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Abstract. Let k be an algebraically closed field of characteristic p > 0. We study
obstructions to lifting to characteristic 0 the faithful continuous action φ of a finite
group G on k[[t]]. To each such φ a theorem of Katz and Gabber associates an action
of G on a smooth projective curve Y over k. We say that the KGB obstruction of φ
vanishes if G acts on a smooth projective curve X in characteristic 0 in such a way
that X/H and Y/H have the same genus for all subgroups H ⊂ G. We determine
for which G the KGB obstruction of every φ vanishes. We also consider analogous
problems in which one requires only that an obstruction to lifting φ due to Bertin
vanishes for some φ, or for all sufficiently ramified φ. These results provide evidence
for the strengthening of Oort’s lifting conjecture which is discussed in [8, Conj. 1.2].
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1. Introduction.

This paper concerns the problem of lifting actions of finite groups on curves from
positive characteristic to characteristic 0. Let k be an algebraically closed field of
characteristic p > 0, and let Γ be a finite group acting faithfully on a smooth pro-
jective curve Y over k. We will say this action lifts to characteristic 0 if there is
a complete discrete valuation ring R having characteristic 0 and residue field k for
which the following is true. There is an action of Γ a smooth projective curve Ỹ over
R for which there is a Γ-equivariant isomorphism between k ⊗R Ỹ and Y .

We focus in this paper on the following local version of this problem. Let φ : G→
Autk(k[[t]]) be an injective homomorphism from a finite group G into the group of
continuous automorphisms of the power series ring k[[t]] over k. The existence such
a φ implies G is the semi-direct product of a cyclic group of order prime to p (the
maximal tamely ramified quotient) by a normal p-subgroup (the wild inertia group).
One says φ lifts to characteristic 0 if there an R as above such that φ can be lifted
to an embedding Φ : G→ AutR(R[[t]]) in the sense that k ⊗R Φ = φ.

The local and global lifting problems are connected in the following way by a
result of Bertin and Mezard [3]. For each wildly ramified closed point y of Y , fix
an identification of the completion of the local ring of Y at y with k[[t]], and let
φy : Γ(y) → Autk(k[[t]]) be the resulting action of the inertia group Γ(y) of y on this
completion. Then φ lifts to characteristic 0 if and only if each φy does.

In [8] we studied the global lifting problem. We defined Γ to be a (global) Oort
group for k if every action of Γ on a smooth projective curve over k lifts to charac-
teristic 0. This terminology arises from Oort’s conjecture in [21, §I.7] that all cyclic
groups Γ have this property, or equivalently that every connected cyclic cover lifts
to characteristic 0. We showed in [8] that all groups Γ which are Oort groups for k
must be on a certain list of finite groups that is recalled in Remark 1.4 below, and
we conjectured this list was complete. Some results by various authors concerning
Oort’s conjecture and the generalization proposed in [8] are discussed after Remark
1.4 below.

In this paper we will focus on three local versions of the results in [8]. We will
consider which finite groups G that are semi-direct products of a cyclic prime to
p-groups with a normal p-subgroup have the following properties for the field k.

1. If every local action φ : G → Autk(k[[t]]) lift to characteristic 0 we call G a
local Oort group for k (as in [8]).

2. If every local action φ : G → Autk(k[[t]]) that is sufficiently ramified lifts
to characteristic 0, we will call G an almost local Oort group for k. More
precisely, G is an almost local Oort group if there an integer N(G, k) ≥ 0
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such that a local action φ lifts to characteristic 0 provided tN(G,k) divides
φ(σ)(t) − t in k[[t]] for all elements σ ∈ G of p-power order.

3. If there is at least one local action φ : G→ Autk(k[[t]]) which lifts to charac-
teristic 0 we will call G a weak local Oort group for k.

Our goal is to show that any G which has one of the three above properties must
be on a certain list of groups associated to that property. In view of Oort’s conjecture
concerning cyclic groups we will ask to what extent these lists are complete.

The lists that we obtain will result from studying an obstruction to lifting φ that
is due to Bertin [2], as well as from a refinement of this obstruction that we will call
the KGB obstruction.

The Bertin obstruction of φ vanishes if there is a finite G-set S with non-trivial
cyclic stabilizers such that the character χS of the action of G on S equals −aφ on
the non-trivial elements of G, where aφ is the Artin character associated to φ. (For
the definition of aφ see [27, Chap. VI].) The condition on χS is thus that

(1.1) χS = m · regG − aφ

for some integer m, where regG is the character of the regular representation of G.
We will say that Katz-Gabber-Bertin obstruction of φ vanishes, or simply that

the KGB obstruction of φ vanishes, if the following is true. There is a field K of
characteristic 0 and a G cover X → X/G = P1

K of smooth geometrically irreducible
projective curves over K such that

genus(X/H) = genus(Y/H)

for all subgroups H of G, where Y → Y/G = P1
k is the G-cover of smooth projective

curves associated to φ by a theorem of Katz and Gabber (see [19]). Up to isomor-
phism, the Katz-Gabber cover Y → Y/G = P1

k is characterized by the fact that this
G-cover is totally ramified over one point ∞ ∈ P1

k, at most tamely ramified over an-
other point 0 ∈ P1

k, unramified off of {∞, 0}, and the action of G on the completion

ÔY,x of the local ring of Y at the unique point x over ∞ corresponds to φ via a

continuous k-algebra isomorphism between ÔY,x and k[[t]].
We prove in Theorem 4.2 that the Bertin obstruction vanishes if the KGB ob-

struction vanishes. In Appendix 2 we show that the KGB obstruction for φ need not
vanish when the Bertin obstruction of φ does.

Definition 1.1. Let G be a finite group which is the semi-direct product of a cyclic
prime to p group by a normal p-subgroup. If the Bertin obstruction (resp. the KGB
obstruction) vanishes for all φ then G will be called a Bertin group for k (resp. a
KGB group for k). If this is true for all sufficiently ramified φ we call G an almost
Bertin group for k (resp. an almost KGB group for k). Finally, if there is at least one
φ for which the Bertin obstruction (resp. the KGB obstruction) vanishes, we will call
G a weak Bertin group for k (resp. a weak KGB group for k).

Thus a local Oort group for k must be a KGB group for k, which must in turn
be a Bertin group for k. One has a similar statement concerning almost local Oort
groups and weak local Oort groups for k.

We can now state our main result concerning Bertin and KGB groups for k.
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Theorem 1.2. Suppose G is a finite group which is a semi-direct product of a normal
p-subgroup with a cyclic group of order prime to p. Let k be an algebraically closed
field of characteristic p. Then G is a KGB group for k if and only if it is a Bertin
group for k, and this is true exactly when G is isomorphic to a group of one of the
following kinds:

1. A cyclic group.
2. The dihedral group D2pn of order 2pn for some n ≥ 1.
3. A4 when p = 2.
4. A generalized quaternion group Q2m of order 2m for some m ≥ 4 when p = 2.

Note that if p = 2 and n = 1 in item (2), D4 is simply Z/2 × Z/2.
By considering particular covers we showed in [8, Thm. 3.3, 4.4] that if G is a

local Oort group for k then it must either be on the list given in Theorem 1.2 or else
p = 2 and G is a semi-dihedral group of order at least 16. Theorem 1.2 shows that
in fact, semi-dihedral groups are not local Oort groups in characteristic 2. Note also
that Theorem 1.2 is an if and only if statement concerning KGB and Bertin groups.
Theorem 3.3 of [8] concerns only necessary conditions which must be satisfied by
local Oort groups.

There are examples of particular actions φ for which the Bertin obstruction to
lifting vanishes but the KGB obstruction does not (see Example 20.2). Thus the
fact that the Bertin and KGB groups turn out to be the same has to do with the
requirement that the associated obstructions vanish for all such φ.

Pagot has shown in [24, Thm. 3] (see also [16]) that there are φ which have vanish-
ing Bertin and KGB obstructions but which nonetheless do not lift to characteristic
0. Thus the latter obstructions are not sufficient to determine whether φ has a lift.

In view of Theorem 1.2, we asked the following question:

Question 1.3. Is the set of groups listed in items [1] - [4] of Theorem 1.2 the set of
all local Oort groups for algebraically closed fields k of characteristic p?

Brewis and Wewers [7] have announced a proof that the answer to this question is
negative because the generalized quaternion group of order 16 is not a local Oort
group in characteristic 2.

Remark 1.4. Suppose the groups of type (1), (2) and (3) in Theorem 1.2 are all local
Oort groups. It would then follow from [8, Thm. 2.4, Cor. 3.4, Thm. 4.5] that a cyclic
by p group Γ is a global Oort group for k if and only if Γ is either cyclic, dihedral
of order 2pn for some n or (if p = 2) the alternating group A4. This implication is
not dependent on determining which generalized quaternion groups are local Oort
groups in characteristic 2.

Oort’s conjecture in [22] that cyclic groups are local and global Oort groups was
shown for cyclic groups having a p-Sylow subgroup of order p (resp. p2) by Oort,
Sekiguchi and Suwa [22] (resp. by Green and Matignon [12]). Pagot showed (see [24]
and [16]) that when p = 2, the Klein four group D4 is a local and global Oort group.
Bouw and Wewers have shown [4] that for all odd p, the dihedral group D2p is a local
and global Oort group, and they have announced a proof that when p = 2, A4 is a



THE LOCAL LIFTING PROBLEM FOR ACTIONS OF FINITE GROUPS ON CURVES 5

local and global Oort group. In [5], Bouw, Wewers and Zapponi establish necessary
and sufficient conditions for a given φ to lift to characteristic 0 whenever the p-Sylow
subgroup of G has order p, regardless of whether G is a local Oort group.

The following is our main result concerning almost KGB groups and almost Bertin
groups for k.

Theorem 1.5. Suppose G is a finite group which is the semi-direct product of a
cyclic group of order prime to p by a normal p-subgroup. Then G is an almost KGB
group for k if and only if it is an almost Bertin group for k. The list of these groups
consists of those appearing in Theorem 1.2 together with the groups SL2(Z/3) and Q8

when p = 2.

In a similar vein to Question 1.3, we ask:

Question 1.6. Is the set of groups described in Theorem 1.5 the set of almost local
Oort groups for k?

We now consider G which are weak Bertin groups, i.e. for which there is at least
one injection φ : G→ Autk(k[[t]]) that has vanishing Bertin obstruction. We will give
a purely group theoretic characterization of such G which requires no quantification
over embeddings of G into Autk(k[[t]]).

Definition 1.7. Let G be the semi-direct product of a normal p-group P by cyclic
subgroup Y of order prime to p. Let B be the maximal subgroup of Y of order
dividing p− 1. We will call G a Green-Matignon group for k, or more briefly a GM
group for k, if there is a faithful character Θ : B → Z∗

p for which the following is
true:

a. If 1 6= c ∈ Y , then CP (c) = CP (C) and this group is cyclic.
b. Suppose T is a cyclic subgroup of P and that CC(T ) is trivial. Then

xyx−1 = yΘ(x)

for y ∈ T and x ∈ NB(T ).

Note that if |B| ≤ 2, Θ is unique and so condition (b) is vacuous. Clearly, cyclic
groups and p-groups are GM-groups.

Theorem 1.8. Let G be the semi-direct product of a normal p-group G by cyclic
subgroup C of order prime to p. There is an injection φ : G → Autk(k[[t]]) which
has vanishing Bertin obstruction if and only if G is a GM group for k. Thus G is a
weak Bertin group for k if and only if it is a GM group for k.

This result generalizes a result of Green and Matignon in [12] which states that
no φ can lift to characteristic 0 if G contains an abelian subgroup that is neither
cyclic nor a p-group. In §10 we give some further examples and characterizations of
GM groups. In particular, in Theorem 10.1(c)(ii-iv) we describe some groups which
are not GM groups even though all of their abelian subgroups are either cyclic or
p-groups.

Following Question 1.3, we ask:
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Question 1.9. Is the set of groups described in Theorem 1.8 the set of groups G for
which some injection φ : G→ Autk(k[[t]]) lifts to characteristic 0, i.e. the set of weak
local Oort groups for k?

If the answer to this question is affirmative, then every p-group would be a weak
local Oort group for k. Matignon has shown in [17] that every elementary abelian
p-group is a weak local Oort group for k. Brewis has shown in [6] that when p = 2
the dihedral group of order 8 is a weak local Oort group for k. As one final instance
of Question 1.3, it follows from work of Oort, Sekiuchi and Suwa and of Bouw,
Wewers and Zapponi that the answer is affirmative if #G is exactly divisible by p;
see Example 10.6.

We now discuss the organization of the paper.
In Proposition 2.1 of §2 we give a numerical reformulation of the Bertin obstruction

of φ. We show this obstruction vanishes if and only if a constant bT (φ) ∈ Q associated
to each non-trivial cyclic subgroup T of G is non-negative and integral. The basis for
this reformulation is Artin’s Theorem that every character of G with rational values
is a unique rational linear combination of the characters of G-sets of the form G/T
as T ranges over a set of representatives for the conjugacy classes of cyclic subgroups
of G. In §3 we compute the constants bT (φ) when T contains a non-trivial element
of order prime to p.

In §4 we give an alternate characterization of the vanishing of the KGB obstruction
which shows that if it vanishes, then the Bertin obstruction vanishes.

In §5 we consider the functorial properties of the Bertin and KGB obstructions on
passage to subgroups and quotient groups. We show that the vanishing of the Bertin
(resp. KGB) obstruction for φ : G→ Autk(k[[t]]) implies that the corresponding ob-
struction vanishes for the injection φΓ : Γ → Autk(k[[t]]

N ) associated to the quotient
Γ of G by a normal subgroup N . The vanishing of the Bertin obstruction of φ implies
that the Bertin obstruction of the restriction φ|H of φ to any subgroup H of G also
vanishes.

One consequence of §5 is that if the Bertin obstruction of φ vanishes, then that of
the restriction φ|P vanishes when P is the (normal) p-Sylow subgroup of G. In §6 we
sharpen this statement by showing that the Bertin obstruction of φ vanishes if and
only that of φ|P vanishes and G and aφ satisfy some further conditions (see Theorem
6.6). The extra conditions are purely group theoretic except for one (condition c(ii)
of Theorem 6.6) on the numerical size of the wild ramification associated to φ. This
reduction to p-groups is central to the proof of Theorem 1.8. The proof of Theorem
6.6 is carried out in §8, using results from §3, §7 and §8. We prove Theorem 1.8 in
§9. In §10 we give some examples and alternate group theoretic characterizations of
GM groups.

To prove Theorems 1.2 and 1.5 we must introduce some further ideas. Our strategy
is to exploit the fact that any quotient of a Bertin group must be a Bertin group
(and similarly for almost Bertin groups). One can thus eliminate G from the list of
Bertin groups by showing it has a quotient that is not Bertin. In §11 we recall from
[8] some purely group theoretic results which show that if G is not on a small list of
groups then it must have a quotient which is on a second list of groups. We then
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work to show that every element of the second list is not a Bertin group, while every
element on the first list is a KGB group (and thus also a Bertin group).

The above strategy for proving Theorems 1.2 and 1.5 is carried out in the following
way. In §12 various groups are shown not to be almost Bertin. To use local class
field theory we show in §13 that we can allow k to be quasi-finite in the sense of
[27, §XIII.2] rather than algebraically closed. In §14, §15 and §16 we analyze the
case of dihedral groups for all p, quaternionic and semi-dihedral groups when p = 2
and the group SL2(3) when p = 2. These results provide a new proof in Corollary
15.7 of a result of J P. Serre [29, §5] and J. M. Fontaine [9] concerning local Artin
representations associated to generalized quaternion groups which are not realizable
over Q. The proofs of Theorems 1.2 and 1.5 are completed in §17 and §18 using
results from Appendix 1. In Appendix 1 we prove a technical result which constructs
solutions to certain embedding problems with p-group kernels such that the Artin
character of the solution has large values on non-trivial elements of the kernel as
well as further congruence properties. To keep the details of the construction from
obscuring the arguments in the main theorems we put them in Appendix 1.

This is the second in a series of three papers concerning lifting problems. In
the third paper of this series we will study the implications of Theorem 1.2 to the
structure of the global Oort groups considered in [8].

Acknowledgements: We would like to thank J. Bertin, I. Bouw, O. Gabber, M.
Matignon, A. Mezard, F. Oort, F. Pop and S. Wewers for useful conversations.

2. The Bertin obstruction.

Let k be an algebraically closed field of characteristic p. SupposeG is a finite group,
and let φ : G → Autk(k[[t]]) be an embedding. Let C be a set of representatives for
the conjugacy classes of cyclic subgroups of G. For each subgroup H of G, let 1H be
the one-dimensional trivial character of H , and let 1G

H = IndG
H1H be the induction of

1H from H to G.

Proposition 2.1. Let aφ be the Artin character of φ.

i. There are unique rational numbers bT = bT (φ) for T ∈ C such that

(2.1) −aφ =
∑

T∈C

bT 1G
T .

ii. The following conditions are equivalent:
a. The Bertin obstruction of φ vanishes.
b. One has 0 ≤ bT ∈ Z for all T ∈ C such that T 6= {e}.

iii Suppose the conditions in part (ii) hold. Let S be the G-set whose character
appears in the definition of the vanishing of the Bertin obstruction in (1.1).
Then m = −b{e} ≥ 0 in (1.1), and there is an isomorphism of G-sets

(2.2) S ∼=
∐

{e}6=T∈C

bT
∐

i=1

(G/T ).
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Proof. We first prove (i). By Artin’s Theorem [28, Thm. 13.30, Cor. 13.1], every
character of G with rational values is a Q-linear combination of the characters {1G

T :
T ∈ C}, and the dimension over Q of the space of all Q-valued characters is #C.
Since the character −aφ takes rational values, we conclude that (2.1) holds for a
unique function T 7→ bT from C to Q.

We now prove (ii). Suppose statement (a) in part (ii) holds. By considering the
G-orbits of elements of S, we see that there is a G-set isomorphism

(2.3) S ∼=
∐

{e}6=T∈C

nT
∐

i=1

G/T

for some integers nT ≥ 0. By (1.1) one has

(2.4) m regG − aφ = χS =
∑

{e}6=T∈C

nT 1G
T .

Hence

(2.5) −aφ = −m regG +
∑

{e}6=T∈C

nT 1G
T

where regG = 1G
{e}. So by the uniqueness of the rational numbers bT in (2.1), we

conclude that m = −b{e} and nT = bT for {e} 6= T ∈ C. Thus statement (b) in part
(ii) holds since 0 ≤ nT ∈ Z if T 6= {e}.

Suppose now that condition (b) of part (ii) holds. Define

(2.6) S =
∐

{e}6=T∈C

bT
∐

i=1

(G/T )

where bT ≥ 0 for the T appearing in this coproduct. The stabilizers of elements of
S are then conjugates of those T for which bT > 0, so they are non-trivial cyclic
subgroups. By (2.1) we have

(2.7) χS =
∑

{e}6=T∈C

bT 1G
T = −b{e}regG − aφ.

Therefore condition (a) of part (ii) holds.
It remains to show part (iii) of Proposition 2.1, so we assume that the conditions

in part (ii) hold. The inner product 〈aφ, χ0〉 of aφ with the one-dimensional trivial
representation χ0 ofG is 0 by [27, §VI.2]. Hence (1.1) givesm = 〈χS, χ0〉/〈regG, χ0〉 ≥
0. It will now suffice to show that (2.6) defines up to isomorphism the unique G-set
S with non-trivial cyclic stabilizers for which condition (a) of part (ii) holds. Since
condition (a) of part (ii) determines the character of S up to an integral multiple of
1G
{e}, this is a consequence of the fact that the characters {1G

T : T ∈ C} are linearly
independent over Q by Artin’s Theorem. �

We now develop some formulas for the constant bT appearing in (2.1).

Notation 2.2. Since k is algebraically closed, G = G0 is the inertia group of G as
an automorphism group of k[[t]]. Let Gi be the ith ramification subgroup of G in the
lower numbering. For all non-trivial subgroups Γ of G, let ι(Γ) = i + 1 when i is
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the largest positive integer for which Γ ⊂ Gi. Let µ be the Mobius function, and let
NG(T ) be the normalizer of a subgroup T in G. Let S(T ) = SG(T ) be the set of all
non-trivial cyclic subgroups Γ of G which contain T . If T ′ is also a subgroup of G,
let δ(T, T ′) = 1 if T = T ′ and let δ(T, T ′) = 0 if T 6= T ′.

Theorem 2.3. For T ∈ C the constant bT appearing in (2.1) is given by

(2.8) bT =
1

[NG(T ) : T ]



−δ(T, {e})aφ(e) +
∑

Γ∈S(T )

µ([Γ : T ])ι(Γ)



 .

The proof is based on the following formula from Proposition VI.2 of [27].

Proposition 2.4. One has

(2.9) aφ =
∞
∑

i=0

1

[G0 : Gi]

(

1G
{e} − 1G

Gi

)

We also need two lemmas. The first is Proposition 9.27 of [28] while the second
follows easily from the Mobius inversion formula.

Lemma 2.5. For any cyclic group A let θA be the character defined for σ ∈ A by
θA(σ) = #A if σ is a generator of A and θA(σ) = 0 otherwise. Let J be an arbitrary
finite group. Then

(2.10) #J · 1J =
∑

A⊂J

IndJ
A(θA)

where the sum is over the cyclic subgroups A of J .

Lemma 2.6. With the notations of Lemma 2.5, one has

(2.11) θA =
∑

H⊂A

#H · µ([A : H ]) · 1A
H .

where the sum is over all subgroups H of the cyclic group A.

Proof of Theorem 2.3.

Choose an integer N large enough so that Gi = {e} if i ≥ N . Then (2.9) becomes

(2.12) aφ =

(

N
∑

i=0

1

[G0 : Gi]

)

· 1G
{e} −

N
∑

i=0

(

1

[G0 : Gi]
· 1G

Gi

)

Apply Lemmas 2.5 and 2.6 to J = Gi. This gives

(2.13) 1Gi
=

1

#Gi
·

∑

cyclic A⊂Gi

IndGi

A

(

∑

H⊂A

#H · µ([A : H ]) · 1A
H

)

.

We now induce (2.13) up from Gi to G, multiply by 1
[G0:Gi]

and sum over i. This

leads to

(2.14)
N
∑

i=0

(

1

[G0 : Gi]
· 1G

Gi

)

=
1

#G0

N
∑

i=0

∑

H⊂A⊂Gi, A cyclic

#H · µ([A : H ]) · 1G
H .
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For this proof only, extend Notation 2.2 by setting ι({e}) = N + 1. We can now
rewrite (2.14) as

(2.15)
N
∑

i=0

(

1

[G0 : Gi]
· 1G

Gi

)

=
∑

H⊂A⊂G, A cyclic

µ([A : H ])

[G0 : H ]
· ι(A) · 1G

H

Group the terms on the right side of (2.15) according to which T ∈ C is conjugate
to H . Since G = G0, and ι(A) (resp. 1G

H) depends only on the conjugacy class of A
(resp. H), this leads to

N
∑

i=0

(

1

[G0 : Gi]
· 1G

Gi

)

=
∑

Γ∈{{e}}∪S({e})

[G0 : NG({e})] · µ([Γ : {e}])

[G0 : {e}]
· ι(Γ) · 1G

{e}

+
∑

{e}6=T∈C

∑

Γ∈S(T )

[G0 : NG(T )] · µ([Γ : T ])

[G0 : T ]
· ι(Γ) · 1G

T(2.16)

where S(T ) is as in Notation 2.2. Substituting this back into (2.12) results in

(2.17) −aφ =
∑

T∈C

bT 1G
T

in which bT has the form in (2.8) if T 6= {e}. Suppose now that T = {e}. We get

(2.18) b{e} = −

(

N
∑

i=0

1

[G0 : Gi]

)

+
1

#G0
(N + 1) +

∑

Γ∈S({e})

µ([Γ : {e}])

[G0 : {e}]
· ι(Γ).

Evaluating (2.12) on the identity element e of G leads to

(2.19) aφ(e) =

(

N
∑

i=0

1

[G0 : Gi]

)

· #G0 − (N + 1)

Substituting this into (2.18) leads to the formula in (2.8) when T = {e}. �

3. Constants associated to cyclic subgroups which are not p-groups.

In this section we analyze the constants bT = bT (φ) when T is not a p-group. This
is needed to relate the KGB obstruction to the Bertin obstruction in the next section.

Definition 3.1. If H is a cyclic subgroup of a finite group J , define

ψ(H, J) =
∑

H⊂Γ⊂J,Γcyclic

µ([Γ : H ]).

Proposition 3.2. Suppose T is a cyclic subgroup of G that contains a non-trivial
element of order prime to p. Then bT is integral if and only if one of the following
alternatives occurs:

a. NG(T ) = T . Then bT = 1.
b. One has ψ(T,CG(T )) = 0. Then bT = 0.

If T has order prime to p, then (b) is equivalent to

b′. ψ({e},CG(T )/T ) = 0.



THE LOCAL LIFTING PROBLEM FOR ACTIONS OF FINITE GROUPS ON CURVES 11

Proof. Let π : CG(T ) → J = CG(T )/T be the quotient homomorphism. Recall from
Notation 2.2 that SG(T ) is the set of all non-trivial cyclic subgroups of G which
contain T . We will first show that there is an injection

(3.1) f : SG(T ) → SJ({e}) ∪ {{e}} defined by f(Γ) = π(Γ).

which is a bijection if T has order prime to p. Clearly f is well defined, and since
Γ = π−1(π(Γ)), f is injective. Suppose T has order prime to p and Γ is a cyclic
subgroup of J . It will suffice to show π−1(Γ) is cyclic, since then π−1(Γ) ∈ S(T )
because T is non-trivial. Since π−1(Γ) is an extension of the cyclic group Γ by the
cyclic subgroup group T , π−1(Γ) is nilpotent. So it will suffice to show π−1(Γ) has
cyclic Sylow subgroups. The Sylow subgroups of π−1(Γ) associated to primes ℓ 6= p
are cyclic since G has cyclic Sylow subgroups at such ℓ. When ℓ = p, the p-Sylow
subgroup of π−1(Γ) maps isomorphically to that of Γ since T has order prime to p,
so this group is cyclic because Γ is cyclic. This completes the proof that (3.1) is a
bijection if T has order prime to p.

We now return to arbitrary cyclic T which contain a non-trivial element of order
prime to p. Each Γ ∈ SG(T ) contains a non-trivial element of order prime to p, so
ι(Γ) = 1. Theorem 2.3 gives

(3.2) bT =
1

[NG(T ) : T ]

∑

Γ∈SG(T )

µ([Γ : T ])ι(Γ) =
1

[NG(T ) : T ]

∑

Γ∈SG(T )

µ([Γ : T ])

Using the injection (3.1) we have

(3.3) bT =
1

[NG(T ) : CG(T )]
·

1

#J

∑

Γ∈f(SG(T ))

µ(#Γ)

where J = CG(T )/T . Thus if bT ∈ Z, we have to have

(3.4)
∑

Γ∈f(SG(T ))

µ(#Γ) ≡ 0 mod [NG(T ) : CG(T )] · #J.

