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1 Introduction and motivation

This article corresponds to the lecture series given by the author at the Luxembourg Winter
School, on the topic of patching in algebra.

Those lectures were complementary to the ones delivered by Moshe Jarden. His lectures
focused on patching in Galois theory, whereas these focused more on applications of patching
in other aspects of algebra, including variants of Galois theory.

This article is also complementary to the author’s long manuscript [Hrb03] on patching
and Galois theory. That manuscript focused on the approaches of formal and rigid patching.
In contrast, the Luxembourg lectures of Moshe Jarden focused on the approach of algebraic
patching, and the lectures presented here focused on an approach called patching over fields.

The lectures presented here were informal in tone, emphasizing the ideas and intuition,
providing pictures, and sketching proofs in key cases, rather than seeking generality and
completeness. A similar approach is taken here. The presentation draws heavily on [HH10|,
[HHKO09], and [HHK11a], co-authored with Julia Hartmann and with Daniel Krashen. The
reader is referred to those manuscripts for more detail.

In the lectures, and in this manuscript, we describe patching for vector spaces and related
algebraic objects over function fields of curves that are defined over complete discretely valued
fields such as k((¢)). We give applications to inverse Galois theory and related questions.
After describing variants on the patching set-up to allow greater generality and flexibility,
we consider the problem of patching torsors, which are useful in classifying many other types
of algebraic objects. We then build on the results about torsors to study the notion of local-
global principles. Such principles, which are analogous to classical results about global fields,
can be regarded in a sense as a complement to patching (studying given global objects by
looking locally, rather than constructing global objects by using local ones). Applications
are then given to quadratic forms and central simple algebras.

First, we begin with a discussion of the historical background and context of patching.



1.1 Patching in analysis

The idea for patching originated in analysis in the nineteenth century, to construct global
objects from local objects; i.e. from objects that are defined on subsets and agree on overlaps.
A typical situation is represented by this picture, where objects over S; and S, that agree
over Sy = 51 N Sy are patched to yield an object over S = 57 U Sy:

S=51U85,

In the analytic situation, the sets S; could be open subsets of a complex manifold. The
objects to be patched might be vector bundles, or perhaps finite extensions of the fields of
meromorphic functions on the sets S;.

An early application of this approach concerned Hilbert’s 21st problem, on the existence
of a linear linear differential equation having a prescribed monodromy group. See Section 3.2
below for a further discussion of this, including more recent algebraic generalizations.

1.2 From analysis to algebra

Serre’s paper GAGA [Ser56] made it possible to pass between complex algebraic geometry
(in which one uses classical metric open sets) and algebraic geometry with respect to the
Zariski topology. In particular, it showed that the cohomology of a coherent sheaf on a
complex projective algebraic variety agrees with the cohomology of the induced sheaf in the
analytic topology. As aresult, one can, for example, cite results in the text by Griffiths-Harris
(|GHT78]) in the context of the text by Hartshorne ([Hts77]).

Serre’s result can be viewed as a form of patching that passes from analysis to algebra.
Namely, one can cover a complex algebraic variety V' by metric open sets S;. GAGA says,
for example, that giving holomorphic differential forms w; on S; for all 4, which agree on the
overlaps S; NS}, is equivalent to giving a regular (algebraic) differential form w on V.

For a more detailed discussion of GAGA from the perspective of patching, see Section 2
of [Hrb03].

1.3 Patching in algebra

The main difficulty in carrying over the patching approach to a more purely algebraic sit-
uation is that non-empty Zariski open subsets are very large — in fact, in an irreducible
variety, they are dense, with the complement being of lower dimension. Thus, for example,
if the objects to be patched are finite extensions of the fields F; of rational functions on the
sets S; C S, then the fields F; are just isomorphic to the field F' of rational functions on
the variety S itself, and the procedure would not yield anything new. In order to be able to
construct new extensions of the field F' (e.g. for purposes of Galois theory), one would need
smaller sets S; to consider, whose function fields would strictly contain F'.



Ironically, a way of dealing with the limitation of the Zariski topology is due to Zariski
himself. His approach used completions. As a first example, consider the affine (x,t)-plane
A? = Spec(k[z, t]) over a field k. Viewing formal power series as “functions defined near the
origin,” we can take the ring k[[z, ]| and its spectrum Spec(k[[z, t]]), viewing this as a small
neighborhood of the origin. Here the power series ring k[[z, t]] is the completion of the ring
k[x,t] at the maximal ideal m = (z,y) corresponding to the origin.

The corresponding picture is:

©

The function field of Spec(k[[x,t]]) is the fraction field k((x,t)) of k[[x,t]], called the field of
Laurent series in x,t over k. (Note, though, that this fraction field is not complete. Also,
the elements in this field are not necessarily series in z and t; e.g. 1/(z +t).)

As a more sophisticated example, we can consider a “small neighborhood” of the z-axis in
AZ. The x-axis is defined by the ideal (¢) in k[z,]; and motivated by the previous example
we can take the t-adic completion of k[x,t|. This is nh_)n;lo klxz,t]/(t") = Ek[x][[t]]. Its spectrum

can be viewed as a “tubular neighborhood” of the z-axis in A2, made up by a union of small
neighborhoods of all the closed points on the z-axis. Intuitively, this tubular neighborhood
“pinches down” near the point at infinity, since that point is not on the (affine) z-axis.

Note, for example, that the element = — ¢ defines a curve in the affine (z,¢)-plane that
meets this neighborhood non-trivially, intersecting the x-axis at the origin; and correspond-
ingly, (x —t) is a proper ideal in the ring k[z][[t]]. On the other hand, the element 1 — xt
defines a curve in the affine plane that does not meet this tubular neighborhood, since it
approaches the z-axis at * = oo; and indeed, (1 — xt) is the unit ideal in k[z][[t]].

1.4 Formal patching

Grothendieck developed the above idea into the theory of formal schemes. Using that theory,
one can do formal patching. In this situation, one can regard a ring like k[x][[t]] as analogous
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to the ring of holomorphic functions on a complex metric open set; and by giving objects
over such rings one can obtain a more global object.

The key theorem is a analog of Serre’s GAGA in the context of formal schemes. It
was referred to as GFGA in Grothendieck’s paper [Gro59| of the same name, to emphasize
the parallel and to explain that it related the formal and algebraic contexts, just as Serre’s
result related the analytic and algebraic contexts. This result later came to be known as
Grothendieck’s Existence Theorem. See |Gro61, Corollaire 5.1.6].

Beginning the 1980’s, I used this approach in Galois theory, e.g. to realize all finite groups
as Galois groups over fields such as K (z) where K is the fraction field of a complete local
domain that is itself not a field (e.g. K = Q, for some prime p, or K = k((t)) for some
field k). See [Hrb87]. Other results included the freeness of the absolute Galois group of
k(x) for k an arbitrary algebraically closed field (|[Hrb95|), and the proof of Abhyankar’s
Conjecture on the Galois groups of étale covers of affine curves in characteristic p ([Hrb94]).
See Section 1.5 below for a further discussion of such results and related work of others. Also
see Section 3 of [Hrb03].

1.5 Rigid patching

Another form of patching is based on Tate’s theory of rigid analytic spaces (|Tat71]). This
theory is modeled on that of complex analytic spaces, but with differences to account for
the fact that the topology induced by an ideal is totally disconnected. These differences
allow analytic continuation to be unique, as when working over C, thereby leading to a
“rigid” structure. (In contrast, a “floppy” structure that would result from using a more
naive construction in this totally disconnected context.)

Rigid analytic spaces are phrased in terms of convergent power series in a non-archimedean
metric. For example, for the affine z-line over K = k((t)), the ring K{z} of power series
in K[[x]] that are convergent on the closed t-adic unit disc turns out to be the same as the
ring k[z][[t][t~!], which is a localization of the ring considered above. In fact, Raynaud later
reinterpreted rigid analytic spaces in terms of formal schemes, roughly giving a dictionary
between the two frameworks in the case that K is a complete discretely valued field. (See
[Ray74].)

In the early 1990’s, Serre suggested that results in Galois theory could also be obtained
via rigid patching. Using this approach, results in [Hrb87| were then reproved by Q. Liu in
[Liu95|. Later, this approach was used to prove many other results related to Galois theory.
In [Ray94|, M. Raynaud used rigid patching (and other methods) to prove Abhyankar’s
Conjecture in the case of the affine line; this was one of the ingredients in the proof of the
general case in [Hrb94|. F. Pop proved a number of results on the structure of absolute
Galois groups of function fields in a series of papers including [Pop94| and [Pop95|, the latter
of which gave a rigid proof of the result proved at the same time in [Hrb95| using formal
patching. See Section 4 of [Hrb03] for more about the use of rigid patching in Galois theory.



1.6 Algebraic patching

In the mid to late 1990’s, another framework for patching was established, in work of D. Ha-
ran, M. Jarden and H. Voélklein. This framework, called algebraic patching, avoids the ma-
chinery of Grothendieck and Tate, and is designed to isolate what is needed for applications
to Galois theory. As the name indicates, the approach avoids mention of geometric objects,
preferring to focus on the rings and fields involved. Like rigid patching, it relies on conver-
gent power series with respect to a non-archimedean metric, but without mention of rigid
analytic spaces. Key ingredients include versions of Cartan’s Lemma and the Weierstrass
Preparation Theorem.

Some of the results that had been shown by formal or rigid methods were reproven in
this framework, as well as additional results concerning the Galois theory of function fields
of curves. See [HV96] and [HJ98| for early papers in this direction. See also the lecture
notes of Moshe Jarden at the Luxembourg Winter School, and also the volumes [Jar11] and
[V6196].

1.7 Patching over fields

Beginning in 2006, a framework of patching over fields was developed by Julia Hartmann
and myself in [HH10], for the purpose of making patching more applicable to other algebraic
contexts, and also to avoid heavy machinery. It uses and emphasizes the fraction fields of
the rings that appear in formal and rigid approaches. In this way, the spaces that are used
in those earlier approaches, and sheaves of functions on those spaces, are replaced by fields
and vector spaces over them. As a consequence, this approach is more elementary in nature,
but more general in application, since it permits uses in situations in which the objects are
inherently defined over fields rather than rings or spaces.

Like algebraic patching, it relies on a form of Cartan’s Lemma, and it uses a form of
Weierstrass Preparation. But like formal patching, it relies on adic completions of rings (e.g.
formal power series) and their fraction fields, rather than on convergent power series.

This approach is being used in work on quadratic forms, central simple algebras, and
analogs of Galois theory (Galois theory of differential equations and Galois theory of division
algebras). See in particular [HHK09| and [HHK11a|, written jointly with Julia Hartmann
and Daniel Krashen.

The remainder of this lecture series discusses this framework and some of its uses.

2 Patching algebraic structures

We begin by describing patching over fields in a basic situation: where the objects being
patched are finite dimensional vector spaces. Afterwards we turn to other types of algebraic
structures.



2.1 Patching vector spaces over fields

Motivated by the ideas in Section 1, we consider four fields F, Fi, F5, Fy that fit into a
commutative diagram
Fy (2.1)
/ N

' ~N 7
F
where the lines represent inclusions. We assume here that F' is the intersection of F} and F,
inside the common overfield Fj.

As an example, we may consider the situation discussed before: a space S is covered
by two subsets Si,S9; and Sy is the intersection of S; M S,. In this context we take F
to be the field of (rational or meromorphic) functions on S and we let F; be the field of
functions on S;, for i = 0,1, 2. Given some structure over S; and over Ss, together with an
isomorphism between their restrictions to Sy, we wish to “patch” them together in order to
obtain a structure over the full space S that induces the given structures compatibly. From
the algebraic point of view, given structures over Fi, Fy with an isomorphism between the
structures they induce over Fjy, we want to show that there is a unique structure over F' that
induces them compatibly.

