̃◦)

�
(Ṽ ◦)

is an equivalence of categories.

Note that Ṽ ◦ = Ṽ − W̃ in Proposition 3.1.8, where W̃ = f−1(W ).
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As an example of this result, let V be a smooth n-dimensional affine scheme over

a field k, let W be a closed point ω of V , and let Ṽ be the blow-up of V at W . So

W̃ is a copy of
� n−1

k ; W ∗ = Spec ÔV,ω; and W̃ ∗ is the spectrum of a “uniformly wide

tubular neighborhood” of W̃ in Ṽ . Here W̃ ∗, which is irreducible, can be viewed as a

“twisted version” of
� n−1

k[[s]]; cf. [Hrt2, p.29, Figure 3] for the case n = 2. According to

Proposition 3.1.8, giving a coherent module on Ṽ is equivalent to giving such modules on

W̃ ∗ and on the complement of W̃ , with agreement on the “overlap” W̃ ◦.

While the above two propositions required V to be affine, this hypothesis can be

dropped if W is finite:

Corollary 3.1.9. Let V be a Noetherian scheme, and let W be a finite set of closed points

in V . Let R∗ be the ring of holomorphic functions along W in V , let W ∗ = Spec R∗, let

V ◦ = V −W , and let W ◦ = W ∗ ×V V ◦.

a) Then the base change functor

�
(V ) →

�
(W ∗)× � (W◦)

�
(V ◦)

is an equivalence of categories.

b) Let Ṽ be a scheme and let f : Ṽ → V be a morphism of finite type. Let W̃ ∗, Ṽ ◦, W̃ ◦

be the pullbacks of W ∗, V ◦,W ◦ with respect to f . Then the base change functor

�
(Ṽ ) →

�
(W̃ ∗)× � (W̃◦)

�
(Ṽ ◦)

is an equivalence of categories.

Proof sketch. For part (a), we may cover V by finitely many affine open subsets Vi =

Spec Ri, with Ri Noetherian. Applying Proposition 3.1.6 to each Vi and Wi := Vi∩W , we

obtain equivalences over each Vi. These equivalences agree on the overlaps Vi ∩ Vj (since

each is given by base change), and so together they yield the desired equivalence over V ,

in part (a). Part (b) is similar, using Proposition 3.1.8.

Unfortunately, while the above results are a kind of GAGA, permitting the patching

of modules, they do not directly help to construct covers (via the General Principle 2.2.4);

and so they do not directly help prove an analog of Riemann’s Existence Theorem. The

reason is that these results require that a module be given over a Zariski open subset

V ◦ (or Ṽ ◦), viz. the complement of the given closed subset W (or W̃ ). And a normal

cover Z → V is determined by its restriction to a dense open subset V ◦ (viz. it is the

normalization of V in the function field of the cover — which is the same as the function

field of the restriction). So these results provide a cover Z → V only in circumstances in

which one already has the cover in hand.
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Instead, in order to use Zariski’s approach to obtain results about covers, we will

focus on spaces such as
� 1

k[[t]] (and see the discussion in the Remark 3.1.5 above). In that

situation, Grothendieck has proven a “formal GAGA”, which we discuss next. That result

yields a version of Riemann’s Existence Theorem for many fields other than
�
. Combining

that approach with the above results of Ferrand-Raynaud and Artin yields even stronger

versions of “formal GAGA”; and those formal patching results have been used to prove a

number of results concerning covers and fundamental groups over various fields (as will be

discussed later).

Section 3.2. Grothendieck’s formal schemes.

Drawing on Zariski’s notion of formal holomorphic functions, Grothendieck introduced

the notion of formal scheme, and provided a framework for proving a “formal GAGA”

that is sufficient for establishing formal analogs of (at least parts of) Riemann’s Existence

Theorem. In his paper of the same name [Gr2], Grothendieck announced his result GFGA

(“géometrie formelle et géométrie algébrique”), and sketched how it leads to results about

covers and fundamental groups of curves. The details of this GFGA result appeared

later in EGA [Gr4, III, Cor. 5.1.6], and the result in that form has become known as

Grothendieck’s Existence Theorem. In SGA 1 [Gr5], the details about the results on

covers and fundamental groups appeared.

To begin with, fix a Zariski closed subset W of a scheme V . Let O � = O �
,W be

the sheaf of holomorphic functions along W in V . That is, for every Zariski open subset

U ⊂ W , let O � (U) be the ring ÔV,U of holomorphic functions along U in V . Thus

O � = lim
←

n

OV /I
n+1, where I is the sheaf of ideals of OV defining W in V . The ringed

space
�

:= (W,O � ) is defined to be the formal completion of V along W .

The simplest example of this takes V to be the affine t-line over a field k, and W

to be the point t = 0. Here we may identify O � with the ring k[[t]] = lim
←

n

On, where

On = k[t]/(tn+1). Here n = 0 corresponds to W , and n > 0 to infinitesimal thickenings

of W . The kernel Im of Om → O0 is the ideal tOm, and the kernel of Om → On is

tn+1Om = In+1
m .

As a somewhat more general example, let A be a ring that is complete with respect

to an ideal I. Then W = Spec A/I is a closed subscheme of V = Spec A, consisting

of the prime ideals of A that are open in the I-adic topology. The formal completion
�

= (W,O � ) of V along W consists of the underlying topological space W together with

a structure sheaf whose ring of global sections is A. This formal completion is also called

the formal spectrum of A, denoted Spf A. (For example, if A = k[x][[t]] and I = (t), then

the underlying space of Spf A is the affine x-line over k, and its global sections are k[x][[t]].)

Note that the above definition of formal completion relies on the idea that the geometry

of a space is captured by the structure sheaf on it, rather than on the underlying topological
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space. Indeed, the underlying topological space of
�

is the same as that of W ; but the

structure sheaf O � incorporates all of the information in the spectra of ÔV,U — and thus

it reflects the local geometry of V near W .

More generally, suppose we are given a topological space X and a sheaf of topological

rings O � on X. Suppose also that O � = lim
←

n

On, where {On}n is an inverse system of

sheaves of rings on X such that (X,On) is a scheme Xn for each n; and that for m ≥ n,

the homomorphism Om → On is surjective with kernel In+1
m , where Im = ker(Om → O0).

Then the ringed space
�

:= (X,O � ) is a formal scheme. In particular, in the situation

above for W ⊂ V (taking On = OV /In+1), the formal completion
�

= (W,O � ) of V

along W is a formal scheme.

If W is a closed subset of a scheme V , with formal completion
�

, then to every sheaf F

of OV -modules on V we may canonically associate a sheaf F̂ of O � modules on
�

. Namely,

for every n let Fn = F ⊗OV
OV /In+1, where I is the sheaf of ideals defining W . Then let

F̂ = lim
←

n

Fn. Note that O � = ÔV . Also observe that if F is a coherent OV -module, then

F̂ is a coherent O � -module (i.e. it is locally of the form Om� → On� → F̂ → 0).

Theorem 3.2.1. (GFGA, Grothendieck Existence Theorem) Let A be a Noetherian

ring that is complete with respect to a proper ideal I, let V be a proper A-scheme, and let

W ⊂ V be the inverse image of the locus of I. Let
�

= (W,O � ) be the formal completion

of V along W . Then the functor F 7→ F̂ , from the category of coherent OV -modules to

the category of coherent O � -modules, is an equivalence of categories.

Before turning to the proof of Theorem 3.2.1, we discuss its content and give some

examples, beginning with

Corollary 3.2.2. [Gr2, Cor. 1 to Thm. 3] In the situation of Theorem 3.2.1, the natural

map from closed subschemes of V to closed formal subschemes of
�

is a bijection.

Namely, such subschemes [resp. formal subschemes] correspond bijectively to coherent

subsheaves of OV [resp. of O � ]. So this is an immediate consequence of the theorem.

This corollary may seem odd, for example in the case where V is a curve over a

complete local ring A, and W is thus a curve over the residue field of A — since then, the

only reduced closed subsets of W (other than W itself) are finite sets of points. But while

distinct closed subschemes of V can have the same intersection with the topological space

W , the structure sheaves of their restrictions will be different, and so the induced formal

schemes will be different.

Theorem 3.2.1 can be viewed in two ways: as a thickening result (emphasizing the

inverse limit point of view), and as a patching result (emphasizing the analogy with the

classical GAGA of Section 2.2).