Let φ(z) be the value of the Euler phi function on an integer z. If Γ is a cyclic
subgroup of J , there are exactly φ(#Γ) generators for Γ, each of which has order
#Γ. This leads to the inequality

(3.5)
∑

Γ∈f(S(T ))

µ(#Γ) ≤
∑

Γ⊂J, Γ cyclic

1 =
∑

g∈J

1

φ(ord(g))
.

The sum on the right is bounded by #J , and is less than #J unless J is the trivial
group. We conclude that the congruence (3.4) holds if and only if either NG(T ) =
CG(T ) = T and bT = 1 or the sum on the left in (3.4) is 0, in which case bT = 0. In
the latter case, the elements Γ of SG(T ) are exactly the cyclic subgroups Γ ⊂ CG(T )
containing T , which leads to condition (b) in Proposition 3.2 via (3.2). Conversely,
if either condition (a) or (b) hold, then bT is integral by (3.2). Finally, if T has order
prime to p, then (b) is equivalent to (b’) because we have shown that the map f in
(3.1) is bijective. �

In view of Corollary 5.5 we have:
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Corollary 3.3. Suppose J is a subquotient of G with the following property. There
is a cyclic subgroup T of J which contains a non-trivial element of order prime to
p such that NJ(T ) 6= T and ψ(T,CJ(T )) 6= 0. (If T has order prime to p, the
second condition is equivalent to ψ({e},CJ(T )/T ) 6= 0.) Then bT,J is not integral.
In particular, G is not a weak Bertin group in characteristic p, i.e. no local G-cover
in characteristic p has vanishing Bertin obstruction. As a result, no such cover can
be lifted to characteristic 0.

Corollary 3.4. (Green [11, Prop. 3.3 and 3.4], Green - Matignon [12]) Suppose that
the center C(G) of G is neither cyclic nor a p-group. Then there is a subquotient J
of G and a non-trivial cyclic subgroup T of J of order prime to p such that bT,J is
not integral. Thus G is not a weak Bertin group.

Proof. If C(G) is neither cyclic nor a p-group, then there is a subquotient J of G
which is the product of a non-trivial cyclic group T of order prime to p with an
elementary abelian p-group E = C2

p of rank 2. Then J = NJ(T ) = CJ(T ) 6= T , and
ψ(T,CJ(T )) = ψ({e},CJ(T )/T ) = ψ({e}, E) = 1 + (p + 1)µ(p) = −p 6= 0. Thus
Corollary 3.3 shows that bT,J is not integral, which completes the proof. �

4. The Katz-Gabber-Bertin obstruction

As in §2 we suppose in this section that k is an algebraically closed field of char-
acteristic p, that G is a finite group, and that φ : G→ Autk(k[[t]]) is an embedding.

Let φ̃ : G → Autk(Y ) be the action of G on the Katz-Gabber cover Y → Y/G = P1
k

associated to φ, whose properties were recalled in the Introduction. Let aφ be the
Artin character of G associated to φ.

Recall from the introdution that the KGB obstruction of φ vanishes if there is a
field K of characteristic 0 and a G cover X → X/G = P1

K of smooth geometrically
irreducible projective curves over K such that genus(X/H) = genus(Y/H) for all
subgroups H of G.

Theorem 4.1. If the embedding φ : G → Autk(k[[t]]) lifts to characteristic 0, then
the KGB obstruction vanishes.

Proof. By the local-global principle for lifting G-covers proved by Bertin and Mezard
in [3, Cor. 3.3.5] (see also [8, Cor. 2.3]), there is a lifting of φ to characteristic 0 if

and only if there is a lifting of φ̃ : G→ Autk(Y ) to characteristic 0. Suppose such a
lift exists. Thus there is a complete discrete valuation ring R having characteristic 0
and residue field k and an action of G on a smooth projective curve X over R with
the following property. There is an isomorphism of the special fiber k ⊗R X of X
with Y which carries the action of G on k⊗R X to the action of G on Y specified by
φ̃.

Let K be the fraction field of R, and let X = K ⊗R X . Since X is smooth over R,
flat base change implies genus(X/H) = genus(Y/H) for all subgroups H of G. By
formal smoothness (cf. [20, Remark I.3.22] and [14, 17.1.1, 17.5.1]), each of X and
X/G have a point with residue field K because k is algebraically closed and X lifts
Y . Therefore X is geometrically irreducible and X/G is isomorphic to P1

K , so the
KGB obstruction of φ vanishes. �
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Theorem 4.2. The KGB obstruction vanishes if and only if there is a finite G-set
S for which the following is true:

a. The stabilizer of each element of S is a non-trivial cyclic subgroup of G, and
the character of the action of G on S is

(4.1) χS = m · regG − aφ

for some integer m.
b. There is a set of representatives Ω for the G-orbits in S and a subset {gt}t∈Ω ⊂
G such that gt generates the stabilizer Gt 6= {e} of t in G, {gt}t∈Ω generates
G, and the order of

∏

t∈Ω gt is the index [G : G1] in G of the wild inertia
subgroup G1.

In particular, the vanishing of the KGB obstruction implies the vanishing of the
Bertin obstruction, and both of these obstructions vanish if φ lifts to characteristic 0.

Proof. Suppose first that the KGB obstruction vanishes, so that there is a G-cover
X → X/G = P1

K of smooth geometrically irreducible curves over a field K of char-
acteristic 0 such that

(4.2) genus(X/H) = genus(Y/H)

for all subgroups H of G. By making a base change from K to an algebraic closure
of K, we can assume that K is algebraically closed. For each point q of X/G = P1

K

let x(q) be a point of X over q. The inertia group Ix(q) ⊂ G is cyclic and equal to the
decomposition group of q since K is algebraically closed of characteristic 0. Consider
the character function

(4.3) fX =
∑

q∈X/G

IndG
Ix(q)

ax(q) =
∑

q∈X/G

(1G
{e} − 1G

Ix(q)
)

where ax(q) = 1
Ix(q)

{e} −1Ix(q)
is the Artin character of the action of Ix(q) on ÔX,x(q). Let

H be a subgroup of G. Then by the calculation of relative discriminants in [27, §3]
we have

(4.4) 2 · genus(X) − 2 − #H · (2 · genus(X/H) − 2) = 〈fX , 1
G
H〉

where 〈 , 〉 is the usual inner product on characters. We now apply the same reasoning
to the Katz-Gabber cover Y → Y/G = P1

k associated to φ, which is totally ramified
over ∞ ∈ P1

k, tamely ramified with cyclic inertia group isomorphic to Y over 0 ∈ P1
k

and unramified over all other points of P1
k. Define

(4.5) fY = aφ + δC · (1G
{e} − 1G

C)

where the Artin character aφ is the one associated to the action of G on the unique
point of Y over ∞ and δC = 0 (resp. δ = 1) if C is trivial (resp. non-trivial). Then

(4.6) 2 · genus(Y ) − 2 − #H · (2 · genus(X/C) − 2) = 〈fY , 1
G
H〉

for all subgroups H of G.
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We conclude from (4.2), (4.4) and (4.6) that 〈fX , 1
G
H〉 = 〈fY , 1

G
H〉 for all H . Since

fX and fY take rational values and the characters of the form 1G
H generate the Q-

vector space of rational valued characters, this implies that

(4.7)
∑

q∈X/G

(1G
{e} − 1G

Ix(q)
) = fX = fY = aφ + δC · (1G

{e} − 1G
C)

We now rewrite this equation using the formula for −aφ in part (i) of Proposition 2.1.
We can assume C is included in the set C of representatives for the cyclic subgroups
of G. From (4.7) we have

(4.8) δC · 1G
C +

∑

T∈C

bT 1G
T = δC · 1G

C − aφ =
∑

q∈X/G

1G
Ix(q)

−m · 1G
{e} = χS′ −m · 1G

{e}

for some integer m, where S ′ is the set of points of X which ramify over X/G, and
the stabilizer in G of each element of S ′ is cyclic and non-trivial.

The uniqueness of the values of the bT was proved in Proposition 2.1(i). Hence
(4.8) shows that δC + bC is the number of q ∈ X/G such that Ix(q) is a conjugate of
C. This implies bC is integral. Thus if C is non-trivial, Proposition 3.2 of §3 shows
that bC ≥ 0. Since δC = 1 if C is non-trivial, we conclude in this case that there is
a point q0 ∈ X/G such that Ix(q0) is a conjugate of C. We now define S to be the
complement of the G-orbit of x(q0) in S if C is non-trivial, and we let S = S ′ if C is
trivial. The uniqueness of the bT in (4.8) now implies

−aφ = χS −m · rG

where rG = 1G
{e} is the regular representation of G. Since the elements of S have

non-trivial cyclic stabilizers in G, S has the properties in part (a) of Theorem 4.2.
By the classical description the fundamental group of P1

K −Z (see [13, Chap. XIII,
Thm. 2.12]), we can find a set Ω′ of representatives for the G-orbits in S ′ and a
generator gt of the inertia group of each t ∈ Ω′ such that

∏

t∈Ω′ gt = e is the identity
of G and {gt}t∈Ω′ generates G. Letting Ω = Ω′ ∩ S shows

∏

t∈Ω gt is either trivial if
C is trivial or is a generator of a conjugate of the cyclic group Ix(q0) of order #C if
C is non-trivial. This proves that S has all properties stated in Theorem 4.2.

Conversely, suppose that we have an S with the properties stated in Proposition
2.1. Let K be an algebraically closed field of characteristic 0. By reversing the above
steps, we can construct a G-cover X → P1

K of smooth irreducible curves for which
(4.7) holds. Now (4.3) and (4.5) establish (4.2) for all H .

The vanishing of the Bertin obstruction is equivalent, by definition, to condition
(a) of Theorem 4.2. So the Bertin obstruction vanishes if the KGB obstruction does.
Both obstructions vanish if φ lifts to characteristic 0 by Theorem 4.1. �

Remark 4.3. Using [27, §3], the vanishing KGB obstruction can also be formulated in
the following way. There is a G-cover of smooth geometrically irreducible projective
curves X → X/G such that for all primes ℓ different from the characteristic of k, the
ℓ-adic Tate modules of X and of Y are G-isomorphic, where Y → Y/G is as before
the Katz-Gabber cover associated to φ. We will not need this interpretation in what
follows.
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5. Functorality.

Suppose φ : G → Autk(k[[t]]) as in §4 is given. Let N be a normal subgroup of
G, and let Γ = G/N . Define φΓ : Γ → Autk(k[[t]]

N) by φΓ(γ) = φ(g) if g ∈ G has
image γ ∈ Γ. Since k[[t]]J is a complete discrete valuation ring with residue field k,
it is isomorphic to k[[z]] for some z ∈ k[[t]]J by [27, Prop. II.5]. If H is an arbitrary
subgroup of G, define φH : H → Autk(k[[t]]) to be the restriction of φ from G to H .

Theorem 5.1. If the Bertin obstruction (resp. the KGB obstruction) vanishes for
φ, then then same is true of φΓ. If the Bertin obstruction of φ vanishes, then it does
for φH .

To prove this result we need a lemma concerning characters χ of G. Define a
character χ♯ of Γ = G/N by

(5.1) χ♯(γ) =
1

#N

∑

g∈G, q(g)=γ

χ(g)

where q : G→ G/N is the quotient map. By [27, Prop. VI.3],

(5.2) aφΓ = (aφ)
♯.

The next result follows directly from Frobenius reciprocity [28, Thm. 13, Chap. 7].

Lemma 5.2. If S is a left G-set, let N\S be the G/N set formed by the orbits Ns
of elements s ∈ S under the left action of N . Let χS (resp. χN\S) be the character
of the permutation representation of G (resp. G/N) defined by S (resp. N\S). Then

(5.3) χN\S = χ♯
S

Proof of Theorem 5.1:

Suppose that the Bertin obstruction vanishes for φ, and that S is as in Proposition
2.1(ii)(a). Let S ′′ be the G/N set N\S. Let S ′′

0 be the set of the elements of S ′′

which have trivial stabilizer, and let S ′ be the complement S ′′ − S ′′
0 . The stabilizers

in G/N of the elements of S ′ are then non-trivial, and these are cyclic because they
are the images in G/N of the cyclic stabilizers of elements of S. By hypothesis,

(5.4) χS = m · regG − aφ

for some integer m. By (5.3) and (5.2), one has

χS′′ = χ♯
S = m · (regG)♯ − a♯

φ = m · (regG/N ) − aφΓ

Since χS′′ and χS′ differ by an integer multiple of the character of the regular repre-
sentation of G/N , we conclude that

χS′ = m′ · (regG/N ) − aφΓ(5.5)

for some integer m′, so S ′ satisfies condition (ii)(a) of Proposition 2.1 for φΓ.
Suppose now that the KGB obstruction vanishes for φ. Let S, Ω and {gt : t ∈ Ω}

be as in Theorem 4.2. By hypothesis, Ω is a set of representatives for the G orbits
in S, {gt}t∈Ω is a subset of G such that gt generates the stabilizer Gt 6= {e} of t in
G, {gt}t∈Ω generates G, and

∏

t∈Ω gt has order [G : G1].
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Let t′ = Nt be the image of t ∈ Ω in S ′′ = N\S. One has Gt ⊂ N if and only if
the stabilizer Gt′ is trivial; this is true if and only if t′ ∈ S ′′

0 . Define

Ω′ = {t′ = Nt : t ∈ Ω, t′ 6∈ S ′′
0}.

Now Ω′ is a set of representatives for the G/N orbits in S ′, and for t′ ∈ Ω′ the image
gt′ of gt in G/N is non-trivial and generates the stabilizer of t′ in G/N . By hypothesis,
{gt : t ∈ Ω} generates G and

∏

{gt : t ∈ Ω} has order [G : G1]. The image of gt in
G/N is non-trivial if and only if t′ = Nt 6∈ S ′′

0 , so we conclude that {gt′ : t′ ∈ Ω}
generates G/N , and the image of γ =

∏

{gt : t ∈ Ω} in G/N is γ′ =
∏

{gt′ : t′ ∈ Ω′}.
Thus γ′ has order [G/N : G1N/N ]. Here G1N/N is the p-Sylow subgroup of G/N ,
so Ω′ and {gt′ : t′ ∈ Ω′} satisfy condition (b) of Theorem 4.2.

We now have to show that if the Bertin obstruction of φ vanishes, then it does for
φH for all subgroups H of G. Since the residue field k is algebraically closed, [27,
Prop. VI.4] shows

(5.6) resH
Gaφ = λ · regH + aφH

where λ is the valuation in k((t))H of the discriminant of k((t)) over k((t))H . This
implies that if S is a G-set satisfying condition (ii)(a) of Proposition 2.1 for φ, then
the restriction of S to H satisfies this condition for φH . This completes the proof of
Theorem 5.1. �

Remark 5.3. In a later paper we will show that the KGB obstruction for φH vanishes
if that of φ vanishes; we will not need this result in this paper.

Notation 5.4. Let J be a subquotient of G, i.e. a quotient of a subgroup H of G by a
normal subgroup D of H . Suppose T is a cyclic subgroup of J . Define bT,J = bT,J(φ)
to be the constant bT appearing in Proposition 2.1 when G is replaced by J and φ is
replaced by the induced injection φJ : J → Autk(k[[t]]

D).

Combining Theorem 5.1 with Proposition 2.1 we obtain:

Corollary 5.5. Suppose the Bertin obstruction of φ vanishes. With the notations of
Notation 5.4, one has 0 ≤ bT,J ∈ Z for all non-trivial cyclic subgroups T of J .

Corollary 5.6. Let G be a finite group, and suppose H is a quotient group of G.

a. If H is not a Bertin group (resp. almost Bertin group), then G is not a Bertin
group (resp. almost Bertin group).

b. If G has a subquotient J which is an not a weak Bertin group, then G is not
a weak Bertin group.

Proof. In view of Theorem 5.1, part (a) is clear for Bertin groups, and to show part
(a) for almost Bertin groups it will suffice to prove the following. Suppose that
φH : H → Autk(k[[t]]) is an injection with the property that the Artin character
aφH

has the property that −aφH
(τ) ≥ M for some integer M and all non-trivial

elements τ ∈ H of p-power order. It will be enough to show that there is an injection
φG : G → Autk(k[[z]]) inducing φH when we identify k[[z]]T with k[[t]] when T
is the kernel of the surjection G → H , and for which −φG(τ ′) ≥ M for all non-
trivial elements τ ′ of G of p-power order. This statement is a consequence of the
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parts (i) and (ii) of Proposition 19.3(i) of Appendix 1. Part (b) of Corollary 5.6
follows directly from Theorem 5.1, which shows that if the Bertin obstruction of
some injection φ : G→ Autk(k[[t]]) vanishes, then Bertin obstruction of the induced
local J-cover would also have to vanish. �

Remark 5.7. Suppose H is a subgroup of G, and that H is not a Bertin group. In
general this need not imply G is not a Bertin group, since it may not be possible to
realize a local H-cover with non-zero Bertin obstruction as the restriction of a local
G-cover. We will show later in Proposition 15.6 that this occurs, for example, when
H is the quaternion group of order 8 and G is a generalized quaternion group of order
at least 16.

6. The reduction to p-groups.

Throughout this section we suppose given an injection φ : G → Autk(k[[t]]) as in
§4.

By Theorem 5.1, if the Bertin obstruction of φ vanishes, then so does the Bertin
obstruction of the restriction φP of φ to a p-Sylow subgroup P of G. In this section
we state our main result concerning exactly which further conditions G and φ must
satisfy in order for the Bertin obstruction of φ to vanish provided that of φP vanishes.
The proof of this result is given in §3 - §8.

We begin with a well-known result about the structure of G which follows from a
theorem of P. Hall [1, Thm. 18.5].

Lemma 6.1. The group G is the semi-direct product of a normal p-group P and a
cyclic group C of order prime to p. Let z ∈ G be an element which is not of p-power
order. Let m be the smallest positive integer such that w = zm has order prime to
p. Let t be the unique element of C having the same image as w in G/P . Then w
is conjugate to t in G. In particular, all subgroups of G having a given prime-to-p
order are conjugate.

Notation 6.2. Let T be a non-trivial cyclic subgroup of G. Define

(6.1) b′T = b′T,G =
∑

P 6⊃Γ∈S(T )

µ([Γ : T ]) and b′′T = b′′T,G =
∑

Γ∈S(T )

µ([Γ : T ])

where as before S(T ) = SG(T ) is the set of cyclic subgroups Γ of G which contain T .

Definition 6.3. Let u be a uniformizer in the discrete valuation ring k[[t]]φ(P ). Since
G = P.C, the field k((t))φ(P ) is a cyclic C = G/P extension of k((t))φ(G) via φ. Let
θ : C → k∗ be the faithful character defined by φ(σ)(u)/u ≡ θ(σ) mod uk[[u]] for
σ ∈ C. Suppose C1 is a subgroup of C and that j is an integer such that the
restriction θj |C1 of θj to C1 takes values in (Z/p)∗. We define the Teichmüller lift
of θj|C1 to be the unique character ψ : C1 → Z∗

p whose reduction mod p is equal to

θj |C1.

Remark 6.4. The definition of θ does not depend on the choice of uniformizer u. In
Lemma 8.7 below we consider the character θ0 : C → k∗ defined by θ0(σ) ≡ σ(t)/t
mod tk[[t]]. This also does not depend on the choice of the uniformizing parameter
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t. Hence on letting u =
∏

γ∈P γ(t) = NormP (t), we see that θ(σ) = θ0(σ)#P . Since
#P is a power of p, we conclude that θ(σ) = θ0(σ) if θ(σ) ∈ (Z/p)∗.

Notation 6.5. Suppose T is a cyclic subgroup of P . The normalizer NC(T ) of T in
C acts on T by conjugation. Since T is cyclic of order a power of p, and NC(T ) is
cyclic of order prime to p, we write χT : NC(T ) → Z∗

p for the unique character such

that xyx−1 = yχT (x) for x ∈ NC(T ) and y ∈ T .

Theorem 6.6. The Bertin obstruction of φ vanishes if and only if all the following
conditions hold:

a. The Bertin obstruction of the restriction φP of φ to P vanishes.
b. If t is a non-trivial element of C, the centralizer CG(t) of t in G is cyclic and

equal to the product group CP (t) × C = CP (C) × C.
c. For each non-trivial cyclic subgroup T of P , both of the following statements

are true:
i. b′T,G ≡ 0 mod [NP (T ) : T ]Z.
ii. [NP (T ) : T ]bT,P ≥ −b′T,G.

d. For each non-trivial cyclic subgroup T of P , one of following is true:
i. The centralizer CC(T ) of T in C is non-trivial, and

b′′T,G ≡ 0 mod #NC(T )Z.

ii. The centralizer CC(T ) is trivial. Then the restriction of θ to NC(T ) is
faithful, takes values in (Z/p)∗ and has Teichmüller lift χ−1

T , and

b′T,G ≡ 0 mod #NC(T )Z.

The proof of this result is completed at the end of §8 using the results in §3, §7
and §8.

We should point out that conditions (b), (c)(i) and (d)(i) of the above theorem are
purely group theoretic, in the sense that they do not depend on φ. Condition (c)(ii)
should be interpreted as saying that the wild ramification groups of G are sufficiently
large relative to the constant −bT ′,G which does not depend on the ramification
filtration of G determined by φ. Condition (d)(ii) (when it applies) should be viewed
as saying that the conjugation action of NC(T ) on T is the inverse of the Teichmüller
lift of the restriction of the tame character θ : C → k∗ to NC(T ). Note that θ does
not depend on T and is also independent of φ. Thus condition (d)(ii) does involve
the arithmetic information contained in θ, but this information is connected only
with tame ramification. The higher ramification filtration of G therefore enters into
only condition (a) and condition (c)(ii) of Theorem 6.6.

7. Obstructions associated to cyclic subquotients which are not

p-groups.

Throughout this section we suppose that the finite group G = P.C is a semi-direct
product of a normal p-group P with a cyclic prime to p group C. Our goal is to
prove the following proposition concerning the constants bT,J = bT,J(φ) in Corollary
5.5:
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Proposition 7.1. The following conditions are equivalent.

a. For each cyclic subgroup T of a subquotient J of G such that T is not a p-
group, then the constant bT,J = bT,J(φ) in Corollary 5.5 has the property that
0 ≤ bT,J ∈ Z.

b. If t is a non-trivial element of a cyclic subgroup C0 of G of maximal prime
to p order, the centralizer CG(t) is cyclic and equal to the product group
CP (t) × C0 = CP (C0) × C0.

If one (and hence both) of these conditions hold, then all of the constants bT,J in part
(a) are either 0 or 1. Both conditions hold if the Bertin obstruction of φ vanishes.

Proof that Condition (a) of Proposition 7.1 implies condition (b).

We assume that condition (a) of the proposition holds. Condition (b) holds trivially
if P is trivial, so we assume P is not trivial. All of the cyclic subgroups of G of
maximal prime-to-p order are conjugate to C by Lemma 6.1. Hence to prove (b), we
can reduce to the case C0 = C. The fact that CG(C) = CP (C) × C is clear because
G is the semi-direct product of the abelian group C with P .

We first show that CP (t) is cyclic. Since condition (a) applies to all subquotients of
G, to show CP (t) is cyclic, we can replace G by CP (t)×〈t〉. We may thus temporarily
assume that G is the product group P × 〈t〉, with CP (t) = P . Let P1 be the Frattini
subgroup of G, so that P1 = [P, P ] · P p is the normal subgroup of G generated the
commutator subgroup [P, P ] of P and the pth powers of elements of P . Thus P/P1

is an elementary abelian group of rank equal to that of P . By Corollary 3.4 and
the fact that condition (a) applies to all subquotients, we may conclude that if H
is a subquotient of G, then C(H) must be either a p-group or a cyclic group. But
G/P1 = (P/P1) × 〈t〉 is abelian and not a p-group, so this group must be cyclic.
Hence the p-Frattini quotient P/P1 is cyclic, so P = CP (t) itself must be cyclic, as
asserted.

We now drop the assumption that G = P × 〈t〉. To show the last equality in part
(b) of Proposition 7.1, it will suffice to prove

(7.1) CP (t) = CP (C).

To prove (7.1), we can use induction on #C to reduce to the case in which the index
of 〈t〉 in C is a prime number by replacing G by P.CP (t). We have already shown
that CP (t) is cyclic, and clearly CP (C) ⊂ CP (t). We now check that C normalizes
CP (t). Suppose c ∈ C and g ∈ CP (t). Then cgc−1 = g′ ∈ P since P is normal, and

g′tg′−1 = cgc−1tcg−1c−1 = cgtg−1c−1 = ctc−1 = t

since c and t are in the abelian group C and g ∈ CP (t). Thus the subgroup CP (t).C
generated by CP (t) and C is a semi-direct product of these two groups. We now
replace G by CP (t).C to be able to assume that P = CP (t) is cyclic and that [C :
〈t〉] = ℓ is prime (and prime to p). If C centralizes P , then (7.1) holds. So we will
now assume that C does not centralize P and derive a contradiction.

Since t commutes with P = CP (t) and with all of C, we find that the centralizer
CG(〈t〉) is equal to all of G. We now apply Proposition 3.2 to the subgroup T = 〈t〉
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of G. Since NG(T ) = CG(T ) = G is not T , this proposition implies that

(7.2) ψ({e},CG(T )/T ) =
∑

cyclic H⊂CG(T )/T

µ(#H) = 0

where the sum is over the cyclic subgroups H of CG(T )/T , including the trivial
subgroup, and µ is the Mobius function.

In our situation, CG(T )/T = G/〈t〉 = P.(C/〈t〉) is a non-trivial semi-direct product
of the cyclic p-group P with the cyclic group C/〈t〉 of prime order ℓ 6= p. Then C/〈t〉
acts non-trivially by conjugation on every element of P . It follows that any element
g ∈ CG(T )/T which does not lie in P must have order exactly ℓ, since otherwise
conjugation by g would fix the non-trivial element gℓ of P . The number of elements
of CG(T )/T which do not lie in P is (ℓ−1)(#P ), and these generate the #P subgroups
H of order ℓ in CG(T )/T . The other groups H appearing on the right hand side of
(7.2) are subgroups of P , and the only groups H of this kind for which µ(#H) 6= 0
are the trivial group {e} and the unique subgroup P0 of order p in CG(T )/T . Thus

(7.3) ψ({e},CG(T )/T ) =
∑

H⊂CG(T )/T

µ(#H) = µ(1) + µ(p) + #P · µ(ℓ) = −#P 6= 0

This contradicts (7.2), which completes the proof that part (a) of Proposition 7.1
implies part (b).

Conclusion of the proof of Proposition 7.1.

We first prove two lemmas.