To make this more precise, we need to interpret the notion of “structure”. As a first
case, take the structures to be finite dimensional vector spaces. Given a field E, let Vect(FE)
be the category of finite dimensional vector spaces over E. If E C FE’, there is a functor
Vect(E) — Vect(E') given by V — V ®@g E’. For a diagram of four fields as in (2.1) above,
there is a base change functor

P : Vect(F) — Vect(F1) Xvect(m) Vect(Fh), (2.2)

where the objects in the right hand category consist of triples (Vi, Vo, 1), with V4 in Vect(F;)
and with g an isomorphism of Fy-vector spaces Vi ®@p, Fy — Vo®p, Fy. (This is roughly a fiber
product of categories. Actually, because of the choice of y, it is not exactly a fiber product,
but rather a “2-fiber product”.) Objects in this category will be called patching problems. The
desired patching assertion is that the functor ® is an equivalence of categories. In particular,
this says that every patching problem has a solution; i.e. there is an object in Vect(F') that
induces it, up to isomorphism. While we refer here to finite dimensional vector spaces, we
will also later consider the corresponding situation for other interpretations of “structure”;
e.g. for finite dimensional associative algebras, or Galois extensions with a given group, etc.

To be able to obtain an equivalence of categories as above, we need to choose the fields F;
appropriately. If we work classically (e.g. analytically, say with algebraic varieties over R or
C), we can take the sets S; to be metric open sets, and take F; to be the field of meromorphic
or rational functions on S;. But if we work with varieties over more general fields, there is
the problem that the Zariski topology is too coarse: all open sets in an irreducible variety
have the same function field. Our approach will be to consider varieties over fields K which
(like R and C) are complete with respect to a metric. Namely, we can take a base field
K that is a complete discretely valued field such as k((t)) or Q,; i.e. the fraction field of a
complete discrete valuation ring 7' (in these two examples, k[[t]] and Z,,).

Fy
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2.2 Basic example: the line

As an example, let T = k[[t] and K = k((t)), and consider the T-curve X = PL. the
projective z-line over T. There is then a structure morphism X — Spec(T"), where Spec(T)
consists of two points: a closed point corresponding to the maximal ideal (t) of T, and the
generic point corresponding to the zero ideal of T'. The closed point is a copy of Spec(k),
and the generic (open) point of Spec(T') is a copy of Spec(K). We may view Spec(T') as a
“small neighborhood” of the origin in the ¢-line over k. The corresponding picture is:

X =PL Spec(T')
Here the fiber X of X over the closed point of Spec(T') is a copy of P}, and the fiber over the
generic point of Spec(T') is a copy of P). The affine T-line Al = Spec(k[[t]][x]) is a Zariski
open subset of X, and its fibers over the closed and generic points of Spec(T") are the affine
lines over k and K, respectively.

AL Spec(T')

The field of rational functions F on X is the same as the field of rational functions on this
open subset, viz. k((t))(z) (this being the fraction field of k[[t]][z]).

We can instead consider the affine z-line over the base ring T' = Z, of p-adic integers,
with uniformizer ¢ := p. In this situation the residue field & is F, and the fraction field K
is Q,. The schematic pictures look the same as above, and the above discussion carries over
to this case, with k[[t]][z] replaced by Z,[z] and k((t))(x) replaced by Q,(z).

2.3 Subsets and overfields

In general, consider a proper smooth curve X over Spec(T'), with T" a complete discrete
valuation ring having uniformizer ¢, and let F' be the field of rational functions on X. Let
X C X be the closed fiber. For any subset U C X that does not contain all the closed points
of X, let Ry be the ring of rational functions on X that restrict to rational functions on X
and which are regular at the points of U. Let Ry be the t-adic completion of Ry;. Note that
if U contains at least one closed point of X, then Ry and Ry are two-dimensional domains;
whereas in the case U = &, the rings Ry and Ry are discrete valuation rings. With U as
above, the fraction field Fy; of Ry is an overfield of F'. We also write Fxy = F.

In the above example of the projective T-line, we can take the open set U; = A} =
Spec(k[z]), the affine z-line over the residue field k£ of 7. This is the complement of the
point x = oo in X = P}. In the case that T = k[[t]], the ring Ry, is the subring of



F = k((t))(x) consisting of rational functions f/g where f,g € k[[t]][z] such that g does
not vanish anywhere on U;. That is, the reduction of g modulo ¢ is a unit in k[z], or
equivalently a non-zero constant in k. The t-adic completion }A€U1 is given by k[z][[t]]. Observe
that this ring strictly contains k[[t]][z], the ring of regular functions on AL. For example,
> o @'t is contained in the former, but not the latter. This inclusion of rings corresponds
to a morphism of their spectra in the other direction, viz. Spec(ﬁUl) — AL. Note that

o a'tt = (1 —at)™t € k[z][[t]], and so (1 — xt) is the unit ideal in k[z][[t]], and does not
correspond to a point of Spec(Ry, ). But (1 —at) does generate a prime ideal in E[[t]][z], and
does define a non-empty closed set in Spec(k|[[t]][z]) = AL. (Cf. the discussion in Section 1.3.)

locus of (1 — zt) N

[ L \
A\ S | |

Spec(Ry,) AL

Similarly, the fraction field F' = k((t))(x) of k[[t]][z] is strictly contained in the fraction
field Fy, of RU1 = k[z][[t]], which is in fact transcendental over F. Intuitively, we can
regard Spec(Ry,) as an analytic open subset of the algebraic (Zariski) open subset AL C X
and regard k[z|[[t]] and its fraction field as consisting of the holomorphic and meromorphic
functions on this set.

In the above example, we can also consider the open set Uy C X given by the complement
of the point = 0 on X = P}. This is another copy of the affine line over k, with ring of
functions k[z~!]. We then obtain Ry, = k[z~][[t]], with fraction field Fy,. Let Uy = Uy NUs;
this is the complement of the two points z = 0,00 in X. We then have Ry = k[z, z~2][[t]],
with fraction field Fy,.

L/ /[ L/ \
JAN N JAN J
SpeC(RUz) SpeC(RUo)

If we take U to be the empty subset of X (or equivalently, the subset consisting just of the
generic point of X), then Ry = Ry = k(z)[[t]], which is a complete discrete valuation ring
(unlike the rings above, which were two dimensional). Its quotient field is Fi = k(x)((t)).

As in Section 2.2, we can instead consider the analogous case of the z-line over T = Z,,.
The schematic pictures are again the same as in the power series case, though the rings are

a bit more awkward to write down explicitly. With U; the affine line as above, the ring Ry,
is the p-adic completion of Z,[z], i.e. im Z,[z]/(p"). For example 1 — px is a unit in this
<—

o0 g g

ring, with inverse > °p'az’. On the other hand, the elements =, x — p, and p each define
proper principal ideals, corresponding to curves in Spec(}A%Ul) Similarly, if we let Us be the
complement of co in PL and let Uy be the complement of the two points 0, 0o in PL, then
Ry, and Ry, are the p-adic completions of Z o[z and Z,[z,z7']. Note also that in this



situation, }A%@ is the p-adic completion of the discrete valuation ring Zy[z],). Its fraction field
F is the same as the completion of the field Q,(x) with respect to the Gauss valuation; i.e.
with respect to the metric induced on this field by the ideal (p) C Zy[z] ).

2.4 Solutions to patching problems

As the above pictures suggest, we can regard X as covered by the “analytic open sets”
S, := Spec(Ry,) and S, := Spec(Ry,), with Sy = Spec(RUO) as the intersection of these
sets. In fact, this can be made precise: the natural morphisms Sy, — S; — X (i =1,2)
define injections on the underlying sets of points, with the images of S and Sy covering X ,
and with the image of Sy in X being the intersection of those two images. Moreover, as we
discuss below in Section 5, the fields F' and F; := Fy, (i = 0, 1,2) form a diagram of fields
as in (2.1); and the corresponding functor ® as in (2.2) turns out to be an equivalence of
categories. R

More generally, let X be any smooth projective T-curve with function field F' and closed
fiber X, and let Uy, Uy be subsets of X with U; UU,; = X. Suppose that neither U; contains
all the closed points of X. Write Uy = U; N U, and F; := Fy,. Then the base change functor
P : Vect(F) = Vect(F1) Xveet(ry) Vect(F3) is an equivalence of categories. Thus given finite
dimensional vector spaces V; over F; (i = 1,2) and an Fy-isomorphism between the Fy-vector
spaces V; ®p, Fy that they induce, there is a unique finite dimensional F-vector space V
inducing them compatibly. Moreover, if we identify V; with its isomorphic image in V; ® g, Fp,
and if we identify V; ®p, Fy with Vg := Vo ®p, Fy via the isomorphism g, then we get that
V' is equal to V4 NV, inside Vj. In particular, if we let n = dimpg, (V;) (which is equal to
dimp,(V2)), then dimpg(V; N'V3) is necessarily equal to n. See Theorem 5.4 below.

2.5 Patching for other objects

While the above specifically concerns finite dimensional vector spaces, many algebraic objects
over a field consist of a finite dimensional vector space together with additional structure
that is given by maps such that certain diagrams commute.

For example, consider finite dimensional associative algebras A over F. To give A is to
give a finite dimensional F-vector space A together with an F-vector space homomorphism
A®p A — A such that a certain diagram commutes (corresponding to the associative law).
The above equivalence of categories for vector spaces (which preserves tensor products), to-
gether with the assertion that V' = V; N V5, yields the corresponding equivalence of categories
for finite dimensional associative algebras, again with inverse given by intersection.

As explained in [HH10, Section 7|, some other examples of algebraic objects for which
equivalences of categories follow in this manner are these: finite dimensional associative F-
algebras with identity; finite dimensional separable F-algebras; central simple F-algebras
(i.e. the center is F' and there are no non-trivial two-sided ideals); differential F-modules
(i.e. finite dimensional F-vector spaces together with a derivation over F'); separable F-
algebras (i.e. products of finitely many finite separable field extensions of F'); and G-Galois
(commutative) F-algebras (for some finite group G).
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An object of this last sort is by definition a separable F-algebra A of dimension equal
to |G| whose fixed field under G is F. These are of the form [[ E, a product of copies of
a Galois field extension E/F of Galois group H C G, indexed by the cosets of H in G. If
H = @, this is the same as a G-Galois field extension. At the other extreme, if H = 1, then
A'is a product of copies of I indexed by and permuted by G; this is called a trivial G-Galois
F-algebra. If E/F is any G-Galois F-algebra, then Ez := F ®p F is a G-Galois F-algebra
for any field extension F/F; and if F/F is sufficiently large (e.g. the separable closure of F),
then the G-Galois ﬁ—algebra Ez is trivial.

3 Applications of patching

Using patching for algebraic structures as discussed above, one can obtain applications of
various sorts. For example, using the category of G-Galois F-algebras, one can obtain
applications of patching to Galois theory. Using the category of differential modules, one
can obtain applications to differential Galois theory (the Galois theory of linear differential
equations). And using central simple algebras, one can obtain an application to a division
algebra analog of Galois theory. We discuss these in turn below.

3.1 Applications to Galois theory

Suppose that we have a finite group G that we wish to realize as a Galois group over F', the
function field of a curve over a complete discretely valued field. We can proceed inductively,
generating GG by two strictly smaller subgroups H;, H, C G. Suppose that each H; is the
Galois group of a Galois field extension FE;/F;, where the fields F; are overfields of F' as
in (2.1). Suppose in addition that such extensions can be found for which F; ®p Fy is
a trivial H;-Galois Fy-algebra. Taking a product of finitely many copies of F;, indexed
by the cosets of H; in G, we obtain G-Galois Fj-algebras A; for i = 1,2. But note that
A; is not a field, because the index (G : H;) is greater than one. Nevertheless, we can
use these algebras to obtain the desired field extension over F', using the composition p of
isomorphisms Ay ®p, Fy = [[o Fo = Ay ®@p, Fy arising from the triviality of A; over Fj.
Namely, the algebras A; together with this isomorphism define a patching problem for G-
Galois algebras, i.e. an element of the category GAIg(F1) Xgaig(ry) GAlg(Fy), where GAlg
denotes G-Galois algebras. By the equivalence of categories ®, this is induced by an object
Ain GAlg(F), i.e. by a G-Galois F-algebra. Using the fact that Hy, Hy generate GG, together
with the choice of patching isomorphism p as above, one can show ([HH10, Section 7]) that
A is actually a G-Galois field extension of F'!