40



From the point of view of thickening, given W ⊂ V defined by a sheaf of ideals I, we

have a sequence of subschemes Vn = Spec OV /I
n+1. Each Vn has the same underlying

topological space (viz. that of W = V0), but has a different structure sheaf. The formal

completion
�

of V along W can be regarded as the direct limit of the schemes Vn. What

Theorem 3.2.1 says is that under the hypotheses of that result, to give a coherent sheaf F

on V is equivalent to giving a compatible set of coherent sheaves Fn on the Vn’s (i.e. the

restrictions of F to the Vn’s). The hard part (cf. the proof below) is to show the existence

of a coherent sheaf F that restricts to a given compatible set of coherent sheaves Fn. And

later, the result will tell us that to give a branched cover of V is equivalent to giving a

compatible system of covers of the Vn’s.

On the other hand, the point of view of patching is closer to that of Zariski’s work on

formal holomorphic functions. Given W ⊂ V , we can cover W by affine open subsets Ui.

By definition, giving a coherent formal sheaf on W amounts to giving finitely presented

modules over the rings ÔV,Ui
that are compatible on the overlaps (i.e. over the rings

ÔV,Uij
, where Uij = Ui ∩ Uj). So Theorem 3.2.1 says that to give a coherent sheaf F

on V is equivalent to giving such modules locally (i.e. the pullbacks of F to the “formal

neighborhoods” Spec ÔV,Ui
with agreements on the “formal overlaps” Spec ÔV,Uij

). The

same principle will be applied later to covers.

Example 3.2.3. Let k be a field, let A = k[[t]], and let V =
� 1

A, the projective x-line

over A. So W is the projective x-line over k. Let
�

be the formal completion of V at W .

Theorem 3.2.1 says that giving a coherent OV -module is equivalent to giving a coherent

O � -module.

From the perspective of thickening, to give a coherent O � -module F amounts to

giving an inverse system of coherent modules Fn over the Vn’s, where Vn is the projective

x-line over k[t]/(tn+1). Each finite-level thickening Fn gives more and more information

about the given module, and in the limit, the theorem says that the full OV -module F is

determined.

For the patching perspective, cover W by two open sets U1 (where x 6= ∞) and U2

(where x 6= 0), each isomorphic to the affine k-line. The corresponding rings of holomorphic

functions are k[x][[t]] and k[x−1][[t]], while the ring of holomorphic functions along the

overlap U0 : (x 6= 0,∞) is k[x, x−1][[t]]. As in Examples 3.1.2 and 3.1.3, the spectra S1, S2

of the first two of these rings can be viewed as tubular neighborhoods of the two affine

lines, pinching down near x = ∞ and near x = 0 respectively. The spectrum S0 of the

third ring (the “formal overlap”) can be viewed as a tubular neighborhood that pinches

down near both 0 and ∞. (See Figure 3.1.4.) These spectra can be viewed as “analytic

open subsets” of V , which cover V (in the sense that the disjoint union S1∪S2 is faithfully

flat over V ) — and the theorem says that giving coherent modules over S1 and S2, which

agree over S0, is equivalent to giving a coherent module over V .
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From the above patching perspective, Theorem 3.2.1 can be rephrased as follows, in

a form that is useful in the case of relative dimension 1. In order to be able to apply it to

Galois theory (in Section 3.3 below), we state it as well for algebras and covers.

Theorem 3.2.4. In the situation of Theorem 3.2.1, suppose that U1, U2 are affine open

subsets of W such that U1 ∪ U2 = W , with intersection U0. For i = 0, 1, 2, let Si be the

spectrum of the ring of holomorphic functions along Ui in V . Then the base change functor

�
(V ) →

�
(S1)× � (S0)

�
(S2)

is an equivalence of categories. Moreover the same holds if
�

is replaced by the category of

finite algebras, or of finite branched covers, or of Galois covers with a given Galois group.

Compare this with the restatement of the classical GAGA at Theorem 2.2.6, and with the

results of Ferrand-Raynaud and Artin (Propositions 3.1.6 and 3.1.8). See also Figure 3.1.4

for an illustration of this result in the situation of the above example. As in Theorem 2.2.6,

the above assertions for algebras and covers follow formally from the result for modules,

via the General Principle 2.2.4. (Cf. also [Ha2, Proposition 2.8].)

Remarks 3.2.5. (a) Theorem 3.2.1 does not hold if the properness hypothesis on V is

dropped. For example, Corollary 3.2.2 is false in the case that A = k[[t]] and V =
� 1

A (since

the subscheme (1− xt) in V induces the same formal subscheme of V as the empty set).

Similarly, Theorem 3.2.4 does not hold as stated if V is not proper over A (and note that

S1 ∪S2 is not faithfully flat over V in this situation). But a variant of Theorem 3.2.4 does

hold if V is affine: namely there is still an equivalence if
�

(V ) is replaced by
�

(S), where

S is the ring of holomorphic functions along W in V . This is essentially a restatement

of Zariski’s result that holomorphic functions on an affine open subset of W are strongly

holomorphic. It is also analogous to the version of Cartan’s Theorem A for Stein spaces

[Ca2] (cf. the discussion near the end of Section 2.2 above).

(b) The main content of Theorem 3.2.1 (or Theorem 3.2.4) can also be phrased in

affine terms in the case of relative dimension 1. For instance, in the situation of the above

example with A = k[[t]] and V =
� 1

A, a coherent module M over V is determined up to

twisting by its restriction to
� 1

A = SpecA[x]. Letting S0, S1, S2 be as in the example, and

restricting to the Zariski open subset
� 1

A , we obtain an equivalence of categories

�
(R) →

�
(R1)× � (R0)

�
(R2) (∗)

where R = k[[t]][x]; R1 = k[x][[t]]; R2 = k[x−1][[t]][x]; and R0 = k[x, x−1][[t]]). (Here we

adjoin x in the definition of R2 because of the restriction to
� 1

A .) In this situation, one can

directly prove a formal version of Cartan’s Lemma, viz. that every element of GLn(R0)

can be written as the product of an element of GLn(R1) and an element of GLn(R2). This
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immediately gives the analog of (∗) for the corresponding categories of finitely generated

free modules, by applying this formal Cartan’s Lemma to the transition matrix between the

bases over R1 and R2. (Cf. the discussion in Section 2.2 above, and also [Ha2, Prop. 2.1]

for a general result of this form.) Moreover, combining this formal Cartan’s Lemma with

the fact that every element of R0 is the sum of an element of R1 and an element of R2, one

can deduce all of (∗), and thus essentially all of Theorem 3.2.1 in this situation. (See [Ha2,

Proposition 2.6] for the general result, and see also Remark 1 after the proof of Corollary

2.7 there.)

(c) Using the approach of Remark (b), one can also prove analogous results where

Theorem 3.2.1 does not apply. For example, let A and B be subrings of
�

, let D = A∩B,

and let C be the subring of
�

generated by A and B. (For instance, take A =
�

[1/2] and

B =
�

[1/3], so C =
�
[1/6] and D =

�
.) Then “Cartan’s Lemma” applies to the four rings

A[[t]], B[[t]], C[[t]], D[[t]] (as can be proven by constructing the coefficients of the entries

of the factorization, inductively). So by [Ha2, Proposition 2.6]), giving a finitely generated

module over D[[t]] is equivalent to giving such modules over A[[t]] and B[[t]] together with

an isomorphism between the modules they induce over C[[t]].

Another example involves the ring of convergent arithmetic power series
�
{t}, which

consists of the formal power series f(t) ∈
�
[[t]] such that f converges on the complex disc

|t| < 1. (Under the analogy between
�

and k[x], the ring
�

[[t]] is analogous to k[x][[t]], and

the ring
�
{t} is analogous to k[[t]][x].) Then with A,B,C,D as in the previous paragraph,

“Cartan’s Lemma” applies to A[[t]], B{t}, C[[t]], D{t} [Ha2, Prop. 2.3]. As a consequence,

the analog of Theorem 3.2.4 holds for these rings: viz. giving a fintely presented module

over D{t} is equivalent to giving such modules over A[[t]] and B{t} together with an

isomorphism between the modules they induce over C[[t]] [Ha5, Theorem 3.6].

The formal GAGA (Theorem 3.2.1) above can be proved in a way that is analogous

to the proof of the classical GAGA (as presented in Section 2.2). In particular, there are

two main ingredients in the proof. The first is:

Theorem 3.2.6. (Grothendieck) In the situation of Theorem 3.2.1, if F is a coherent

sheaf on V , then the natural map ε : Hq(V,F) → Hq(
�
, F̂) is an isomorphism for every

q ≥ 0.