Lemma 7.2. Every subquotient J of G is the semi-direct product of a p-group with a
cyclic prime to p-group. If condition (b) of Proposition 7.1 holds for G, then it also
holds when G is replaced by J .

Proof. The first statement is a consequence of Hall’s Theorem [1, Thm. 18.5] together
with the fact that J is an extension of a cyclic group of order prime to p by a normal
p-subgroup. Suppose now that G satisfies condition (b) of Proposition 7.1. It is
clear that every subgroup of G then satisfies this condition. We are thus reduced to
showing that J = G/H satisfies this condition for all normal subgroups H of G. It
is enough to consider prove this when H is either a p-group or a cyclic prime to p
group.

Suppose first that H is a p-group. Then H ⊂ P and J = (P/H).C is the semi-
direct product of the p-group P/H with C. Let t be a non-trivial element of C. By
hypothesis, CG(t) = CP (t)×C is cyclic. Hence to show CJ(t) = CP/H(t).C is cyclic,
it will suffice to show that the quotient homomorphism P → P/H gives a surjection
CP (t) → CP/H(t). Here t acts on P and P/H by conjugation, so we are to show that

the invariants P 〈t〉 surject onto (P/H)〈t〉. Since P is a p-group and t has order prime
to p, this follows from the taking the non-abelian cohomology with respect to 〈t〉 of
the sequence of 1 → H → P → P/H → 1 (see [27, Chap. VII, Annexe]).

Finally, suppose that H is cyclic of order prime to p. By Lemma 6.1, H is a
subgroup of C since it is conjugate to such a subgroup and is normal. Then P.H
contains the normal subgroups P and H , so P.H is isomorphic to P ×H , and H and
P commute. Since H ⊂ C commutes with C, we conclude H is in the center of G.
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Suppose t′ ∈ J = G/H = P.(C/H) has order prime to p. Since H is central, it is
clear that condition (b) of Proposition 7.1 implies CJ(t′) = CP (t′)× (C/H) is cyclic,
so Condition (b) holds for J . �

For z ∈ G, we will write NG(z) for NG(〈z〉), where 〈z〉 is the subgroup generated
by z.

Lemma 7.3. Suppose that condition (b) of Proposition 7.1 holds. Let z ∈ G be
an element which is not of p-power order. Let m be the smallest positive such that
w = zm is a (non-trivial) element of order prime to p.

a. The group CG(z) = CG(w) is cyclic and conjugate to CP (C) × C.
b. If NG(z) properly contains 〈z〉, then so does CG(z).

Proof. By Lemma 6.1, w is conjugate to an element t of C. By replacing z by a
conjugate of itself, we can assume that w = t ∈ C. Since we assume that condition
(b) of Proposition 7.1 holds, CG(w) = CG(t) = CP (C) × C is cyclic. We have
z ∈ CG(w) ⊃ CG(z) since w is a power of z. Because CG(w) is abelian, this implies
CG(w) ⊂ CG(z), so CG(z) = CG(w) = CP (C) × C. This proves part (a).

To show part (b), we assume to the contrary that

(7.4) CG(z) = CP (C) × C = 〈z〉.

Note that this forces forces w = t above to be a generator of C. It will suffice to
show

(7.5) NG(z) ⊂ CG(z)

since then CG(z) = NG(z) will equal 〈z〉.
The group 〈z〉 is obviously normal in NG(z), and 〈w〉 = 〈t〉 = C ⊂ 〈z〉 is charac-

teristic in 〈z〉. Hence C is a normal subgroup of NG(z). The group NG(z)∩P is also
normal in NG(z) since P is normal in G. Since NG(z)∩P and C have coprime orders,
and the product of these orders is #NG(z), we conclude that NG(z) is isomorphic to
the product group (NG(z) ∩ P )×C. This means that C commutes with NG(z) ∩ P .

Thus NG(z) ∩ P is contained in the cyclic group CG(C) = CP (C) × C. Hence
NG(z) ∩ P is abelian. Since 〈z〉 ∩ P is contained in NG(z) ∩ P , this means that
NG(z) ∩ P centralizes 〈z〉 ∩ P . However, we have already shown that C commutes
with NG(z) ∩ P . Thus CG(NG(z) ∩ P ) contains both 〈z〉 ∩ P and C = 〈w〉, and the
latter two groups generate 〈z〉. Hence CG(NG(z) ∩ P ) contains 〈z〉, so NG(z) ∩ P is
contained in CG(z).

We now use the fact that NG(z) is generated by NG(z)∩P ⊂ CG(z) and C = 〈w〉 ⊂
CG(w), where we have shown CG(w) = CG(z) already. This implies NG(z) ⊂ CG(z)
and proves (7.5). �

Corollary 7.4. Condition (b) of Proposition 7.1 implies that if T is a cyclic subgroup
of a subquotient J of G such that T is not a p-group, then bT,J is equal to 0 or 1.

Proof. By Lemma 7.2, it will be enough to consider the case in which the subquotient
J is G itself. By Proposition 3.2, bT = 1 if NG(T ) = T , and bT = 0 provided

(7.6) ψ(T,CG(T )) =
∑

T⊂W⊂CG(T ),W cyclic

µ([W : T ]) = 0.
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To prove that one or the other of these alternatives applies, let z be a generator of T ,
and suppose that NG(T ) 6= T . By Lemma 7.3, CG(T ) is a cyclic group which strictly
contains T . We conclude that ψ(T,CG(T )) = ψ({e},CG(T )/T ) =

∑

d|[CG(T ):T ] µ(d) =
0 in (7.6), so the corollary holds. �

The last two assertions in Proposition 7.1 now follow from Corollaries 7.4 and 5.5,
and this completes the proof. �

8. Obstructions associated to cyclic p-subgroups.

We will fix the following hypotheses and notation throughout this section.

Hypothesis 8.1. Let φ : G→ Autk(k[[t]]) be an injection, and write G as the semi-
direct product P.C of a normal p-group P and a cyclic group C of order prime to
p. Let T be a non-trivial cyclic subgroup of G of p-power order. Define b′T = b′T,G

as in (6.1). We assume finally that if t is a non-trivial element of C, then CG(t) =
CP (t) × C is cyclic.

Note that by Proposition 7.1, the final assumption in this hypothesis holds if φ
has vanishing Bertin obstruction.

The goal of this section is to compare the constants bT = bT,G and bT,P .

Lemma 8.2. After replacing T by a conjugate subgroup, the centralizer CG(T ) is the
semi-direct product CP (T ).CC(T ) and the normalizer NG(T ) is NP (T ).NC(T ).

Proof. The group NP (T ) = NG(T ) ∩ P is normal in NG(T ) since P is normal in G.
The quotient group NG(T )/NP (T ) injects into the cyclic prime to p-group G/P , so
NG(T ) is the semi-direct product of NP (T ) with a subgroup C ′ of order prime to p.
By Lemma 6.1 we can replace T by a conjugate of itself to be able to assume that
C ′ ⊂ C. After this replacement we have C ′ = NC(T ). Since CG(T ) ⊂ NG(T ), we
can write each element of CG(T ) in a unique way in the form αβ with α ∈ NP (T )
and β ∈ C ′ = NC(T ). Then the conjugation action of β on T must be the inverse
of the conjugation action of α on T . Since β and α have co-prime orders, this
implies that each of these actions are trivial, so α ∈ CP (T ) and β ∈ CC(T ). Thus
CG(T ) = CP (T ).CC(T ). �

Corollary 8.3. One has

bT =
bT,CG(T )

[NG(T ) : CG(T )]

=
bT,P

#NC(T )
+

b′T,G

#NC(T ) · [NP (T ) : T ]
(8.1)

Proof. By Theorem 2.3, since T is non-trivial,

(8.2) bT =
1

[NG(T ) : T ]





∑

Γ∈S(T )

µ([Γ : T ])ι(Γ)



 .

where ι(Γ) = ιG(Γ) is defined in Notation 2.2. Clearly if Γ ∈ S(T ) then Γ ⊂ CG(T )
since Γ is abelian and contains T . Thus SG(T ) = SCG(T )(T ), and the compatibility of



THE LOCAL LIFTING PROBLEM FOR ACTIONS OF FINITE GROUPS ON CURVES 23

the lower numbering of ramification groups with passing from G to subgroups leads
to the first equality in (8.1). To prove the second equality, note that the Γ ∈ SG(T )
which are p-groups are exactly the elements of SP (T ); the other Γ ∈ SG(T ) have
ι(Γ) = 1 since no higher ramification group can contain a group which is not a
p-group. This leads to

[NG(T ) : T ]bT =
∑

Γ∈S(T )

µ([Γ : T ])ι(Γ) = [NP (T ) : T ]bT,P + b′T,G

The second equality in (8.1) follows from this and Lemma 8.2. �

Corollary 8.4. Suppose that 0 ≤ bT,P ∈ Z. Then 0 ≤ bT ∈ Z if and only if all of
the following are true:

(a.) b′T,G ≡ 0 mod [NP (T ) : T ]Z.
(b.)

∑

Γ∈S(T ) µ([Γ : T ])ι(Γ) ≡ 0 mod #NC(T )Z.

(c.) bT,P ≥
−b′

T,G

[NP (T ):T ]
.

Proof. We have bT ∈ Z if and only if #NC(T )bT ∈ Z and [NP (T ) : T ]bT ∈ Z, since
[NP (T ) : T ] is a power of p while #NC(T ) is prime to p. From (8.1) we have

#NC(T )bT = bT,P +
b′T,G

[NP (T ) : T ]
.

So since we suppose bT,P ∈ Z, we see that this is in Z if and only if condition (a) of
Corollary 8.4 holds. From (8.2) we have

[NP (T ) : T ]bT =
[NP (T ) : T ]

[NG(T ) : T ]





∑

Γ∈S(T )

µ([Γ : T ])ι(Γ)





Since [NG(T ) : T ]/[NP (T ) : T ] = #NC(T ) by Lemma 8.2, condition (b) of Corollary
8.4 is equivalent to [NP (T ) : T ]bT ∈ Z. Finally, Corollary 8.3 shows condition (c) is
equivalent to bT ≥ 0. �

Remark 8.5. The hypothesis that 0 ≤ bT,P ∈ Z holds if the Bertin obstruction of
the restriction φ|P of φ to P vanishes by Proposition 2.1. Corollary 8.4 has to do
with the further conditions which must hold if the Bertin obstruction of φ is to
vanish. (Recall that if the Bertin obstruction of φ vanishes then so does that of φP

by Theorem 5.1.) In condition (a) of the Corollary, the constant b′T,G is a purely
group theoretic invariant which does not depend on φ. Condition (c) can be thought
of as a lower bound on the size of the wild ramification groups of G. The object of the
rest of this section is to quantify the arithmetic information contained in condition
(b).

Lemma 8.6. There is a unique character χ : NC(T ) → Z∗
p such that

(8.3) ghg−1 = hχ(g) for g ∈ NC(T ) and h ∈ T

where hχ(g) is well-defined because h has p-power order. For each Γ ∈ SP (T ), one
has NC(Γ) ⊂ NC(T ), and (8.3) holds for g ∈ NC(Γ) and h ∈ Γ.
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Proof. The first statement is clear from the fact that T is a cyclic p group and
NC(T ) ⊂ C is cyclic of order prime to p. Recall that Γ ∈ SP (T ) must be a cyclic
p-group containing T . Hence T is characteristic in Γ, so NC(Γ) ⊂ NC(T ). By the
existence of Teichmüller lifts, there is a unique character ψ : NC(Γ) → Z∗

p giving the
conjugation action of NC(Γ) on Γ. Since the kernel of the restriction homomorphism
Aut(Γ) → Aut(T ) is a p-group, this ψ must be the restriction of χ to NC(Γ). �

The following result is Proposition 9 of §IV.2 of [27].

Lemma 8.7. (Serre) Let p be the maximal ideal tk[[t]] of k[[t]], and recall that Gj is
the jth ramfication subgroup of G in the lower numbering. Let θ0 : C = G0/G1 → k∗

be the faithful character defined by

θ0(σ) ≡
φ(σ)(t)

t
mod p for σ ∈ C.

For each j ≥ 1 we have an injective group homomorphism θj : Gj/Gj+1 → pj/pj+1

defined by φ(σ)(t)/t ≡ 1 + θj(σ) mod pj+1. Then

(8.4) θj(sxs
−1) = θ0(s)

j · θj(x)

for x ∈ Gj/Gj+1 and s ∈ C.

Corollary 8.8. Let θ0 : C → k∗ and θ : C → k∗ be the characters defined in Lemma
8.7 and Definition 6.3. Then θ = θ#P

0 where #P is a power of p. If g ∈ C then
θ(g) ∈ (Z/p)∗ if and only if θ0(g) ∈ (Z/p)∗, and in this case θ(g) = θ0(g).

Proof. The equality θ = θ#P
0 is clear from the fact that if u is the uniformizer in

k[[t]]φ(P ) used in Definition 6.3 then u = t#Pv for some unit v in k[[t]]. The second
statement in the corollary follows from the fact that #P is a power of p. �

Corollary 8.9. Suppose Γ ∈ SP (T ). Let i be the largest integer such that Γ ⊂ Gi,
so that ι(Γ) = i + 1. Suppose NC(Γ) is not trivial. The character θi

0 : NC(Γ) → k∗

takes values in (Z/p)∗ and is trivial if p = 2. The resulting Teichmüller lift of this
character is the restriction of χ : C → Z∗

p to NC(Γ).

Proof. Since Γ is cyclic p-group and Γi = Γ properly contains Γi+1, we have i ≥ 1, and
the group Γi/Γi+1 is a non-trivial cyclic p-group. This group must in fact be of order
p, since θi is an embedding of it into pi/pi+1. Thus θi(Γi/Γi+1) is a one dimensional
Z/p vector space inside pi/pi+1 which by Lemma 8.7 is stable by multiplication by
the elements of θi

0(NC(Γ)) ⊂ k∗. This implies θi
0(NC(Γ)) ⊂ (Z/p)∗. If p = 2, this

shows θi
0 restricts to the trivial character on NC(Γ). In general, Lemma 8.7 shows

that θi
0|NC(Γ) gives the conjugation action of NC(Γ) on Γ. By Lemma 8.6, this action

is also given by the restriction of χ to NC(Γ), so the final statement of Corollary
8.9 follows from the uniqueness of Teichmüller lifts for characters of cyclic groups of
order prime to p. �

Lemma 8.10. There is a unique residue class jT ∈ Z/(#NC(T )Z) such that the
restriction θjT

0 |NC(T ) of θjT

0 : C → k∗ to NC(T ) takes values in (Z/p)∗ and has Te-
ichmüller lift the character χT of Lemma 8.6. Suppose that Γ ∈ SP (T ), so that Γ is
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a cyclic p-group which contains T . The group NC(T ) acts by conjugation on SP (T ).
Let ST

P (Γ) be the orbit of Γ under this action. One has

(8.5)
∑

Γ1∈ST
P

(Γ)

µ([Γ1 : T ])ι(Γ1) ≡
∑

Γ1∈ST
P

(Γ)

µ([Γ1 : T ])(1 + jT ) mod #NC(T )Z

Proof. The first statement, about the existence of jT , is a consequence of the fact
that θ0 is a faithful character of C and χ is a character of NC(T ) with values in Z∗

p.
Since NC(T ) conjugates T to itself, it acts on SP (T ), and elements in the each orbit
have the same order and value for ι. The stabilizer of Γ under this action is NC(Γ),
so

(8.6)
∑

Γ1∈ST
P

(Γ)

µ([Γ1 : T ])ι(Γ1) = [NC(T ) : NC(Γ)]µ([Γ : T ])ι(Γ)

By Lemma 8.6, the action of NC(Γ) on Γ by conjugation is given by the restriction of
χ from C to NC(Γ). As in Corollary 8.9, let i be the largest integer such that Γ ⊂ Gi,
so that ι(Γ) = i+1. By Corollary 8.9, θi

0|NC(Γ) has Teichmüller lift χ|NC(Γ). However,

θjT

0 |NC(Γ) also has Teichmüller lift χ|NC(Γ). Since θ0 is a faithful character of C, this
forces i ≡ jT mod #NC(Γ). Therefore ι(Γ) ≡ 1 + jT mod #NC(Γ). Substituting this
into (8.6) proves (8.5) since [NC(T ) : NC(Γ)] · #NC(Γ) = #NC(T ). �

Lemma 8.11. Suppose that χ in Lemma 8.6 has a non-trivial kernel. Then NC(T ) =
CC(T ) = C and χ is trivial. Condition (b) of Corollary 8.4 is equivalent to

(8.7)
∑

Γ∈S(T )

µ([Γ : T ]) ≡ 0 mod #NC(T )Z

which is independent of φ.

Proof. Suppose that t ∈ NC(T ) is a non-trivial element of the kernel of χ. Then t acts
trivially on the cyclic p-group T by conjugation. The final assumption of Hypothesis
8.1 now says that CG(t) = CP (t) × C is cyclic. Thus T is contained in CG(t), and
every element of CG(t) commutes with T . In particular, C is contained in CG(T ),
so we get that NC(T ) = CC(T ) = C and that χ is trivial. Hence the residue class
jT ∈ Z/#NC(T )Z defined in Lemma 8.10 is trivial. Summing (8.5) over the NC(T )
orbits in SP (T ) now gives

(8.8)
∑

Γ1∈SP (T )

µ([Γ1 : T ])ι(Γ1) ≡
∑

Γ1∈SP (Γ)

µ([Γ1 : T ]) mod #NC(T )Z.

If Γ ∈ S(T ) is not in SP (T ) then ι(T ) = 1 since Γ is not a p-group. Hence summing
µ([Γ : T ])ι(Γ) = µ([Γ : T ]) as Γ runs over these groups to both sides of (8.8) leads to
the reformulation of condition (b) stated in Lemma 8.11. �

Lemma 8.12. Suppose that χ in Lemma 8.6 has trivial kernel, which is equivalent
to CC(T ) = {e}. Let D be the subgroup of G generated by T and by NC(T ). Then
the constant bT,D equals ι(T )/#NC(T ), where ι(T ) = iT + 1 when iT is the largest
integer i such that T ⊂ Gi.

a. One has bT,D ∈ Z if and only if the residue class jT in Lemma 8.10 is −1
mod #NC(T )Z.
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b. Suppose bT,D ∈ Z. Then condition (b) of Corollary 8.4 is equivalent to the
congruence

(8.9) b′T = b′T,G =
∑

P 6⊃Γ∈S(T )

µ([Γ : T ]) ≡ 0 mod #NC(T )Z.

Proof. Since χ has trivial kernel, D is the semi-direct product of the normal p-group
T with the cyclic prime to p group NC(T ), and the action of NC(T ) on T is faithful.
If Γ is a cyclic subgroup of D containing T , then Γ/T ⊂ D/T ∼= NC(T ) acts faithfully
by conjugation on T . This forces Γ = T , so the set SD(T ) of such Γ is simply {T}.
Therefore bT,D = ι(T )/#NC(T ) by Theorem 2.3. Replacing G by D in Lemma 8.10
shows bT,D is integral if and only jT ≡ −1 mod #NC(T ), which we will suppose is
the case for the rest of the proof. We now return to G as before, so that G need not
be D. Summing the formula in Lemma 8.10 over the NC(T ) orbits in SP (T ) now
gives

∑

Γ∈SP (T )

µ([Γ1 : T ])ι(Γ1) ≡ 0 mod #NC(T )Z

since jT + 1 ≡ 0 mod #NC(T )Z. Hence condition (b) of Corollary 8.4 becomes the
congruence

0 ≡
∑

Γ∈S(T )

µ([Γ : T ])ι(Γ) mod #NC(T )Z

≡
∑

P 6⊃Γ∈S(T )

µ([Γ : T ])ι(Γ) mod #NC(T )Z

= b′T,G mod #NC(T )Z(8.10)

since ι(Γ) = 1 if Γ 6⊂ P . �

Remark 8.13. In view of Lemma 8.10, the arithmetic condition in part (a) of Lemma
8.12 is that the conjugation action of NC(T ) on T is via the inverse of the Teichmüller
lift of the character θ0|NC(T ). Note that θ0|NC(T ) takes values in (Z/p)∗, so it agrees
with the restriction θ|NC(T ) of the character θ : C → k∗ defined in Definition 6.3
because of Remark 6.4.

Completion of the proof of Theorem 6.6

We split the proof into two parts:

Part 1: Suppose the Bertin obstruction of φ vanishes.

The Bertin obstruction of φP then vanishes by Theorem 5.1, so condition (a) of
Theorem 6.6 holds. Condition (b) of the theorem follows from Corollary 5.5 and
Proposition 7.1. Condition (c) of Theorem 6.6 is a consequence of Corollary 5.5 and
conditions (a) and (c) of Corollary 8.4 together with Proposition 2.1 and Theorem
5.1 .

We now suppose as in condition (d) of Theorem 6.6 that T is a non-trivial cyclic
subgroup of P . Since we have supposed the Bertin obstruction of φ vanishes, we have
bT ≥ 0 by Proposition 2.1(ii). Therefore conditions (a), (b) and (c) of Corollary 8.4
hold.
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Suppose first that CC(T ) is non-trivial. By the definition of χ in Lemma 8.6, χ
is trivial on CC(T ). Hence the hypothesis of Lemma 8.11 holds. This Lemma 8.11
now shows that CC(T ) = C. This lemma also shows that since (b) of Corollary 8.4
holds, the congruence claimed in condition (d)(i) of Theorem 6.6 is true, since b′′T,G

is the constant on the left side of (8.7) by Notation 6.2. This completes the proof of
condition (d) of Theorem 6.6 if CC(T ) is not trivial.

Suppose now that CC(T ) is trivial. The hypotheses of Lemma 8.12 now hold, and
the character χ in this lemma has trivial kernel. As in this lemma, let D be the
subgroup generated by T and NC(T ). Since we supposed that the Bertin obstruction
of φ vanishes, bT,D is an integer by Corollary 5.5. The character θ in Definition 6.3
and Theorem 6.6(d)(ii) now has the properties claimed because of Lemma 8.12(a),
Lemma 8.10 and Remark 8.13. Finally, since we have already proved that (b) of
Corollary 8.4 is true under the above hypotheses, the remaining congruence to be
proved in Theorem 6.6(d)(ii) follows from Corollary 5.5 and Lemma 8.12(b). This
completes the proof of condition (d) of Theorem 6.6. We have now shown that if the
Bertin obstruction of φ vanishes, then (a) - (d) of Theorem 6.6 hold.

Part 2: Suppose conditions (a) - (d) of Theorem 6.6 hold.

By Proposition 2.1(ii) it will suffice to show that 0 ≤ bT ∈ Z for all non-trivial
cyclic subgroups T of G, since then the Bertin obstruction of φ vanishes.

Suppose first that T is not a p-group. We have supposed that condition (b) of
Theorem 6.6 holds. By Lemma 6.1, all cyclic subgroups C0 of G of maximal prime-
to-p order are conjugate to C. If now follows from condition (b) of Theorem 6.6 that
condition (b) of Proposition 7.1 holds. Therefore by letting J = G in Proposition
7.1(a) we see that 0 ≤ bT = bT,J ∈ Z, as required.

Now suppose that T is a non-trivial cyclic p-subgroup of G. We have supposed in
condition (a) of Theorem 6.6 that the Bertin obstruction of the restriction of φ to P
vanishes. Thus 0 ≤ bT,P ∈ Z by Notation 5.4 and Proposition 2.1. Thus to complete
the proof, it will suffice to show that conditions (a), (b) and (c) of Corollary 8.4 hold.
Hypothesis (c) of Theorem 6.6 is that (a) and (c) of Corollary 8.4 hold, so we are
reduced to checking (b) of that corollary.

Suppose first that the centralizer CC(T ) of T in C is non-trivial. This is equivalent
to supposing that the character χ in Lemma 8.6 has a non-trivial kernel. Lemma
8.11 and Notation 6.2 now show that Hypothesis d(i) of Theorem 6.6 is equivalent
to condition (b) of Corollary 8.4, so we are done in this case.

Finally, suppose that CC(T ) is trivial. In view of Remark 8.13, the hypothesis in
part (d)(ii) of Theorem 6.6 concerning the character θ is equivalent to condition (a) of
Lemma 8.12. Therefore part (b) of Lemma 8.12 shows that condition (b) of Corollary
8.4 is equivalent to the hypothesis on b′T,G in Theorem 6.6. Therefore condition (b)
of Corollary 8.4 holds in all cases and the proof is complete. �

9. Proof of Theorem 1.8.

We begin by proving that GM-groups have certain properties that we require.
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Theorem 9.1. Let G be a GM group with respect to the character Θ. Let P,B and
C be as in the Definition 1.7. Set D := CP (C). Suppose T is a non-trivial cyclic
subgroup of P . Recall that SG(T ) is the set of cyclic subgroups of G which contain
T , and µ(x) is the Mobius µ function. Let b′T,G and b′′T,G be as in Notation 6.2.

a. One has

(9.1) b′T,G =
∑

P 6⊃Γ∈SG(T )

µ([Γ : T ]) ≡ 0 mod [NP (T ) : T ]Z.

b. Suppose CC(T ) is not trivial. Then T ⊂ D and

(9.2) b′′T,G =
∑

Γ∈SG(T )

µ([Γ : T ]) ≡ 0 mod #CZ

c. Suppose CC(T ) = 1. Then either NC(T ) = 1 or every cyclic overgroup of T
is contained in P .

Proof. The results are obvious if C 6= 1. So assume this is not the case. Set H =
D × C. Let 1 6= W ≤ C. Then CG(W ) = DC = H (since D = CP (W ) and C is a
complement to any Sylow p-subgroup of CG(W )). Similarly, NG(W ) = NP (W )C =
CP (W )C = CG(W ). It follows that C ∩C ′ = 1 for any conjugate C ′ of C other than
C.

We first prove (c). Suppose that T is contained in some cyclic subgroup not
contained in P . It follows that T centralizes some element c′ 6= 1 of order prime to
p. By Lemma 6.1, c′ is conjugate to some element c ∈ C. Thus, T centralizes a
conjugate C ′ of C. It follows that [G : CG(T )] is a power of p and so NG(T )/CG(T )
is a p-group. Thus, NC(T ) ≤ CG(T ) ∩ C = 1, and (c) follows.

We next prove (a) and (b). By Lemma 8.2 we can replace T by a conjugate
subgroup in order to have CG(T ) = CP (T ).CC(T ) and NG(T ) = NP (T ).NC(T ). We
may assume that CC(T ) 6= 1 (this is the assumption in (b); and in (a) if this is not
the case, then we are summing over the empty set). Thus, 1 6= T ≤ D by Definition
1.7(a). So NG(T ) = NP (T )C.

Since H is cyclic, it is clear that b′T,H = −1 if T = D and b′T,H = 0 if T < D. Also,
b′′T.H = 0.