This strategy explains how to realize individual finite groups as Galois groups over the
field F', provided that the subgroups can themselves be realized. Since every finite group is
generated by cyclic subgroups (in fact, even by cyclic subgroups of prime power order), it
is sufficient to realize those, subject to the condition of being trivial over Fj. This is easy
to do by Kummer theory if F' has characteristic zero and contains all roots of unity. More
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generally this strategy works provided that GG contains primitive n-th roots of unity (,, where
n ranges over the orders of the cyclic generating subgroups. Without this condition, if n is
not divisible by the characteristic of F', one can construct a suitable n-cyclic Galois extension
of F;(¢,) by Kummer theory such that it is induced by some n-cyclic Galois extension of Fj.
Finally, if char(F') = p, then Artin-Schreier theory and Witt vectors can be used to construct
appropriate cyclic extensions of p-power order. As a result, it follows that every finite group
is a Galois group over F. See [Hrb87|, where the details of the construction of these cyclic
building blocks is given, though in the context of formal patching.

One can go further, by studying the absolute Galois group of F', viz. the Galois group
Gal(F) := Gal(F*P/F) over F of the separable closure F**P of F'. This profinite group is the
inverse limit of the Galois groups of the finite Galois extensions of F. So to understand the
group Gal(F'), it suffices to find all the finite Galois groups over F' and how they fit together
in an inverse system (corresponding to the direct system of finite Galois extensions of F).
For this, one wants to know when one can solve embedding problems. From the perspective
of fields, the question is this: Given a finite group G and a quotient group H, and given
an H-Galois field extension F/F, can E be embedded in a G-Galois field extension of F'?
Reinterpreting this in terms of groups, it asks: Given a surjection m : G — H of finite
groups, and a surjection f : Gal(F) — H, is there a surjection f : Gal(F') — G such that
Wf = f7 If the answer is always yes, and if Gal(F') is countably generated as a profinite
group, then Gal(F") must be a free profinite group, by a theorem of Iwasawa ([Iwa53, p.567]).
A generalization of this theorem, due to Melnikov and Chatzidakis, handles the uncountable
case [Jar95, Lemma 2.1].

Extending the patching strategy to this context has made it possible to show that many
embedding problems can be solved; and using those results, it has been shown that the abso-
lute Galois group of k(x) is free if k is an algebraically closed field of arbitrary characteristic.
(See [Hrb95], [Pop95], [HJ00], which respectively describe this proof in terms of formal, rigid
and algebraic patching. This theorem had previously been shown just in characteristic zero,
by relating k to C; see [Dou64|.) Note that k(z) is not a field of the form F' considered
above, though k((¢))(x) is of that form. But it is possible to use results about embedding
problems over k((t))(x) to obtain such results over the field k(z), by passing to a subfield of
k((t))(z) of finite type and then using that a variety over an algebraically closed field &k has
k-points. For more about this direction, see Section 5 of [Hrb03] and also the Luxembourg
notes of Moshe Jarden.

3.2 Applications to differential algebra

Here we consider patching in the context of a differential field, i.e. a field F' together with
a derivation 0. We assume that char(F) = 0, to avoid the unpleasant situation in which
Od(z?) = 0. The field of constants in F is the subfield C of elements ¢ € F' such that d(c) = 0.
(For example, in the differential field F' = K(z) with derivation 0/0z, the constant field is
K, using char(F') = 0.) A differential module M over F' is a finite dimensional F-vector
space together with an F-derivation dy; on M. That is, d : M — M is an additive map such
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that Oy (fm) = 0(f)m + fOu(m) for f € F and m € M.

We consider in particular a field F' as before, i.e. the field of rational functions on a
smooth projective curve X over a complete discretely valued field T'. Let Uy, Uy be subsets
of the closed fiber X, such that X = U; U Uy and neither U; contains all the closed points
of X, and let Uy = Uy N Uy. Write F; = Fy, for each i. Once we give F' the structure of
a differential field whose constant field is the fraction field K of T' (e.g. taking 0 = 9/0x if
X = P}), the overfields F; obtain compatible structures as differential fields.

Write DiffMod(FE) for the category of differential modules over a field E. As noted in
Section 2.5, in the above context the functor

D : lefMOd(F) — lefMOd(Fl) X DiffMod(Fp) DlﬁMOd(Fg),

is an equivalence of categories, and in particular every patching problem for differential
modules has a solution.

This can be used to prove the analog of the inverse Galois problem in the context of
differential algebra. Whereas ordinary Galois theory originated in the study of polynomial
equations, differential Galois theory over a differential field F originated in the study of linear
differential equations, which give rise to differential modules. Given such an equation (or
the associated differential module), there is an analog of the splitting field of a polynomial,
called the associated Picard-Vessiot extension. This is a differential field extension E/F that
is generated by the solutions to the differential equation, and such that the field of constants
of E is the same as the field of constants of F'. It is known that a Picard-Vessiot extension
E exists and is unique if the constant field C' is algebraically closed (unlike for the fields F’
we have been considering above); for more general fields there are additional subtleties. The
associated differential Galois group is the automorphism group of E/F as an extension of
differential fields. This is a linear algebraic group, i.e. a (smooth) Zariski closed subgroup of
GL,, c. See [MP03, Section 2| for more details.

The inverse differential Galois problem asks whether every linear algebraic group over C'
is a differential Galois group over F. The case that C' = C was proven in [T'T79], building on
classical work of Plemelj on Hilbert’s 21st problem concerning the realization of groups as
monodromy groups of linear differential equations. In [Hrt05], it was shown that if F' = C(z)
with C' any algebraically closed of characteristic zero, then every linear algebraic group over
C is the differential Galois group of some differential module. Using patching of differential
modules, it can be shown that the same is true if F' is instead a field as considered in the
general discussion above, viz. the function field of a curve over a complete discretely valued
field K of characteristic zero. (See [Hrt07].) Using this, it is possible to obtain another proof
of the result for function fields over an algebraically closed field of characteristic zero.

In connection with the above historical comments, it is worth mentioning that the classical
work of Plemelj, Birkhoff and others in this area relied on analytic patching methods (e.g. see
[Birl7]). A key idea was the use of matrix factorization. While the term “Riemann-Hilbert
problem” was initially used to refer to versions of Hilbert’s 21st problem, it has also come
to mean problems related to matrix factorization in an analytic context. In other contexts
involving patching, matrix factorization also plays a key role for related reasons, often under
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the name “Cartan’s Lemma”. See [Hrb03, Section 2.2| for a discussion of its use in Serre’s
GAGA; [Hrb84, Section 2| for its use in formal patching; the Luxembourg lectures of Moshe
Jarden for its use in algebraic patching; and see Section 4 below for its use in patching over

fields.

3.3 Application to Galois theory of division algebras

Given a field F, a (central) division algebra A over F' is a finite dimensional associative
F-algebra with identity such that A is a division ring and the center of A is equal to F.
Two examples are the Hamilton quaternion algebra H over the field R, and the n x n matrix
algebra Mat,,(F') over any field F'. The F-dimension of A is necessarily a square d?, and d
is called the degree of A as an F-algebra. Every subfield E of A that contains F' satisfies
[E : F] <d, and moreover there exists such a subfield £ with [E : F] = d. Such a field E is
called mazimal. If such a maximal subfield £ C A is Galois over F', say with Galois group
G, then the algebra structure of A can be described rather explicitly, and in these terms A
is called a crossed-product F-algebra for G. (For example, see [Pie82].)

In [Sch68], Schacher defined a finite group G to be admissible over a field F' if there is an
F-division algebra A that contains a maximal subfield E that is Galois over F' with group
G. Equivalently, the condition is that there is a crossed-product F-algebra A for G. One can
then ask the following analog of the inverse Galois problem: Given a field F', which finite
groups are admissible over F'?

Unlike the case of the usual inverse Galois problem, it is known that not every finite group
is admissible over Q. In [Sch68|, Schacher showed that a necessary condition for a group G
to be admissible over Q is that every Sylow subgroup of GG is metacyclic (i.e. the extension of
a cyclic group by a cyclic group). He conjectured that the converse should be true; but this
remains open, although it is known in the case that the group is solvable ([Son83]). Work
on this problem has also been done more generally for global fields, i.e. fields F' that are
finite extensions of either Q or F,(z) for some prime p (e.g. see [Sch68, Corollary 10.3] in
the function field case).

Using patching, the admissibility problem can be studied in the case that the field F is
of the type that we have been considering in this manuscript, i.e. a finitely generated field
of transcendence degree one over a complete discretely valued field K. In particular, in the
case that K = C((t)), it was shown in [HHK11] via patching over fields that a finite group
G is admissible over F' if and only if every Sylow subgroup of G is abelian metacyclic (or
equivalently, a direct product of two cyclic groups). Here, the abelian condition is related to
the fact that this choice of K contains all the roots of unity.
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4 Criterion for patching

We return to a more general situation, as at the beginning of Section 2, with four fields
forming a diagram of inclusions:

Fy
SN

Fy Fy
~ 7
F

We will give a criterion for patching to hold for vector spaces over these fields, for use in
obtaining the type of results discussed above. That is, we give a necessary and sufficient
condition for the functor

P : Vect(F) — Vect(F1) Xvect(m) Vect(Fh),

to be an equivalence of categories.
To state this criterion, we consider two conditions:

Condition 4.1. Factorization property (“Cartan’s Lemma”): For every n > 1, every matrix
Ap € GL,,(Fp) can be factored as A; As with A; € GL,(F}).

Condition 4.2. Intersection property: F' = F; N Fy, C Fy.

As at the beginning of Section 2, Condition 4.2 is intuitively plausible if we think of F' as
the field of rational functions on a space S; F}, F, as the fields of functions on two subspaces
S1, Sy with S; U S5 = S; and Fj as the field of functions on Sp = S; N S5. Note also that one
may write the factorization with one of the factors A; replaced by A;!; sometimes this is a
more natural way to write it.

Theorem 4.3. ¢ is an equivalence of categories if and only if Conditions 4.1 and 4.2 hold.

Proof. For the reverse direction, the key assertion to show is that Conditions 4.1 and 4.2
imply that every patching problem has a solution. To do this, suppose that we are given a
vector space patching problem V for fields satisfying these conditions. This patching problem
consists of finite dimensional Fj-vector spaces V; for i = 1,2, of a common dimension n,
together with an isomorphism

Vi @p Fo = Va®p Iy =V

of Fy-vector spaces. We may then identify V) ®p Fo with Vy via p, and we can thus view
Vi, Va as subsets of V. With respect to these inclusions, we will show that the intersection
V=V NV, viewed as a vector space over F', is a solution to the given patching problem.

To do this, we will find a common basis B for V, V5 over the fields F}, F5 respectively,
and will show that V' is the F-span of B. First, let B; be any Fj-basis for V;, for i = 1, 2.
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Thus By, By are both Fy-bases of V;, and there is a transition matrix Ag € GL,(Fpy) between
them, satisfying By = Ag(B>).

Next, by Condition 4.1, we may write Ay = A;Ay with A; € GL,(F;), ¢ = 1,2. Let
B = Ay(B;) = A7Y(By). Then B is also an Fj-basis of V;, for i = 0,1,2. The intersection
V = V1NV, is thus the F-span of the common basis B, since F' = F; N F, by Condition 4.2.

The F-vector space V therefore induces V; and V5 with respect to the above inclusions of
Vi, Vs into Vj. This shows that V', together with the corresponding isomorphisms, provides
a solution to the patching problem. Equivalently, the functor ® is essentially surjective, i.e.
surjective on isomorphism classes.

To complete the proof in this direction, note that Condition 4.2 yields the short exact
sequence

0 F S P xFS Fy—0 (4.4)

of F-vector spaces, where A is the diagonal inclusion and — is the subtraction map. Tensoring
over F' with Hom(V, W) yields the exact sequence

0 — Homp(V, W) EN Homp, (V1, W1) x Homg, (Va, W) — Hompg, (Vo, Wy) — 0,

using that F; @ p Homp(V, W) = Homg (V;,W;). This says that that the natural map
Hom(V, W) — Hom(®(V),®(W)) is a bijection, i.e. that the functor ® is fully faithful.
Thus it is an equivalence of categories, completing the proof of the reverse direction.