This result was announced in [Gr2, Cor. 1 to Thm. 2] and proven in [Gr4, III,

Prop. 5.1.2]. Here the formal Hq’s can (equivalently) be defined either via Čech coho-

mology or by derived functor cohomology. The above theorem is analogous to Theorem

2.2.2, concerning the classical case; and like that result, it is proven by descending induc-

tion on q (using that Hq = 0 for q sufficiently large). As in Section 2.2, it is the key case

q = 0 that is used in proving GAGA. That case is known as Zariski’s Theorem on Formal

Functions [Hrt2, III, Thm. 11.1]; it generalizes the original version of Zariski’s Fundamen-
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tal Theorem on formal holomorphic functions [Za4, §11, p.50], which is the case q = 0 and

F = OV , and which was discussed in Section 3.1 above.

The second key ingredient in the proof of Theorem 3.2.1 is analogous to Theorem 2.2.3:

Theorem 3.2.7. In the situation of Theorem 3.2.1 (with V assumed projective over A),

let M be a coherent OV -module or a coherent O � -module. Then for n � 0 the twisted

sheaf M(n) is generated by finitely many global sections.

Once one has Theorems 3.2.6 and 3.2.7 above, the projective case of Theorem 3.2.1

follows from them in exactly the same manner that Theorem 2.2.1 (classical GAGA) fol-

lowed from Theorems 2.2.2 and 2.2.3 there. The proper case can then be deduced from the

projective case using Chow’s Lemma [Gr4, II, Thm. 5.6.1]; cf. [Gr4, III, 5.3.5] for details.

Concerning why Theorem 3.2.7 holds:

Proof sketch of 3.2.7. In the algebraic case (i.e. for OV -modules), the assertion is again

Serre’s result [Hrt2, Chap. II, Theorem 5.17]; cf. Theorem 2.2.3 above in the algebraic

case. In the formal case (i.e. for O � -modules), the assertion is a formal analog of Cartan’s

Theorem A (cf. the analytic case of Theorem 2.2.3). The key point in proving this formal

analog (as in the analytic version) is to obtain a twist that will work for a given sheaf,

even though the sheaf is not algebraic and we cannot simply clear denominators (as in the

algebraic proof).

To do this, first recall that a formal sheaf M corresponds to an inverse system {Mi}

of sheaves on the finite thickenings Vi. By the result in the algebraic case (applied to

Vi), we have that for each i there is an n such that Mi(n) is generated by finitely many

global sections. But we need to know that there is a single n that works for all i, and with

compatible finite sets of global sections. The strategy is to pick a finite set of generating

sections forM0(n) for some n (and these will exist if n is chosen sufficiently large); and then

inductively to lift them to sections of the Mi(n)’s, in turn. If this is done, Theorem 3.2.7

follows, since the lifted sections automatically generate, by Nakayama’s Lemma.

In order to carry out this inductive lifting, first reduce to the case V =
� m

A for some

m, as in Section 2.2 (viz. embedding the given V in some
� m

A and extending the module by

0). Now let grA be the associated graded ring to A and let grO = (R/I)O⊕ (I/I2)O⊕· · ·

(where O = OV ). Also write grM = M0 ⊕ (I/I2)M1 ⊕ · · ·. Since M is a coherent O � -

module, it follows that grM is a coherent grO-module on
� m

grO. So by the algebraic analog

of Cartan’s Theorem B (i.e. by Serre’s result [Hrt2, III, Theorem 5.2]), there is an integer

n0 such that for all n ≥ n0, H
1(

� m
grO, grM(n)) = 0. But grM(n) =

⊕

i

(Ii/Ii+1)Mi(n),

and so each H1(
� m

A/Ii+1 , (Ii/Ii+1)Mi(n)) = 0. By the long exact sequence associated to

the short exact sequence 0 → (I i/Ii+1)Mi(n) → Mi(n) → Mi−1(n) → 0, this H1 is

the obstruction to lifting sections of Mi−1(n) to sections of Mi(n). So choosing such an
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n which is also large enough so that M0(n) is generated by its global sections, we can

carry out the liftings inductively and thereby obtain the formal case of Theorem 3.2.7.

(Alternatively, one can proceed as in Grothendieck [Gr4, III, Cor. 5.2.4], to prove this

formal analog of Cartan’s Theorem A via a formal analog of Cartan’s Theorem B [Gr4,

III, Prop. 5.2.3].)

As indicated above, Grothendieck’s Existence Theorem is a strong enough form of

“formal GAGA” to be useful in proving formal analogs of (at least parts of) the classical

Riemann Existence Theorem. (This will be discussed further in Section 3.3.) But for

certain purposes, it is useful to have a variant of Theorem 3.2.4 that allows U1 and S1 to

be more local. Namely, rather than taking U1 to be an affine open subset of the closed

fibre, and S1 its formal thickening, we would instead like to take U1 to be the spectrum of

the complete local ring in the closed fibre at some point ω, and S1 its formal thickening

(viz. the spectrum of the complete local ring at ω in V ). In the relative dimension 1 case,

the “overlap” U0 of U1 and U2 is then the spectrum of the fraction field of the complete

local ring at ω in the closed fibre, and S0 is its formal thickening.

More precisely, in the case that V is of relative dimension 1 over A, there is the

following formal patching result. First we introduce some notation and terminology. If

ω is a closed point of a variety V0, then KV0,ω denotes the total ring of fractions of the

complete local ring ÔV0,ω (and thus the fraction field of ÔV0,ω, if the latter is a domain).

Let A be a complete local ring with maximal ideal � , let V be an A-scheme, and let Vn be

the fibre of V over � n+1 (regarding Vn ⊂ Vn+1). Let ω ∈ V0, and let ω′ denote SpecKV0,ω.

Then the ring of holomorphic functions in V at ω′ is defined to be ÔV,ω′ := lim
←
KVn,ω.

(For example, if A = k[[t]] and V is the affine x-line over A, and if ω is the point x = t = 0,

then ω′ = Spec k((x)), KVn,ω = k((x))[t]/(tn+1), and the ring of holomorphic functions at

ω′ is ÔV,ω′ = k((x))[[t]].)

Theorem 3.2.8. Let V be a proper curve over a complete local ring A, let V0 be the fibre

over the closed point of SpecA, let W be a non-empty finite set of closed points of V0, and

let U = V0 −W . Let W ∗ be the union of the spectra of the complete local rings ÔV,ω for

ω ∈ W . Let U∗ = Spec ÔV,U , and let W ′∗ =
⋃

ω∈W Spec ÔV,ω′ , where ω′ = SpecKV0,ω as

above. Then the base change functor

�
(V ) →

�
(W ∗)× � (W ′∗)

�
(U∗)

is an equivalence of categories. The same holds for finite algebras and for (Galois) covers.

This result appeared as [Ha6, Theorem 1], in the special case that V is regular,

A = k[[t1, . . . , tn]] for some field k and some n ≥ 0, and where attention is restricted

to projective modules. The proof involved showing that the appropriate form of Cartan’s

Lemma is satisfied. In the form above, the result appeared at [Pr1, Theorem 3.4]. There, it
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was assumed that the complete local ring A is a discrete valuation ring, but that hypothesis

was not necessary for the proof there. Namely, the proof there first showed the result for

A/ � n, where � is the maximal ideal of A, using Corollary 3.1.9(a) (to the result of Ferrand

and Raynaud [FR]); and afterwards used Grothendieck’s Existence Theorem (Theorem

3.2.1 above) to pass to A. (This use of [FR] was suggested by L. Moret-Bailly.)
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Figure 3.2.9: Example 3.2.10 of Theorem 3.2.8, with V =
� 1

k[[t]], W = one

point. Here
� 1

k[[t]] is covered by the small patch W ∗ = Spec k[[x, t]] and the larger

patch U∗ = Spec k[1/x][[t]]; their overlap is W ′∗ = Spec k((x))[[t]] (upper right).

Compare Fig. 3.1.4.

Example 3.2.10. Let k be a field, let A = k[[t]], and let V =
� 1

A (the projective x-

line over k[[t]]), with closed fibre V0 =
� 1

k over (t = 0). Let W consist of the single

point ω where x = t = 0. In the notation of Theorem 3.2.8, W ∗ = Spec k[[x, t]], which

can be viewed as a “small neighborhood” of ω. The formal completion of V along U :=

V0 −W is U∗ = Spec k[1/x][[t]], whose “overlap” with W ∗ is W ′∗ = Spec k((x))[[t]]. (See

Figure 3.2.9.) According to Theorem 3.2.8, giving a coherent module on V is equivalent

to giving finite modules over W ∗ and over U∗ together with an isomorphism on their

pullbacks (“restrictions”) to W ′∗. The same holds for covers; and this permits modifying

a branched cover of V near ω, e.g. by adding more inertia there (see Remarks 5.1.6(d,e)).