We claim that every cyclic subgroup E of G that contains T and that is not
contained in P is conjugate to a unique subgroup of H containing T via an element
of NG(T ). Here uniqueness is clear because H is cyclic and so has a unique subgroup
of each order. Existence follows by Lemma 7.3 since E contains a nontrivial p′-
subgroup which is conjugate (in NG(T )) to a subgroup of C. So we may assume that
E ∩ C 6= 1, whence E ≤ H .

Now let E ≤ H be such a subgroup. Then NG(E) must normalize every subgroup
of E, and so NG(E) = H . Thus, b′T,G = [NG(T ) : H ]b′T,H . If T < D, this implies that
b′T,G = 0 and (a) follows. If T = D, then [NG(T ) : H ] = [NP (D) : D], and again (a)
follows.

We now prove (b). Note that C acts on SG(T ). Let E ∈ SG(T ). Then C centralizes
E if E ⊂ H . Suppose E is not contained in H and 1 6= c ∈ C normalizes E. Since
T ⊂ D, c centralizes T , so c centralizes the cyclic Sylow p-subgroup of E. Thus,
the Sylow p-subgroup of E is contained in D. Thus, E must contain a nontrivial
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p′-subgroup C ′ not contained in C since we’ve assumed E 6⊂ H . Then c normalizes
C ′ and so c centralizes C ′ because it does so mod P . Therefore C ′ ⊂ H , so C ′ ⊂ C,
which is a contradiction. Thus, C acts freely by conjugation on the elements of SG(T )
not contained in H . Since µ([Γ : T ]) is constant on C-conjugates, it follows that:

(9.3)
∑

Γ∈SH(T )

µ([Γ : T ]) ≡ b′′T,G mod #CZ.

Since H is a cyclic group which properly contains T , the sum on the left in (9.3) is
0, which completes the proof. �

Lemma 9.2. Let Q be a p-group and x an automorphism of Q of order dividing
p− 1. Let φ : Q → R be an x-equivariant surjection. If r ∈ R with x(r) = re, then
there exists s ∈ Q with φ(s) = r and x(s) = se.

Proof. There is no loss in assuming that R is generated by r (replace R by this sub-
group and Q by the inverse image). If φ factors through an intermediate group, the
result follows by induction. So we may assume that K := ker(φ) is a minimal normal
x-invariant subgroup of Q. Thus, we may assume that K is a central elementary
abelian p-subgroup of Q with x irreducible on Q. Since x has order dividing p − 1,
this forces K to have order p. So either Q is cyclic of order p2, in which case the result
is clear, or else Q is elementary abelian. In that case, Q is a completely reducible
x-module and so the result is also clear. �

Lemma 9.3. If G is a GM-group with respect to a character Θ, then so is every
subquotient.

Proof. Keep the usual notation. We induct on the order of G. It is clear that
subgroups of GM groups are GM groups. So it suffices to consider quotients by
minimal normal non-trivial subgroups N . Since P is normal in G, either N ∩ P is
trivial and N is of order prime to p or N ⊂ P . If N has order prime to P , then N.P
must be the product group N ×P , so N and P commute. Hence N is a subgroup of
the cyclic group C since all subgroups of G of order prime to p are conjugate by an
element of P to a subgroup of C. Definition 1.7(a) now implies P must be cyclic by
choosing c to be a non-trivial element of N , and C must commute with P . Hence G
is cyclic, and it follows that G/N is GM.

Suppose now that N is a minimal normal subgroup of G contained in P . On
taking the intersection of N with the lower central series of P , we see that there
is a non-trivial subgroup N0 of N which is normal in G such that the commutator
group [P,N0] is trivial. Since N is a minimal normal subgroup of G, this implies
N = N0 ⊂ C(P ). Because C has order prime to p, we see that if 1 6= c ∈ C, then
Lemma 9.2 implies that CP/N (c) = CP (c)N/N = CP (C)N/N = CP/N (C) is cyclic.
So condition (a) of Definition 1.7 holds in G/N . In a similar way, Lemma 9.2 implies
that condition (b) of Definition 1.7 holds for G/N because it holds for G. �

Completion of the proof of Theorem 1.8

Suppose first that there is an injection φG :→ Autk(k[[t]] having vanishing Bertin
obstruction. Let ΘC be the inverse of the Teichmüller lift of the character θ : C → k∗
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appearing in Theorem 6.6. Parts (b) and (d) of Theorem 6.6 then show that G is a
GM group for k with respect to the restriction Θ of ΘC to the maximal subgroup B
of order dividing p− 1.

Suppose now that G is GM for k with respect to Θ. Pick a faithful extension
ΘC : C → W (k)∗ of Θ from B to C. Let M be a positive integer. By induction on
the length of a composition series for G, we can use Lemma 19.2 and Proposition
19.3 of Appendix 1 to construct an injection φG : G → Autk(k[[z]]) which is GM
with respect to ΘC and such that

(9.4) ι(T ) ≥ ι(Γ) +M and ι(T ) ≡ 0 mod pM

if T is a non-trivial proper subgroup of the cyclic p-subgroup Γ of G. We will show
that if M is chosen to be sufficiently large, then φG will satisfy all the conditions of
Theorem 6.6. This theorem will then imply that φG has vanishing Bertin obstruction,
and this will complete the proof of Theorem 1.8.

Consider first condition (a) of Theorem 6.6. By Theorem 2.3,

bT,P =
1

[NP (T ) : T ]

∑

Γ∈SP (T )

µ([Γ : T ])ι(Γ)

=
1

[NP (T ) : T ]



ι(T ) +
∑

T 6=Γ∈SP (T )

µ([Γ : T ])ι(Γ)



(9.5)

where SP (T ) is the set of cyclic subgroups Γ ⊂ P which contain T . So by making M
sufficiently large, (9.4) will insure that each such bT,P will be larger than any specified
integer and will be integral. Thus the Bertin obstruction of the restriction of φ to P
vanishes by Proposition 2.1(ii)(b), so hypothesis (a) of Theorem 6.6 holds. We see
also from this that since the constant b′T,G in Notation 6.2 depends only on G, we
can insure that the inequality in condition (c)(ii) of Theorem 6.6 holds by making
M sufficiently large.

It remains to check conditions (b), (c)(i) and (d) of Theorem 6.6.
Concerning condition (b), let t be a non-trivial element of C. Then C commutes

with t; so since G = P.C we conclude that CG(t) = CP (t).C. However, CP (c) =
CP (C) is a cyclic p-group since G is a GM group (see Definition 1.7). Hence CG(t) =
CP (C) × C is cyclic and condition (b) of Theorem 6.6 holds.

Suppose now that T is a non-trivial cyclic subgroup of P as in conditions (c) and
(d) of Theorem 6.6. Condition (c)(i) of this theorem holds by part (a) of Theorem 9.1.
If CC(T ) is not trivial, condition d(i) of Theorem 6.6 holds by part (b) of Theorem
9.1. Suppose now that CC(T ) is trivial. The statements about θ in condition d(ii)
of Theorem 6.6 hold because we constructed φG : G → Autk(k[[z]]) to be GM with
respect to Θ in the sense of Proposition 19.3 of Appendix 1. It remains to prove the
congruence

b′T,G =
∑

P 6⊃Γ∈S(T )

µ([Γ : T ]) ≡ 0 mod #NC(T )Z

required in part d(ii) of Theorem 6.6. Part (c) of Theorem 9.1 shows that either
#NC(T ) = 1 or the sum defining b′T,G is empty; so this congruence holds and the
proof is complete.
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10. Examples and characterizations of GM groups.

We begin with some examples.

Theorem 10.1. Let G be the semi-direct product of a normal p-group P by cyclic
subgroup C of order prime to p. Let B be the maximal subgroup of C of order dividing
p− 1.

a. If G is cyclic or a p-group then G is a GM-group.
b. If #B ≤ 2, and C acts freely on the nontrivial elements of P , then G is a

GM-group.
c. G is not a GM group if has any of the following properties:

i. (Green-Matignon) G contains an abelian subgroup that is neither cyclic
nor a p-group;

ii. P is elementary abelian of order p2, C has order dividing p − 1 and C
acts with two distinct nontrivial eigenvalues on P .

iii. P is cyclic of order p, and C neither acts faithfully or trivially on P .
iv. P is extraspecial of order p3 and exponent p, C is cyclic, #C does not

divide p+ 1, and CP (C) = C(P ).

Proof. Parts (a) and (b) follow directly from 1.7. If conditions (i) (resp. (ii), resp.
(iii)) of part (c) hold, then condition (a) (resp. (b), resp. (a)) of Definition 1.7 does
not hold. Suppose now that condition (iv) of part (c) holds but that G is a GM
group.

Let us first show that C must act faithfully on P/C(P ). Suppose to the contrary
that c ∈ C is non-trivial and acts trivially on P/C(P ). Because c commutes with
CP (C) = C(P ) and has order prime to p, c must act trivially on P . Then P =
CP (c) = CP (C) by part (a) of Definition 1.7, which contradicts the assumption that
CP (C) = C(P ) in part (iv). Therefore C must act faithfully on P/C(P ).

We have dimZ/pP/C(P ) = 2, and C(P ) ∼= ∧2(P/C(P )) as a C-module. We have
assumed in (iv) of part (c) that the action of C on C(P ) is trivial, so the determinant
of the action of C on P/C(P ) is trivial. Let c0 be a generator of C. The characteristic
polynomial of the action of c0 on the two-dimensional Z/p-vector space P/C(P ) thus
has the form X2 − aX + 1 for some a ∈ Z/p. If this polynomial does not split over
Z/p, its roots have multiplicative order dividing p + 1. Since the action of C on
P/C(P ) is semi-simple, this would force the order of C to divide p+1, contradicting
one of the assumptions in (iv). Therefore X2 − aX + 1 splits over Z/p. We conclude
that as a representation of C over Z/p, P/C(P ) must be isomorphic to the direct
sum of two characters φ1 and φ2 over Z/p. Thus #C divides p− 1. Now Lemma 9.3
and part (ii) imply that either φ2 = φ1 or we can order φ1 and φ2 so that φ2 is trivial.
The action of C on C(P ) ∼= ∧2(P/C(P )) is given by the character φ1 · φ2, and we
assumed this action is trivial in part (iv). Thus φ1 = φ−1

2 . If φ1 = φ2 then φ1 and C
have order 2. However, we assumed that #C does not divide p+1, so #C = 2 would
force p = 2, which is impossible since #C is prime to p. Thus φ1 = φ−1

2 and φ2 are
distinct characters of C. Part (ii) now shows that G/C(P ) is not a GM group, so G
is not a GM group by Lemma 9.3. �
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In fact, we now show that GM groups can be characterized as those groups of the
form PC which do not contain subgroups of the form in Theorem 10.1(c).

Theorem 10.2. Let G = PC be a group with P the normal Sylow p-subgroup of G
with C cyclic of order prime to p. Then G is a GM group if and only if it has no
subgroup of the following types:

(1) Z/p× Z/p× Z/r, with r a prime distinct from p;
(2) QE where Q is of order p, E is cyclic of order prime to p and E acts neither

faithfully nor trivially on Q;
(3) QE where Q is elementary abelian of order p2, E is cyclic of order dividing

p− 1, CE(Q) = 1 and E does not act like a scalar on Q; or
(4) QE where Q is extraspecial of exponent p and order p3, E is cyclic of order

e with e not dividing p+ 1 and CQ(E) = C(Q).

We require the following lemmas, the first of which is an exercise beginning with
the definition [x, y] = x−1y−1xy.

Lemma 10.3. If H is a group and z = [x, y] commutes with x for some x, y, z ∈ H,
then ze = [xe, y]. If z commutes with both x and y, then [xe, yf ] = zef .

Lemma 10.4. Let Q be a p-group with B = 〈b〉 a group of order dividing p−1 acting
on Q. There is a filtration:

1 = Q0 < Q1 < · · · < Qm = Q,

such that:

a. each Qi is normal in Q and B-invariant;
b. each quotient Qi/Qi−1 is cyclic of order p;
c. There is a unique root of unity ei of order dividing p−1 in Zp such that there

is an element xi ∈ Qi for which xiQi−1 generates Qi/Qi−1 and bxib
−1 = xei

i ,
where xei

i is well defined because xi has non-trivial p-power order.

Proof. The representation of B on the subgroup of C(Q) of elements of order 1 or p
splits as a product of one-dimensional representations because the order of B divides
p − 1. So there is a central subgroup Q1 of Q of order p, invariant under B. By
induction, the result holds for Q/Q1. Now apply Lemma 9.2. �

Note that one can modify the proof so that the filtration will pass through any
given normal subgroup of Q that is B-invariant.

Proof of Theorem 10.2: Having no subgroup of the form (1) or (2) is equivalent to
the condition that if 1 6= c ∈ C, then CP (C) = CP (c) is cyclic. This is the condition
(a) in the definition of GM groups (see Definition 1.7).

So it suffices to show that if G satisfies condition (a) of Definition 1.7, then it is a
GM group if and only if it does not contain a subgroup as in (3) or (4). By condition
(b) of Definition 1.7, a GM group has no subgroups as in (3) or (4). (For (4), see
Theorem 10.1.c(iv) and Lemma 9.3.) Thus it remains to show that if G is not a GM
group, it contains such a subgroup.

So assume that G is not a GM group but satisfies condition (a) of Definition 1.7.
Therefore condition (b) of Definition 1.7 does not hold. By passing to counterexample
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of minimal order, we may assume that C has order at least 3 and dividing p− 1. We
will use in what follows that fact that since G is a minimal order counterexample,
every subquotient of G which is not G itself must be a GM group because of Lemma
9.3. In particular condition (b) of Definition 1.7 holds for all proper subquotients of
G but not for G itself.

Let Q be a C-stable subquotient of P , which may equal P . Let B = C in Lemma
10.4, and let 1 = Q0 < Q1 < · · · < Qm = Q, the xi and the ei be as in this lemma.
If there are indices i 6= j such that ei, ej and 1 are distinct, then C acts on xi and
xj via distinct non-trivial characters, so that C.Q cannot be a GM-group because
this violates condition (b) of Definition 1.7. Thus if Q is a proper subquotient of P ,
there is at most one ei different from 1; we let e(Q) be this ei if it exists, and we let
e(Q) = 1 otherwise. We claim:

(10.6) If Q = P then at least two distinct ei are different from 1.

Suppose to the contrary that Q = P and that there is at most one ei which is different
from 1. It will suffice to show that condition (b) of Definition 1.7 holds, since this
will be a contradiction. If all the ei equal 1, then C commutes with all the xi and
thus with Q = P , so CP (C) = P and condition (b) holds automatically. If all the
ei which are different from 1 are equal and there is at least one such ei, we define
Θ : B → Z∗

p by Θ(b) = bei for any such ei, where we have set B = C. If T is cyclic
subgroup of P such that CC(T ) is trivial, then by considering the smallest i such
that T ⊂ Qi and the image of T in Qi/Qi−1 we see that condition (b) of Definition
1.7 holds for T . This contradiction proves the claim (10.6).

Let P p[P, P ] be the Frattini subgroup of P , and let P (p) = P/(P p[P, P ]) be the
p-Frattini quotient. If P (p) is cyclic, then P is cyclic, and the action of C on P must
be through a single character, contrary to the fact that we have shown there must
be at least two distinct ei different from 1 when Q = P . Thus P (p) is a Z/p-vector
space of dimension at least 2, and the action of C = B on P (p) can be diagonalized
over Z/p since #C divides p − 1. By pulling back two C-eigenspaces, we conclude
that there are C-stable normal subgroups P1 and P2 in P such that P/(P1 ∩ P2)
is elementary abelian of order p2 and isomorphic as a C-module to a sum of two
characters φ1 and φ2 of P .

If P1 ∩ P2 is trivial, so that P = P/(P1 ∩ P2), we have seen that φ1 and φ2 must
be distinct and non-trivial (since there are at least two distinct ei which are different
from 1). In this case G = PC satisfies the conditions in part (3) of Theorem 10.2.

Suppose now that P1 ∩ P2 is non-trivial. If C acts non-trivially on P1 ∩ P2, then
we conclude that e(P1) = e(P2) = e(P1 ∩P2) in the above notation, since P1, P2 and
P1∩P2 are proper subquotients of P . We have a C-isomorphism P1/(P1∩P2) → P/P2.
Since P1 ∩ P2 contains P p[P, P ] we can now find a filtration

1 = Q0 < Q1 < · · · < Qm−2 = P1 ∩ P2 < Qm−1 = P2 < Qm = P

as in Lemma 10.4 such that at most one non-trivial character of C arises from a
C-module quotient Qi/Qi−1. This contradicts that at least two distinct ei different
from 1 must arise when we set Q = P . We conclude that C acts trivially on P1 ∩P2,
so P1∩P2 ⊂ CP (C), where CP (C) is cyclic because we have assumed condition (a) of
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Definition 1.7 holds. Thus P/P1 and P/P2 must define distinct non-trivial characters
φ1 and φ2 of C in order for there to be two distinct non-trivial e1 and e2 associated
to setting Q = P . We now use Lemma 10.4 to find xi ∈ Pi such that bxib

−1 = xei
i

if b is a generator of B = C and for which xi(P1 ∩ P2) generates the cyclic group
Pi/(P1 ∩ P2) of order p. Then xp

i ∈ P1 ∩ P2 so C acts trivially on xp
i . Thus

xpei

i = (bxib
−1)p = bxp

i b
−1 = xp

i

so xp
i = 1 because ei is a non-trivial (p − 1)st root of 1 in Zp. Let us check that xi

must centralize each γ ∈ P1 ∩ P2. Since xiγx
−1
i ∈ P1 ∩ P2 ⊂ CP (C) we have

xei

i γx
−ei

i = (bxib
−1)(bγb−1)(bxib

−1)−1 = b(xiγx
−1
i )b−1 = xiγx

−1
i

so xei−1
i centralizes γ, from which it follows that xi centralizes γ. This implies that

P1 ∩ P2 is central in G, since we have shown that C commutes with P1 ∩ P2 and
because G is generated by C, P1 ∩ P2, x1 and x2. Thus z = [x1, x2] ∈ P1 ∩ P2 is
central in G, so Lemma 10.3 shows zp = [xp

1, x2] = 1 because xp
1 = 1. The group

generated by C, x1, x2 and z is now a subgroup of G of the kind in part (4) of
Theorem 10.2, which completes the proof. �

If the subgroup B (in the notation above) has order bigger than 2, the structure
of GM groups is quite limited, as we show in the next theorem.

Theorem 10.5. Let G = PC be a GM-group with #B > 2, where B is the maximal
subgroup of order dividing p − 1. Let D = CP (C). Then the derived subgroup H =
[G,G] of G is abelian, C acts freely on the nonidentity elements of H, G is the semi-
direct product H.(C ×D) and B acts as a scalar on H. Conversely, any such group
is a GM group.

Proof. We prove the first statement. By coprime action, we have that P = D[C, P ]
and [C,H ] = [C, P ] (see [10, 5.3.5]). Since D normalizes both C and P and since
G = [C, P ]DC, it follows that [C, P ] is normal in G. Clearly, [C, P ] is contained in
the derived subgroup of G. On the other hand C and P commute modulo [C, P ],
whence G/[C, P ] is abelian. Thus [C, P ] = H .

We next claim that H is abelian. Suppose not. Then we can pass to the quotient
H/[H, [H,H ]] and so assume that H is nilpotent of class 2. Let T = H/Φ(H),
where Φ(H) is the Frattini subgroup of X. Let b be a generator for B. Then b
is diagonalizable on T and we may choose a basis y1, . . . , yr of T with each yi an
eigenvector for b. We may lift yi to an element xi ∈ H with b normalizing each
〈xi〉. Since H = [C,H ], T = [C, T ] and so b centralizes none of the yi. Since G

is a GM-group, this implies that bxib
−1 = x

Θ(b)
i for each i. Thus, by Lemma 10.3,

b[xi, xj ]b
−1 = [xi, xj ]

Θ(b)2for each i, j. Since the order of b is greater than 2 and Θ
is faithful, Θ(b)2 6= Θ(b) and Θ(b) 6= 1. By definition, this implies that [xi, xj ] = 1,
whence H is abelian.

Again by coprime action on abelian groups, we have (see [10, 5.2.3]) that H =
CH(C)× [C,H ] and so CH(C) = 1, using H = [C,H ]. Thus C acts fixed point freely
on the nontrivial elements ofH . We have already noted thatG = HDC = H.(C×D).
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Now assume that G is as described. If 1 6= c ∈ C, then CP (c) = D = CP (C) is
cyclic. Moreover, we see that c normalizes a cyclic subgroup if and only if it centralizes
it or acts via the character given by its action on H . Thus G is a GM-group. �

Example 10.6. Suppose P is cyclic. Since C is cyclic of order prime to p, it acts
faithfully on P if and only if it acts faithfully on the cyclic subgroup Q of order p in
P . We conclude from Theorem 10.2 that when P is cyclic, G is a GM group if and
only if it is cyclic or C acts faithfully on Q; the latter condition is equivalent to the
statement that the center of G is trivial. If P = Q has order p, it follows from [22]
(for cyclic G) and from [5, Theorem 2.1] (for non-cyclic G) that if G is a GM group
then it is in fact a a weak local Oort group.

11. Reducing the proofs of Theorems 1.2 and 1.5 to particular

groups.

In this section we recall Propositions 3.1 and 4.2 of [8], which limit the possible
cyclic by p-groups which has no quotients of certain kinds. This will be used to limit
the possible isomorphism classes of Bertin and KGB groups.

Theorem 11.1. Let p be an odd prime and let G be a finite group with a normal
Sylow p-subgroup S such that G/S = C is cyclic of order prime to p. Assume that
G has no homomorphic image of the following types:

(1) Cp × Cp;
(2) E.Cm, where E is an elementary abelian p group, p 6 |m ≥ 3, and Cm acts

faithfully and irreducibly on E;
(3) E.C2 where E = Cp × Cp, and C2 acts on E by inversion;
(4) D2p × Cℓ for some prime number ℓ > 2 (including the possibility that ℓ = p).
(5) E.C4 where E = Cp, and a generator of C4 acts on E by inversion.

Then either G is cyclic or is dihedral of order 2pa for some a.

We recall some notation and facts about 2-groups. A generalized quaternion group
of order 2a, a ≥ 3 is given by Qa = 〈x, y|x2a−1

= 1, yxy−1 = x−1, y2 = x2a−2
〉. These

are the only noncyclic 2-groups that contain a unique involution.
The semidihedral group of order 2a, a > 3 is denoted SDa and has presentation

〈x, y|x2a−1
= 1, y2 = 1, yxy = x−1+2a−2

〉. Note that if G is dihedral, semidihedral or
generalized quaternion then G/[G,G] is elementary abelian of order 4.

Theorem 11.2. Let G be a finite group with a normal Sylow 2-subgroup S such that
G/S = C is cyclic (of odd order). Assume that G has no homomorphic image of the
following types:

(1) E.D, where E is a non-trivial elementary abelian 2-group, D is cyclic of odd
order at least 5 and D acts irreducibly on E;

(2) E.D, where E is elementary abelian of order 16, D has order 3 and acts
without fixed points on E;

(3) E.D where E = Z/4 × Z/4, D has order 3 and acts faithfully on E;
(4) E.D, where E is elementary abelian of order 8 and D acts faithfully on E

with D of order 1 or 3 (note this is isomorphic to A4 × Z/2 or E);
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(5) E × C where E is elementary abelian of order 4 and C has prime order;
(6) E.C where C is cyclic of order 3p with p an odd prime and E is elementary

abelian of order 4 with C acting nontrivially on E; or
(7) Z/4 × Z/2.

Then G is cyclic, A4, or SL2(3), or G = S is a dihedral, semidihedral or generalized
quaternion 2-group.

12. Some groups which are not almost Bertin groups.

We assume as before that k is an algebraically closed field of characteristic p > 0.

Proposition 12.1. Let G be the semidirect product of an elementary abelian p-group
E of order q > 1 with a cyclic group Cm of order m prime to p.

a. Suppose q > p. Then G is not an almost Bertin group for k unless p = 2 and
q = 4. If (p, q) = (2, 4), then G is not a weak Bertin group for k and not an
almost Bertin group for k unless m ∈ {1, 3} and Cm acts faithfully on E, in
which case G is isomorphic to either C2

2 or A4.
b. Suppose (p, q) = (2, 4) and that G is isomorphic to A4. Then for each integer
M ≥ 0, there is an integer j ≥M − 1 such that j ≡ 1 mod 4 and there is an
injection φ : G→ Autk(k[[t]]) with the property that G1 = E = Gj 6= Gj+1.

c. Suppose q = p, m ≥ 3 and that Cm acts faithfully on E. Then G is not an
almost Bertin group for k.

Proof. Let T be a subgroup of order p in E, and recall that S(T ) is the set of cyclic
subgroups of G containing T . Since E is the unique p-Sylow subgroup of G, and E
is elementary abelian, each Γ ∈ S(T ) which is different from T has order divisible by
some prime different from p. Thus ι(Γ) = 1 for such Γ. Therefore Theorem 2.3 gives

(12.1) bT =
1

[NG(T ) : T ]

∑

Γ∈S(T )

µ([Γ : T ])ι(Γ) =
ι(T ) + c(T )

[NG(T ) : T ]

where

(12.2) c(T ) =
∑

T 6=Γ∈S(T )

µ([Γ : T ])

is independent of the ramification filtration of G.
We now suppose q > p, so that p2|q. Here E ⊂ NG(T ) since T ⊂ E and E is

elementary abelian of order q. Thus q/p is a positive power of p dividing [NG(T ) : T ].
It follows that to showG is not a Bertin group for k, it will suffice to show that for each
integer M ≥ 1, there is an embedding φ : G → Autk(k[[t]]) such that −aφ(τ) ≥ M
for all non-trivial elements τ ∈ G of p-power order, and such that ι(T ) 6≡ −c(T ) mod
q/p for some subgroup T of order p in E.

The condition on −aφ(τ) is equivalent to requiring that if j is the first jump in the
wild ramification filtration of G, so that G1 = Gj 6= Gj+1, then j ≥ M − 1. Suppose
that in addition we arrange that T is not contained in Gj+1. Then ι(T ) = j + 1,
so we will be done if we can also arrange that j + 1 6≡ −c(T ) mod q/p. We may
assume that k is the algebraic closure of Z/p, since if we can construct an extension
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of the required kind in this case we can simply take its base change to an arbitrary
algebraically closed field of characteristic p.

To construct a φ of the required kind, choose a power q′ of p such that Fq′ contains
a primitive mth root of unity, and let L = Fq′((y)) for an indeterminate y. Letting
z = y1/m we see that N = L(z) is a cyclic totally and tamely ramified extension
of L, and the integral closure of OL = Fq′ [[y]] in N is ON = Fq′[[z]]. We fix an
identification of H = Gal(N/L) with Cm.