For the forward direction, given a quadruple of fields as above, note that each Ay €
GL, (Fp) defines a patching problem with Ay the transition matrix between given bases of the
vector spaces over F1, F5. A basis for a solution to this patching problem yields a factorization
of Ap. So Condition 4.1 holds. Now let I’ := F; N Fy; thus F' C F’. The reverse direction of
the theorem (proven above) implies that the base change functor Vect(F') — Vect(F") is an
equivalence of categories; and this implies that F' = F' = F; N Fy, giving Condition 4.2. [

5 Satisfying the patching criterion

We would like to use Theorem 4.3 to show that patching holds for quadruples of fields as
in Section 2.4. That is, F' is the function field of a smooth projective T-curve X having
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closed fiber X, where 7' is a complete discrete valuation ring with fraction field K. We take
subsets Uy, Uy C X, neither containing all the closed points of X andAwe write U = U; U U,
and Uy = Uy N U,. Consider the fraction fields F; := Fy, of R; := Ry,. By Theorem 4.3,
proving that patching holds for the fields Fyy C Fi, Fy C Fy is equivalent to proving that
these fields satisfy Conditions 4.1 and 4.2. (Recall that Fy; = F by definition, if U = X.)
We will describe the proof of patching in explicit examples, for simplicity of exposition. For
full proofs, see [HH10, Section 4].

We begin with the factorization property, and illustrate it for the example of the quadru-
ple considered in Sections 2.3 and 2.4 above. That is, we take T" = k[[t]] and K = k((t));
we let X be the projective line Pk, with function field F = k((¢))(z): and we take Uy, Us, Uy
to be the complements in P of the sets {oo}, {0}, {0, 0o}, respectively. Thus R, = k[z][[t],
Ry = klz~[[t]], and Ry = klz,="][[t]].

We first explain why Condition 4.1 holds in the key case in which

Ay € GL,(Ry) and Ag = I mod t. (5.1)
In this situation we will obtain that in fact Ay = A; Ay where A; € GLn(ﬁi) fori =1,2. We
will do this by constructing A;, A, modulo #/ inductively on j, thereby finding the successive
coefficients of the powers of ¢ in the entries of the matrices A;.
To start the inductive process, let Ay, As be congruent to I modulo ¢. To do the inductive
step, we use that every element in k[z, 27!] is the sum of elements in k[z] and k[z7!]. As an
example, take n = 1, and consider the 1 x 1 matrix

Ay =1+ (z+ 142 € GL(R) = R

Modulo ¢, the factorization is just 1-1. For the factorization modulo t?, we write x4 1 + 27!
as the sum of z + 1 € k[z] and ™! € k[z™'], and obtain

Ag=1+ (z+ D)1 +27') mod 2

The discrepancy between the left and right hand sides is (14 27!)¢?, and so at the next step
we write
Ag= 1+ (z+ Dt =)(1+27"t—27?) mod t*.

We continue in this way, and in the limit we get the desired matrices A;. The same strategy
handles the n x n case, again provided that Ag is in the above key case.

This approach can be also used if we take two more general sets U, Uy whose union is P},
neither of which contains all the closed points of Pi. The inductive procedure as above still
works in the key case (5.1), since again we can write every regular function on Uy := U; NU,
as a sum of regular functions on U; and Us, because of the partial fractions decomposition.
For example, if U is the complement of the point x = 1 and U, is the complement of z = —1,
and if Ay = (1+ ﬁt), then we can write (:v—l)l(w+1) = 2(;_1) — 2(;“), and proceed as before
in order to factor Ay. (This works even if Uy, Uy are not necessarily Zariski open; e.g. if U;
is a closed point of P} and U, is its complement.) In this way, we see that Condition 4.1
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holds in the key case (5.1). The approach also works for a more general choice of complete
discrete valuation ring 7.

Before turning to the general case, we observe an important consequence of Condition 4.1
under (5.1), taking n = 1:

Theorem 5.2 (Weierstrass Preparation Theorem). If U is an open subset of the closed fiber
X, then every f € Fy can be written in the form f = au with a € F' and u € R};.

Proof. For simplicity of exposition, we explain the proof in the special case that T = k[[t]],
with X = P} and U = A}, the affine z-line over k. Since Fy; is the fraction field of Ry,
we may assume that f lies in Ry = k[z][[t]l. Let fo € k[z] be the constant term of f,
viewing f as a power series in t. Thus f/fy € k(z)((t)), and f/fo = 1 mod ¢. Writing
Uy = {oo} and U, = U, Condition 4.1 under (5.1) with n = 1 asserts that f/fo = fife
for some f; € GLi(R;) = R for i = 1,2. But fof1 = ff, ', where the left hand side lies
in Ri[z] = klz~ ]~ [[t][z] and the right hand side lies in Ry = k[z][[t]]. Since the left
hand side has bounded degree in x, and the right hand side has no z=! terms, this common
element lies in k[[t]][x] C F. So we may take a = fof; and u = fo. O

In the case that X = PL., this is equivalent to the classical Weierstrass Preparation
Theorem (see [Bou72|, Proposition VII.3.8.6).

Corollary 5.3. Let Uy, Uy be open subsets of the closed fiber X, let Uy = Uy NUsy, and write
U:U1UU2 andFZ:FUZ ThenFU:FlﬂFg QFO

Proof. For simplicity, we take the special case of T' = k[[t]]; X = PL; Uy is the complement
of the point 0; and U, is the complement of the point co. Here U; = Spec(ﬁi) with }A%l =
k[z7[[t] and Ry = k[z][[t]. Write R’ = Ry[z] N Ry. Thus R = k[[t]][z], with fraction field
equal to F.

Say f € Fy; N Fy. By Theorem 5.2, we may write f = fiu; = fous with f; € F and
u; € EZX Since F' is the fraction field of R, we can write f; = a;/b; with a;,b; € R
So f = ajui/by = agus/by. The common element ajbyu; = asbjus lies in R/, since the
left hand side lies in R’ ﬁf C }A€1 [z] and the right hand side lies in R’ ﬁg = }ABQ. Therefore
f = aibouy /b1bs lies in F'| being the ratio of two elements of R'. O

Using this, we obtain that the criterion of Section 4 is satisfied for our fields, and hence
patching holds.

Theorem 5.4. Let Uy, Us be subsets of the closed fiber X of )?, and write U = U; UU, and
Uo = Uy NU,y. Write F; = Fy,. Then the four fields Fyy C Fy, Fy C Fy satisfy Conditions 4.1
and 4.2, and hence the base change functor ® of (2.2) is an equivalence of categories. That
18, patching holds for finite dimensional vector spaces over these fields.

Proof. Condition 4.2 follows from Corollary 5.3, and the last part of the assertion follows
from the first part together with Theorem 4.3. So it remains to show that Condition 4.1
holds.
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For this, one first reduces to the case that U; and U, are disjoint. This is done by applying
the disjoint case to an invertible matrix over Fy C Fy, with respect to the fields F; and Fj,
where I = Fy; with Uj the complement of Uy in Us. One checks that the second factor is
an invertible matrix over Fy, by applying Corollary 5.3 to get Fy N F) = F.

In the disjoint case, we are given Ay € GL, (Fy); after multiplying by a power of ¢, we
may assume that Ag is a matrix over the complete discrete valuation ring ﬁg. By the t-adic
density of Ry C F' C Fy in Ry, there is a matrix C over Ry such that AoC' =1 mod t. We
then conclude by using that Condition 4.1 holds in the Key Case (5.1). O

As in Section 2.5, in our geometric situation we then have patching for many other
algebraic objects, which consist of finite dimensional vector spaces with additional structure.
And as in Section 3, various applications then follow.

6 Variants on the patching set-up

6.1 Using more than two open sets

Rather than covering a subset U of the closed fiber X with just two proper subsets, it is
possible to use a larger number of subsets. This can be useful in constructions, e.g. in the
situations described in Section 3. Namely, suppose that U C X is the union of subsets U,

for i = 1,...,n. For simplicity we assume that all double intersections U; N U; are equal
to a common set Uy, for i # j. Suppose we are given finite dimensional vector spaces V;
over each F; := Fy, together with isomorphisms v; : V; @, £y — Vp for e = 1,...,n. Then

the arguments in Section 5 can be generalized to show that there is a unique choice of a
finite dimensional Fy-vector space V' together with isomorphisms «; : V ®p, F; — V; for
i =0,...,nsuch that y;o(o;RFy) = ap fori = 1, ..., n. Moreover this defines an equivalence
between the category Vect(Fy) and the category of patching problems that consist of data
(Vi,v;); as above. This equivalence of categories can be proven from the equivalence with
two open sets via induction. See [HH10, Theorem 4.14] for details.

Since the above functor is an equivalence of categories and preserves tensor products, it
carries over from finite dimensional vector spaces to other categories of objects that consist
of such vector spaces together with additional structure, as in the situation of Section 2.5.
As a result, applications can be obtained in a single step, rather than building up object
inductively as in Section 3.1. In that situation, a finite group G can be generated by cyclic
subgroups G; for i = 1,...,n. By covering X by n open subsets U; as above, and building a
G;-Galois extension of Fj for each i (e.g. by Kummer theory), one can then obtain a G-Galois
extension of F'. The agreement over F{y can be achieved by choosing the cyclic extensions of
the field F; each to induce trivial extensions over the field Fy.

6.2 Using a point and a complement

Additional flexibility in constructions can be obtained by allowing patches that come from
points, rather than from subsets of the closed fiber X.
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For any point P € X, let Rp be the local ring of X at P, and let }A%p be the completion
of this local ring at its maximal ideal mp. This is a domain, and its fraction field will be
denoted by Fp. (Note that although Rp = Rypy, the completions Rp and R{ py are different,
the former being the mp-adic completion and the latter being the t-adic completion. Thus
Fp and Fypy are also different, with the former containing the latter.)

For example, if T = k[[t] and X = PL, we may consider the point P where z = t = 0.
Then Rp = kl[[z,t]] and Fp is the fraction field k((z,t)) of k[[x,t]]. Taking U to be the
complement of P in the closed fiber X = P}, so that Ry = k[z7!][[t]], we obtain the

following picture:
- 8
JAN

Spec(Ry) Spec(Rp)

Patching can then be carried out using the fields Fp and Fy; in place of the two fields Fy,
and Fy, of Section 2. To do this, we also need to take an appropriate overfield of Fy; and Fp,
which will take the place of the field Fyy, in Section 2. In the above example, we will take the
field Fy := k((z))((t)), which is the fraction field of the domain Ry := k((z ))[[t]]. Note that

RO is t-adically complete and contains the rings RU and Rp, and similarly Fg contains Fy;
and Fp. This choice of Ro makes sense intuitively, because Spec(U) is the complement of the
point (z = 0) in X, while Spec(k[[z]]) can be viewed as a small neighborhood of this point in
X, so that Spec(k((z))) can be viewed as the corresponding punctured neighborhood (since
k((x)) = K[[=]][z71)). R

More generally, if T" is a complete discrete valuation ring and X is a smooth projective
T-curve, then we may pick a closed point P on the closed fiber X of X, and consider the
ring Rp and its fraction field Fp. The complement U of P in X is a smooth affine curve,
and we may also consider the ring Ry and its fraction field Fy;. Let m € Rp be an eleIAnent
whose reduction is a uniformizer of the complete local ring of X at P. We then take Rj to
be the t-adic completion of Rp[r~!], and Fy to be its fraction field.

In this situation, the strategy of Section 4 can be carried over, to show that Conditions 4.1
and 4.2 hold. As a result, the corresponding base change functor

P : Vect(F) — Vect(Fur) Xveet () Vect(Fp),

is an equivalence of categories. (For details, see [HH10, Theorem 5.9]. There is also a
generalization that allows more than one point P; see [HH10, Theorem 5.10].)

This approach is useful for certain applications, such as split embedding problems in
Galois theory. In such a problem, one is given a surjection of finite groups f : G — H
together with a section s : H — G of f, and also an H-Galois field extension E/F. The
problem is then to embed F into a G-Galois field extension E’/F, such that the Galois
correspondence associates the inclusion £ < E’ to the surjection f. (See the discussion in
Section 3.1, where no splitting condition was assumed.) The difficulty with using just the
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fields Fy is that the extension E/F does not in general become trivial over any Fy. But
E/F will become trivial over Fp if P is unramified and split in E/F. This approach has
been used to obtain a variety of results about embedding problems in Galois theory, and
those in turn have been used to obtain information about the structure of absolute Galois
groups (e.g. as discussed in Sections 1.4-1.6 above).