Example 3.2.11. Let k,A be as in Example 3.2.10, and let V be an irreducible normal

curve over A, with closed fibre V0. Then V0 is a k-curve which is connected (by Zariski’s

Connectedness Theorem [Za4, §20, Thm. 14], [Hrt2, III, Cor. 11.3]) but not necessarily

irreducible; let V1, . . . , Vr be its irreducible components. The singular locus of V is a finite

subset of V0, and it includes all the points where irreducible components Vi of V0 intersect.

Let W be a finite subset of V0 that contains this singular locus, and contains at least one

smooth point on each irreducible component Vi of V0. For i = 1, . . . , r let Wi = Vi ∩W ,
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let Ui = Vi −Wi, and consider the ring ÔV,Ui
of holomorphic functions along Ui. Also,

for each point ω in W , we may consider its complete local ring ÔV,ω in V . According to

Theorem 3.2.8, giving a coherent module on V is equivalent to giving finite modules over

each ÔV,Ui
and over each ÔV,ω together with isomorphisms on the “overlaps”. See [HS]

for a formalization of this set-up.

Theorem 3.2.8 above can be generalized to allow V to be higher dimensional over the

base ring A. In addition, by replacing the result of Ferrand-Raynaud (Proposition 3.1.6)

by the related result of Artin (Proposition 3.1.8), one can take a proper morphism Ṽ → V

and work over Ṽ rather than over V itself. Both of these generalizations are accomplished

in the following result:

Theorem 3.2.12. Let (A, � ) be a complete local ring, let V be a proper A-scheme, and

let f : Ṽ → V be a proper morphism. Let W be a finite set of closed points of V ; let

W̃ = f−1(W ) ⊂ Ṽ ; let W ∗ =
⋃

ω∈W Spec ÔV,ω; and let W̃ ∗ = Ṽ ×V W ∗. Let Ũ [resp. Ũ∗]

be the formal completion of Ṽ − W̃ [resp. of W̃ ∗ − W̃ ] along its fibre over � . Then the

base-change functor
�

(Ṽ ) →
�

(W̃ ∗)× � (Ũ∗)

�
(Ũ)

is an equivalence of categories. The same holds for finite algebras and for (Galois) covers.

Note that the scheme U∗ = Spec ÔV,U in the statement of Theorem 3.2.8 is replaced

in Theorem 3.2.12 by a formal scheme, because the complement of W in the closed fibre

of V will no longer be affine, if V is not a curve over its base ring (and so the ring ÔV,U

of Theorem 4 would not be defined here). Similarly, the scheme W ′∗ in Theorem 3.2.8 is

also replaced by a formal scheme in Theorem 3.2.12.

Proof. For n ≥ 0 let Ṽn and W̃ ∗n be the pullbacks of Ṽ and W̃ ∗, respectively, over

An := A/ � n+1. Also, let Ũn = Ṽn− W̃ and Ũ∗n = W̃ ∗n − W̃ ; thus the formal schemes Ũ , Ũ∗

respectively correspond to the inverse systems {Ũn}n, {Ũ∗n}n.

For every n, we have by Corollary 3.1.9(b) (to Artin’s result, Proposition 3.1.8) that

the base change functor

�
(Ṽn) →

�
(W̃ ∗n)× � (Ũ∗n)

�
(Ũn)

is an equivalence of categories. By definition of coherent modules over a formal scheme,

we have that
�

(Ũ) = lim
←

�
(Ũn) and

�
(Ũ∗) = lim

←

�
(Ũ∗n). Moreover, Ṽ is proper over

A; so Grothendieck’s Existence Theorem (Theorem 3.2.1 above) implies that the functor
�

(Ṽ ) → lim
←

�
(Ṽn) is an equivalence of categories. So it remains to show that the corre-

sponding assertion holds for
�

(W̃ ∗); i.e. that
�

(W̃ ∗) → lim
←

�
(W̃ ∗n) is an equivalence of

categories.
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It suffices to prove this equivalence in the case that W consists of just one point ω; and

we now assume that. Let T = ÔV,ω, and let �
ω be the maximal ideal of T , corresponding

to the closed point ω. Also, let � = � T ⊂ T (where � still denotes the maximal ideal of

A). Thus � ⊂ �
ω, and so T is complete with respect to � . Also, W̃ ∗ is proper over the

Noetherian � -adically complete ring T , and W̃ ∗n is the pullback of W̃ ∗ → W ∗ = Spec T

over T/ � n+1. So it follows from Grothendieck’s Existence Theorem 3.2.1 that the desired

equivalence
�

(W̃ ∗) → lim
←

�
(W̃ ∗n) holds. This proves the result in the case of modules.

The analogs for algebras, covers, and Galois covers follow as before using the General

Principle 2.2.4.

Example 3.2.13. Let k,A be as in Examples 3.2.10 and 3.2.11, and let V =
� n

k for some

n ≥ 1, with homogeneous coordinates x0, . . . , xn. Let W consist of the closed point ω of

V where x1 = · · · = xn = t = 0, and let f : Ṽ → V be the blow-up of V at ω. Let

V0 =
� n

k be the closed fibre of V over (t = 0). For i = 1, . . . , n, let Ui be the affine open

subset of V0 given by xi 6= 0, and consider the ring ÔV,Ui
of holomorphic functions along

Ui in V . Also consider the complete local ring ÔV,ω = k[[x1, . . . , xn, t]] at ω in V , and

consider the pullback W̃ ∗ of Ṽ over ÔV,ω (whose fibre over the closed point ω is a copy

of
� n

k ). According to Theorem 3.2.12, giving a coherent module over V is equivalent to

giving finite modules over the rings ÔV,Ui
, and a coherent module over W̃ ∗, together with

compatible isomorphisms on the overlaps. (This uses that giving a coherent module on

the formal completion of V −W along its closed fibre is equivalent to giving compatible

modules over the completions at the Ui’s; here we also identify Ṽ − f−1(W ) with V −W .)

In particular, if n = 1, then Ṽ is an irreducible A-curve whose closed fibre consists of

two projective lines meeting at one point (one being the proper transform of the given line

V0, and the other being the exceptional divisor). This one-dimensional case is also within

the context of Example 3.2.11, and so Theorem 3.2.8 could instead be used. (See also the

end of Example 4.2.4 below.)

Remark 3.2.14. The above formal patching results (Theorems 3.2.4, 3.2.8, 3.2.12) look

similar, though differing in terms of what types of “patches” are allowed. In each case,

we are given a proper scheme V over a complete local ring A, and the assertion says that

if a module is given over each of two patches (of a given form), with agreement on the

“overlap”, then there is a unique coherent module over V that induces them compatibly.

Theorem 3.2.4 (a reformulation of Grothendieck’s Existence Theorem) is the basic version

of formal patching, modeled after the classical result GAGA in complex patching (see

Theorem 2.2.6, where two metric open sets are used as patches). In Theorem 3.2.4, the

patches correspond to thickenings along Zariski open subsets of the closed fibre of V ; see

Example 3.2.3 above and see Figure 3.1.4 for an illustration. This basic type of formal

patching will be sufficient for the results of Section 3.3 below, on the realization of Galois

groups, via “slit covers”.
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More difficult results about fundamental groups, discussed in Section 5 below, require

Theorems 3.2.8 or 3.2.12 instead of Theorem 3.2.4 (e.g. Theorem 5.1.4 and Theorem 5.3.1

use Theorem 3.2.8, while Theorem 5.3.9 uses Theorem 3.2.12). In Theorem 3.2.8 above,

one of the patches is allowed to be much smaller than in Theorem 3.2.4, viz. the spectrum

of the complete local ring at a point, if the closed fibre is a curve; see Examples 3.2.10

and 3.2.11 above, and see Figure 3.2.9 above for an illustration. Theorem 3.2.12 is still

more general, allowing the closed fibre to have higher dimension, and also allowing a more

general choice of “small patch” because of the choice of a proper morphism Ṽ → V ; see

Example 3.2.13 above. The advantage of these stronger results is that the overlap of the

patches is “smaller” than in the situation of Theorem 3.2.4, and therefore less agreement

is required between the given modules. This gives greater applicability to the patching

method, in constructing modules or covers with given properties. (Recall that the similar-

looking patching results at the end of Section 3.1, which allow the construction of modules

by prescribing them along and away from a given closed set, do not directly give results for

covers; but they were used, together with Grothendieck’s Existence Theorem, in proving

Theorems 3.2.8 and 3.2.12 above.)