The group ring (Z/p)[Cm] is semi-simple and acts on N∗/(N∗)p. For each integer
i ≥ 1 the natural map

(12.3) Wi =
1 + ziON

1 + zi+1ON
→

N∗

(N∗)p(1 + zi+1ON)

is injective if i 6≡ 0 mod p and is the trivial homomorphism otherwise. The group
H = Gal(N/L) ∼= Cm acts on the one-dimensional Fq′ vector space Fq′ ·z via a faithful
character χ : H → F∗

q′ . Thus H acts on the one-dimensional Fq′ vector space

Wi =
1 + ziON

1 + zi+1ON

∼=
ziON

zi+1ON

via the character χi. As a (Z/p)[Cm]-module, Wi is the direct sum of finitely many
copies of the unique simple (Z/p)[Cm]-module Vi whose character is the sum of the
conjugates of χi over Z/p. Each simple (Z/p)[Cm]-module is isomorphic to Vi for some
i 6≡ 0 mod p. Finally Wi and Wi+m are isomorphic, so Vi and Vi+m are isomorphic.

Suppose first that q/p > 2, and recall that we have assumed p2|q. There is a
direct sum decomposition E = T0 ⊕ T1 of E as a (Z/p)[Cm]-module in which T0 is
a simple (Z/p)[Cm]-module. Let T be an order p subgroup of T0. We claim there is
an integer j such that j 6≡ 0 mod p, 1 + j 6≡ −c(T ) mod q/p, T0 is isomorphic to Vj

and j ≥ M − 1. The condition that j 6≡ 0 mod p removes q/p2 residue classes mod
q/p, while 1 + j 6≡ −c(T ) mod q/p removes at most one more residue class mod q/p.
Since q/p > 2 by assumption, we have q/p − q/p2 − 1 = (q/p)(1 − 1/p) − 1 > 0 so
both of these congruences may be satisfied. The condition that T0 is isomorphic to
Vj is a condition on j mod m. Since m is prime to p we can find arbitrarily large j
satisfying all three congruences, as claimed.

The group N∗/(N∗)p is a semi-simple (Z/p)[Cm]-module with a descending filtra-
tion whose terms are given by the image of 1 + ziON for i ≥ 1 prime to p. The
successive quotients in this filtration are the Wi above. Since Vj is by construction
isomorphic to T0, it follows from the semi-simplicity of N∗/(N∗)p and of E that we
can find an H-stable subgroup U of N∗ containing 1+ zhON for some h ≥ 1 with the
following properties. There is an H-equivariant isomorphism N∗/(U · (N∗)p) → E
which gives rise to surjections 1 + zjON → E = T0 ⊕ T1 and 1 + zj+1ON → T1. Let
F be the extension of N corresponding to U · (N∗)p by local class field theory. Then
F/L is a Galois extension, and there is an isomorphism Gal(F/L) = G such that
G1 = Gj and Gj+1 6= Gj does not contain T0 ⊃ T . The existence of this G-extension
shows that G is not an almost Bertin group for k if q/p > 2.

Suppose now that q/p = 2, so that p = 2 and q = 4. Let Cm′ ⊂ Cm be the kernel
of the action of Cm on E = (C2)

2. Then Cm′ is in the center of G, and Cm/C
′
m is
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a cyclic group of odd order acting faithfully on E = (C2)
2. It follows that G/Cm′ is

either isomorphic to E = (C2)
2 or to A4.

Suppose first that m′ = 1 and (p, q) = (2, 4). In this case, G is isomorphic to either
E = (C2)

2 or to A4. All that we must prove for such G is that part (b) of Proposition
12.1 holds when G is isomorphic to A4. Thus we now assume m = 3. With the above
notation, we can find an integer j ≥M − 1 such that j ≡ 1 mod 4, and Vj is faithful
as a module for Cm = C3 = H . (The last condition is equivalent to j 6≡ 0 mod 3.)
The above construction now produces an example in which E = G1 = Gj 6= Gj+1,
which is all that is required when m′ = 1.

We now suppose m′ > 1, (p, q) = (2, 4) and that k is an arbitrary algebraically
closed field of characteristic p. Then CG(Cm′) = G 6= Cm′. If G/Cm′ is isomorphic
to E = (C2)

2, then with the notation of Definition 3.1,

ψ({e},CG(Cm′)/Cm′) = 1 + 3µ(2) = −2.

Otherwise G/Cm′ is isomorphic to A4 and

ψ({e},CG(Cm′)/Cm′) = 1 + 3µ(2) + 4µ(3) = −6.

It now follows from Corollary 3.3 that there is no local G-cover for which the Bertin
obstruction vanishes, so that G is not a weak Bertin group for k. We can construct
examples of such covers in which the first jump in the wild ramification is arbitrarily
large by the same arguments used earlier, so this completes the proof of case (a) of
Proposition 12.1.

We now suppose that q = p, m ≥ 3 and that Cm acts faithfully on E = Cp. Let
T = E. Then S(T ) = {T}, since the image of T in G/E ∼= Cm has to act trivially
on T = E. We have NG(T ) = G. So Theorem 2.3 gives

(12.4) bT =
ι(T )

m
.

Therefore we just have to produce a φ : G→ Autk(k[[t]]) such that when j is the first
(and only) jump in the wild ramification of G, j is arbitrarily large and j + 1 = ι(T )
is not congruent to 0 mod m. The action of Cm on E = Cp is via some faithful
character of Cm, and Aut(Cm) acts transitively on these faithful characters. Thus by
varying the identification of Gal(N/L) = Gal(F((y1/m))/F(y)) with Cm in our earlier
construction of G extensions, we can produce an example in which j is any positive
integer such that j 6≡ 0 mod p and j is relatively prime to m. Since m is prime to
p, we can find arbitrarily large j such that j 6≡ 0 mod p and j ≡ 1 mod m. Since
m ≥ 3, such j will have j + 1 6≡ 0 mod m, so we are done. �

Example 12.2. Suppose p > 2 and that G = Cp ×Cp, so that q = p2 and m = 1 in
Proposition 12.1. Thus G is not an almost Bertin group. Nevertheless, there exists
a φ for which the Bertin obstruction vanishes. Namely, each non-trivial T ∈ C has
order p, and (12.1) shows bT = (1 + ι(T ))/p. For all positive integers a ≡ −1 mod p,
we can construct an injection φ : G → Autk(k[[t]]) such that ι(T ) = a for all non-
trivial subgroups T of G. Thus the Bertin obstruction such a φ vanishes. Moreover,
Pagot proves in [23] that when a = p− 1, one cannot lift φ to characteristic 0.
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Lemma 12.3. Suppose that p is odd and that G is the semidirect product of a normal
cyclic subgroup E of order p with a cyclic group C2ℓ of order 2ℓ, where ℓ is a prime
different from p, with a generator of C2ℓ acting on E by inversion. Then there is
a non-trivial cyclic subgroup T of G such that the constant bT in Proposition 2.1 is
not integral. Therefore G is an not a weak Bertin group for k, not an almost Bertin
group for k, and not a local Oort group for k.

Proof. Suppose first that ℓ = 2 and that σ is a generator for C2ℓ = C4. Let T =
{e, σ2}, so that T is in the center of G and NG(T ) = CG(T ) = G. The group
CG(T )/T is isomorphic to the dihedral group D2p, and ψ({e},CG(T )/T ) = 1 +
µ(p) + pµ(2) = 1− 1− p = −p. Therefore 3.3 implies no local G cover has vanishing
Bertin obstruction. To show that G is not a local almost Bertin group for k, it
will now be enough to prove that for each integer M ≥ 0, there is an injection
φ : G→ Autk(k[[t]])) such that −aφ(τ) ≥ M for all non-trivial elements τ ∈ G of p-
power order. Let q = p2 and let L/K be the cyclic quartic extension Fq((z))/Fq((t))
for which z4 = t. One can construct a φ with the above properties by considering
L∗/(L∗)p as a module for (Z/p)[Gal(L/K)] and by applying the class field theory
arguments used in the proof of Proposition 12.1; we will leave the details to the
reader.

In the other case of Lemma 12.3, G = (E.C2)×Cℓ where ℓ > 2 is prime, p 6= ℓ and
C2 acts on E = Cp by inversion. Let T be the cyclic sugroup E × Cℓ

∼= Cpℓ. Then
T has index 2 in G, so NG(T ) = G while CG(T ) = T . Hence ψ(T,CG(T )) = 1, so
Corollary 3.3 shows that no local G cover has vanishing Bertin obstruction. We can
construct injections φ : G → Autk(k[[t]]) leading to such covers such that −aφ(τ) is
arbitrarily large for all non-trivial elements τ ∈ G of p-power order by the same local
class field theory arguments used in previous cases. This completes the proof. �

Corollary 12.4. Suppose that p > 2, that H is a semi-direct product of a non-trivial
p-group with a cyclic prime-to-p group, and that H is an almost Bertin group for k.
Then H must be either a cyclic p-group or a dihedral group D2pz of order 2pz for
some z ≥ 1.

Proof. Suppose the corollary is false for some group H . By Theorem 11.1, H has
a quotient G having one of the forms (1)-(5) there. Forms (1)-(3) are not almost
Bertin groups by Proposition 12.1, and similarly for (4) and (5) by Lemma 12.3. So
there is a quotient G of H that is not an almost Bertin group for k. Thus H is not
an almost Bertin group by Corollary 5.6, and this is a contradiction. �

Corollary 12.5. Suppose that p = 2. Let G be a group which is not cyclic, and
which is one of the groups described in items (1), (2), (4), (5) or (6) of Theorem
11.2. Then G is not an almost-Bertin group for k.

Proof. The only G described in items (1), (2), (4), (5) or (6) of Theorem 11.2 which
are not covered by Proposition 12.1(a) are those described in item (1) of Theorem
11.2 for which the elementary abelian p = 2 group E is of order 2. However, these
G are cyclic, so Corollary 12.5 follows. �
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Proposition 12.6. Suppose p = 2 and that as in item (3) of Theorem 11.2, G is
isomorphic to the semi-direct product E.C3 where the normal subgroup E is isomor-
phic to (Z/4)2 and the cyclic group C3 of order 3 acts faithfully on E. Then G is not
an almost Bertin group for k.

Proof. Since the ramification groups Gi are normal in G, there is an integer r ≥ 1
such that G = G0 ⊃ G1 = E = · · · = Gr 6= Gr+1 and Gr+1 ⊂ E2 = (2Z/4Z)2. Let
T be a cyclic subgroup of order 4 in E. Then NG(T ) = E and there are no cyclic
subgroups of G which properly contain T . Now Theorem 2.3 gives

(12.5) bT =
1

[NG(T ) : T ]
ι(T ) =

r + 1

4
.

Following [27, §IV.3] we let Gu for u ≥ 0 be Gi when i is the smallest integer ≥ u,
and we define

ϕ(u) =
∫ u

0

dt

[G0 : Gt]
.

The upper ramification group Gϕ(u) then equals Gu. Since G0 contains E with index
3, we find that ϕ(u) = u/3 for 0 ≤ u ≤ r. Thus Gr/3 = E and Gr/3+ǫ is contained
in E2 if ǫ > 0. The group E2 is normal in G, and H = G/E2 is isomorphic to A4.
By [27, Prop. IV.14], the image of Gν in H is Hν for all ν ≥ 0. Thus Hr/3 = E/E2

and Hr/3+ǫ = {e} for ǫ > 0. By comparing the lower and upper ramification groups
of H , we find that Hr = E/E2 while Hr+1 = {e}.

Suppose now that M ≥ 0 is given. To show that G is not an almost Bertin group
for k, it will suffice to show that there is φ : G → Autk(k[[t]]) such that when r is
defined as above, r ≥ M − 1 and r + 1 6≡ 0 mod 4. This is because (12.5) will then
show bT is not integral, so the Bertin obstruction of φ does not vanish by Proposition
2.1.

To construct such a φ, we apply Proposition 19.3 of Appendix 1 to the surjection
G → H = A4. This produces an integer M ′ depending on M for which we may
use the following argument. Replace M by M ′ in Proposition 12.1 and let r be
the integer j in part (b) of Proposition 12.1. Proposition 12.1 then produces an
injection ψ : H = A4 → Autk(k[[z]]) such that H1 = Hr 6= Hr+1 for some integer
r ≥ M ′ − 1 such that r + 1 ≡ 2 mod 4. Proposition 19.3 now produces an injection
φ : G → Autk(k[[t]]) as follows. The H-cover associated to ψ is the quotient of the
local G-cover associated to φ, and −aφ(τ) ≥M if τ is a p = 2-torsion element of G.
We now see from the above computation of upper and lower ramification groups that
r is the first jump in the wild lower ramification filtration of G, so we are done. �

Proposition 12.7. Suppose p = 2 and that as in item (7) of Theorem 11.2, G is
isomorphic to (Z/4) × (Z/2). Then G is not an almost Bertin group for k.

Proof. Suppose M ≥ 1. Let H = Z/2 be the second factor in G, so that there is
a split surjection π : G → H . Let M ′ be an integer having the properties for M
and G → H described in Proposition 19.3 of Appendix 1. We can construct an
H-extension N/L of L = k((y)) such that the first (and only) jump in the lower
numbering ramification filtration of H occurs at an integer r ≥ M ′ − 1 such that
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r ≡ 1 mod 4. By Proposition 19.3(i), there is an injection φ : G→ Autk(k[[t]]) which
defines a local G-cover of L = k((y)) having N/L as the quotient cover associated to
π : G→ H . By Proposition 19.3(ii), we can furthermore require that aφ(τ) ≥ r+1 for
all non-trivial elements τ ∈ ker(π), since all such τ have order a power of p = 2. This
means that ker(π) ⊂ Gr. Since π(Gν) = Hν for all ν, we conclude that π(Gr) = H
while π(Gr+ǫ) = {e} for ǫ > 0. Now ker(π) ⊂ Gr ⊂ Gr, so we conclude that
Gr = G, while Gr+ǫ ⊂ ker(π) for ǫ > 0. The first jumps in the lower and upper
ramification filtrations of G are equal, so we deduce from this that Gr = G while
Gr+1 ⊂ ker(π). When we now view H = Z/2 as a subgroup of G = (Z/4) ×H , we
see that ι(H) = r+1. Furthermore, NG(H) = G, while there are no cyclic subgroups
of G which property contain H . Thus

bH =
1

[NG(H) : H ]
ι(H) =

r + 1

4
.

Since we arranged that r ≡ 1 mod 4, this proves bH is not integral, so the Bertin
obstruction of φ : G→ Autk(k[[t]]) is non-trivial by Proposition 2.1. Because Gr = G
and r ≥M − 1, this completes the proof that G is not an almost Bertin group for k.
�

Corollary 12.8. To complete the proof of Theorem 1.2, it will suffice to show the
following:

a. The groups listed in items (1) - (4) of Theorem 1.2 are KGB groups for k.
b. When p = 2, neither the quaternion group Q8 nor the group SL2(3) is a Bertin

group for k.
c. When p = 2, no semi-dihedral group of order at least 16 is a Bertin group for
k.

Proof. If p is odd, this follows from Corollary 12.4, since KGB groups are Bertin and
hence almost Bertin. Suppose now that p = 2. If we grant the results stated in parts
(b) and (c) of Corollary 12.8, then Corollary 12.5 together with Propositions 12.6
and 12.7 show that none of the groups listed in items (1) - (7) of Theorem 11.2 are
Bertin groups for k, and that Q8, SL2(3) and semi-dihedral groups of order ≥ 16 are
not Bertin groups for k. By Corollary 5.6, no group G that has one of these groups
as a quotient can be a Bertin group for k. Thus Theorem 11.2 shows that if G is a
cyclic-by-p group which is a Bertin group for k for p = 2, it must be cyclic, dihedral,
generalized quaternion of order at least 16, or A4. Thus a proof that all of these
groups are in fact KGB groups for k will complete the proof of Theorem 1.2. �

13. Reduction to quasi-finite residue fields.

To further apply classfield theory to study Artin characters, it is useful to be able
to replace the algebraically closed field k by a quasi-finite field. We first recall the
definition of such fields from [27, §XIII.2].

Definition 13.1. A field L of characteristic p > 0 is quasi-finite if it has the following
properties:

a. L is perfect;
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b. There is an automorphism F ∈ Gal(Lsep/L) of the separable closure Lsep of

L such that the map Ẑ → Gal(Lsep/L) defined by ν 7→ F ν is an isomorphism
of profinite groups.

Proposition 13.2. Suppose that G is a finite group, k is an algebraically closed
field of characteristic p and that φ : G → Autk(k[[t]]) is an injection. There is a
subfield k′ of k of finite type over the prime field Fp such that φ is the base change
from k′ to k of a unique injection φ′ : G → Autk′(k′[[t]]). There is a quasi-finite
field L containing k′ such that φ′ induces an injection φ′

L : G → AutL(L[[t]]) with
the following properties. Let L be an algebraic closure of L. Then φ′

L induces an
injection φ′

L
: G → AutL(L[[t]]), and the Artin characters of φ, φ′, φ′

L and φ′
L

are
equal.

Proof. The existence of k′ and φ′ is clear from the fact that a Katz-Gabber G-cover
associated to φ, together with the action of G on this cover, is defined over a field
of finite type over the prime field Fp. Since φ defines a totally ramified action of G,
so does φ′. If k′ is finite, we can therefore take L to be k′. Suppose now that k′

has positive transcendence degree over Fp. By the Noether normalization theorem,
k′ is a finite extension of a rational subfield Fp(t1, . . . , tn) for some algebraically

independent indeterminates t1, . . . , tn, where n ≥ 1. Let k1 = Fp(t1, . . . , tn−1) be an
algebraic closure of the subfield Fp(t1, . . . , tn−1), and let N be the compositum of k′

and k1 in an extension field of k. Then N has transcendence degree 1 over k1. Since
k1 is algebraically closed, N is the function field a smooth projective curve V over k1,
and k1 is the field of constants of V . By [15] and [25], Gal(N/N) = Gal(k1(V )/k1(V ))
is a free profinite group of countable rank since k1 is countable. Let F be one element

of a set of topological generators for Gal(N/N), and let L = N
〈F 〉

be the fixed field
of F acting on N . Then L is a quasi-finite field, with algebraic closure L = N and
an isomorphism Ẑ → Gal(L/L) defined by ν 7→ F ν . Since k′ ⊂ N ⊂ L, we can let
φL : G→ AutL(L[[t]]) be the base change of φ′ from k′ to L. Since φ, φL and φL are
base changes of φ′, all of the associated Artin characters are equal. �

Corollary 13.3. Fix an algebraically closed field k of characteristic p > 0, and let
a be a complex character of G. There is an injection φ : G → Autk(k[[t]]) for which
aφ = a if and only if there is a quasi-finite field L of characteristic p together with
an injection φL : G→ AutL(L[[t]]) such that aφL

= a.

Proof. Given φ, we can take L and aφL
to be as in Proposition 13.2. Given L and

φL, we take k = L, and we let φ be the base change of φL from L to k. �

14. Dihedral, Quaternion and Semi-dihedral groups: Ramification

filtrations.

The object of this section is to begin the analysis of the Bertin obstruction for
certain dihedral, generalized quaternion and semi-dihedral groups.

The following lemma is an example from the end of §IV.3 of [27]. Recall that a real
number µ is a jump in the upper (resp. lower) ramification filtration of a subgroup
J ⊂ G if Jν 6= Jν+ǫ (resp. Jν 6= Jν+ǫ) for all ǫ > 0.
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Lemma 14.1. [27] Let k be a field of characteristic p > 0, let H be a cyclic group of
order pn, and assume we are given a Galois extension of k((t)) with group H. Then
there are positive integers i0, i1, . . . , in−1 such that the jumps in the upper numbering
of the ramification filtration of H occur at i0, i0 + i1, . . . , i0 + i1 + · · ·+ in−1. We have
ramification groups

H0 = · · · = Hi0 = H = H0 = · · · = H i0

Hi0+1 = · · · = Hi0+pi1 = pH = H i0+1 = · · · = H i0+i1

Hi0+pi1+1 = · · · = Hi0+pi1+p2i2 = p2H = H i0+i1+1 = · · · = H i0+i1+i2(14.1)

· · ·

Hi0+pi2+···+pn−1in−1+1 = pnH = {e} = H i0+···in−1+1.

Thus the jumps in the lower ramification filtration are at
∑ℓ

j=0 p
jij for 0 ≤ ℓ ≤ n−1.

For the remainder of this section we make the following standing hypothesis:

Hypothesis 14.2. Let k be an algebraically closed field of characteristic p > 0 and
let n ≥ 1 be an integer. The group G is of order 2pn, is generated by a cyclic subgroup
H = 〈τ〉 of order pn and an element σ. In addition to the relation τpn

= e, G is
specified by the following relations:

a. (Dihedral case) σ2 = e and στσ−1 = τ−1.

b. (Generalized quaternion case) p = 2, n ≥ 2, σ2 = τpn−1
, στσ−1 = τ−1.

c. (Semi-dihedral case) p = 2, n ≥ 3, σ2 = e, στσ−1 = τ−1+pn−1
.

Let φ : G→ Autk(k[[t]]) be an injection. For Γ a subgroup of G, let Γν and Γν be the
lower and upper ramification subgroups of Γ associated to ν ∈ R.

Under Hypothesis 14.2, Lemma 14.1 yields:

Corollary 14.3. Suppose that Γ = pjH is a non-trivial subgroup of H, so that
0 ≤ j ≤ n− 1. Then

(14.2) ι(Γ) = 1 + i0 + pi1 + · · · + pjij

It is straightforward to verify the following lemma and corollary.

Lemma 14.4. A set C of representatives for the cyclic subgroups T of G may be
given as follows. For 0 ≤ j ≤ n let pjH = 〈τpj

〉 be the subgroup of index pj in H,
and let H = {pjH : 0 ≤ j ≤ n}. One has NG(T ) = T for T ∈ H.

a. (Dihedral case when p > 2) C = H ∪ {D1}, where D1 = 〈σ〉 has order 2 and
NG(D1) = D1.

a′. (Dihedral case when p = 2) C = H∪{D1, D2} where D1 = 〈σ〉 and D2 = 〈τσ〉
have order 2. The group NG(Di) = 〈Di, 2

n−1H〉 contains Di with index 2.
b. (Generalized quaternion case) C = H ∪ {D1, D2} where D1 = 〈σ〉 and D2 =

〈τσ〉 have order 4. The group NG(Di) = {2n−2H,Di} contains Di with index
2.

c. (Semi-dihedral case) C = H ∪ {D1, D2} where D1 = 〈σ〉 has order 2 and
D2 = 〈στ〉 has order 4. One has NG(D1) = 〈2n−1H,D1〉 and NG(D2) =
〈2n−2H,D2〉. For i = 1, 2, the index [NG(Di) : Di] equals 2.
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Corollary 14.5. Suppose T ∈ C is non-trivial. Recall that S(T ) is the set of non-
trivial cyclic subgroups Γ ⊂ G which contain T . Define S ′(T ) to be the set of Γ ∈ S(T )
such that µ([Γ : T ]) is non-zero, i.e. for which [Γ : T ] is square-free. Then S ′(T ) has
the following description.

a. If T = Di for some i as in Lemma 14.4, then S ′(T ) = {T}.
b. Suppose T = pjH for some 0 ≤ j ≤ n − 1 and that either G is dihedral or
j 6= n− 1. Then S ′(T ) = {T} if j = 0 and S ′(T ) = {T, pj−1T} if 0 < j.

c. Suppose G is quaternionic and T = 2n−1H. Then S ′(T ) is the union of
{T, 2n−2H} with the set of #(G/NG(D1)) = 2n−2 distinct conjugates of D1

and the set of #(G/NG(D2)) = 2n−2 distinct conjugates of D2.
d. Suppose G is semi-dihedral and T = 2n−1H. Then S ′(T ) is the union of

{T, 2n−2H} with the set of #(G/NG(D2)) = 2n−2 distinct conjugates of D2.

Corollary 14.6. Suppose that T = pjH is a non-trivial subgroup of H satisfying the
conditions of part (b) of Corollary 14.5. Thus either G is dihedral or 0 ≤ j < n− 1.
Then

(14.3) bT =
1 + i0

2
if j = 0 and bT =

ij
2

if j > 0.

Proof. Recall that

(14.4) bT =
1

[NG(T ) : T ]

∑

Γ∈S(T )

µ([Γ : T ])ι(Γ).

Since T is normal in G, [NG(T ) : T ] = #G/#T = 2pn/pn−j = 2pj . The only Γ
which contribute to the sum for bT are those Γ in S ′(T ). Hence Corollary 14.5 gives
bT = 1

2
ι(H) if j = 0 while bT = 1

2pj (ι(p
jH) − ι(pj−1H)) if j > 0. Corollary 14.3 now

gives the stated formulas for bT . �

Corollary 14.7. Suppose p > 2, G is dihedral, and that T = D1 is as in Lemma
14.4(a). Then bT = ι(T ) = 1.

Proof. This is clear from the general formula (14.4) for bT and the fact that S ′(T ) =
{T}, NG(T ) = T and T has order 2, which is prime to p. �

Lemma 14.8. Suppose that G, D1 and D2 are as in parts (a′), (b) or (c) of Lemma
14.4. Let φ : G → Autk(k[[t]]) be an injection. Define D0 = H. Let N = k((t)),
K = NG, and Li = N 〈2H,Di〉 for i = 0, 1, 2, where 〈2H,Di〉 is the subgroup generated
by 2H and Di. Then Li/K is quadratic for i = 0, 1, 2, with relative discriminant
ideal (mK)di for some even integer di, where mK is the maximal ideal of the integers
OK of K. Moreover for i = 0, 1, 2,

(14.5) bDi
=

(

∑

j∈{0,1,2},j 6=i dj

)

− di

2

is a positive integer.

Proof. Let ψi be the quadratic one-dimensional character of G = Gal(N/K) which
is the inflation of the non-trivial one dimensional character of Gal(Li/K). Then ψi
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is trivial on Di. Write

(14.6) −aφ =
∑

T∈C

bT 1G
T =

∑

2H⊃T∈C

bT 1G
T +

2
∑

i=0

bDi
1G

Di
.

Take the inner product of this expression with χ0−ψi when χ0 is the one-dimensional
trivial character of G. If T ⊂ 2H then 〈1G

T , χ0 − ψi〉 = 0, and

(14.7) 〈−aφ, χ0 − ψi〉 = −〈aφ, χ0〉 + 〈aφ, ψi〉 = 0 + 〈aφ, ψi〉 = di

by [27, §VI.2]. For i, j ∈ {0, 1, 2}, one has

(14.8) 〈1G
Dj
, χ0 − ψi〉 = 〈1G

Dj
, χ0〉 − 〈1G

Dj
, ψi〉 = 1 − δ(i, j)

since the restriction of ψi toDj is trivial if i = j and non-trivial otherwise. Combining
(14.6), (14.7) and (14.8) gives the system of equations

d0 = bD1 + bD2

d1 = bD0 + bD2(14.9)

d2 = bD0 + bD1

The formula (14.5) is clear from this. The exponents d0, d1, d2 are even and positive
since p = 2, so that all the bDi

are integral. The compositum of L0, L1 and L2 over
K is a biquadratic extension of K. Thus either all the di are equal, or two are equal
and the third is smaller than these two. This implies that all the bDi

are positive,
which completes the proof. �

Corollary 14.9. Assume the hypotheses of Lemma 14.8. Then

ι(Di) = 2bDi
=





∑

j∈{0,1,2},j 6=i

dj



− di

for i = 0, 1, 2.