6.3 Patching over singular curves

Until now, we have considered smooth projective T-curves X. But given a function field F’
of transcendence degree one over the fraction field K of a complete discrete valuation ring
T', there need not be a smooth model X of F' over T'. That is, there need not be a smooth
projective T-curve X whose function field is the K-algebra F'. For greater generality, we will
now permit projective T-curves X that are merely assumed to be normal as schemes, i.e.
the local rings are integrally closed domains. Given any function field F' of transcendence
degree one over K, one can easily obtain a normal projective model X, e.g. by writing F' as a
finite extension of K(x), and then taking the normalization of P} in F. (In fact, by [Abh69]
and [Lip75|, for each such F' there even exist regular projective models X over T , 1.e. ones
for which every local ring O¢ ,, is a regular local ring. These can be obtained by starting
with any projective model and then applying a suitable combination of normalization and
blowing up. Such regular models, however, still need not be smooth, the latter condition
being equivalent to the closed fiber being smooth over the residue field & of T'.)

Typically, the closed fiber X of a normal projective model X of F over T will have several
irreducible components, which will meet at several closed points. Let P be a non-empty finite
set of closed points of X that contains all of these intersection points, and let I/ be the set
of irreducible components of the complement of P in X. For each P € P we can consider
the complete local ring Rp of X at P, and its fraction field Fip. For each U € U we can
consider the t-adic completion Ry of the ring Ry of rational functions that are regular on
U; and take Fy; to be the fraction field of this domain. We then have a set-up that combines
the situations of the previous two subsections, using fields both of the types Fy; and Fp, and
typically using more than two fields in total. R

For example, the following picture illustrates a choice of X in which the closed fiber X
has irreducible components X, X5, X3, where X5 meets each of the other two components
at a single point (P, P, respectively). The open subsets Uy, Us,Us of X are the connected
components of X N\ {P;, P»}, with U; being a Zariski open dense subset of X;. Thus U; (resp.
Us, resp. Us) is the complement of Py (resp. P, and Py, resp. P) in X; (resp. X, resp. X3).
The picture also illustrates the spectrum of Epi for ¢+ = 1,2, as a small neighborhood of P,.
(The spectrum of EUZ., for + = 1,2, 3, could similarly be illustrated as a neighborhood of U;
in X ; but for visual clarity these spectra are not shown.)

Us P, Us

U P

As in Section 6.2, we need to define overfields for the fields Fp (P € P) and Fy (U € U).
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But unlike Section 6.1, there is no common overfield for all these fields. Instead, we define
an overfield for Fy; and Fp only if P and U are incident; i.e. if P is a point in the closure of
U.

Thus in the above example, there will be four overfields, arising the pairs (Ui, P;),
(Uz, Pr), (Us, Py), (Us, P5). The overfield arising from a pair (U;, P;) will contain the fields
FUi and ij .

Moreover, this will be done in a way that if the closed fiber is smooth (and therefore
irreducible) and there is just one point P chosen, the resulting overfield will be the same as
the overfield Fy that was considered in Section 6.1. Finally, and most crucially, the fields
Fy, Fp, and these overfields will satisfy a generalization of Conditions 4.1 and 4.2; and as a
result, the associated base change functor ® (as in (2.2)) will be an equivalence of categories.

To define these overfields, we use the notion of branches. To illustrate, consider the affine
curve C' in the z, y-plane given by y? = 23 + 22, This is shaped like the letter a, with the
node at the origin O. The curve C' is irreducible, and so the local ring O¢ o is a domain (with
fraction field equal to the function field of C'). But the completion @ao of the local ring is
not a domain. Explicitly, the completion is isomorphic to the ring k[[z, 2]]/(2* — x?), via the
isomorphism taking y to zf, where f = (1+ z)%2 € k[[z]]. Geometrically, the spectrum of
(5070 has two irreducible components, corresponding to the two “branches” of C' at O. They
are respectively defined by the two minimal primes p; = (z —z), p2 = (2 +x) of @C,O. This
observation can be used to motivate the formal definition: a branch of a variety V' at a point
P is a minimal prime of Oy p.

Returning to our situation, for each P € P and for each branch of X at P, we wish
to associate an overfield of Fp; this should also be an overfield of Fy;, where U € U is the
unique element on whose closure U the branch lies (i.e. such that it is a branch of U at P).
To illustrate, in the example with the reduced closed fiber pictured above, there will be two
branches of X at P; (along the closures of U; and U;) and two at P, (along the closures of
U, and Us); these four branches will correspond to the four desired overfields.

For P € P, the inclusion X — X induces a a surjection Rp = (’)X P (’)X p whose kernel
is the radical of (¢). By taking inverse images under this surJectlon the minimal primes
of (’)X p can then be identified with the height one primes of Rp that contain ¢. Thus we
may regard each of these height one primes o as a branch of X at P. Viewed as a point of
Spec(Rp) the image of g in X lies on X, and in fact is the generic point of an irreducible
component of X. We regard this as the component on which the branch lies; and the unique
U € U that is contained in this component is an open set that is incident to P. In this
situation, we can now define an overfield F|, of Fy; and Fp, associated to this branch.

Namely, for o a height one prime of Rp that contains ¢, let R, be the local rmg of Rp
at p. This is a discrete valuation ring, with ¢ lying in its maximal ideal. Let Rp be its
completion; this is a complete discrete valuation ring, whose fraction field will be denoted
by F|,. This is the desired overfield of Fy; and Fp, where p is a branch on the closure of U.

We then have a finite inverse system of fields Fy, Fp, Fy,, indexed by the disjoint union
U LI'P U B, where B is the set of branches of X at the points of P. Here we have inclusions
of Fyy and Fp into F, if p is a branch of X at the point P lying on the closure of U. In the
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special case of Section 6.2, there is just one branch @ to consider, viz. the unique branch of
X at P; this lies on U. The associated field g is then the same as the field F{ considered in
that section. As another example, suppose that the closed fiber X is irreducible but singular,
and is isomorphic to the nodal curve C' discussed above. Taking P to consist just of the
nodal point P, the set U will then consist just of the complement U := X ~ P. But there
will be two branches 1, s of X at P, both lying on the closure of U. Thus in this case we
have two overfields F, , F|,, in the inverse system, and we will need to consider both.

In general in the above situation, it can be shown that the inverse limit of the fields
Fy, Fp,F,, is just the field F', which is a subfield of each of them. In the special case
of Section 6.2, this is another way of asserting that F' is the intersection of Fy and Fp
inside Fy = F,,. Thus this inverse limit property is a way of generalizing the intersection
Condition 4.2 to the case of singular curves, where there may be multiple patching fields
Fy, Fp and multiple overfields F|,. (See [HH10, Proposition 6.3| for details. There this was
shown by reducing to the case of PL. with P = {oo}, by choosing a finite morphism X - PL.)

The factorization Condition 4.1 can also be generalized to the current situation. The
condition then becomes a simultaneous factorization property. That is, given elements A, €
GL, (F,) for each p € B, there exist elements Ay € GL,(Fy) for each U € U and elements
Ap € GL,(Fp) for each P € P, satisfying the following condition: For each triple U, P, p
with g a branch at P lying on the closure of U, the identity A, = Ay Ap holds in GL,(F},).
Here we regard Fy, Fp as subfields of F|,. In the above situation, this property always holds.
(Again, this can be shown by reducing to the case of PL. with P = {oc}, which was discussed
in Section 6.2. A stronger result was proven this way in [HHK09, Theorem 3.6].)

Consider, for example, the model X displayed in the picture above. There are four
branches o1, a2, 3, p4, which are respectively associated to the four pairs (Uy, Py), (U, Py),
(Us, P»), (Us, P»). Suppose we are given elements A, € GL,(F,) for i = 1,2,3,4. The
simultaneous factorization property asserts that there exist elements Ay, € GL,(Fy,) for
Jj = 1,2,3, and elements Ap, € GL,(Fp,) for £ = 1,2, such that A, = Ay, Ap, A, =
Ay, Apy, Apy = Au,Ap,, and A, = Ay, Ap,, in the respective groups GL,(F),).

The analog of Theorem 4.3 also holds in the current situation; i.e. the base change functor
is an equivalence of categories if and only if the simultaneous factorization and inverse limit
properties hold. (This can be shown by replacing the fields Fi, Fy, Fy in Theorem 4.3 by the
F-algebras [[ Fp, ] Fu,[] Fy, and proceeding as before.) As a consequence, patching holds
for finite dimensional vector spaces in this situation. More precisely, we have the following
(see also [HH10, Theorem 6.4]):

Theorem 6.1. Given a projective normal curve X over T, with P,U, B as above, the asso-
ciated base change functor
® : Vect(F) — lim Vect(Fy)
(_

1s an equivalence of categories, where & ranges over PUU LI B.

Thus if we are given finite dimensional vector spaces over the fields Fy; and Fp, together
with isomorphisms between the vector spaces that they induce over the overlap fields F|,,
then there is a unique vector space over I that induces all of them compatibly; and this is an
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equivalence of categories. This assertion automatically carries over to other algebraic objects
that consist of finite dimensional vector spaces with additional structure, as in Section 2.5.

7 Patching torsors

Until now, we have been patching structures that consist of finite dimensional vector spaces
with additional structure (i.e. such that some diagrams commute). For example, G-Galois
F-algebras are finite dimensional because the group G is finite. But what if we allow infinite
dimensional vector spaces? For example, can we generalize G-Galois F-algebras to infinite
groups G, such as matrix groups? To consider this, we introduce the notion of torsors.

7.1 Introduction to torsors

Say G is a linear algebraic group over a field F', i.e. a smooth Zariski closed subgroup of
GL,, for some n. Here G need not be connected, and in particular all ordinary finite groups
G are linear algebraic groups (as groups of permutation matrices). A G-torsor over F is
a principal homogeneous G-space over F. That is, it is an F-variety H together with a
(right) G-action @ : H x G — H that is simply transitive. To be more precise, this simple
transitivity property asserts that the morphism (pry, «) : H x G — H x H is an isomorphism
of F-schemes, where pr, is the first projection map. So intuitively, given two points of H,
there is a unique element of GG taking one to the other.

A G-torsor H is trivial if it is F-isomorphic to GG, with the G-action being given by right
multiplication, with respect to this isomorphism. Note that a G-torsor H is trivial if and only
if it has an F-point. Namely, in the forward direction, the identity element of G corresponds
to an F-point of H; and in the reverse direction, by sending an F-point of H to the identity
of G we obtain a unique isomorphism H — G that is compatible with the right G-actions.
Thus if F is algebraically closed, then every G-torsor is trivial, since it automatically has an
F-point.

Torsors are important in part because they classify various algebraic objects. For exam-
ple, torsors for the orthogonal group O(n) classify quadratic forms in n variables over F,
provided that char(F') # 2 (see [KMRT98, (29.28)]).

In the case that G is a finite group in the classical sense, if we regard G as a torsor over
F| then G-torsors are of the form Spec(A), where A is a G-Galois F-algebra. (Note that G
acts on A on the left, since it acts on the torsor on the right.) So in this case, the theory of
G-torsors is just the theory of G-Galois F-algebras. At one extreme, if A is a G-Galois field
extension E/F, then Spec(A) consists of just one point, viz. Spec(F). At the other extreme,
if A is a product of copies of F' indexed by the elements of G, then Spec(A) consists of |G|
copies of Spec(F'), again indexed by G. This is a trivial G-torsor.
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7.2 Torsors and cohomology

It is convenient to study torsors in terms of Galois cohomology. Say G is a linear algebraic
group over a field . Consider maps x : Gal(F') — G(F*P) such that

x(o1) = x(0)o(x(7)) for all o,7 € Gal(F).

Such maps x are called 1-cocycles for Gal(F') in G(F*P). Two 1-cocycles x, x’ are called
cohomologous if there is a g € G(F*P) such that

x(0) =g "/ (0)o(g) for all ¢ € Gal(F).

The set of cohomology classes of 1-cocycles is denoted by H(F,G). This is the first Galois
cohomology set of F' with coefficients in G. It is a group if G is commutative; otherwise it is
just a pointed set (whose distinguished element corresponds to the trivial cocycle x).

The key point is that there is a natural bijection

{isomorphism classes of G—torsors over F'} « H'(F,G). (7.1)

Namely, given a G-torsor H, pick a point P € H(F*P). For each o € Gal(F'), we have the
two points P, o(P) € H(F*P). By the torsor property, there is a unique element g € G(F*P)
such that o(P) = Pg. Write x(0) = g. Then the map x : Gal(F') — G(F*P) is a 1-cocycle.
It depends on the choice of P; but it is straightforward to check that changing P does not
change the equivalence class of x. Thus we have a well-defined element [x] of H'(F, &) that
is associated to the G-torsor H. One can then check that the association H ~— [x] defines
a bijection as in (7.1). (Note also that this bijection parallels the fact in topology that the
principal G-bundles over a space X are classified by H'(X,G).)