Section 3.3. Formal patching and constructing covers.

The methods of Section 3.2 allow one to construct covers of algebraic curves over

various fields other than the complex numbers. The idea is to use the approach of Section

2.3, building “slit covers” using formal patching rather than analytic patching (as was

used in Section 2). This will be done by relying on Grothendieck’s Existence Theorem,

in the form of Theorem 3.2.4. (As will be discussed in Section 5, by using variants of

Theorem 3.2.4, in particular Theorems 3.2.8 and 3.2.12, it is possible to make more general

constructions as well. See also [Ha6], [St1], [HS1], and [Pr2] for other applications of those

stronger patching results, concerning covers with given inertia groups over certain points,

or even unramified covers of projective curves.)

The first key result is

Theorem 3.3.1. [Ha4, Theorem 2.3, Corollary 2.4] Let R be a normal local domain other

than a field, such that R is complete with respect to its maximal ideal. Let K be the

fraction field of R, and let G be a finite group. Then G is the Galois group of a Galois

field extension L of K(x), which corresponds to a Galois branched cover of
� 1

K with Galois

group G. Moreover L can be chosen to be regular, in the sense that K is algebraically

closed in L.

Before discussing the proof, we give several examples:

Example 3.3.2. a) Let K =
�

p , or a finite extension of
�

p , for some prime p. Then every

finite group is a Galois group over
� 1

K (i.e. of some Galois branched cover of the K-line),

and so is a Galois group over K(x).
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b) Let k be a field, let n be a positive integer, and let K = k((t1, . . . , tn)), the fraction

field of k[[t1, . . . , tn]]. Then every finite group is a Galois group over
� 1

K , and so over K(x).

c) If K is as in Example (b) above, and if n > 1, then every finite group is a Galois

group over K (and not just over K(x), as above). The reason is that K is separably

Hilbertian, by Weissauer’s Theorem [FJ, Theorem 14.17]. That is, every separable field

extension of K(x) specializes to a separable field extension of K, by setting x = c for

an appropriate choice of c ∈ K; such a specialization of a Galois field extension is then

automatically Galois. (The condition of being separably Hilbertian is a bit weaker than

being Hilbertian, but is sufficient for dealing with Galois extensions. See [FJ, Chapter

11], [Vö, Chapter 1], or [MM, Chapter IV, §1.1] for more about Hilbertian and separably

Hilbertian fields.)

This example remains valid more generally, where the coefficient field k is replaced by

any Noetherian normal domain A that is complete with respect to a prime ideal. Moreover

if A is not a field, then the condition n > 1 can even be weakened to n > 0. In particular,

if K is the fraction field of
�
[[t]] (a field which is much smaller than

�
((t))), then every

finite group is the Galois group of a regular cover of
� 1

K , and is a Galois group over K

itself. The proof of this generalization uses formal A-schemes, and parallels the proof of

Theorem 1; see [Le].

d) Let K be the ring of algebraic p-adics (i.e. the algebraic closure of
�

in
�

p),

or alternatively the ring of algebraic Laurent series in n-variables over a field k (i.e. the

algebraic closure of k(t1, . . . , tn) in k((t1, . . . , tn))). Then every finite group is a Galois

group over
� 1

K . More generally this holds if K is the fraction field of R, a normal henselian

local domain other than a field. This follows by using Artin’s Algebraization Theorem

([Ar3], a consequence of Artin’s Approximation Theorem [Ar2]), in order to pass from

formal elements to algebraic ones. See [Ha4, Corollary 2.11] for details. In the case of

algebraic power series in n > 1 variables, Weissauer’s Theorem then implies that every

finite group is a Galois group over K, as in Example (c).

Theorem 3.3.1 also implies that all finite groups are Galois groups over K(x) for

various other fields K, as discussed below (after the proof).

Theorem 3.3.1 can be proven by carrying over the slit cover construction of Section 2.3

to the context of formal schemes. Before doing so, it is first necessary to construct cyclic

covers that can be patched together (as in Example 2.3.2). Rather than using complex

discs as in §2.3, we will use “formal open subsets”, i.e. we will take the formal completions

of
� 1

R along Zariski open subsets of the closed fibre
� 1

k (where k is the residue field of R).

In order to be able to use Grothedieck’s Existence Theorem to patch these covers together,

we will want the cyclic covers to agree on the “overlaps” of these formal completions — and

this will be accomplished by having them be trivial on these overlaps (just as in Example

2.3.2).
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In order to apply Grothedieck’s Existence Theorem, we will use it in the case of Galois

branched covers (rather than for modules), as in Theorem 3.2.4. There, it was stated just

for two patches U1, U2 and their overlap U0; but by induction, it holds as well for finitely

many patches, provided that compatible isomorphisms are given on overlaps (and cf. the

statement of Theorem 3.2.1).

Grothedieck’s Existence Theorem will be applied to the following proposition, which

yields the cyclic covers Y →
� 1 that will be patched together in order to prove Theo-

rem 3.3.1. The desired triviality on overlaps will be guaranteed by the requirement that

the closed fibre φk : Yk →
� 1

k of the branched cover φ : Y →
� 1

R be a mock cover; i.e.

that the restriction of φk to each irreducible component of Yk be an isomorphism. This

condition guarantees that if U ⊂
� 1

k is the complement of the branch locus of φk, then the

restriction of φk to U is trivial; i.e. φ−1
k (U) just consists of a disjoint union of copies of U .

Proposition 3.3.3. [Ha4, Lemma 2.1] Let (R, � ) be a normal complete local domain

other than a field, with fraction field K and residue field k = R/ � . Let S ⊂
� 1

k be a

finite set of closed points, and let n > 1. Then there is a cyclic field extension L of K(x)

of degree n, such that the normalization of
� 1

R in L is an n-cyclic Galois branched cover

Y →
� 1

R whose closed fibre Yk → P 1
k is a mock cover that is unramified over S.

Proof. We follow the proof in [Ha4], first observing that we are reduced to the situation

that n is a prime power pr. (Namely, if n =
∏

pri

i , and if Yi →
� 1

R are pri

i -cyclic covers,

then we may take Y to be the fibre product of the Yi’s over
� 1

R.)

The easiest case is if the field K contains a primitive nth root of unity ζn. Then we

may take L to be the field obtained by adjoining an nth root of f(x)(f(x)−α)n−1, where

f(x) ∈ R[x] does not vanish at any point of S, and where α ∈ � − {0}. (For example, if k

is infinite, we may choose f(x) = x− c for some c ∈ R; compare Example 2.3.2.)

Next, suppose that K does not contain a primitive nth root of unity but that p is not

equal to the characteristic of K. Then we can consider K ′ = K[ζn], and will construct an

n-cyclic Kummer extension of K ′(x) which descends to a desired extension of K(x). This

will be done using constructions in [Slt] to find an element g(x) ∈ R[ζn, x] such that the

extension yn− g(x) of R[ζn, x] descends to an n-cyclic extension of R[x] whose closed fibre

is a mock cover.

Specifically, first suppose that p is odd. Let s be the order of the cyclic group

Gal(K ′/K), with generator τ : ζn 7→ ζm
n . Choose α ∈ � − {0} and let b = f(x)n − ζnp

2α,

for some f(x) ∈ R[x] which does not vanish on S. Let L′ be the n-cyclic field extension of

K ′(x) given by adjoining an nth root of M(b) = bm
s−1

τ(b)ms−2

· · · τs−2(b)mτs−1(b). Then

L′ = L ⊗K K ′ for some n-cyclic extension L of K(x), by [Slt, Theorem 2.3]. (Note that

the branch locus of the associated cover, which is given by M(b) = 0, is invariant under

τ . Here the various powers of the factors of M(b) are chosen so that τ will commute with

the generator of Gal(L′/K ′(x)), given by y 7→ ζny. These two facts enable the Kummer
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cover of the K ′-line to descend to a cyclic cover of the K-line.)