Proof. By Lemma 14.4 and Corollary 14.5, [NG(Di) : Di] = 2 and S ′(Di) = {Di}, so
the result follows from (14.4) and Lemma 14.8. �

Corollary 14.10. With the hypotheses of Lemma 14.8, suppose G is quaternionic
or semi-dihedral, and that T = 2n−1H.

a. If G is quaternionic then

bT =
in−1

2
−
d0

2
.

b. If G is semi-dihedral then

bT =
in−1

2
−
d0 + d1 − d2

4
.
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Proof. If G is quaternionic, then Corollaries 14.5, 14.3 and 14.9 give

bT =
1

[NG(T ) : T ]

∑

Γ∈S(T )

µ([Γ : T ])ι(Γ)

=
1

2n

(

ι(2n−1H) − ι(2n−2H) − 2n−2(ι(D1) + ι(D2))
)

(14.10)

=
1

2n

(

2n−1in−1 − 2n−1(bD1 + bD2)
)

=
in−1

2
−
d0

2
.(14.11)

If G is semi-dihedral, the same arguments show

bT =
1

[NG(T ) : T ]

∑

Γ∈S(T )

µ([Γ : T ])ι(Γ)

=
1

2n

(

ι(2n−1H) − ι(2n−2H) − 2n−2ι(D2))
)

(14.12)

=
1

2n

(

2n−1in−1 − 2n−1bD2

)

=
in−1

2
−
d0 + d1 − d2

4
(14.13)

�

Corollary 14.11. The Bertin obstruction of an injection φ : G → Autk(k[[t]]) van-
ishes if and only if the following conditions hold:

a. i0 is odd, and ij is even for 0 < j < n− 1.
b. If G is dihedral, in−1 is even.
c. If G is quaternionic, in−1 is even and in−1 ≥ d0.
d. If G is semidihedral, in−1

2
− d0+d1−d2

4
is a non-negative integer.

Proof. By Proposition 2.1, the Bertin obstruction of φ vanishes if and only if bT is a
non-negative integer for T a non-trivial subgroup contained in the set C described in
Lemma 14.4. Those non-trivial T ∈ C contained in H are treated in Corollaries 14.6
and 14.10 since the di in Lemma 14.8 are even. The T ∈ C which are not contained in
H are treated in Corollary 14.7 and Lemma 14.8. Conditions (a) - (d) are equivalent
to the statement that the bT in Corollaries 14.6, 14.10 and 14.7 and in Lemma 14.8
are non-negative integers. �

Corollary 14.12. Suppose that the Bertin obstruction of φ vanishes, so that (a) -
(d) of Corollary 14.11 hold. Then the KGB obstruction of φ vanishes.

Proof. We claim that the KGB obstruction vanishes if we can find for each non-trivial
T ∈ C a sequence of elements {gT,i}

bT

i=1 of G with the following properties:

i. Each gT,i is in a conjugate of T ;
ii. There is an ordering {gt}t∈Ω of the doubly indexed set {gT,i}T,i, counting

multiplicities, such that
∏

t∈Ω gt has order [G : G1].
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To prove this claim, suppose we can find {gt}t∈Ω as above. In Theorem 4.2(b)
we can then take S to be

∐

t∈ΩG/〈gt〉 provided we show that {gt}t∈Ω generates G.
Suppose first that p > 2, so G = D2pn. By Corollary 14.7, bD1 = 1, so there is one
gt which has order 2. By Corollary 14.6, bH = 1+i0

2
> 0. Thus the subgroup of G

generated by {gt}t∈Ω contains H and D1, so must be all of G. Suppose now that
p = 2. By Lemma 14.8, bH , bD1 and bD2 are positive. Hence the subgroup of G
generated by {gt}t∈Ω surjects onto the Klein four quotient G/2H of G. This implies
this subgroup must be all of G.

We now have to show that we can choose the gT,i so that (i) and (ii) hold.
We consider first the case p > 2. Then G is isomorphic to D2pn for some n ≥ 1,

and (14.14) holds vacuously. By Corollary 14.7, bD1 = 1. It follows that if we pick
the gT,i to be any generators of T , and pick any ordering {gt}t∈Ω of all these gT,i, then
the product

∏

t∈Ω gt projects to the non-trivial element of G/H . Hence this product
has order 2 = [G : G1], since every element of G = D2pn not in H has order 2. Hence
(i) and (ii) hold.

Suppose now that p = 2 and thatG is a 2-group and is either dihedral, quaternionic
or semi-dihedral. The quotient G/(2H) is then isomorphic to the Klein four group,
and G = G1. We claim that

(14.14) bH ≡ bD1 ≡ bD2 mod 2Z.

Here bH = bD0 in the terminology of Lemma 14.8, where it was shown that

(14.15) bDi
=

(

∑

j∈{0,1,2},j 6=i dj

)

− di

2

for i = 0, 1, 2. Since all the di are even, we have di
∼= −di mod 4Z. Thus

2bDi
≡

∑

j∈{0,1,2}

dj mod 4Z

from which (14.14) is clear. Let the gT,i be any choice of generators for T as T ranges
over C and i = 1, . . . , bT . By Corollary 14.6, bH > 0. Hence we can choose an ordering
{gt}t∈Ω of these gT,i such that the first gt is a generator of H . The congruence (14.14)
implies that

∏

t∈Ω gt lies in 2H . We can now multiply the first gt by an element of
2H to produce a new generator of H such that when we use this element as the first
gt we have

∏

t∈Ω gt = e. This shows that (i) and (ii) hold and completes the proof.
�

Corollary 14.13. With G a finite group and k a field of characteristic p > 0, let
P (G, k) be the assertion that every injection φ : G→ Autk(k[[t]]) satisfies conditions
(a) - (d) of Corollary 14.11. Then fixing G, the assertion P (G, k) holds for all
algebraically closed fields k of characteristic p if and only if P (G, k) holds for all
quasi-finite fields k of characteristic p. The same is true if we add condition (14.14)
to P (G, k).

Proof. This a consequence of Corollary 13.3. �
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15. Dihedral, Quaternion and Semi-dihedral groups: Class field

theory.

In the section we will assume the hypotheses and notation of the previous section,
with the following modifications:

Hypothesis 15.1. The field k is quasi-finite (rather than algebraically closed) of
characteristic p. Fix an injection φ : G→ Autk(k[[t]]). Let N = k((t)), L = NH and
K = NG. Define χ : L∗ → H = Gal(N/L) to be the Artin isomorphism. Let σ be
the image of σ ∈ G in G/H = Gal(L/K), so that σ has order 2 and is a generator
of G/H. We choose a uniformizer πL in L such that if p > 2, σ(πL) = −πL. Let
NormL/K : L→ K be the norm. Define D0 = H, so that L = ND0. If p = 2, we also
have the quadratic extensions L1 and L2 of K defined in Lemma 14.8; in this case,
L0 = L,L1 and L2 are the three quadratic subfields of N containing K.

Definition 15.2. Let χ : L∗ → C∗ be a character of order pn, and let χ|K∗ be the
restriction of χ to K∗.

a. Say χ is of dihedral type if χ|K∗ is trivial.
b. Say χ is of quaternionic type if p = 2 and χ|K∗ is the non-trivial quadratic

character ǫ0 : K∗ → {±1} associated to L/K. This is the character with
kernel NormL/K(L∗).

c. Say χ is of semi-dihedral type if p = 2, n ≥ 3, χ|K∗ is the non-trivial quadratic

character ǫ1 : K∗ → {±1} associated to L1/K, and χ ◦ NormL/K = χ2n−1
.

Lemma 15.3. If G is a dihedral (resp. quaternion, resp. semi-dihedral) group then
χ is of dihedral (resp. quaternion, resp. semi-dihedral) type. Conversely, suspend
Hypothesis 15.1 for the moment, and suppose L/K is a specified quadratic extension
of K = k((z)) for some indeterminate z. Let χ be a character of order pn of L∗, and
let N be the cyclic extension of L of degree pn over L which corresponds to the kernel
of χ by local classfield theory.

i. Suppose χ is of dihedral (resp. quaternionic) type, in the sense of parts (a)
and (b) of Definition 15.2. Then N is a Galois extension of N and Gal(N/K)
is a dihedral group (resp. generalized quaternion group) of order 2pn.

ii. Suppose that χ|K∗ is an order 2 character of K∗ which corresponds to a qua-

dratic extension L1/K different from L/K, and that χ ◦NL/K = χ2n−1
. Then

N is a semi-dihedral extension of K of degree 2pn, with biquadratic subfield
over K the compositum of L and L1 over K. The character χ is of semi-
dihedral type in the sense of Definition 15.2(c).

Proof. Suppose first that Hypothesis 15.1 holds and that G is dihedral, quaternionic
or semi-dihedral. By local classfield theory, χ|K∗ : K∗ → C∗ corresponds to the
character Gab → C∗ which is the composition of the transfer map ver : Gab →
Hab = H with χ : H → C∗. The action of Gal(L/K) = G/H on L∗ corresponds
via ξ : L∗ → Gal(N/L) = H with the conjugation action of Gal(L/K) on H . The
assertions in the lemma now follow from the properties of this conjugation action
and of ver when G is a dihedral, quaternion or semi-dihedral group (see [27, §VII.8]).
The converse implications of the lemma are proved similarly. �
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Lemma 15.4. Assume Hypothesis 15.1 holds. If 0 ≤ ℓ ≤ n− 1 then

(15.1) c(ℓ) = i0 + · · ·+ iℓ

is a jump in the upper ramification filtration of H. Let χ : L∗ → C∗ be a character
having the properties in the converse direction of Lemma 15.3. Then the kernel
of χpn−(ℓ+1)

corresponds via class field theory to the extension Npℓ+1H/L, which has
Galois group H/(pℓ+1H). The integer c(ℓ) is the largest positive integer such that

χpn−(ℓ+1)
is non-trivial on 1 + π

c(ℓ)
L OL.

Proof. By [27, §XV.2], if h ≥ 1 is integral then the image ξ(1 + πh
LOL) of the multi-

plicative subgroup 1+πj
LOL under the local Artin map ξ : L∗ → H equals the upper

ramification subgroup Hh of H . Since χpn−(ℓ+1)
has kernel pℓ+1H when we view it as

a character of H via the local Artin map, this leads to the interpretation c(ℓ) in the
lemma. �

Corollary 15.5. The jump i0 is odd. If G is dihedral, then ij is even for 0 <
j ≤ n − 1. Suppose that G is quaternionic or semi-dihedral. Then c(ℓ) is odd for
0 ≤ ℓ ≤ n− 2, ij is even for 0 < j < n− 1, and in−1 = c(n− 1)− c(n− 2) is even if
and only if c(n− 1) is odd.

Proof. By [27, §XV.2], the local Artin map ξ induces an isomorphism

(15.2)
1 + π

c(ℓ)
L OL

1 + π
c(ℓ)+1
L OL

= Hc(ℓ)/Hc(ℓ)+1 = pℓH/(pℓ+1H) ∼= Z/p for 0 ≤ ℓ ≤ n− 1.

This isomorphism is equivariant with respect to the action of Gal(L/K). Recall that
we chose the uniformizer πL so that that γ(πL) = −πL if p > 2, and there is an
isomorphism of the left hand side of (15.2) with the one dimensional k-vector space

π
c(ℓ)
L k. Hence if p > 2, then γ acts on the left hand side of (15.2) by (−1)c(ℓ). We

conclude that c(ℓ) is odd because γ acts by inversion on the right hand side of (15.2).
In view of (15.1), this shows that i0 must be odd and ij is even for j > 0, so we are
done in case p > 2.

Suppose now that p = 2. To complete the proof, it will suffice by Lemma 15.4 to
show that c(ℓ) is odd if either

i. 0 ≤ ℓ ≤ n− 1 and G is dihedral, or
ii. 0 ≤ ℓ ≤ n− 2 and G is either quaternionic or semi-dihedral.

By Lemma 15.4, c(ℓ) is the largest positive integer such that χpn−(ℓ+1)
is non-trivial

on 1 + π
c(ℓ)
L OL. Therefore χpn−(ℓ+1)

is trivial on 1 + π
c(ℓ)+1
L OL. Suppose c(ℓ) is even.

Then π
c(ℓ)
L is equal to π

c(ℓ)/2
K · u, where πK = NormL/KπL is a uniformizer in K and u

is a unit in O∗
L. Since OL and OK have the same residue field k, we would then have

(15.3) 1 + π
c(ℓ)
L OL = (1 + π

c(ℓ)/2
K OK) · (1 + π

c(ℓ)+1
L OL).

It follows that χpn−(ℓ+1)
must be non-trivial on 1 + π

c(ℓ)/2
K OK By Lemma 15.3, the

restriction of χ to K∗ is trivial if G is dihedral, so we have a contradiction in this
case. Suppose now that G is quaternionic or semi-dihedral. By Lemma 15.3, the
restriction of χ to K∗ then has order 2. We have supposed 0 ≤ ℓ ≤ n − 2 if G is
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quaternionic or semi-dihedral, so n− (ℓ+ 1) ≥ 1 and χpn−(ℓ+1)
is an integral power of

χp = χ2. Thus χpn−(ℓ+1)
is trivial onK∗ in this case, and we again have a contradition.

This shows that c(ℓ) must have been odd, and completes the proof. �

Proposition 15.6. Suppose G is quaternionic or semi-dihedral.

i. The integer in−1 is even unless G is the quaternion group of order 8 and
G4 = {e}. In this case in−1 is odd and the following is true:

a. The lower ramification filtration of G is G = G0 = G1 6= G2 = G3 6=
G4 = {e}, where G2 is the order 2 center of G.

b. The Bertin obstruction of φ : G→ Autk(k[[t]]) does not vanish.
ii. Suppose G is a generalized quaternion group and in−1 is even. Then the KGB

obstruction (and hence the Bertin obstruction) associated to φ vanishes.
iii. Suppose G is semi-dihedral. The Bertin obstruction of φ does not vanish if

d0 + d1 + d2 is not divisible by 4, in the notation of Lemma 14.8.

The proof is an argument by contradiction, and requires a series of lemmas. Before
beginning this we note that this result gives a new proof of a result of Serre [29, §5]
and Fontaine [9] concerning Artin representations which cannot be realized over Q.

Corollary 15.7. (Serre, Fontaine) Suppose G is a generalized quaternion group.
Then the Artin character −aφ is not realizable over Q if and only if G has order 8
and the lower ramification filtration filtration of G is as in Proposition 15.6.i.a.

Proof. If the Bertin obstruction vanishes, then −aφ is the character of a permutation
representation by Proposition 2.1 so it is realizable over Q. Otherwise, G must have
order 8 and must have the ramification filtration in part (i.a) of Proposition 15.6.
Suppose now thatG is as in part (i.a) of Proposition 15.6. Serre proved in [29, §5] that
−aφ is not realizable over Q by proving that the multiplicity of the two-dimensional
irreducible representation of G in −aφ is 5. (This also follows from Proposition 2.4.)
�

Lemma 15.8. Suppose G is quaternionic or semi-dihedral. Then in−1 is odd if and
only if c(n − 1) in (15.1) is even. Suppose in−1 is odd, and let d0 and d1 be as in
Lemma 14.8. Then
(15.4)
c(n− 1)

2
= d0 − 1 (resp. d1 − 1) if G is quaternionic (resp. semi − dihedral).

Proof. The first statement is clear from (15.1) and Corollary 15.5. Now suppose in−1

is odd, so that c(n−1) is even. By Lemma 15.4, c(n−1) is the largest positive integer

such that χ|(1 + π
c(n−1)
L OL) is non-trivial. Now c(n− 1) is even, πKOL = π2

LOL, and
the residue fields of L and K are both k; so we have

(1 + π
c(n−1)
L OL) = (1 + π

c(n−1)/2
K OK) · (1 + π

c(n−1)+1
L OL).

This implies that c(n− 1)/2 is the largest positive integer j such that χ|(1 + πj
KOK)

is non-trivial. By Lemma 15.3, the restriction χ|K∗ is the non-trivial quadratic
character associated to the quadratic extension Li/K, where i = 0 and L0 = L if
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G is quaternionic, and i = 1 and L1/K is described in Lemma 15.3 if G is semi-
dihedral. The ramification groups Gal(Li/K)ν = Gal(Li/K)ν equal Gal(Li/K) if
ν = 0, . . . , di − 1 and these groups are trivial for ν > di − 1 since [Li : K] = 2. Thus
c(n− 1)/2 = di − 1 as claimed. �

Lemma 15.9. Recall that σ ∈ G = Gal(N/K) is an element not in H = Gal(N/L).
One has

(15.5) σ(πL) = πL · (1 + βπd0−1
L + πd0

L γ)

for some γ ∈ OL and some β ∈ k∗. We may define a uniformizer πK in K by

(15.6) πK = πLσ(πL) = π2
L · (1 + βπd0−1

L + πd0
L γ)

Proof. The first and only jump in the lower ramification numbering of Gal(L/K)
occurs at d0 − 1. By the definition of the lower numbering, this gives (15.5), and
(15.6) follows from the fact that L/K is quadratic and totally ramified. �

Lemma 15.10. Let G be quaternionic or semi-dihedral. The integer i0 = c(0) is the
largest integer for which there exists an element δ ∈ k∗ such that χ(1 + δπi0

L ) = ζ is
a primitive 2n-th root of unity. The value of i0 is odd and given by

(15.7) i0 = d1 + d2 − d0 − 1.

Proof. The first statement follows from [27, Cor. 3, §XV.2] since χ has order 2n.
In the quaternionic or semi-dihedral case, p = 2. For γ ∈ L∗, the value χ(γ) is a

primitive 2n-th root of unity if and only if χpn−1
(γ) is non-trivial. Hence Lemma 15.4

shows the first statement about i0, since i0 is the largest integer such that χ2n−1
is not

trivial on 1 + πi0
LOL. The character χ2n−1

corresponds to the order two character of
the Galois group Gal(L′/L), where L = L0 and L′ is the compositum L ·L1 = L1 ·L2

over K (with notation as in Hypothesis 15.1). Thus i0 the first (and only) jump in
the upper (and lower) ramification filtration of Gal(L′/L). It follows that the relative
discriminant dL′/L equals πi0+1

L OL. The relative discriminant dL′/K is given by

d2
L/K · NormL/KdL′/L = dL′/K = dL/K · dL1/K · dL2/K .

Since L = L0 is totally and quadratically ramified over K, this gives

2d0 + i0 + 1 = d0 + d1 + d2

which is equivalent to (15.7). Since all of d0, d1 and d2 are even, i0 is odd. �

Lemma 15.11. Suppose β, πL are as in Lemma 15.10 and that πK is a uniformizer
in K. For all a ∈ k, all odd integers h ≥ 1, and all sufficiently large positive integers
M > 1, we have

(15.8) (1 + aπh
L)2M−2 · (1 + a2πh

K) = 1 + a2βπ2h+d0−1
L + π2h+d0

L η

for some η ∈ k[[πL]] = OL.

Proof. We will show by induction on the integer µ ≥ 1 that

(15.9) (1 + aπh
L)2µ−2 · (1 + a2πh

K) = 1 + a2µ

πh2µ

L + a2βπ2h+d0−1
L + π2h+d0

L · ηµ
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for some ηµ ∈ k[[πL]] = OL, using that the characteristic is 2. We then get (15.8) by
setting M = µ and

η = a2µ

π
h2µ−(2h+d0)
L + ηµ

when µ is large enough so that h2µ ≥ 2h+ d0.
To prove (15.9), first consider the case µ = 1. We have from (15.6) that since h is

odd and d0 ≥ 2,

1 + a2πh
K = 1 + a2(πLσ(πL))h

= 1 + a2(π2
L · (1 + βπd0−1

L + πd0
L γ))

h(15.10)

= 1 + a2π2h
L + a2βπ2h+d0−1

L + π2h+d0
L η1

for some η1 ∈ k[[πL]] = OL. This is exactly the assertion in (15.9) when µ = 1.
Now assume that (15.9) holds for some µ ≥ 1. We multiply both sides by

(1 + aπh
L)2µ

= 1 + a2µ

πh2µ

L . The left side becomes

(15.11) (1 + aπh
L)2µ

· (1 + aπh
L)2µ−2 · (1 + a2πh

K) = (1 + aπh
L)2µ+1−2 · (1 + a2πh

K)

The right hand side becomes
(

1 + a2µ

πh2µ

L

) (

1 + a2µ

πh2µ

L + a2βπ2h+d0−1
L + π2h+d0

L · ηµ

)

= 1 + a2µ+1
πh2µ+1

L + a2βπ2h+d0−1
L + π2h+d0

L · ηµ+1(15.12)

where
ηµ+1 = (1 + a2µ

πh2µ

L )ηµ + a2µ+2πh2µ−1
L β ∈ k[[πL]] = OL.

Equating the right hand sides of (15.11) and (15.12) shows (15.9) when µ is replaced
by µ+ 1, so the induction is complete. �

Corollary 15.12. With the notations of Lemma 15.11, let a = δ, h = i0 and

(15.13) z = 1 + δ2βπ2i0+d0−1
L + π2i0+d0

L η

Then χ(z) is a root of unity of order exactly 2n−1 unless n = 2, G is a quaternion
group of order 8 and χ(1 + δ2πi0

K) = −1; in this case, χ(z) = 1.

Proof. From (15.8), we have

(15.14) χ(z) = χ(1 + δπi0
L )2M−2 · χ(1 + δ2πi0

K)

Now from Lemma 15.10, χ(1+δπi0
L ) = ζ is a primitive root of unity of order 2n, while

χ(1+δ2πi0
K) = ±1 by Lemma 15.3 since 1+δ2πi0

K ∈ K∗. Thus χ(1+δπi0
L )2M−2 = ζ2M−2

is a root of unity of order 2n−1 since M > 1. If n ≥ 3, the product of a root of unity
of order 2n−1 with ±1 is a root of unity of order 2n−1, so (15.14) shows χ(z) has order
2n−1. Since G is quaternionic or semi-dihedral of order 2n+1, the only way in which
one can have n < 3 is for n = 2 and for G to be a quaternion group of order 8. In
this case, χ(1 + δπi0

L )2M−2 = −1, so χ(z) = −χ(1 + δ2πi0
K) is a root of unity of order

2n−1 = 2 if and only if χ(1 + δ2πi0
K) = 1. �

Lemma 15.13. Suppose G is quaternionic or semi-dihedral. Then in−1 is even unless
all of the following hypotheses hold:

i. n = 2 and G is the quaternion group of order 8;
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ii. The constants d0, d1 and d2 are all equal to i0 + 1 in the notation of Lemma
15.10;

iii. The largest integer c(1) = c(n− 1) such that χ is non-trivial on 1 + π
c(1)
L OL

is c(1) = 2i0.

Proof. We assume throughout the proof that in−1 is odd, so that c(n− 1) is even by
Lemma 15.8. Suppose first that n > 2. By Corollary 15.12, χ(z) is a root of unity of
order exactly 2n−1. Then since L has characteristic 2,

χ(z2n−2

) = χ(1 + δ2n−1

β2n−2

π
(2i0+d0−1)2n−2

L + π
(2i0+d0)2n−2

L η2n−2

)(15.15)

is a primitive root of unity of order 2, so it is equal to −1. Since

δ2n−1

β2n−2

6= 0

in k, this shows that

(15.16) c(n− 1) ≥ (2i0 + d0 − 1)2n−2.

On the other hand, Lemma 15.8 shows

(15.17) di − 1 =
c(n− 1)

2
,

where i = 0 if G is quaternionic and i = 1 if G is semi-dihedral. We conclude from
(15.17) and (15.16) that

(15.18) (2i0 + d0 − 1)2n−2 = 2n−2(d0 − 1) + 2n−1i0 ≤ c(n− 1) = 2(di − 1).

Now i0 ≥ 1 and d0 − 1 ≥ 1 because d0 is an even positive integer. Since we have
assumed n ≥ 3 in deducing (15.18), we conclude from (15.18) that di > d0. Then
i = 1 and G must be semi-dihedral. In this case, d1 = d2 > d0, since πdi

KOK is the
relative discriminant of the quadratic extension Li/K, and the compositum of L0,
L1 and L2 is the biquadratic extension L′/K. Here

(15.19) d2 ≥ d0 + 2

since d2 = d1 > d0 and each of d0, d1 and d2 are even. By Lemma 15.10, χ(1 + δπi0
L )

is a root of unity of order 2n for some δ ∈ k∗ and i0 = d1 + d2 − d0 − 1 and some
δ ∈ k∗. Hence (15.19) gives

(15.20) i0 = d1 + d2 − d0 − 1 ≥ d1 + 1

Thus (15.17), (15.18) and (15.20) give

(15.21) 2n−1(d1 + 1) ≤ 2n−1i0 < 2n−2(d0 − 1) + 2n−1i0 ≤ c(n− 1) = 2(d1 − 1).

Since n ≥ 3, this would imply d1 < 0, which is impossible. Thus di > d0 is impossible,
and we conclude our assumption that n ≥ 3 is also impossible.

What we have shown thus far is that if in−1 is odd then n < 3. So n = 2 and
G must be the quaternion group of order 8, which we will assume for the rest of
the proof. In view of Lemma 15.8 we have c(n − 1) = c(1) = d0 − 1. Suppose that
the disciminant exponents d0, d1 and d2 are not all equal. Since G is the quaternion
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group of order 8, we can switch the roles of L0, L1 and L2 to be able to assume that
d0 < d1 = d2. We now have the lower bound

(15.22) i0 = d1 + d2 − d0 − 1 = 2d1 − d0 − 1 ≥ 2(d0 + 2) − d0 − 1 = d0 + 3

provided that in−1 is odd. Since χ(1 + δπi0
L ) is a root of unity of order 2n = 4,

χ(1 + δ2π2i0
L ) = χ(1 + δπL)2 = −1, so χ is non-trivial on 1 + π2(d0+3)OL by (15.22).

This implies 2(d0 +3) ≤ c(1) = 2(d0 − 1) which is impossible. Hence all of d0, d1 and
d2 must be equal, and we find from Lemma 15.10 that they equal i0 + 1. This and
(15.17) (in which i = 0, since G is a quaternion group) complete the proof. �

Lemma 15.14. Suppose G is quaternionic. Then in−1 ≥ d0 unless conditions (i),
(ii) and (iii) of Lemma 15.13 hold.