One can also define H"(F,G) for other values of n, though for n > 1 one requires G
to be commutative. In particular, H°(F,G) is just G(F). Moreover H(F,E/J) can also
be defined for any subgroup J C E of a group E; this is the set of Gal(F')-invariant cosets
eJpser Of Jpsep, with e € F(F5P).

See [Ser00, I, Section 5| for more about non-abelian Galois cohomology.

7.3 Torsors and patching

We now return to the question of patching. As in Section 3.1, it is possible in the context of
our fields to patch G-Galois F-algebras, or equivalently G-torsors, where G is a finite group.
More generally, let G be a linear algebraic group over F'. If GG is infinite, then any G-torsor
is of the form H = Spec(A), where A is an F-algebra that is infinite dimensional over F. It
turns out that it is still possible to patch G-torsors!

To see this, we first relate torsors to matrices. View G C GL,, over F'. For h € GL,,(F*®P),
consider the translate (or equivalently, coset) hG C GL,. If h € GL,(F), then via left
multiplication by h (which is an F-isomorphism), hG is isomorphic to the trivial G-torsor
hG = G. If h ¢ GL,(F), then the translate hG need not be defined over F'; but if it is,
then it defines a G-torsor that will in general be non-trivial. To say that hG is defined over
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F' is equivalent to the condition that for every o € Gal(F'), hG = (hG)? = h°G; i.e. that
h? € hG.

As an example, let F' =R, let G be the orthogonal group O(2), and let h be the matrix
(§9). Then hG defines a non-trivial G-torsor over R.

The above construction in fact gives rise to all torsors; i.e. every G-torsor over F' arises
from a translate hG as above. This follows from the exact sequence

1— H(F,G)— H(F,GL,) = H°(F,GL, /G) — H*(F,G) — H'(F,GL,) (7.2)

(see [Ser00, 1.5.4, Proposition 36|) and the fact that H'(F,GL,) is trivial by Hilbert’s The-
orem 90 ([KMRT98, Theorem 9.2|). In fact this shows that there is a bijection of pointed
sets GL,(F)\H°(F,GL, /G) — H'(F,G), which classifies G-torsors over F.

So we can study torsors by studying matrices. Using this approach, one can show in an
abstract context:

Theorem 7.3. Given a finite inverse system of fields, if patching holds for finite dimensional
vector spaces, then patching also holds for G-torsors, for all linear algebraic groups G.

That is, if F' is the inverse limit of a finite inverse system of fields (F¢)ees, and if the base
change functor
P : Vect(F') — lim Vect(Fy)
<+

on vector spaces is an equivalence of categories, then so is the base change functor

O : GTors(F) — liin GTors(Fy)

for any linear algebraic group G over F', where G'Tors denotes the category of G-torsors over
the given field.

We explain the proof in the basic context of four fields as in (2.1) and (2.2). Suppose
that these fields F' C F, Fy, C Iy satisfy patching for finite dimensional vector spaces. By
Theorem 4.3, the factorization Condition 4.1 and the intersection Condition 4.2 hold for these
fields. Suppose we are given G-torsors H; over F; for i = 1,2, together with an isomorphism
over Fy. By the above discussion, we may write H; = h;G, with h; € GL,(F;®"); and we
are given an Fy-isomorphism hyG — hyG. This map is defined by left multiplication by
some gg € GL,(Fp). Thus hiG = gohoG. Applying Condition 4.1 to go, we obtain elements
gi € GL,(F;) for i = 1,2 such that g;'g2 = go. Let b} = g;h; € GL,(F;*P) for i = 1,2. Thus
hiG = h4yG over Fy. That is, the translates hiG, for i = 1,2, define the same Fy-point on
the quotient GL,, /G, which is an F-variety (e.g. see |Bor91, Theorem I1.6.8]). This point
of GL,, /G is then defined over both F; and F,, and hence over F' by Condition 4.2. The
point thus defines an element of H°(F,GL, /G), and hence a G-torsor defined over F, by
the above exact sequence (7.2).

Essentially the same argument holds for a more complicated finite inverse system of
fields. We thus obtain that patching for finite dimensional vector spaces implies patching for
torsors.
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In the context of one-variable function fields F" over a complete discretely valued field K,
with a normal projective model X and sets P,U, B as before, patching for finite dimensional
vector spaces holds by Theorem 6.1. Hence Theorem 7.3 yields:

Corollary 7.4. In the situation of Section 6.3, patching for G-torsors holds with respect to
the index set PUU U B, for any linear algebraic group G over F.

8 Local-global principles

Patching for torsors can be used to study local-global principles for algebraic objects. For
example, using torsors under the orthogonal group O(n), local-global principles can be ob-
tained for quadratic forms.

The most classical local-global principle, in fact, concerns quadratic forms, though over
a different type of field. The Hasse-Minkowski theorem states that a quadratic form over Q
is isotropic (i.e. has a non-trivial zero) if and only if it is isotropic over each field Q, and also
over R. More generally, the analogous assertion holds for any global field K, with respect
to its completions K, with respect to the absolute values v on K. In the case of equal
characteristic global fields (i.e. function fields of curves over a finite field), this is equivalent
to taking the completions at the closed points of the associated smooth projective curve.

A related classical local-global principle is the theorem of Albert, Brauer, Hasse, and
Noether. That theorem concerns central simple algebras over global fields. It says that such
an algebra is split (i.e. is isomorphic to a matrix algebra over the given field) if and only it
is split over each completion.

Local-global principles can typically be rephrased in terms of the existence of rational
points on varieties. For example, in the context of the Hasse-Minkowski theorem, let ¢ be a
quadratic form over a global field K. If ¢ is a form in n variables, then it defines a quadric
hypersurface () in P?{_l; and ¢ is isotropic over K if and only if () has a K-point. From this
point of view, local-global principles assert that a variety has a point over K if and only if
it has a point over each completion of K.

To go beyond the context of global fields, we broaden the notion of a local-global principle:
it is an assertion that a given property (such as the presence of points on varieties) holds
over a given field F' if and only if it holds over each of a given set of overfields F; of F', where
¢ ranges over some index set [.

In the situation of torsors, we can consider the following local-global principle: A G-
torsor H over F is trivial (or equivalently, has an F-point) if and only if the induced torsor
H¢ := H xp F¢ is trivial over Fy for each £ € I. This assertion can rephrased in terms of
Galois cohomology, since the G-torsors over F' are classified by H'(F,G). Namely, there is
a natural local-global map H'(F,G) — [, H'(F¢, G) of pointed sets (or of groups, if G is
commutative). The local-global principle then states that the kernel of this map is trivial;
i.e. that only the trivial element of H'(F,G) maps to the trivial element in the product.
This need not always hold, however; and a related problem is then to determine the kernel of
this map, and in particular to determine whether it is finite (even if not necessarily trivial).
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An important classical example considers a global field K and its completions K, along
with an abelian variety A over K (e.g. an elliptic curve over K). In this case the local-global
map is a group homomorphism, and its kernel is a group, called the Tate-Shafarevich group
II(K, A). A major open question is whether its order is necessarily finite. In fact, its order
has been conjectured in the case of elliptic curves, in terms of special values of L-functions;
this is the conjecture of Birch and Swinnerton-Dyer.

In the case that G is a linear algebraic group over a number field K, it was shown by
Borel and Serre (|BS64|) that III(K, G) is finite. (Here we again take the local-global map
with respect to the set of absolute values on K.) For the analogous problem in the function
field case of global fields, the finiteness of III( K, G) was shown by Brian Conrad (|Conl2]).

9 Local-global principles in the patching context

In our context, we will take F' to be the function field of a projective normal curve X over
a complete discrete valuation ring 7', and we will let F; range over a finite set of overfields
corresponding to patches Fy and Fp as in Section 6.3. Note that this involves using just a
finite collection of overfields, unlike the classical situation in which infinitely many overfields
are considered. The local-global principle for torsors then says that a G-torsor H over F' is
trivial if and only if H, is trivial over F¢ for each { € P UU. Equivalently, it says that the
kernel of the local-global map

HY(F,G)— [[ H'(Fp.G) x [[ H'(Fv,G)
PEP veu
is trivial. The kernel of this map will be denoted by III )?,P(F , &), where P determines Y. If

the model X of F is understood, we will simply write IIp(F,G).

For example, suppose that F' = K(x), where as before K is the fraction field of T', and
take X = PL. Let P consist just of the point P = oo on the closed fiber X = P}, so
that U consists just of the single open set U = A}. In this case [lIp(F,G) is the kernel of
HY(F,G) — H'(Fp,G) x H(Fy,G). Let p be the unique branch of X at P. Using the fact
that patching holds for finite dimensional vector spaces in this context, one then obtains the
following Mayer-Vietoris type exact sequence (see [HHK11a, Theorem 3.5]):

Theorem 9.1. There is an exact sequence of pointed sets
11— HY(F,G) —= H°(Fp,G) x H(Fy,G) — H°(F,,,G)

( 5 ’

HY(F,G) — H'(Fp,G) x H'(Fy,G) —= H'(F,,G).

Proof. Define the maps on H*(F,G) to be the diagonal inclusions. Define the last arrow on
the first line as the quotient il}li p of the inclusion maps from the factors in the middle term
to the group H°(F,,, G). (This quotient map is not in general a group homomorphism.) The
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two arrows at the end of second line are the maps arising from the inclusions of Fp, Fy; into
F,,. Exactness at the middle term of that line means that the equalizer of these two maps
is equal to the image of H'(F,G). (If G is commutative then H'(F,, G) is a group and we
could take the corresponding quotient instead of using a double arrow.)

The coboundary map ¢ is defined as follows: Take trivial G-torsors Hp, Hy over Fp, Fy
with rational points xp, ;. Given g, € H°(F,, G), we have an isomorphism

Hp X Fp Fp—)HU X Fy Fp

of trivial G-torsors over F|,, taking xp to xyg,. This defines a patching problem for G-
torsors. By Corollary 7.4, there is a solution H to this patching problem, viz. a G-torsor H
over F' corresponding to an element of H'(F,G). This element is then defined to be d(g,).

With the above maps, one can then check that the sequence is exact. O

In the example of the line, exactness implies that IIIp(F, G) is the cokernel of the last
map of H® terms, i.e. G(Fp) x G(Fy) — G(F,), given by (g9p, gv) — g;;' gp, Where we regard
G(Fp),G(Fy) as contained in G(F,,). But the surjectivity of this map is equivalent to the
factorization property for the group GG. (Note that until now we have considered factorization
only for the groups GL,, not for other linear algebraic groups G.) Hence the local-global
principle for G-torsors is equivalent to the factorization property for the group G.

While the above is for the example of the line and with P = {oc}, Theorem 9.1 carries
over to arbitrary normal T-curves X together with P C X. (See [HHK11a, Theorem 3.5].)
There the middle and last terms on each line of the Mayer-Vietoris exact sequence are
replaced by products, where P, U,  respectively range over P, U, B. Just as the simultaneous
factorization property for GL, was considered in Section 6.3, one can also consider this
property for an arbitrary linear algebraic group GG. We then obtain:

Corollary 9.2. In the situation of Section 6.3, if G is a linear algebraic group over F,
then the local-global principle for G-torsors is equivalent to the simultaneous factorization
property for the group G.

10 Obstructions to local-global principles

In the previous section, local-global principles for torsors in the context of patches were
reformulated in terms of factorization. Using this, we can now examine when such principles
hold, and whether the obstruction IIIp(F, G) is finite even if not necessarily trivial.

10.1 Case of rational connected groups

As we discuss below, simultaneous factorization holds for GG, and hence Illp(F, G) vanishes,
provided that the group G is connected and rational (i.e. rational as an F-variety, meaning
that it is birationally isomorphic to A% for some n). For example, the special orthogonal
group SO(n) is a connected rational group, by the Cayley parametrization. In fact many
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connected linear algebraic groups are known to be rational; and over an algebraically closed
field it is known that every linear algebraic group is rational.