On the other hand, suppose p = 2. If K contains a square root of −1 then Gal(K ′/K)

is again cyclic, so the same proof as in the odd case works. Otherwise, if n = 2 then take

the extension of K(x) given by adjoining a square root of f(x)2 − 4α. If n = 4, then

adjoin a fourth root of (f(x)4 + 4iα)3(f(x)4 − 4iα) to K ′(x); this descends to a 4-cyclic

extension of K(x) by [Slt, Theorem 2.4]. If n = 2r with r ≥ 3, then Gal(K ′/K) is the

product of a cyclic group of order 2 with generator κ : ζn 7→ ζ−1
n , and another of order

s ≤ 2n−2 with generator ζn 7→ ζm
n for some m ≡ 1(mod 4). Take b = f(x)n + 4ζnα and

a = b2
n−1+1κ(b)2

n−1−1; and (in the notation of the odd case) consider the extension of

K ′(x) given by adjoining an nth root of M(a). By [Slt, Theorem 2.7], this descends to an

n-cyclic extension of K(x).

Finally, there is the case that p is equal to the characteristic of K. If n = p, we can

adjoin a root of an Artin-Schreier polynomial yp − f(x)p−1y − α, where f(x) ∈ R[x] and

α ∈ � −{0}. More generally, with n = pr, we can use Witt vectors, by adjoining the roots

of the Witt coordinates of Fr(y)− f(x)p−1y−α, where f(x) and y denote the elements of

the truncated Witt ring Wr(R[x, y0, . . . , yr−1]) with Witt coordinates (f(x), 0, . . . , 0) and

(y0, . . . , yn) respectively, and where Fr denotes Frobenius.

In each of these cases, one checks that the extension L of K(x) has the desired prop-

erties. (See [Ha4, Lemma 2.1] for details.)

Using this result together with Grothendieck’s Existence Theorem (for covers), one

easily obtains Theorem 3.3.1:

Proof of Theorem 3.3.1. Let G be a finite group, and let g1, . . . , gr be generators. Let

Hi be the cyclic subgroup of G generated by gi. By Proposition 3.3.3, for each i there is

an irreducible normal Hi-Galois cover Yi →
� 1

R whose closed fibre is a mock cover of
� 1

k ;

moreover these covers may be chosen inductively so as to have disjoint branch loci Bi (by

choosing them so that the branch loci along the closed fibre are disjoint). For i = 1, . . . , r,

let Ui =
� 1

R −
⋃

j 6=i Bj , let Ri be the ring of holomorphic functions on Ui along its closed

fibre (i.e. the � -adic completion of the ring of functions on Ui), and let Ûi = SpecRi. Also

let U0 =
� 1

R −
⋃r

j=1Bj (so that U0 = Ui ∩ Uj for any i 6= j), let H0 = 1 ⊂ G, and let

Y0 =
� 1

R. Then the restriction Ŷi = Yi× �
1
R
Ûi is an irreducible normal Hi-Galois cover, and

we may identify the pullback Ŷi ×Ûi
Û0 with the trivial cover Ŷ0 = IndHi

1 Û0. Finally, let

Ẑi = IndG
Hi
Ŷi; this is a (disconnected) G-Galois cover of Ûi, equipped with an isomorphism

Ẑi ×Ûi
Û0 →∼ Ẑ0. By Grothendieck’s Existence Theorem for covers (see Theorem 3.2.4),

there is a unique G-Galois cover Z →
� 1

R whose restriction to Ûi is Ẑi, compatibly. This

cover is connected since its closed fibre is (because H1, . . . , Hr generate G); it is normal

since each Ẑi is; and so it is irreducible (being connected and normal). The closed fibre

of Z is a mock cover (and so reducible), since the same is true for each Ẑi; and so K is

algebraically closed in the function field L of Z. So L is as desired in Theorem 3.3.1.
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Remark 3.3.4. A variant approach to Theorem 3.3.1 involves proving a modification of

Proposition 3.3.3 — viz. requiring that Yk contains a k-point that is not in the ramification

locus of Yk →
� 1

k, rather than requiring that Yk →
� 1

k is a mock cover. This turns out

to be sufficient to obtain Theorem 3.3.1, e.g. by showing that after a birational change

of variables on
� 1, the cover Y is taken to a cover whose closed fibre is a mock cover

(and thereby recapturing the original proposition above). This modified version of the

proposition can be proven by first showing that there is some n-cyclic extension of K(x),

e.g. as in [FJ, Lemma 24.46]; and then adjusting the extension by a “twist” in order

to obtain an unramified rational point [HV, Lemma 4.2(a)]. (In general, this twisting

method works for abelian covers, and so in particular for cyclic covers.) This modified

proposition first appeared in [Li], where it was used to provide a proof of Theorem 3.3.1

using rigid analytic spaces, rather than formal schemes. See Theorem 4.3.1 below for a

further discussion of this.

As mentioned just after the statement of Theorem 3.3.1 above, that result can be used

to deduce that many other fields K have the same inverse Galois property, even without

being complete. In particular:

Corollary 3.3.5. [Ha3, Corollary 1.5] Let k be an algebraically closed field. Then every

finite group is a Galois group over k(x); or equivalently, it is the Galois group of some

branched cover of the k-line.

In the case of k =
�
, this result is classical, and was the subject of Section 2 above,

where the proof involved topology and analytic patching. For a more general algebraically

closed field, the proof uses Theorem 3.3.1 above and a trick that relies on the fact that

every finite extension is given by finitely many polynomials (also used in the remark after

Corollary 2.1.5):

Proof of Corollary 3.3.5. Let R = k[[t]] and K = k((t)). Applying Theorem 3.3.1 to R

and a given finite group G, we obtain an irreducible G-Galois branched cover Y →
� 1

K

such that K is algebraically closed in its function field. This cover is of finite type, and

so it is defined (as a G-Galois cover) over a k-subalgebra A of K of finite type; i.e. there

is an irreducible G-Galois branched cover YA →
� 1

A such that YA ×A K ≈ Y as G-Galois

branched covers of
� 1

K . By the Bertini-Noether Theorem [FJ, Prop. 9.29], there is a non-

zero element α ∈ A such that the specialization of YA to any k-point of SpecA[α−1] is

(geometrically) irreducible. Any such specialization gives an irreducible G-Galois branched

cover of
� 1

k .

In fact, as F. Pop later observed [Po4], the proof of the corollary relied on k being

algebraically closed only to know that every k-variety with a k((t))-point has a k-point.

So for any field k with this more general property (a field k that is “existentially closed in

k((t))”), the corollary holds as well. Moreover the resulting Galois extension of k(x) can
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be chosen to be regular, i.e. with k algebraically closed in the extension, by the geometric

irreducibility assertion in the Bertini-Noether Theorem. Pop proved [Po4, Proposition 1.1]

that the fields k that are existentially closed in k((t)) can be characterized in another way:

they are precisely those fields k with the property that every smooth k-curve with a k-

rational point has infinitely many k-rational points. He called such fields “large”, because

they are sufficiently large within their algebraic closures in order to recapture the finite-

type argument used in the above corollary. (In particular, if k is large, then any extension

field of k, contained in the algebraic closure of k, is also large [Po4, Proposition 1.2].) Thus

we obtain the following strengthening of the corollary:

Theorem 3.3.6 [Po4] Let k be a large field, and let G be a finite group.

a) Then G is the Galois group of a Galois field extension L of k(x), and the extension may

be chosen to be regular.

b) If k is (separably) Hilbertian, then G is a Galois group over k.

Here part (b) follows from part (a) as in Example 3.3.2(c).

Example 3.3.7. a) Let K be a complete valuation field. Then K is large by [Po4,

Proposition 3.1], the basic idea being that K satisfies an Implicit Function Theorem (and

so one may move a K-rational point a bit to obtain other K-rational points). So every

finite group is a Galois group over K(x), by Theorem 3.3.6. In particular, this is true for

the fraction field K of a complete discrete valuation ring R — as was already shown in

Theorem 3.3.1. On the other hand, Theorem 3.3.6 applies to complete valuation fields K

that are not of that form.

b) More generally, a henselian valued field K (i.e. the fraction field of a henselian

valuation ring) is large by [Po4, Proposition 3.1]. So again, every finite group is a Galois

group over K(x). If the valuation ring is a discrete valuation ring, then this conclusion

can also be deduced using the Artin Algebraization Theorem, as in Example 3.3.2(d). But

as in Example (a) above, K is large even if it is not discretely valued (in which case the

earlier example does not apply).

c) It is immediate from the definition that a field k will be large if it is PAC (pseudo-

algebraically closed); i.e. if every smooth geometrically integral k-variety has a k-point.

Fields that are PRC (pseudo-real closed) or PpC (pseudo-p-adically closed) are also large.