Proof. By Lemma 15.4,

(15.23) in−1 = c(n− 1) − c(n− 2)

where j = c(n − 1) (resp. j = c(n − 2)) is the largest positive integer such that χ
(resp. χ2) is non-trivial on 1 + πj

LOL. Thus c(n − 2) is the largest positive integer

such that there is a constant a ∈ k∗ such that χ(1 + aπ
c(n−2)
L ) = ζ is a primitive

fourth root of unity. It follows from Corollary 15.5 and (15.1) that c(n − 2) is odd,
so we can let h = c(n− 2) in Lemma 15.11. With the notations of Lemma 15.11,

(15.24) (1 + aπ
c(n−2)
L )2M−2 · (1 + a2π

c(n−2)
K ) = 1 + a2βπ

2c(n−2)+d0−1
L + π

2c(n−2)+d0

L η

for some η ∈ k[[πL]] = OL. Since M is very large, χ(1 + aπ
c(n−2)
L )2M−2 = ζ2M−2 = −1

because ζ is a root of unity of order 4. Hence (15.24) shows

χ(1 + a2βπ
2c(n−2)+d0−1
L + π

2c(n−2)+d0

L η) 6= 1 if χ(1 + a2π
c(n−2)
K ) = 1.

This shows that if χ(1 + a2π
c(n−2)
K ) = 1 then χ is non-trivial on 1 + π

2c(n−2)+d0−1
L OL,

so (15.23) gives

in−1 = c(n− 1) − c(n− 2) ≥ 2c(n− 2) + d0 − 1 − c(n− 2) ≥ d0

as required.

We now must consider the case in which χ(1 + a2π
c(n−2)
K ) 6= 1. For quaternionic

G, χ|K∗ is the character associated to L/K. Hence if χ(1 + a2π
c(n−2)
K ) 6= 1 then

c(n − 2) ≤ d0 − 1 since the first jump in the ramification filtration of Gal(L/K)
occurs at d0 − 1. However, Lemmas 15.4 and 15.10 show that

(15.25) c(n− 2) = i0 + i1 + · · ·+ in−2 ≥ i0 = d1 + d2 − d0 − 1

where all of the ij are positive. Since d0, d1 and d2 are the exponents of the discrim-
inants of quadratic subextensions of a Klein four extension of K, either all of these
integers are the same or two of them are equal and larger than the third. Hence
we see from (15.25) that c(n − 2) ≥ d0 − 1, with strict inequality unless n = 2,
d0 = d1 = d2 and c(n − 2) = i0 = d0 − 1. Suppose now that all of these conditions

hold. Then χ(1+π
c(n−2)
L OL) = χ(1+πi0

LOL) contains a primitive fourth root of unity,
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so χ(1 + π
2c(n−2)
L OL) 6= {1}. If follows that c(1) = c(n− 1) ≥ 2c(n− 2) = 2i0, and if

c(1) > 2i0 then (15.23) implies

in−1 = c(n− 1) − c(n− 2) ≥ 2i0 + 1 − i0 = i0 + 1 = d0.

Thus the only way in which we could have in−1 < d0 is for c(1) = 2i0, which shows
that all of the conditions of Lemma 15.13 hold. �

Lemma 15.15. Suppose hypotheses (i), (ii) and (iii) of Lemma 15.13 hold and that
i0 > 1. There is an inclusion of multiplicative groups

(15.26) 1 + π2i0
L OL ⊂ (NormL/KL

∗) · (L∗)4 · (1 + π2i0+1
L OL)

Proof. By Lemma 14.8, d0 is even. We have

i0 = d1 + d2 − d0 − 1 = d0 − 1

by Lemma 15.10 and hypothesis (ii) of Lemma 15.13. By [18, Lemme 5.1.1] and the
paragraph following that lemma, we can choose the uniformizer πL of L such that

(15.27) σ(πL) =
πL

(1 + πi0
L )1/i0

.

where σ ∈ G projects to the non-trivial element of Gal(L/K).
For i ≥ 1 the binomial theorem for fractional exponents now gives

(15.28) σ(πi
L) ≡ πi

L (resp. πi
L(1 + πi0

L ) ) mod π2i0+1
L OL if 2 | i (resp. 2 6 | i ).

Suppose now that ζ ∈ k. Define

(15.29) h(ζ) = (1+πL +ζ2πi0−1
L ) ·σ(1+πL +ζ2πi0−1

L ) = NormL/K(1+πL +ζ2πi0−1
L ).

Using i0 > 1 and the fact that i0 − 1 is even, we have from (15.28) the following
congruences mod π2i0+1

L OL:

h(ζ) ≡ (1 + πL + ζ2πi0−1
L )(1 + πL + πi0+1

L + ζ2πi0−1
L )

≡ 1 + π2
L + ζ4π

2(i0−1)
L + πi0+1

L + πi0+2
L + ζ2π2i0

L(15.30)

≡ h(0) + ζ4π
2(i0−1)
L + ζ2π2i0

L

Here

(15.31) h(0)−1 =
(

1 + π2
L + πi0+1

L + πi0+2
L

)−1
≡ 1 − π2

L mod π3
LOL.

since i0 ≥ 3. Thus (15.30) gives congruences

h(0)−1h(ζ) ≡ 1 + h(0)−1(ζ4π
2(i0−1)
L + ζ2π2i0

L ) mod π2i0+1
L OL

≡ 1 + (1 − π2
L)(ζ4π

2(i0−1)
L + ζ2π2i0

L ) mod π2i0+1
L OL(15.32)

≡ (1 + ζ4π
2(i0−1)
L ) · (1 + (ζ2 − ζ4)π2i0

L ) mod π2i0+1
L OL

where the last congruence holds because

2(i0 − 1) + 2i0 = 4i0 − 2 ≥ 2i0 + 1

since i0 ≥ 3. Because i0 ≥ 3 is odd, (i0 − 1)/2 ≥ 1 is an integer. Hence (15.32) gives

(15.33) (1 + ζπ
(i0−1)/2
L )−4 · h(0)−1 · h(ζ) ≡ 1 + (ζ2 − ζ4)π2i0

L mod π2i0+1
L OL
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Now for each λ ∈ k, there is a ζ ∈ K such that ζ2 − ζ4 = λ. By (15.29), h(0)−1 ∈
NormL/K(L∗). We conclude from (15.33) that

1 + π2i0
L OL ⊂ (L∗)4 · NormL/K(L∗) · (1 + π2i0+1

L OL)

which proves Lemma 15.15. �

Corollary 15.16. Hypotheses (i), (ii) and (iii) of Lemma 15.13 imply i0 = 1.

Proof. Suppose i0 > 1. By part (iii) of Lemma 15.13, χ is not trivial on 1 + π2i0OL

but trivial on 1+π2i0+1OL. Since G is the quaternion group of order 8, the character
χ has order 2n = 4. By Lemma 15.3, χ is trivial on NormL/K(L∗). Hence χ is trivial

on (NormL/KL
∗) · (L∗)4 · (1+π2i0+1

L OL) so χ is trivial on 1+π2i0OL by Lemma 15.15,
which is a contradiction. This proves that we must have i0 = 1. �

Completion of the proof of Proposition 15.6.

We begin with statement (i) of the proposition.
Suppose first that in−1 is odd. By Lemma 15.13, we can reduce the case in which

G satisfies the hypotheses of Lemma 15.13. By Corollary 15.16, i0 = 1. For i =
0, 1, 2, let Hi = Gal(N/Li) where Li is the quadratic extension of K described in
Lemma 14.8, so that H = H0. The first (and only) jump in the upper (and lower)
ramification filtration on G/Hi occurs at di − 1. By Lemma 15.13, d0 = d1 = d2.
Therefore if ν ∈ R is a jump in the ramification filtration of G/Hi for one i, it is a
jump in this filtration for all i. The image of the higher ramification group Gν in
G/Hi is equal to the ramification group (G/Hi)

ν . It follows that Gν ∩Hi has order
independent of i ∈ {0, 1, 2}. Hence Gν is either G, {e} or the center C(G) = {e, τ 2}
of G. By Lemma 15.13 and the definition of i0 in Lemma 15.10, the jumps in the
ramification filtration of H0 = H = Gal(N/L) occur at the integers i0 = 1 and at
2i0 = 2. Hence by the Hasse-Arf Theorem (see Lemma 14.1), the jumps in the lower
numbering of the ramification filtration of H occur at 1 and at 1+2 = 3. Since each
ramification group is either G, {e} or C(G), we conclude that the lower numbering
of the ramification filtration of G is

(15.34) G = G0 = G1 ⊃ C(G) = G2 = G3 ⊃ G4 = {e}.

Suppose now that G is the quaternion group of order 8 and G4 = {e}. From H4 =
{e} and Lemma 14.1 we must have H = H0 = H1 ⊃ H2 = 2H = H3 ⊃ H4 = {e}.
Since this holds true for each of the cyclic subgroups H of index 2 in G, the lower
ramification filtration of G must be given by (15.34). Since #G = 8, we have n = 2.
Lemmas 15.4 and 14.1 that i0 = i1 = 1, so that in−1 = i1 is odd.

We now check that if G has order 8 and ramification filtration (15.34) then the
Bertin obstruction does not vanish. Let T = C(G). The set S(T ) of cyclic subgroups
of G which contain T is {T,H0, H1, H2}. The constant bT appearing in Theorem 2.3
is thus

bT =
1

[NG(T ) : T ]



−δ(T, {e})aφ(1) +
∑

Γ∈S(T )

µ([Γ : T ])ι(Γ)



 = −
1

2
.(15.35)
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Proposition 2.1 now shows that the Bertin obstruction associated to the given action
of G on N does not vanish. This completes the proof of part (i) of Proposition 15.6.

We now suppose that as in part (ii) of Proposition 15.6, G is a generalized quater-
nion group and in−1 is even. We claim that not all of hypotheses (i), (ii) and (iii)
Lemma 15.13 can hold. Suppose to the contrary that all of these hypotheses do hold.
Thus n = 2, c(1) = 2i0, and by Corollary 15.16, i0 = 1. Thus Lemma 15.4 gives
in−1 = i1 = c(1) − c(0) = c(1) − i0 = i0 = 1. This contradicts our assumption that
in−1 is even, so not all of Hypotheses (i),(ii) and (iii) of Lemma 15.13 hold. Therefore
Lemma 15.14 proves in−1 ≥ d0. Hence Corollaries 14.11(c), 14.12 and 14.13 show
that the KGB obstruction vanishes.

To prove the final statement (iii) in Proposition 15.6, we know by Lemma 15.13
that in−1 is even if G is semi-dihedral. Since the di are all even, we conclude from
Corollary 14.11(d) that the Bertin obstruction does not vanish if

(15.36) d0 + d1 + d2 ≡ d0 + d1 − d2 6≡ 0 mod 4Z. �

16. The group SL2(3) when p = 2.

Proposition 16.1. Suppose p = 2 and that G is isomorphic to SL2(3). A 2-Sylow
subgroup P of G is normal and isomorphic to a quaternion group of order 8. The
Bertin obstruction associated to an injection φ : G → Autk(k[[t]]) vanishes if and
only if the Bertin obstruction associated to the restriction φP of φ = φG from G to P
vanishes. These two equivalent conditions hold if and only if the KGB obstructions
of both φ and φP vanish.

Proof. Because of Theorem 6.6, the Bertin obstruction of φP vanishes if that of φ
does, and we now prove the converse. We suppose for the rest of the proof that Bertin
obstruction of φP vanishes. To show that the Bertin obstruction of φG vanishes, it
will be enough to show that conditions (b), (c) and (d) of Theorem 6.6 hold.

Let t be a non-trivial element of the cyclic group C of order 3. Then CG(t) =
CP (t) × C where CP (t) is the center C(G) of G, which has order 2. This shows
condition (b) of Theorem 6.6.

The cyclic non-trivial subgroups T of P are C(G) together with the three cyclic
subgroups Γ(1), Γ(2) and Γ(3) of order 4 which are conjugate under the action of
C. There are four conjugates C(1) = C, C(2), C(3) and C(4) of C in G. Let
J(j) = 〈C(G), C(j)〉 be the cyclic group of order 6 generated by C(j) and C(G).
One has

(16.1) SG(C(G)) = {C(G),Γ(1),Γ(2),Γ(3), J(1), J(2), J(3), J(4)}

and

(16.2) SG(Γ(j)) = {Γ(j)}.

In the notation of Theorem 6.6, we have

(16.3) b′C(G),G =
∑

P 6⊃Γ∈SG(C(G))

µ([Γ : C(G)]) =
4
∑

j=1

µ([J(j) : C(G)]) = −4.
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Since every Γ ∈ SG(Γ(j)) is contained in P , we have

(16.4) b′Γ(j),G =
∑

P 6⊃Γ∈SG(Γ(j))

µ([Γ : Γ(j)]) = 0

Condition (c.i) of Theorem 6.6 is that b′T,G ≡ 0 mod [NP (T ) : T ]Z, which we see
follows from (16.3) and (16.4) since [NP (C(P )) : P ] = 4.

Since we have supposed that the Bertin obstruction of φP vanishes, we have bT,P ≥
0 for T = C(G) and T = Γ(j). Condition (c.ii) of Theorem 6.6 is that

(16.5) [NG(P ) : T ]bT,P =
∑

Γ∈SP (T )

µ([Γ : T ])ι(T ) ≥ −bT,G.

When T = Γ(j), this follows from bΓ(j),P ≥ 0 = −bΓ(j),G. We now assume that
T = C(G), so that −bT,G = −bC(G),G = 4. It remains to show prove the inequality
(16.5) in this case.

Let H = Γ(1) be one of the three cyclic subgroups of order 4 in P . Let i0 and i1 be
the integers associated to φP and to H in Lemma 14.1. Let χ : H → µ4 be a faithful
character of H . We let L = NH be the fixed field of H acting on N , where N/F is
the G extension associated to φG. By classfield theory, we can view χ as a character
of L∗, after reducing to the case of quasi-finite residue fields via Proposition 13.2.
By Lemma 15.4, i0 is the largest integer such that χ(1 + πi0

LOL) = µ4, while i1 is the
largest integer such that χ(1 + πi0+i1

L OL) = {±1}. Since (1 + πi0
LOL)2 ⊂ 1 + π2i0

L OL

we conclude that i0 + i1 ≥ 2i0, so i1 ≥ i0. By Corollary 14.11, i0 is odd and
i1 is even since the Bertin obsrtruction to φP is trivial. Hence i1 ≥ i0 implies
i1 = i0 + 1 + 2h for some h ≥ 0. By the definition of i0 and i1, the jumps in the
upper ramification filtration of H occur at i0 and i0 + i1. By Herbrand’s theorem [27,
Chap. IV.3, Lemma 5], the jumps in the lower ramification filtration occur at i0 and
i0 + 2i1 = i0 + 2(i0 + 1 + 2h) = 3i0 + 2 + 4h. Now C(G) is the order 2 subgroup of
H , so the jumps in the lower and the upper ramification filtation of C(G) both occur
at 3i0 + 2 + 4h. Recall that J(1) is a cyclic group of order 6 which contains C(G)
(see (16.1)). By the Hasse-Arf Theorem, the jumps in the upper ramification of J(1)
occur at integers j0 = 0 and j1 ≥ 0 since J(1) is abelian and the wild ramification
subgroup of J(1) is C(G). Herbrand’s theorem now shows that the jumps in the
lower ramification of J(1) occur at 0 and at 3j1. Therefore the (unique) jump in
the lower ramification of C(G) occurs at 3j1 = 3i0 + 2 + 4h. This and h ≥ 0 force
h = 1 + 3h′ for some 0 ≤ h′ ∈ Z. Thus

(16.6) i1 = i0 + 1 + 2h = i0 + 1 + 2(1 + 3h′) = i0 + 3 + 6h′ with 0 ≤ h′ ∈ Z.

Since Γ(1) is conjugate to Γj for j = 2, 3, we have ι(Γ(1)) = ι(Γ(j)) for j ∈ {1, 2, 3}.
Considering that the jumps in the lower numbering of H = Γ(1) occur at i0 and
i0 + 2i1, we conclude that

(16.7) ι(C(G)) = i0 + 2i1 + 1 = i0 + 2(i0 + 3 + 6h′) + 1 = 3i0 + 7 + 12h′

and

(16.8) ι(Γ(1)) = i0 + 1.
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Now

[NP (C(G)) : C(G)]bC(G),P =
∑

C(G)⊂Γ∈SP (C(G))

µ([Γ : C(G)])ι(Γ)

= ι(C(G)) − 3ι(Γ(1))

= 3i0 + 7 + 12h′ − 3(i0 + 1)

= 4 + 12h′ ≥ 4 = −b′C(G),G(16.9)

because of (16.7), (16.8) and (16.3). This proves (16.5) for T = C(G), which com-
pletes the proof of condition (c.ii) of Theorem 6.6.

We finally consider condition (d) of Theorem 6.6. If T = C(G) then CC(T ) = C =
NC(T ) and

b′′C(G),G =
∑

Γ∈SG(C(G))

µ([Γ : C(G)]) = 1 − 3 − 4 = −6 ≡ 0 mod #NC(T )Z

since #NC(T ) = 3. Thus condition (d.ii) of Theorem 6.6 holds for T = C(G).
The other non-trivial cyclic subgroups T of p-power order in G are the Γ(j) for
j = 1, 2, 3. We have NC(Γ(j)) = {e} = CC(Γ(j)), so condition (d.ii) of Theorem 6.6
holds trivially for T = Γ(j). This completes the proof that the Bertin obstruction of
φG vanishes if and only if that of φP does.

It remains to prove the last assertion of the proposition. It follows from Proposition
15.6 that the Bertin obstruction of φP vanishes if and only if the KGB obstruction
of φP vanishes. By Theorem 4.2, if the KGB obstruction of φG vanishes then the
Bertin obstruction of φG does also. So to finish the proof of of Proposition 16.1, it
will suffice to show that if the Bertin obstructions of φG and φP vanish then the KGB
obstruction of φG vanishes.

We can choose a set CG of representatives for the conjugacy classes of non-trivial
cyclic subgroups of G in the following way:

(16.10) CG = {C(G),Γ(1), C(1), J(1)}.

We have

(16.11) bΓ(1),G =
1

[NG(Γ(1)) : Γ(1)]

∑

Γ∈SG(Γ(1))

µ([Γ : Γ(1)])ιG(Γ) =
ι(Γ(1))

2
=
i0 + 1

2
.

Thus bΓ(1),G > 0, and this is integral by Proposition 2.1 because the Bertin obstruc-
tion of φG vanishes. One has NG(C(1)) = J(1) 6= C(1) and NG(J(1)) = J(1), so
Proposition 3.2 gives

(16.12) bC(1),G = 0 and bJ(1),G = 1

From Theorem 4.2 and Proposition 2.1, to show that the KGB obstruction van-
ishes, it will be enough to construct for each T ∈ CG an sequence BT of bT,B elements
of G such that each b ∈ BT generates a conjugate of T and

∏

T∈CG

∏

b∈BT
b has order

[G : G1] = #C = 3 after choosing some ordering for
∐

T∈CG
BT . Here bΓ(1),G > 0,

so since we can choose the elements of BΓ(1) to be generators of any of the three
(conjugate) order 4 subgroups of P , we can arrange that

∏

b∈BΓ(1)
b has order 4. We

know that BC(1) = ∅ and that BJ(1) has one element by (16.12). Now the product of
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an element of order 4 and and element of order 3 in PSL2(3) = SL2(3)/C(G) is an
element of order 3. Thus for any choice of BC(G), the resulting product

∏

T∈CG

∏

b∈BT

b

has order 3 image in PSL2(3). We can make this element have order 3 in SL2(3) = G
by adjusting one of the elements of BΓ(1) by multiplying it by either the trivial or
the non-triivial element of C(G). This completes the proof of Proposition 16.1. �

17. Proof of Theorem 1.2.

By Corollary 12.8, the proof of Theorem 1.2 is reduced to showing the following
results:

a. The groups listed in items (1) - (4) of Theorem 1.2 are KGB groups for k.
b. When p = 2, the quaternion group Q8 and the group SL2(3) are not Bertin

groups for k.
c. When p = 2, no semi-dihedral group of order at least 16 is a Bertin group for
k.

Lemma 17.1. For all k, every cyclic group G is a KGB group for k.

Proof. Let G be a cyclic group with p-Sylow group H of order pn. The lower num-
bering of the ramification groups of G has G0 = G and Gi = Hi if i > 0. By Lemma
14.1, there are positive integers i0, i1, . . . , in−1 such such that the jumps in the upper
numbering of the ramification filtration of H occur at i0, i0+i1, . . . , i0+i1+ · · ·+in−1.
Write #G = mpn for some integer m prime to p. By the Hasse-Arf Theorem, the
jumps in the lower ramification filtration are at q(−1) := 0 if m > 1 together with
the integers q(ℓ) := m

∑ℓ
j=0 p

jij for ℓ = 0, · · · , n− 1. We find by Corollary 14.3 that

(17.1) ι(pℓH) = 1 + q(ℓ) for 0 ≤ ℓ ≤ n− 1 ; ι(Γ) = 1 if Γ 6⊂ H.

Suppose that T is a non-trivial cyclic subgroup of G. By Proposition 3.2,

(17.2) bT = 0 if G 6= T 6⊂ H and bG = 1 if G 6= H.

Otherwise, T ⊂ H and we may write T = pℓH for some 0 ≤ ℓ ≤ n − 1. By
Theorem 2.3,

bT =
1

[NG(T ) : T ]





∑

Γ∈S(T )

µ([Γ : T ])ι(Γ)





=
1

mpℓ





∑

Γ∈S(T )

µ([Γ : T ]) +
∑

Γ∈S(T ),Γ⊂H

µ([Γ : T ])(ι(Γ) − 1)





=
1

mpℓ

(

δ(pℓH,G) +mpℓiℓ
)

= δ(pℓH,G) + iℓ(17.3)

(In the second sum in (17.3), only Γ = H contributes if ℓ = 0, while Γ = pℓH and
Γ = pℓ−1H contribute if ℓ > 0. The last equality in (17.3) is a consequence of the
fact that pℓH = G if and only if m = 1 and ℓ = 0.) This shows that bT is always a
non-negative integer, so the Bertin obstruction of G vanishes by Proposition 2.1.
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To show that the KGB obstruction vanishes, we start by picking an ordered set
{gt}t∈Ω of elements of G such that each gt is non-trivial, and the number of gt which
generate a given non-trivial T ∈ C is bT . As in Theorem 4.2(b), we have to show
that we can adjust these gt so that they collectively generate G and so that

∏

t∈Ω gt

has order [G : G1] = m.
Suppose first that G = H , so that m = 1. By (17.3), bH = 1 + i0 ≥ 2. Hence

there must at least two distinct elements u, v ∈ Ω such that gu and gv generate
G = H . Consider the product g =

∏

t∈Ω−{u,v} gt. It will suffice to show that there

are generators g′u and g′v of G such that g′ug
′
v = g−1, since then we can replace gu

by g′u and gv by g′v to have a set with the required properties. We claim that for all
primes p, the elements of a cyclic group G = H of order pn which are the product
of two generators are exactly the set of squares in G (which equals G unless p = 2).
This is clear for n = 1, and it follows by induction for all n. Thus to construct the
required g′u and g′v, it will suffice to show that g above is a square if p = 2. So we
now suppose p = 2. Then 1 + i0 is the valuation of the discriminant of the quadratic
extension k((t))2G of k((t))G inside k((t)), and this must be even. Hence i0 is odd so
bG = 1 + i0 > 0 is even. Every T ∈ C except for T = G is contained in 2G = 2H .
Hence the product g =

∏

t∈Ω−{u,v} gt lies in 2G = 2H , and this completes the analysis
of the case G = H .

We now suppose that G 6= H . By (17.2), the unique T ∈ C which is not a p-group
and for which bT is not 0 is T = G, and bG = 1. We can therefore pick the first
element gu of {gt : t ∈ Ω} to be a generator of G, and all the other elements will be
in H . We are therefore done if H is trivial, so suppose from now on that H is non-
trivial. Consider the product

∏

u 6=t∈Ω gt ∈ H . If p = 2 then all terms of this product
are in 2H except for bH terms in which gt is a generator of H . Here bH = i0 > 0 by
(17.3), and this is odd if p = 2. Thus we can pick an element v ∈ Ω − {u} such that
gv is a generator of H , and the number of v′ ∈ Ω − {u, v} for which gv′ generates H
is even. Taking into account that gu is a generator of G, we find that g =

∏

t∈Ω gt

lies in 2G if p = 2; and whether or not p = 2, this is the product of a generator
gu of G with an element of the p-Sylow subgroup H of G. This implies g has order
divisible by m. It will suffice to show that we can pick elements hu, hv ∈ H such that
g′u = guhu is a generator of G, g′v = gvhv is a generator of H , and

g′ug
′
v

∏

t∈Ω−{u,v}

gt = huhvg

has order m, since then we can simply replace gu by g′u and gv by g′v.
We first observe that huhvg always has order divisible by m since hu and hv are

elements of p-power order and g has order divisible by m. Hence huhvg has order m
if and only if hm

u h
m
v g

m = e, where gm ∈ H and gm ∈ 2H if p = 2. Since hu ∈ H
and gu is a generator of G, the element g′u = guhu will be a generator of G if and
only if gm

u h
m
u is a generator of the p-Sylow subgroup H of G. This will be the case if

hm
u is not congruent mod pH to g−m

u ∈ H . Similarly, hvgv will be a generator of H
if and only if hm

v g
m
v is such a generator, and this will be so if and only if hm

v is not
congruent mod pH to g−m

v . We thus see that hm
u and hm

v are to be elements of H
which each avoid a particular congruence class mod pH which generates H mod pH ,
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and for which hm
u h

m
v is equal to gm, where gm ∈ H and gm ∈ 2H if p = 2. Since H

is cyclic of order pn, one sees by induction on n that such hm
u and hm

v always exist.
Since m is prime to p, we can then find hu and hv in H with the required properties,
which completes the proof. �

Proposition 17.2. For all primes p and integers n ≥ 1, the dihedral group D2pn is
a KGB group for k. If p = 2, then the following hold:

i. If G is a generalized quaternion group of order 2n ≥ 16, then G is a KGB
group for k.

ii. If G is the quaternion group of order 8, G is an almost KGB group for k.
iii. If G is a semi-dihedral group then G is not an almost Bertin group for k.

Proof. By Corollaries 14.11, 14.12, 14.13 and 15.5, D2pn is a KGB group for k, for
all p. Now assume that p = 2. These corollaries together with Proposition 15.6(iii)
imply statements (i) and (ii) concerning generalized quaternion groups. Suppose now
that G is a semi-dihedral group. We can construct a Klein four extension L′/K such
that the exponents d0, d1 and d2 of the discriminants of the three quadratic subfields
(as in Lemma 14.8) are larger than a specified number and for which d0 + d1 + d2 is
not divisible by 4. By parts (i) and (ii) of Proposition 19.3 of Appendix 1, we can
realize this L′/K as a subfield of a G-extension of K such that the first jump in the
ramification filtration of G occurs above a specified number. Proposition 15.6(iii)
now shows G is not an almost Bertin group for k. �

Corollary 17.3. When p = 2, the group SL2(3) is an almost KGB group for k.