We describe the idea of the proof, and to simplify the discussion we again return to the
example of the projective line and P = {oo}. As in the case of proving factorization for
the group GL,, we will construct the factors inductively, modulo successive powers of the
uniformizer ¢ of T. But unlike in the GL,, case, we have to be careful to ensure that the
limit of these inductive sequences of mod t* factors will itself lie in the group G. (This was
automatic for GL,, since any matrix that is congruent to the identity modulo ¢ will lie in
GL,.) To do this, we will use the rationality of the group G.

Specifically, since G is a connected rational variety, say of dimension m, there are Zariski
open neighborhoods N C G and N’ C A™ of 1 € G and 0 € A™, respectively, together
with an isomorphism of F-varieties n : N — N’. The multiplication map y: G x G — G
on G, restricted to an open neighborhood of (1,1) in N x N, corresponds under 7 to a
map f : N' — N’, where N’ is an open dense subset of N’ x N’ that contains the origin.
By an inductive construction that generalizes the factorization construction for GL,, we
can show that for some open neighborhood M’ of the origin in N', every By, € M'(F},) is
of the form f(By, Bp), for some By € N'(Fy) and Bp € N'(Fp) with (By, Bp) € N
Now take any Ay € G(F,,) that we wish to factor. After translation, we may assume that
Ay € N(F,) and that By := n(Ay) € M'(F,). Taking By, Bp as above, the elements
Ay :==n"Y(By) € G(Fy) and Ap := n~'(Bp) € G(Fp) then satisfy AyAp = Ay, as desired.
(See [HHKO09], Theorems 3.2 and 3.4, for more details.)

In the more general situation, where P, U, and B can each have more than one element,
one can generalize this and prove simultaneous factorization for collections of elements of
G(F,), p € B. (See [HHKO09|, Theorem 3.6.) By Corollary 9.2, it follows that the local-global
principle holds for G-torsors, or equivalently IIlp(F,G), where G is any rational connected
linear algebraic group over F'.

10.2 Case of finite groups

Above, the groups considered were connected. This leaves open the question of what happens
if the group is disconnected. For example, suppose that GG is an ordinary finite group, viewed
as a finite linear algebraic group. As discussed in Section 7, G-torsors over F' are then just
the spectra of G-Galois F-algebras. For such an F-algebra A, we can take the normalization
of X in A, and obtain a G-Galois branched cover Y — X whose corresponding extension
of F'is A. (Here, the normalization is obtained by taking the integral closure S of R in A
for every Zariski affine open subset Spec(R) C X ; and then taking Y to be the union of the
affine schemes Spec(S). More formally, ¥ = Spec(S), where S is the integral closure of the
structure sheaf O in A.) Here Y is connected (in fact irreducible) if and only if A is a field.

Thus H!(F,G) is in bijection with the set of isomorphism classes of G-Galois branched

covers of X. The subset IIp(F,G) C H'(F,G) corresponds to those covers that are trivial
over each Fp and each Fyy. Covers of that type, which we call split covers, are necessarily
unramified over X, since they are unramified (in fact, trivial) locally.
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As we will discuss, the local-global principle for G can fail in this situation. But the
obstruction Ilp(F, G) is finite, and can be computed in terms of a graph I' that is associated
to the closed fiber X of X. Namely, I" can be regarded as a topological space, and Illp(F, G)
can be described in terms of its fundamental group.

This graph, called the reduction graph, is easiest to describe in the special case that
there are exactly two branches of X at each point of P, and that these two branches lie on
distinct irreducible components of X. In this case, we can use the definition given in [DM69,
p. 86]: the vertices of the graph correspond to the irreducible components of X, the edges
correspond to the (singular) points that lie on two distinct components, and the vertices of
a given edge correspond to the two components on which the corresponding point lies.

For example, the graph associated to the configuration pictured in Section 6.3 is as follows:

Uy P U, Py Us

In the case that more than two components of X can meet at a point, the above definition
does not apply. But one can instead consider a modified version, which in the above special
case gives the barycentric subdivision of the graph as described above. This graph will then
be homotopic to the graph above, and that will suffice for our purposes (for which only the
homotopy class of the graph will be relevant).

Namely, we construct a bipartite graph, i.e. a graph whose vertex set ) is partitioned
into two subsets Vi, Vs, such that every edge connects a vertex in V; to one in V. Choose
a non-empty finite subset P of X that contains all the points where the closed fiber X has
more than one branch. (This contains in particular all the points where distinct irreducible
components of X meet.) Let U consist of the connected components of X \ P; its elements
U are in bijection with the irreducible components of X, by taking Zariski closures. We also
obtain a set B, consisting of the branches of X at the points of P; each branch lies on the
closure of a unique U € U. For the bipartite graph, let V; = P and V5, = U. The edges of
the graph correspond to the branches of X at the points of P, with the vertices of a branch
corresponding to the associated point P € P and element U € U.

As an example, consider the situation of a closed fiber X consisting of three components
X1, Xo, X3 that all meet at two points P, P,. Thus U; = X; \ {P, P»}. There are six
branches @i, ..., ps on X at the points of P, one for each pair (P, U;). This configuration
can be pictured as follows:

Uy
& 2 Uy 5 §
P Us o 12

The associated bipartite graph is then as follows, where the five vertices correspond to
P UU and the six edges correspond to the six branches g;.
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In general, if we enlarge P by adding an additional closed point (and shrinking the
corresponding set U € U by deleting that point), then the homotopy class of the graph is
unchanged. The same is true if we blow up X at a regular point P € P.

Coming back to local-global principles, consider a finite group G, which we can also
consider as a finite torsor over F'. An element of IIlp(F,G) induces a G-Galois covering
space of the associated reduction graph I', as follows. This covering space is locally trivial
over a neighborhood of each vertex, including the adjacent open edges. The local covers are
glued over the overlaps, according to the patching data of the given element of Il (F,G) C
H'(F,G). This data consists of the given F|-isomorphisms of the trivial G-torsors over Fys
and F'p that are obtained via base change from the given torsor over F. (These base changes
are trivial G-torsors because the given torsor lies in IIIp(F, G).) Conversely, a covering space
of I' induces an element of 111 (F, GG), by patching.

Thus the elements of Ilp(F,G) are classified by Hom(m (I'),G)/ ~, where ~ is the
equivalence relation given by conjugating maps by elements of G. This is because this set
classifies the (possibly disconnected) G-Galois covering spaces of the graph I'. (If we instead
classified pointed G-Galois covering spaces of ', we would not need to mod out by this
equivalence relation.)

Given X and P, we can find I' explicitly, and then compute

15(F,G) = Hom(m (T, G)/ ~,

which is a finite set. Namely, 7 (I") is a free group of some finite rank r, where r is the
“number of loops in I'”. We can then identify Hom(m(I'), G) with G". Thus llp(F,G) can
be identified with G"/G, where the action of G on G is by uniform conjugation.

Note that this description of IIp(F, G) is independent of the choice of P and of X (which
can be varied by blowing up), since the homotopy class of I" is independent of these choices.
Note also, for G # 1, that IIIp(F,G) vanishes (or equivalently, the local-global principle
holds) if and only if I is a tree.
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10.3 Disconnected rational groups

We have considered the obstructions Il (F, G) to local-global principles in the special cases
that G is a rational connected group, or if GG arises from a finite group. Here we turn to
linear algebraic groups such as O(n) that are at neither of those two extremes.

We say that a (not necessarily connected) linear algebraic group G is rational if each
connected component of the F-variety G is a rational F-variety. An equivalent characteri-
zation is that the identity component G of G is a rational connected group and that each
connected component of G has an F-point. Another equivalent characterization is that G
is a rational connected group and the quotient G := G /G is a finite constant group scheme
(i.e. arises from an ordinary finite group) such that G(F) — G(F) is surjective.

For such a group G, we have a short exact sequence

1G>G —->G-1

of groups, with G connected and G a finite constant group. Associated to this is a long exact
cohomology sequence, which involves just H® and H! if G is not commutative (see [Ser00,
[.5.5, Proposition 38]). Combining that with the Mayer-Vietoris sequence in Theorem 9.1,
one obtains a short exact sequence of pointed sets (and of groups, if G is commutative):

1 — HIp(F,G% — Mp(F,G) — p(F,G) — 1.

(See Corollary 2.6 of [HHK11al|.) Here the first term vanishes, as discussed in Section 10.1;
and the third term is given by Hom(m ('), G)/ ~), as in Section 10.2. We then obtain the
following description of the obstruction IIp(F, G) to the local-global principle for G-torsors
(where some extra work is needed if G is not commutative):

Theorem 10.1. Let X be a normal projective model of a field F of transcendence degree
one over a complete discretely valued field. Let P be a non-empty finite subset of the closed
fiber X that contains all the points where X has more than one branch. Let G be a rational
linear algebraic group over F, and write G = G/G°. Then

[l (F, G) = Hom(m (T), G)/ ~ .

As a consequence, IIp(F, G) is finite, and its order can be explicitly computed, for G
rational. Moreover we obtain the precise condition for the local-global principle to hold:

Corollary 10.2. With F' as above and G a rational linear algebraic group over F', the local-
global principle for G-torsors holds if and only if either G is connected or the reduction graph
18 a tree.

Namely, these are precisely the conditions under which Hom(m(T), &), and hence also
Hom(7(T), G)/ ~, is trivial.

The above discussion answers the question of whether there is a local-global principle, and
more generally what the obstruction is to such a principle, in the case of torsors for rational
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groups. But the question remains about local-global principles for other homogeneous spaces
for such groups.

To be more precise, consider an F-variety H together with a right G-action a: H x G —
H. We say that G acts transitively on H if for every field extension E/F, the action of G(FE)
on H(FE) is transitive. Every torsor has this property; but not conversely, since transitive
actions can have stabilizers.

We can then show:

Proposition 10.3. Let G be a linear algebraic group over a field F' as above. If the local-
global principle holds for G-torsors, then it also holds for all F-varieties H on which G
acts transitively. FEquivalently, the simultaneous factorization condition for G implies that
local-global principles hold for all transitive G-varieties.

Proof. The first part follows from the second part together with Corollary 9.2. Concerning
the second part, for simplicity, we sketch the proof in the simple case where we have just one
U and one P. More abstractly, we have four fields F' C F, F, C Fj satisfying Conditions 4.1
and 4.2 (the latter also being satisfied here, as discussed in Section 6).

Say that we have points P, € H(F}) and P, € H(F3). We wish to find a point P € H(F).
Viewing P; € H(Fp), the transitivity property implies that there exists some Ay € G(Fp)
such that PyAg = P». By the factorization condition, there exist A; € G(F}) and Ay € G(F)
such that Ag = A;Ay. Let P| = PiA; € H(F)) and let Py = P,A;' € H(F,). Then P}, P,
define the same point in H(Fp). Since Fy N Fy = F it follows that this common point P is
defined over F, i.e. lies in H(F'), as desired. O

11 Applications of local-global principles

11.1 Applications to quadratic forms

As before, let F' be the function field of a curve over a complete discretely valued field K,
and let X be a normal projective model of F' over the valuation ring 7" of K. Suppose now
that char(F) # 2. If ¢ is a quadratic form over F, then after a change of variables it can
be diagonalized, i.e. written as ¢ = >, a;22. We assume that ¢ is regular, i.e. each a; # 0.
As in Section 8, q defines a quadric hypersurface @ in P%'; and ¢ is isotropic over F if and
only if () has an F-point.

In this situation, we may choose a non-empty finite subset P C X of the closed fiber
with properties as before, and let U be the set of connected components of the complement.
The local-global principle for ¢ over F' with respect to the overfields F¢, for £ € P UU, then
asserts that ¢ is isotropic over F' if and only if it is isotropic over each F¢; or equivalently,

QFy) # D forallE e PUU & Q(F) # o.

The question is whether this principle holds.
Let O(q) be the orthogonal group associated to the quadratic form ¢; i.e. the subgroup
of GL,, that preserves the form ¢q. The projective hypersurface () is a homogeneous space
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for the group O(q), though not a torsor for this group. This group is rational, by the Cayley
parametrization ([KMRT98|, p. 201, Exercise 9), but not connected. In fact, it has two
connected components, with the identity component being SO(q).

Note that dim(Q) = n—2. In particular, @ is of dimension zero if ¢ is a binary quadratic
form. In that case, @ can consist of two points, and be disconnected (e.g. if ¢ = 22 —y?). But
if n > 2, then @ is connected, and hence the connected subgroup SO(q) also acts transitively
on . Since the group SO(q) is both rational and connected, the local-global principle holds
for @), using Corollary 10.2 and Proposition 10.3. Rephasing this, we have:

Theorem 11.1. The local-global principle for isotropy of quadratic forms over F', with re-
spect to patches F, holds for forms of dimension n > 2.