In particular, the field of all totally real algebraic numbers is large, and so is the field of

totally p-adic algebraic numbers (i.e. algebraic numbers α such that
�

(α) splits completely

over the prime p). Hence every finite group is a Galois group over k(x), where k is any of

the above fields. And if k is Hilbertian (as some PAC fields are), then every finite group

is therefore a Galois group over k. See [Po4, Section 3] and [MB1, Thm. 1.3] for details.

d) Let K be a field that contains a large subfield K ′. If K is algebraic over K ′ then K

is automatically large [Po4, Proposition 1.2]; but otherwise K need not be large (e.g.
�
(t)
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is not large). Nevertheless, every finite group is the Galois group of a regular branched

cover of
� 1

K . The reason is that this property holds for K ′; and the function field F of

the cover of
� 1

K′ is linearly disjoint from K over K ′, because K ′ is algebraically closed

in F (by regularity). In particular, we may use this approach to deduce Theorem 3.3.1

from Theorem 3.3.2, since every normal complete local domain R other than a field must

contain a complete discrete valuation ring R0 — whose fraction field is large. (Namely, if

R contains a field k, then take R0 = k[[t]] for some non-zero element t in the maximal ideal

of R; otherwise, R contains
�

p for some p.) Similarly, we may recover Example 3.3.2(d)

in this way (taking the algebraic Laurent series in k((t1))), even though it is not known

whether k((t1, . . . , tn)) and its subfield of algebraic Laurent series are large. (Note that

k((t1, . . . , tn)) is not a valuation field for n > 1, unlike the case of n = 1.)

Remark 3.3.8. a) An arithmetic analog of Example 3.3.7(b) holds for the ring T =
�
{t}

of power series over
�

convergent on the open unit disc. Namely, replacing Grothendieck’s

Existence Theorem by its arithmetic analog discussed in Remark 3.2.5(c) above, one ob-

tains an analog of Theorem 3.3.1 above for
�
{t} [Ha5, Theorem 3.7]; i.e. that every finite

group is a Galois group over the fraction field of
�
{t} (whose model over Spec

�
{t} has a

mock fibre modulo (t)). Moreover, the construction permits one to construct the desired

Galois extension L of fracT so that it remains a Galois field extension, with the same

Galois group, even after tensoring with the fraction field of Tr =
�

r+[[t]], the ring of power

series over
�

convergent on a neighborhood of the closed disc |t| ≤ r. (Here 0 < r < 1.)

Even more is true: Using an arithmetic analog of Artin’s Approximation Theorem (see

[Ha5, Theorem 2.5]), it follows that these Galois extensions Lr of Tr can simultaneously

be descended to a compatible system of Galois extensions Lh
r of fracT h

r , where T h
r is the

ring of algebraic power series in Tr. Surprisingly, the intersection of the rings T h
r has frac-

tion field
�

(t) [Ha2, Theorem 3.5] (i.e. every algebraic power series over
�

that converges

on the open unit disc is rational). So since the Galois extensions L,Lr, L
h
r (for 0 < r < 1)

are all compatible, this suggests that it should be possible to descend the system {Lh
r} to

a Galois extension Lh of
�

(t). If this could be done, it would follow that every finite group

would be a Galois group over
�

(t) and hence over
�

(since
�

is Hilbertian). See [Ha5,

Section 4] for a further discussion of this (including examples that demonstrate pitfalls).

b) The field
� ab (the maximal abelian extension of

�
) is known to be Hilbertian [Vö,

Corollary 1.28] (and in fact any abelian extension of a Hilbertian field is Hilbertian [FJ,

Theorem 15.6]). It is conjectured that
� ab is large; and if it is, then Theorem 3.3.6(b) above

would imply that every finite group is a Galois group over
� ab . Much more is believed:

The Shafarevich Conjecture asserts that the absolute Galois group of
� ab is a free profinite

group on countably many generators. This conjecture has been posed more generally, to

say that if K is a global field, then the absolute Galois group of Kcycl (the maximal

cyclotomic extension of K) is a free profinite group on countably many generators. (Recall
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that
� ab =

� cycl , by the Kronecker-Weber Theorem in number theory.) The Shafarevich

Conjecture (along with its generalization to arbitrary number fields) remains open —

though it too would follow from knowing that
� ab is large (see Section 5). On the other

hand, the generalized Shafarevich Conjecture has been proven in the geometric case, i.e.

for function fields of curves [Ha10] [Po1] [Po3]; see Section 5 for a further discussion of

this.

As another example of the above ideas, consider covers of the line over finite fields.

Not surprisingly (from the terminology), finite fields
�

q are not large. And it is unknown

whether every finite group G is a Galois group over k(x) for every finite field k. But it is

known that every finite group G is a Galois group over k(x) for almost every finite field k:

Proposition 3.3.9. (Fried-Völklein, Jarden, Pop) Let G be a finite group. Then for all

but finitely many finite fields k, there is a regular Galois field extension of k(x) with Galois

group G.

Proof. First consider the case that k ranges just over prime fields
�

p . By Example 3.3.2(d)

(or by Theorem 3.3.6 and Example 3.3.7(b) above), G is a regular Galois group over the

field
�

((t))h(x), where
�

((t))h is the field of algebraic Laurent series over
�

(the t-adic

henselization of
�

(t)). Such a G-Galois field extension is finite, so it descends to a G-Galois

field extension of K(x), where K is a finite extension of
�

(t) (in which
�

is algebraically

closed, since K ⊂
�

((t))). This extension of K(x) can be interpreted as the function

field of a G-Galois branched cover Z →
� 1

V ; here V is a smooth projective curve over
�

with function field K, viz. a finite branched cover of the t-line, say of genus g (see

Figure 3.3.10). For all points ν ∈ V outside some finite set Σ, the fibre of Z over ν is

an irreducible G-Galois cover of
� 1

k(ν), where k(ν) is the residue field at ν. By taking a

normal model Z → V of Z → V over
�

, we may consider the reductions Vp and Zp for any

prime p. For all primes p outside some finite set S, the reduction Vp is a smooth connected

curve over
�

p of genus g; the reduction Zp is an irreducible G-Galois branched cover of
� 1

Vp
; and any specialization of this cover away from the reduction Σp of Σ is an irreducible

G-Galois cover of the line. According to the Weil bound in the Riemann Hypothesis for

curves over finite fields [FJ, Theorem 3.14], the number of k-points on a k-curve of genus

g is at least |k| + 1 − 2g
√

|k|. So for all p 6∈ S with p > (2g + deg(Σ))2, the curve Zp

has an
�

p -point that does not lie in the reduction of Σ. The specialization at that point

is a regular G-Galois cover of
� 1�

p
, corresponding to a regular G-Galois field extension of

�
p(x).

For the general case, observe that if G is a regular Galois group over
�

p(x), then it

is also a regular Galois group over
�

q (x) for every power q of p (by base change). Now

consider the finitely many primes p such that G is not known to be a regular Galois

group over
�

p(x). Arguing as above (but using
�

p((t)) instead of
�

((t))), we obtain a

geometrically irreducible G-Galois cover Yp →
� 1

Wp
, for some

�
p -curve Wp. Again using
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Figure 3.3.10: Base of the Galois cover Z →
� 1

V in the first case of the proof of

Proposition 3.3.9. For most choices of ν in V , the restriction of Z over ν is an

irreducible cover of the projective line; and for most primes p, the same is true

for its reduction mod p.

the Weil bound, there is a constant cp such that if q is a power of p and q > cp, then Wp

has an
�

q -point at which Yp specializes to a regular G-Galois cover of
� 1�

q
. So if c is chosen

larger than each of the finitely many cp’s (as p ranges over the exceptional set of primes),

then G is a regular Galois group over k(x) for every finite field k of order ≥ c.

Remark 3.3.11. a) The above result can also be proven via ultraproducts, viz. using that

a non-principal ultraproduct of the
�

q ’s is large (and even PAC); see [FV1, §2.3, Cor. 2]. In

[FV1], just the case of prime fields was shown. But Pop showed that the conclusion holds

for general finite fields (as in the statement of Proposition 3.3.9), using ultraproducts.

b) It is conjectured that in fact there are no exceptional finite fields in the above

result, i.e. that every finite group is a Galois group over each
�

q (x). But at least, it would

be desirable to have a better understanding of the possible exceptional set. For this, one

could try to make more precise the sets S and Σ in the above proof, and also the bound

on the exceptional primes. (The bound in the above proof is certainly not optimal.)