Proof. This follows from Propositions 17.2 and 16.1. �

Lemma 17.4. When p = 2, the alternating group A4 is a KGB group for k.

Proof. We can take the set C to consist of a group H2 of order 2 and a group H3

of order 3. Since NG(H3) = H3, Proposition 3.2 shows bH3 = 1. There is no cyclic
subgroup of A4 which properly contains H2, and NA4(H2) has order 4, so

bH2 =
1

[NA4(H2) : H2]
ι(H2) =

ι(H2)

2
.

Since H2 has order p = 2, the first (and only ) jump i0 in the upper (and lower)
ramification filtration of H2 occurs at an odd integer, so ι(H2) = 1 + i0 ≥ 2 is even.
Thus bH2 ≥ 1 is an integer. This shows that Bertin obstruction associated to local A4

covers in characteristic 2 is trivial. Since bH3 = 1 and the 2-Sylow of A4 is normal, if
we choose any set of generators for the stabilizers appearing in the product described
in the KGB condition of Theorem 4.2(b), this product will not lie in the 2-Sylow of
A4. Therefore this product has to be an element of order 3 = [A4 : (A4)1], so the
KGB condition holds. �

In view of the remarks at the beginning of this section, the following result com-
pletes the proof of Theorem 1.2.

Lemma 17.5. Suppose p = 2. The quaternion group Q8 of order 8 and the group
SL2(3) are not Bertin groups for k.



THE LOCAL LIFTING PROBLEM FOR ACTIONS OF FINITE GROUPS ON CURVES 63

Proof. By Proposition 16.1, it will be enough to construct an injection φ : G =
SL2(3) → Autk(k[[t]]) such that the restriction of G to the (unique) 2-Sylow sub-
group P of G has non-trivial Bertin obstruction, where P is isomorphic to Q8. By
Proposition 15.6(ii), it will be enough to construct an example of this kind in which
the lower ramification filtration of P has the form P = P0 = P1, C(P ) = P2 = P3 and
P4 = {e}. By [30, Ex. A.1.b], there is an elliptic curve E over k whose automorphism
group G = Aut(E) is isomorphic to SL2(3). Every element of G fixes the origin 0
of E, so 0 is totally ramified over its image c in the quotient cover E → E/G. Let
P0,i be the ith lower ramification subgroup of P acting on the completion of the local
ring of 0 on E. Then P0,0 = P0,1 = P . By applying Lemma 14.1 to the action of
a cyclic subgroup H of order 4 in P , we see that P0,2 and P0,3 must be non-trivial.
The Hurwitz formula gives

0 = 2g(E) − 2 = 8 · (2g(E/P ) − 2) +
∞
∑

i=0

(#P0,i − 1) + r 6=0

= 8 · (2g(E/P )− 2) + 16 +
3
∑

i=2

(#P0,i − 2) +
∞
∑

i=4

(#P0,i − 1) + r 6=0(17.4)

where r 6=0 is the contribution of ramification points of the cover E → E/P which are
not equal to 0. This implies g(E/P ) = 0, r 6=0 = 0 and that the ramification filtration
of P = P0 has the required form, in the sense that P = P0 = P1, C(P ) = P2 = P3

and P4 = {e}. Hence the action of G on the completion of the local ring of E at 0
defines an injection φ : G = SL2(3) → Autk(k[[t]]) for which the Bertin obstruction
does not vanish. �

18. Proof of Theorem 1.5.

By Corollary 5.6, if a quotient of a group G is not an almost Bertin group then G
is not an almost Bertin group for k. The Bertin groups for k have been determined in
Theorem 1.2, and each of these is a KGB group for k and hence an almost KGB group
for k. Hence by Theorems 11.1 and 11.2, Theorem 1.5 follows from the following
assertions, which have already been shown:

i. The groups listed in items (1) - (5) of Theorem 11.1 are not almost Bertin
groups for k if p = char k 6= 2. This follows from Corollary 12.4, since each
of the groups 1)-(5) in Theorem 11.1 are cyclic-by-p.

ii. The groups listed in items (1) - (7) of Theorem 11.2 are not almost Bertin
groups for k if char k = 2. This follows from Corollary 12.5, Proposition 12.6
and Proposition 12.7.

iii. The groups H8 and SL2(3) are almost KGB groups k if char k = 2. This was
shown in Proposition 17.2 and Corollary 17.3.

iv. Semi-dihedral groups are not almost Bertin groups in characteristic 2. This
was shown in Proposition 17.2.
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19. Appendix 1: Constructing extensions with prescribed

ramification.

In this section we suppose G is a finite group which is the semi-direct product of
a normal p-group P with a finite cyclic group C.

Definition 19.1. Suppose that G is a GM group for k with respect to a faithful
character Θ : B → Z∗

p as in Definition 1.7. Let ΘC : C → W (k)∗ be an extension of
Θ to a faithful character of C. An injection φG : G→ Autk(k[[z]]) will be said to be
GM for ΘC if

(19.1) φG(c)(u)/u ≡ ΘC(c)−1 mod uk[[u]]

for some uniformizer u in k[[z]]φG(P ), where ΘC : C → k∗ is the reduction of ΘC mod
pW (k).

Lemma 19.2. Suppose G = C. Then G is GM with respect to any given faithful
character Θ : B → Z∗

p. Let ΘC : C → W (k)∗ be a faithful extension of Θ. There is
an injection φG : G→ Autk(k[[z]]) which is GM with respect to ΘC.

Proof. The first statement is clear from Definition 1.7. For the second statement,
pick a root of unity ζ ∈ k∗ of order #C and a generator c of C = G. Let φ′

G : G →
Autk(k[[z]]) the injection for which φ′

G(c)(z) = ζc. Since Aut(C) acts transitively on
the faithful characters of C, there will be a unique α ∈ Aut(C) such that φG = φ′

G◦α
will be GM with respect to ΘC . �

The main result of this section is:

Proposition 19.3. Suppose H is a quotient group of G, and let H(p) be the p-Sylow
subgroup of H. Let M be a positive integer. There is an integer M ′ ≥ 1, with M ′ = 1
if M = 1, for which the following is true. Suppose φH : H → Autk(k[[t]]) is an
injection such that that the lower ramification group HM ′−1 contains H(p). Let J
be the kernel of the surjection π : G → H. Then there is an injection φG : G →
Autk(k[[z]]) with the following properties:

i. There is a k-isomorphism between k[[z]]J and k[[t]] such that the induced
action of G/J = H on k[[t]] is given by φH .

ii. The lower ramification group GM−1 contains P .
iii. Suppose J ⊂ P , G is GM with respect to Θ : B → Z∗

p, and ΘC : C → W (k)∗

is a faithful extension of Θ to C. Suppose φH is GM with respect to ΘC. Then
φG is GM with respect to ΘC.

iv. Suppose J ⊂ P and T is a proper non-trivial cyclic subgroup of J . Then
ιG(T ) ≡ 0 mod pM−1, where as before ιG(T ) is i+ 1 if i is the largest integer
such that T lies in the ramification group Gi. Let Γ be cyclic subgroup of P
containing T such that J 6⊃ Γ. Then ιG(T ) > ιG(Γ) +M ,

v. Suppose M > 1, J ⊂ P and ιH(T ′) ≡ 0 mod pM ′−1 for all non-trivial cyclic
p-subgroups T ′ of H. Then ιG(T ) ≡ 0 mod pM−1 for all non-trivial cyclic
p-subgroups T of G.
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The remainder of this section is devoted to proving Proposition 19.3. For a related
result, see the work of Pries in [26, Prop. 2.7]. Since J is solvable we have the
following result by induction on #J .

Lemma 19.4. To prove Proposition 19.3, it will suffice to consider the case in which
J is abelian and the conjugation action of H on J makes J into a simple Z[H ]-module.
We will assume J to be such a module for the rest of this section.

Lemma 19.5. Given any φH : H → Autk(k[[t]]) as in Proposition 19.3, there is
always an injection φG : G → Autk(k[[z]]) for which condition (i) of the proposition
holds. To complete the proof of the proposition, it will suffice to show that there is a
φG for which (i) and (iv) hold.

Proof. It is shown in [8, Lemma 2.10] that there is always a φG as in part (i). We
now show part (iii) of Proposition 19.3. (See Lemma 19.2 for the case G = C.)
Let J , G, ΘC and φH be as in part (iii), so that φH is GM for ΘC . Then the
identification of k[[t]] with k[[z]]φG(J) identifies k[[z]]φG(P ) with k[[t]]φH(P/J) = k[[u]].
We have identified C as a subgroup of both G and H , and the actions of φG(c) and
φH(c) on k[[u]] for c ∈ C must be the same since φG induces φH . Since φH is GM
with respect to ΘC ,

φH(c)(u)/u ≡ ΘC(c)−1 mod uk[[u]].

Thus this congruence holds when φH is replaced by φG; so φG is GM with respect to
ΘC .

To complete the proof of Lemma 19.5 now amounts to showing that if we can
always construct an M ′ for which parts (i) and (iv) of Proposition 19.3 hold, then
we can construct an M ′ for which parts (ii) and (v) also hold. By increasing M ′, we
can assume M ′ ≥ M .

Let σ be a non-trivial element of G of p-power order, and define σ′ = π(σ) ∈ H .
To show GM−1 contains P as in part (ii), it will suffice to show

(19.2) iG(σ) ≥M.

To show part (v), it will be enough to prove

(19.3) ιG(〈σ〉) ≡ 0 mod pM−1Z.

Suppose first J is a p-group. If σ ∈ J , then condition (iv) applied to the subgroup
〈σ〉 generated by σ shows 0 < iG(σ) = ιG(〈σ〉) ≡ 0 mod pM−1, which shows (19.3).
We also have iG(σ) ≥ pM−1 ≥ M which proves (19.2). Suppose now that σ 6∈ J , so
that σ′ = π(σ) ∈ H is not trivial. By [27, Chap. IV.1, Prop. 3],

(19.4) iH(σ′) =
1

#J

∑

ν∈G,π(ν)=t′

iG(ν) =
1

#J

∑

j∈J

iG(σj)

From [27, Chap. IV.1] we have

iG(σj) ≥ Inf(iG(σ), iG(j)).

Since σ 6∈ J and we have supposed that (iv) holds, we have iG(j) > iG(σ) for all
j ∈ J , where iG(e) = ∞ by definition if e is the identity element of J . It follows
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that iG(σj) ≥ iG(σ) for all j ∈ J , and similarly iG(σ) = iG(σjj−1) ≥ iG(σj−1), so
iG(σj) = iG(σ) for j ∈ J . Thus (19.4) becomes iH(σ′) = iG(σ), so ιG(〈σ〉) = iG(σ) =
iH(σ′) = ιH(〈σ′〉). Because we chose M ′ ≥ M , part (iv) now gives 0 < iG(σ) =
ιH(〈σ′〉) ≡ 0 mod pM−1, so iG(σ) ≥ pM−1 ≥ M as above, which completes the proof
of (19.2) and (19.3) when J is a p-group.

Suppose now that J is not a p-group. We only need to show (19.2), since statement
(v) of Proposition 19.3 holds vacuously. Since J is a simple Z[H ]-module, it has order
prime to p. Therefore σ′ = π(σ) has the same order as σ, and in particular is not
trivial. The group P.J generated by P and J has normal subgroups P and J , and
these groups have coprime order and the product of their orders is #P.J . Hence P.J
is isomorphic to P × J and we conclude that P and J commute. Thus if e 6= j ∈ J
then tj is not of p-power order and so iG(σj) = 1. In this way, (19.4) becomes

iH(σ′) =
1

#J

∑

j∈J

iG(σj) =
iG(σ) + #J − 1

#J
.

This shows
iG(σ) − iH(σ′) = (#J − 1)(iH(σ′) − 1) ≥ 0.

Thus M ′ ≥ M and the assumption that HM ′−1 contains H(p) in Proposition 19.3
implies

iG(σ) ≥ iH(σ′) ≥M ′ ≥M.

This establishes (19.2) and completes the proof. �

The following corollary is now clear from Lemma 19.5 because condition (iv) of
Proposition 19.3 holds vacuously if J has order prime to p.

Corollary 19.6. Suppose J is abelian and is a simple Z[H ]-module of order prime
to p. Then Proposition 19.3 holds.

For the rest of this section we assume the hypotheses of the following lemma.

Lemma 19.7. Suppose J is abelian and is a simple Z[H ]-module of p-power order.
Let c = #C be the order of the prime to p-part of #G (and of #H). There is a
divisor c′ of c such that J has the following description. There is an isomorphism of
abelian groups between J and the additive group F+

pd of the finite field Fpd of order

pd such that the action of H on J is given by the inflation to H of a multiplicative
character χ : C → F∗

pd of order c′. The field Fpd is generated over Fp by a primitive

c′th root of unity. We can choose a uniformizer w in k[[t]]H(p) in such a way that there
is a faithful character χ′ : C → k∗ with the property that φH(σ) sends w to χ′(σ)w for
all σ ∈ C under the natural identification of C = H/H(p) with Gal(k((w))/k((t))H).

Proof. Recall that since J is a p-group, the surjection G→ H is an isomorphism on
C; so we can view C as a subgroup of H . Thus H is the semi-direct product H(p).C.
All simple (Z/p)[H ]-modules must be inflated from simple (Z/p)[C]-modules since
the kernel of the natural surjection (Z/p)[H ] 7→ (Z/p)[C] is the radical of (Z/p)[H ].
The description of J is now a consequence of the well-known description of the simple
modules in characteristic p for a cyclic group C of order prime to p. The action of
C on k[[t]]H(p) via φH makes k((t))H(p) into a tame Kummer extension of k((t))H .
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From this we get the existence of a uniformizer w in k[[t]]H(p) and of a character χ′

with the properties stated in the lemma. �

Lemma 19.8. With the notations and assumptions of Lemma 19.7, let q = pd. There
are arbitrarily large integers n > 0 which are relatively prime to p such that χ = χ′n

as characters from C to Fq. By Lemma 19.7, J as a (Z/p)[H ]-module is inflated

from a (Z/p)[C]-module J̃ . The polynomial

(19.5) yq − y − w−n

is irreducible in k((w))[y]. Let L be the splitting field of this polynomial over k((w)) =

k((t))H(p). Define F = k((t))H . When we identify J̃ with F+
q , there is an isomorphism

Gal(L/k((w))) → J̃ defined by σ 7→ σ(y) − y. The group C embeds into Autk(L)
via the map which sends τ ∈ C to the automorphism defined by τ(w) = χ′(τ)w

and τ(y) = χ′(τ)−ny. This extends to an action of the semi-direct product J̃ .C
on L which fixes F , and in this way Gal(L/F ) = J̃ .C. The corresponding lower

ramification group J̃n equals J̃ while J̃n+1 = {e}.

Proof. All of the assertions are clear from Artin-Schreier theory except for the fact
that J̃n = J̃ and J̃n+1 = {e}. For this observe that if a, b ∈ Z are such that aq−bn = 1
then wayb is a uniformizer in L. If e 6= σ ∈ Gal(L/k((w))) then 0 6= σ(y)−y = ζ ∈ Fq,
b is prime to p and

(19.6) ordL(
σ(wayb)

wayb
− 1) = ordL(

(y + ζ)b

yb
− 1) = ordL((1 + ζy−1)b − 1) = n.

Thus σ lies in the ramification group J̃n but not in J̃n+1. �

In view of Lemma 19.5, part (v) of the following lemma completes the proof of
Proposition 19.3.

Lemma 19.9. Assume the hypothesis and notations of Lemmas 19.7 and 19.8. By
Lemma 19.5, there is an injection φG : G → Autk(k[[z]]) inducing φH . Let F =

k((t))H = LJ̃ .C as in Lemma 19.8, so that k((z))/F is a Galois G = P.C-extension
while L/F is a Galois J̃ .C extension. If n in Lemma 19.8 is sufficiently large, then
the following hold:

i. The fields k((z)) and L are linearly disjoint over their common subfield,

k((w)) = k((t))H(p) = k((z))P = LJ̃ .

ii. Let N = L ·k((z)) be the compositum of these two extensions of k((w)). Then

Gal(N/F ) = (J̃ × P ).C

where the action of C on the product group J̃×P is via the conjugation action
of C on both factors.

iii. Fix identifications of J̃ and J ⊂ P with F+
q as in Lemmas 19.7 and 19.8.

This gives an isomorphism ψ : J̃ → J , with the property that

(19.7) ∆ = {(t̃, ψ(t̃)) : t̃ ∈ J̃}

is a subgroup of J̃ × J ⊂ J̃ × P that is normal in Gal(N/F ) = (J̃ × P ).C.
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iv. The fixed field N∆ is Galois over F , with Gal(N∆/F ) isomorphic to G. We
can choose a uniformizer z′ in N∆ and an injection φ′

G : G → Autk(k[[z
′]])

having the following properties:
a. There is an isomorphism of k[[z′]]φ

′

G
(J) with k[[t]] such that φ′

G induces
φH : H → Autk(k[[t]]).

b. The ramification group φ′
G(G)n equals φ′

G(J), while φ′
G(G)n+1 = {e}.

v. Suppose 1 ≤ M ∈ Z. We can choose n to be arbitrarily large with n ≡ −1
mod pM−1. For such n, the following will be true for each cyclic subgroup T
of J :

a. ιG(T ) = n+ 1 ≡ 0 mod pM−1Z,s where n is the largest integer such that
φ′

G(G)n contains T and where we compute ιG using φ′
G.

b. ιG(T ) > ιG(Γ) +M for all cyclic groups Γ ⊂ P that properly contain T .
For such n, φ′

G will have properties (i) and (iv) in Proposition 19.3.

Proof. Part (i) follows from the fact that if n in Lemma 19.8 is sufficiently large, the
valuation of the relative discriminant of every non-trivial extension of k((w)) inside
L is larger than that of every non-trivial extension of k((w)) inside k((z)).

Parts (ii), (iii) and (iv)(a) are straightforward from Galois theory.
To prove (iv)(b), consider the jth upper ramification subgroup of the p-group

(19.8) Gal(N/k((w))) = J̃ × P

This must surject onto Gal(L/k((w)))j as well as onto Gal(k((z))/k((w)))j = P j. By
Lemma 19.8, Gal(L/k((w)))n = Gal(L/k((w)))n = Gal(L/k((w))), and this group is
identified with

(J̃ × P )/(1 × P ) ∼= J̃ .

Furthermore, Gal(L/k((w)))n+ǫ = {e} if ǫ > 0. If we choose n sufficiently large,
then Gal(k((z))/k((w)))n = P n will be the trivial group, where Gal(k((z))/k((w)))
is identified with the quotient group

(J̃ × P )/(J̃ × 1) ∼= P̃ .

It follows that if n is sufficiently large, then Gal(N/k((w)))n must lie in J̃ × 1 and

surject onto J̃ , so in fact Gal(N/k((w)))n = J̃ × 1 relative to the description of
Gal(N/k((w)) in (19.8). Hence the image of Gal(N/k((w)))n in Gal(N∆/k((w))) =
(J̃×P )/∆ is the image of J̃×1, and this group is identified with J when we identify

G with ((J̃×P ).C)/∆ as above. Thus the action of G on k[[z′]] specified by φ′
G leads

to the ramification group Jn being equal to J and Jn+ǫ being {e} if ǫ > 0. Since J
is a p-group, we conclude that Jn = J and Jn+1 = {e}, which completes the proof of
part (iv).

For part (v), we observe that the condition on n in Lemma 19.8 is that it be
sufficiently large, relatively prime to p, and satisfy χ = χ′n as characters from C
to Fq. The last condition is one on n mod #C; so since #C is prime to p, we can
always find such n for which n ≡ −1 mod pM−1. Since ιG(T ) = n + 1 for T a
non-trivial cyclic subgroup of J by part (iv.b), we conclude that ιG(T ) ≡ 0 mod
pM−1 as in (v.a). Suppose now that Γ is a cyclic subgroup of P which contains T
but is not contained in J . Then Γ(H) = Γ/(Γ ∩ J) is identified with a non-trivial
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subgroup of G/J = H = Gal(k[[z′]]φ
′

G
(J)/F ), where k[[z′]]φ

′

G
(J) is identified with

k[[t]] as in part (iv.a). This last identification shows that there is a integer c0 ≥ 0
independent of the choice of n such that the upper ramification group Γ(H)c equals
{e} if c ≥ c0. Then Γc ⊂ J for such c since Γc surjects onto Γ(H)c. We have
Γ#Gc ⊂ Γc by the crudest estimates for the Herbrand function, so Γ#Gc0 ⊂ J . Thus
Γ#Gc0 6= Γ, so ιG(Γ) ≤ #Gc0. We now choose n so that n ≥ #Gc0 + M , to have
ιG(T ) = n + 1 > #Gc0 + M ≥ ιG(Γ) +M as required in part (v). Finally, we note
that having chosen n so that all of parts (i) - (v) hold, φ′

G will satisfy conditions (i)
and (iv) of Proposition 19.3. �

20. Appendix 2: Distinguishing the Bertin and KGB obstructions.

In this section we show the KGB obstruction to lifting an injection φ : G →
Autk(k[[t]]) can be non-zero when the Bertin obstruction vanishes, by proving the
following result.

Recall that the first jump in the lower ramification filtration of G occurs at the
largest integer i0 such that G = Gi0 .

Proposition 20.1. Suppose G is isomorphic to Z/p× Z/p.

a. (Bertin) The Bertin obstruction for lifting φ vanishes if and only if p|(i0 +1).
b. When p|(i0 +1), the KGB obstruction for lifting φ does not vanish if and only

if p = 3 = i0 + 1 and Gi0+1 = {e}.

While this shows that the KGB obstruction is in general stronger than the Bertin
obstruction for particular φ, our results in §1 show that every Bertin group for k is
a KGB group for k and vice versa.

Example 20.2. When p = 3, one obtains from statement (b) an explicit example
of a φ with vanishing Bertin obstruction and non-vanishing KGB obstruction in
the following way. Let i0 > 0 be any integer such that p|(i0 + 1). Let u be an
indeterminate, and let N be the extension k((u))[X]/(X9−u−i0) of k((u)). Then G =
Gal(N/k((u))) is isomorphic to the finite field F9

∼= Z/p× Z/p via the map sending
α ∈ F9 to the automorphism σα for which σα(X) = X + α. On has ordN(u) = 9,
ordN(X) = −i0 and ordN (t) = 1 when t = Xaub and 9b− ai0 = 1 for some integers
a and b. Thus t is a uniformizer in N , and (σα(t)/t) − 1 = (1 + αX−1)a − 1 has
valuation ordN(aαX−1) = i0 for 0 6= α ∈ F9. It follows G = Gi0 ⊃ Gi0+1 = {e}.

Proof of Proposition 20.1

Statement (a) is a special case of Example 1 of §4 of [2]. As noted there, Green and
Matignon proved earlier in [12] for G = Z/p×Z/p there is no lift of φ to characteristic
0 unless p|(i0 + 1).

We now focus on statement (b). The (unique) set C of representatives for the
conjugacy classes of cyclic subgroups T of G consists of the trivial subgroup {e}
together with the p+ 1 subgroups of G of order p. By Proposition 2.1 and Theorem
2.3, the set S appearing in Theorem 4.2 is the disjoint union over the non-trivial
T ∈ C of bT = ι(T )/p copies of the left G-set G/T . There are always T ∈ C not
contained in Gi0+1, and for these T one has ι(T ) = i0+1. By the Hasse-Arf Theorem,
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if T ⊂ Gi0+1 then T = Gi0+1 and ι(T ) = i0 + pi1 + 1, where i1 ≥ 1 is an integer
and the second jump in the upper numbering of the ramification groups of G is at
i0 + i1. The KGB obstruction vanishes if and only if for each non-trivial T ∈ C and
each integer j such that 1 ≤ j ≤ bT , we can choose a generator gT,j for T such that

(20.1)
∏

{e}6=T∈C

bT
∏

j=1

gT,j = e in G.

Note that bT = ι(T )/p > 0 for all {e} 6= T ∈ C so {gT,j}T,j generates G.
Suppose first that i0 + 1 > p. Then bT ≥ (i0 + 1)/p > 1 for all {e} 6= T ∈ C.

For each such T , we can therefore choose the generators gT,j for 1 ≤ j ≤ bT so that
∏bT

j=1 gT,j = e. This makes (20.1) hold, so the KGB obstruction vanishes.
We now suppose that i0 + 1 = p, but that Gi0+1 6= {e}. Then Gi0+1 has order

p, and there are exactly p order p subgroups T0, . . . , Tp−1 of G different from Gi0+1.
We can choose the generators for G = Z/p × Z/p so that Gi0+1 corresponds to the
subgroup {0} × Z/p. Then gTi,1 = (1, i) is a generator for Ti for 0 ≤ i ≤ p − 1. We
have

p−1
∏

i=0

gTi,1 = (0, (p− 1)p/2) in G = Z/p× Z/p.

Thus this product is in the last cyclic order p subgroup Gi0+1, and as noted above,
bGi0+1

= i0+pi1+1
p

> 1. Hence we can choose the final generators gGi0+1,j for 1 ≤

j ≤ bGi0+1
in such a way that (20.1) holds, which shows that the KGB obstruction

vanishes.
We are thus reduced to showing that if p = i0 + 1 and Gi0+1 = {e}, then the KGB

obstruction vanishes if and only if p 6= 3. Fix an isomorphism of G with Z/p× Z/p,
and define hi = (1, i) for 0 ≤ i ≤ p − 1 and hp = (0, 1). Any generator for the
subgroup Ti generated by hi has the form gi,1 = ci · hi for some ci ∈ (Z/p)∗. The
question of whether we can choose generators of these groups for which (20.1) holds
is that same as asking where there are ci ∈ (Z/p)∗ such that

(20.2)





p−1
∑

i=0

ci · (1, i)



+ cp · (0, 1) = (0, 0) in G = Z/p× Z/p

Such ci exist if and only if the KGB obstruction vanishes.
We will leave it to the reader to check the following facts. If p = 2 then c0 = c1 =

c2 = 1 is a solution of (20.2). If p = 3 there is no solution with the ci ∈ (Z/p)∗.
Finally, if p > 2 then a solution is given by ci = 1 if 0 ≤ i ≤ p − 3, cp−2 = −1,
cp−1 = 3 and cp = −2. This completes the proof. �
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de mathématiques, Univ. Joseph Fourier (Grenoble I), (1998).

[19] Katz, Nicholas M.: Local-to-global extensions of representations of fundamental groups, Ann.
Inst. Fourier (Grenoble) 36 (1986), no. 4, 69–106.

[20] Milne, J.: Étale cohomology, Princeton Univ. Press, Princeton, N.J. (1980).
[21] Oort, F: Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic

zero. Proc. Symp. Pure Math., vol. 46, 1987.
[22] Oort, F., Sekiguchi, T. and Suwa, N.: On the deformation of Artin-Schreier to Kummer. Ann.
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