This result is analogous to the classical Hasse-Minkowski theorem for quadratic forms
over global fields (see Section 8). But unlike that situation, here there can be an exception,
in the case of binary forms. And in fact, there really do exist examples of binary forms in
which the principle does not hold. By Corollary 10.2, any such example must involve a field
F' for which the reduction graph associated to a model is not a tree. The simplest case of
this is a Tate curve, where the general fiber is a genus one curve over K, and the closed fiber
consists of one or more projective lines whose crossings form a “loop”. One such possibility
consists of two projective lines that cross each other at two points. The closed fiber then

looks like

and the reduction graph looks like

which is not a tree. An explicit example of this situation is the double cover X of PL. given
in affine coordinates by y? = z(z — t)(1 — at), with Py, P, being the points x = 0, 00 on the
closed fiber (t = 0). The form ¢ = z(z — t)z? — 22 is locally isotropic but not isotropic over
the function field of X. (This phenomenon was observed by J.-L. Colliot-Théléne, based on
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[Sai83, Example 2.7]. See [CPS12, Remark 4.4] and [HHK09, Example 4.4] for Tate curve
examples with an irreducible closed fiber.)

There is another way to understand the fact that the local global principle will hold
for all quadratic forms over F' (without any restriction on dimension) if and only if the
associated reduction graph I' is a tree. This concerns the Witt group of the field F'. This
group W (F') is defined to be the set of equivalence classes of quadratic forms, with two
forms being considered equivalent if they differ by a hyperbolic form > (z7 — y?), up to
a change of variables. These equivalence classes form a group under orthogonal direct sum,
i.e. adding representative forms in disjoint sets of variables. The local-global principle for
the Witt group would assert that W (F) is trivial if and only if each group W (Fy) is trivial.
As a result of the two-dimensional exception in Theorem 11.1, this will not always hold,
due to the presence of two-dimensional forms that become isotropic over each F¢ but are
not isotropic over F. (A two-dimensional form is hyperbolic if and only if it is isotropic.)
Instead, the obstruction to this principle can be found explicitly, using the results described
above:

Proposition 11.2. The kernel of the local-global map

W(F)— [] W(Fe)
ceULP

on Witt groups is Hom(m ("), Z/2), where I" is the reduction graph of any regular projective
model of F'. Hence the local-global principle for Witt groups holds if and only if T" is a tree.

The key ingredients in the proof are Theorem 11.1 and Theorem 10.1 with G an orthog-
onal group. For more details, see [HHK11a, Theorem 9.6] (where the assertion was phrased
somewhat differently).

A numerical application of the above ideas is motivated by classical quadratic form theory
over global fields. Namely, the Hasse-Minkowski theorem implies the following theorem of
Meyer: If ¢ is a quadratic form over Q of dimension greater than four, and if ¢ is not positive
or negative definite, then ¢ is isotropic over Q. (See [Ser73, Section IV.3.2].) More generally,
this assertion holds over any global field. Note that in the function field case, no forms are
positive or negative definite, and the assertion simplifies, to say that every quadratic form
in more than four variables is isotropic.

In the situation of the fields F' that we have been considering, i.e. one-variable function
fields over a complete discretely valued field K, Theorem 11.1 can similarly be used to obtain
an analogous result concerning isotropy of forms in “too many variables.” (Since we are in
the function field case, there is no issue of being positive or negative definite.) In particular,
if K =Q, with p # 2, and if ¢ is a quadratic form over F' of dimension greater than 8, then
q is isotropic over F'. And to give another example, if K = Q,((¢)) with p # 2, and if ¢ is a
quadratic form over F' of dimension greater than 16, then ¢ is isotropic over F'. These and
other related results (e.g. for fields of the form F; with K = Q,) were shown in [HHKO09,
Section 4] using the above methods.
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Until the 1990’s, it was not known if there were results of this sort, even in the case of
K = Q,. The above result in that case was first shown by a different approach in [PS10].
Another proof, in [Leel2|, later showed that that result holds for K = Qy as well. Building
on [HHKO09, Section 4| and [HHK11a|, it has been recently shown more generally in [PS13]
that if K is a complete discretely valued field of characteristic zero whose residue field is a
perfect field of characteristic two, then any quadratic form of dimension greater than 8 must
be isotropic over F. These results, however, were obtained by proofs that did not apply to
such cases as K = Q,((t)).

11.2 Applications to central simple algebras

By a similar approach, local-global principles can be obtained for central simple algebras
over our field F. We begin by reviewing some background; see also [Pie82].

Recall that Wedderburn’s Theorem states that every (finite dimensional) central simple
algebra A over a field K is of the form Mat,, (D), where D is a (central) division algebra over
K. Moreover the integer n is uniquely determined by A, and D is unique up to isomorphism.
The index of A is the degree of the division algebra D (see Section 3.3); equivalently, it is
the minimal value of [E : F] where E/F is a field extension such that Ap := A®p E is split
over F (i.e. a matrix algebra).

One says that two central simple F-algebras A, A" are Brauer equivalent if the associated
division algebras are isomorphic. The set of Brauer equivalence classes form a group under
tensor product, called the Brauer group Br(K) of K. By the above, its elements are in
bijection with isomorphism classes of K-division algebras. One says that A is split if its
Brauer class is the trivial class; i.e. A = Mat, (K) for some n. This is equivalent to the
condition ind(A) = 1. As mentioned in Section 8, the classical theorem of Albert, Brauer,
Hasse, and Noether says that if K is a global field and if A is a central simple K-algebra,
then A is split over K if and only if A, := A®y K, is split over K, for every completion K,
of K. R

Analogously in our situation, with F'; X, P, and U as before, we can show the following
local-global principle for central simple algebras ([HHKO09|, Theorem 5.1):

Theorem 11.3. A central simple F-algebra A is split over F' if and only if A¢ == A®p F¢
is split over Fy for every & € PUU. In fact even more is true: ind(A) = lemgepy g ind(Ae).

The proof parallels that of Theorem 11.1. But instead of using the rational connected
group SO(q), we use the group GL;(A). If the degree of A is d (i.e. dimp(A) = d?), then
GL;(A) is a Zariski open subset of A‘}f, and hence it is a rational and connected F-group.
There are canonically defined varieties SB;(A), known as generalized Severi-Brauer varieties
of A, on which GL;(A) acts transitively. (See [VABS88|, p. 334, and [See99|, Theorem 3.6.)
Using these in place of the hypersurface (), the argument in the quadratic form case carries
over to provide the desired local-global principle for central simple F-algebras. Note that
here, unlike in the quadratic forms situation, there is no exception to the principle. That
is because here we consider varieties on which a rational connected group acts transitively,
whereas in the quadratic forms case the connectivity property can fail for n = 2.
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As in the case of quadratic forms, the local-global principle for central simple algebras
can be used to obtain the values of numerical invariants associated to F' that concern the
behavior of central simple algebras. If A is a central simple F-algebra, then the Brauer
class of A has finite order in Br(F'); this is called the period of A. Regardless of the ground
field, the period always divides the index, and moreover those two integers are divisible by
precisely the same set of primes. Thus for every A there is an integer e such that ind(A)
divides per(A)¢. An important question is whether there is a value of e that works for all A
(or at least, all A whose period is not divisible by the relevant characteristic). Paralleling
the argument in the case of quadratic forms, such uniform values of e can be found in many
cases. For example, if K = Q,((¢)) then for algebras of period not divisible by p, we have
e = 2 for A over K, and e = 3 for A over F. As in the situation of quadratic forms, there
are also similar results over the fields Fip and Fyy. See [HHKO09, Section 5|, where the above
is carried out. See [Liell] for a different proof in the case of the field F. See also [PS13]
for recent results in the case that K is of mixed characteristic (0, p) and the period of the
algebra A is a power of p.

12 Complements

12.1 Other local-global set-ups

Above, we have considered local-global principles for one-variable function fields F' over a
complete discretely valued field K. These have been phrased in terms of a finite set of
overfields F; of F', corresponding to a choice of patches on a normal projective model X
of F' over the valuation ring 7" of K. While inspired by classical local-global principles for
global fields, this set-up is not quite analogous, since in the classical case one takes infinitely
many overfields, corresponding to all the completions of the global field. Also, the classical
local-global principles do not depend on making a choice, unlike our situation above, where
we choose a non-empty finite subset P of the closed fiber X of X, in order to define our set
of overfields.

The above framework can be modified, however, to be closer in spirit to the classical
situation. We describe two ways to do this. R

The first of these begins with a normal model X of F', and considers the set of all the
fields Fp for P € X. This includes not only the infinitely many closed points of X, but
also the finitely many non-closed points of X. These latter points are the generic points n
of the (finitely many) irreducible components U of X. (Here F, is the fraction field of the
completion En of the local ring R, = O)?,n of X at n.)

In this situation, unlike our prior set-up above, we do not have overfields that would play
the role of the fields F,. So we cannot ask for patching to hold. But we can still ask for
local-global principles. In the case of G-torsors, for G a linear algebraic group over F', this
says that the local-global map

H'(F,G)— [] H'(Fp,G)

pPeX
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is injective. Let Iy (F,G) denote the kernel of this map (with the model X being under-
stood). It turns out that if G is rational over F, then Iy (F, ) is naturally isomorphic
to IIp(F,G), for any choice of a finite non-empty subset P of X that contains all the
points where X has more than one branch ([HHK11a, Corollary 5.6]). Thus the obstruction
I (F, @) is more canonical than it had appeared to be, as it depends only on the model X.
Moreover HIx(F, G) can therefore be identified with Hom(7(T"), G)/ ~, where the reduction
graph I is taken with respect to any choice of P as above (and where G = G/G° as before).

The second modification instead considers the set Qp of (equivalence classes of) discrete
valuations v on the field F', just as in the classical case of global function fields one considers
the set of discrete valuations. For G a linear algebraic group over F, let III(F,G) be the
kernel of the local-global map

H'(F,G)— [] H'(F..G).

vEQR

Then III(F,G) is naturally contained in Hlx(F,G) ([HHK11a, Proposition 8.2]), and the
question is whether they are equal. In general this is unknown, but it is known in several cases
(see [HHK11a, Theorem 8.10]), e.g. if G is rational and the residue field k of 7" is algebraically
closed of characteristic zero. Moreover the local-global principle, in this sense, is known to
hold for quadratic forms of dimension greater than two provided that the residue field k is
not of characteristic two (see [CPS12|, Theorem 3.1), thereby carrying over Theorem 11.1
to this situation. Moreover the local-global principle for central simple algebras, given in
the first part of Theorem 11.3, also carries over; see [CPS12, Theorem 4.3(ii)| and [HHK11a,
Theorem 9.13|. The second part of Theorem 11.3 also has an analog for discrete valuations,
at least in the presence of sufficiently many roots of unity; see [RS13, Theorem 2|, whose
proof relies on Theorem 11.3.

12.2 Non-rational groups

Although our patching results for torsors do not require that the linear algebraic group is
rational, the proofs of the results above concerning local-global principles do require that.
There is then the question of whether such results hold more generally. In particular, there
is the question of whether local-global principles hold for connected linear algebraic groups
that are not rational.

In certain cases where a connected linear algebraic group G over F' is not known to be
rational, local-global principles have been shown. In particular, this was done for groups of
type G in [HHK11a, Example 9.4], by using local-global principles for quadratic forms. This
has also been done for various other types of groups by combining cohomological invariants
with local-global principles for higher Galois cohomology; see [CPS12, Section 5|, [Hul2|,
and [HHK12, Section 4]. Also, in [Kral0|, it was shown that local-global principles hold for
connected linear algebraic groups that are retract rational, a condition that is strictly weaker
than being rational.

These results suggest the possibility that local-global principles might hold for all con-
nected linear algebraic groups over our fields F. But in fact, this is not the case. In [CPS13],
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examples were obtained of a connected linear algebraic group G over a field F' as above, such
that the local-global principle for G-torsors fails. In fact, it fails in each of the three settings
discussed above: with respect to patches, point on the closed fiber, and discrete valuations.

In light of this, it would be very interesting to find a necessary and sufficient condition
on connected linear algebraic groups G over F for local-global principles to hold.
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