Remark 3.3.12. a) The class of large fields also goes under several other names in the lit-
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erature. Following the introduction of this notion by Pop in [Po4] under the name “large”,

D. Haran and M. Jarden referred to such fields as “ample” [HJ1]; P. Dèbes and B. De-

schamps called them fields with “automatique multiplication des points lisses existants”

(abbreviated AMPLE) [DD]; J.-L. Colliot-Thélène has referred to such fields as “epais”

(thick); L. Moret-Bailly has called them “fertile” [MB2]; and the present author has even

suggested that they be called “pop fields”, since the presence of a single smooth rational

point on a curve over such a field implies that infinitely many rational points will “pop

up”.

b) By whatever name, large fields form the natural context to generalize Corollary 3.3.5

above. As noted in Example 3.3.7(d), the class of fields K that contain large subfields also

has the property that every finite group is a regular Galois group over K(x); and this

class is general enough to subsume Theorem 3.3.1, as well as Theorem 3.3.6. On the other

hand, this Galois property holds for the fraction field of
�
[[t]], as noted at the end of

Example 3.3.2(c); but that field is not known to contain a large subfield. Conjecturally,

every field K has the regular Galois realization property (see [Ha9, §4.5]; this conjecture

has been referred to as the regular inverse Galois problem). But that degree of generality

seems very far from being proved in the near future.

c) In addition to yielding regular Galois realizations, large fields have a stronger prop-

erty: that every finite split embedding problem is properly solvable (Theorem 5.1.9 below).

Conjecturally, all fields have this property (and this conjecture subsumes the one in Re-

mark (b) above). See Section 5 for more about embedding problems, and for other results

in Galois theory that go beyond Galois realizations over fields. The results there can be

proven using patching theorems from Section 3.2 (including those at the end of §3.2, which

are stronger than Grothendieck’s Existence Theorem).

We conclude this section with a reinterpretation of the above patching construc-

tion in terms of thickening and deformation. Namely, as discussed after Theorem 3.2.1

(Grothendieck’s Existence Theorem), that earlier result can be interpreted either as a

patching result or as a thickening result. Theorem 3.3.1 above, and its Corollary 3.3.5, re-

lied on Grothendieck’s Existence Theorem, and were presented above in terms of patching.

It is instructive to reinterpret these results in terms of thickening, and to compare these

results from that viewpoint with the slit cover construction of complex covers, discussed

in Section 2.3.

Specifically, the proof of Theorem 3.3.1 above yields an irreducible normal G-Galois

cover Z →
� 1

R whose closed fibre is a connected mock cover Z0 →
� 1

k . Viewing SpecR

as a “small neighborhood” of Spec k, we can regard
� 1

R as a “tubular neighborhood” of
� 1

k ; and the construction of Z →
� 1

R can be viewed as a thickening (or deformation) of

Z0 →
� 1

k , built in such a way that it becomes irreducible (by making it locally irreducible

near each of the branch points). Regarding formal schemes as thickenings of their closed
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fibres (given by a compatible sequence of schemes over the R/ � i), this construction be

viewed as the result of infinitesimal thickenings (over each R/ � i) which in the limit give

the desired cover of
� 1

R.

From this point of view, Corollary 3.3.5 above can be viewed as follows: As before,

take R = k[[t]] and as above obtain an irreducible normal G-Galois cover Z →
� 1

R. Since

this cover is of finite type, it is defined over a k[t]-subalgebra E of R of finite type (i.e.

there is a normal irreducible G-Galois cover ZE →
� 1

E that induces Z →
� 1

R), such that

there is a maximal ideal � of E with the property that the fibre of ZE →
� 1

E over the

corresponding point ξ � is isomorphic to the closed fibre of Z →
� 1

R (viz. it is the mock cover

Z0 →
� 1

k). The cover ZE →
� 1

E can be viewed as a family of covers of
� 1

k , parametrized

by the variety V = SpecE, and which provides a deformation of Z0 →
� 1

k. A generically

chosen member of this family will be an irreducible cover of
� 1

k , and this G-Galois cover is

then as desired.

In the case that k =
�
, we can be even more explicit. There, we are in the easy

case of Proposition 3.3.3 above, where the field contains the roots of unity, ramification is

cyclic, and cyclic extensions are Kummer. So choosing generators g1, . . . , gr of G of orders

n1, . . . , nr, and choosing corresponding branch points x = a1, . . . , ar for the mock cover

Z0 →
� 1� , we may choose Z →

� 1
R so that it is given locally by the (normalization of the)

equation zni

i = (x − ai)(x − ai − t)ni−1 in a neighborhood of a point over x = ai, t = 0

(and so the mock cover is given locally by zni

i = (x − ai)
ni). By Artin’s Algebraization

Theorem [Ar3] (cf. Example 3.3.2(d) above), this cover descends to a cover Z →
� 1

Rh ,

where Rh ⊂ R =
�
[[t]] is the ring of algebraic power series. Since that cover is of finite

type, it can be defined over a
�
[t]-subalgebra of Rh of finite type; i.e. the cover further

descends to a cover YC →
� 1

C , where C is a complex curve together with a morphism

C →
� 1� = Spec

�
[t], and where the fibre of YC over some point ξ ∈ C over t = 0 is the

given mock cover Z0 →
� 1� . This family YC →

� 1
C can be viewed as a family of covers of

� 1� deforming the mock cover; and this deformation takes place by allowing the positions

of the branch points to move. By the choice of local equations, if we take a typical point on

C near ξ, the corresponding cover has 2r branch points x = a1, a
′
1, . . . , ar, a

′
r, with branch

cycle description

(g1, g
−1
1 , . . . , gr, g

−1
r ) (∗)

(see Section 2.1 and the beginning of Section 2.3 for a discussion of branch cycle descrip-

tions). So this is a slit cover, in the sense of Example 2.3.2. See also the discussion

following that example, concerning the role of the mock cover as a degeneration of the

typical member of this family (in which a′i is allowed to coalesce with ai).

For more general fields k, we may not be in the easy case of Proposition 3.3.3, and

so may have to use more complicated branching configurations. As a result, the deformed

covers may have more than 2r branch points, and they may come in clusters rather than in
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pairs. Moreover, while the tamely ramified branch points will move in
� 1 as one deforms

the cover, wildly ramified branch points can stay at the same location (with just the

Artin-Schreier polynomial changing; see the last case in the proof of Proposition 3.3.3).

Still, in the tame case, by following this construction with a further doubling of branch

points, it is possible to pair up the points of the resulting branch locus so that the resulting

cover has “branch cycle description” of the form (h1, h
−1
1 , . . . , hN , h

−1
N ), where each hi is

a power of some generator gj . (Here, since we are not over
�
, the notion of branch cycle

description will be interpreted in the weak sense that the entries of the description are

generators of inertia groups at some ramification points over the respective branch points.)

This leads to a generalization of the “half Riemann Existence Theorem” (Theorem 2.3.5)

from
�

to other fields. Such a result (though obtained using the rigid approach rather

than the formal approach) was proven by Pop [Po2]; see Section 4.3 below.

The construction in the tame case can be made a bit more general by allowing the

r branch points x = ai of the mock cover to be deformed with respect to independent

variables. For example, in the case k =
�
, we can replace the ring R by k[[t1, t

′
1, . . . , tr, t

′
r]]

and use the (normalization of the) local equation zni

i = (x − ai − ti)(x − ai − t′i)
ni−1

in a neighborhood of a point over x = ai on the closed fibre t = t′ = 0. Using Artin’s

Algebraization Theorem, we obtain a 2r-dimensional family of covers that deform the

given mock cover, with each of the r mock branch points splitting in two, each moving

independently. The resulting family Z →
� 1

V is essentially a component of a Hurwitz

family of covers (e.g. see [Fu1] and [Fr1]), which is by definition a total family Y →
� 1

H

of covers of
� 1 over the moduli space H for branched covers with a given branch cycle

description and variable branch points (the Hurwitz space). Here, however, a given cover

is permitted to appear more than once in the family (though only finitely often), and part

of the boundary of the Hurwitz space is included (in particular, the point of the parameter

space V corresponding to the mock cover). That is, there is a finite-to-one morphism

V → H̄, where H̄ is the compactification of H. From this point of view, the desirability

of using branch cycle descriptions of the form (∗) is that one can begin with an easily

constructed mock cover, and use it to construct algebraically a component of a Hurwitz

space with this branch cycle description. See [Fr3] for more about this point of view.

As mentioned above, still more general formal patching constructions of covers can be

performed if one replaces Grothendieck’s Existence Theorem by the variations at the end

of Section 3.2. In particular, one can begin with a given irreducible cover, and then modify

it near one point (e.g. by adding ramification there). Some constructions along these lines

will be discussed in Section 5, in connection with the study of fundamental groups.
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