LOCAL-GLOBAL PRINCIPLES FOR GALOIS COHOMOLOGY
DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN

ABSTRACT. This paper proves local-global principles for Galois cohomology groups over
function fields F' of curves that are defined over a complete discretely valued field. We
show in particular that such principles hold for H"(F,Z/mZ(n — 1)), for all n > 1. This is
motivated by work of Kato and others, where such principles were shown in related cases
for n = 3. Using our results in combination with cohomological invariants, we obtain local-
global principles for torsors and related algebraic structures over F'. Our arguments rely on
ideas from patching as well as the Bloch-Kato conjecture.

1. INTRODUCTION

In this paper we present local-global principles for Galois cohomology, which may be viewed
as higher-dimensional generalizations of classical local-global principles for the Brauer group.
These results then lead to local-global principles for other algebraic structures as well, via
cohomological invariants.

Recall that if F' is a global field, the theorem of Albert-Brauer-Hasse-Noether says a
central simple F-algebra is isomorphic to a matrix algebra if and only if this is true over
each completion F, of F. Equivalently, the natural group homomorphism

Br(F) — || Br(F,)
VvEQ R
is injective, where () is the set of places of F'.

Kato suggested a higher dimensional generalization of this in [Kat86|, drawing on the
observation that the above result provides a local-global principle for the m-torsion part of
the Brauer group Br(F)[m| = H*(F,Z/mZ(1)). (Here Z/mZ(n) denotes u@", for m not
divisible by char(F').) He proposed that the natural domain for higher-dimensional versions
of local-global principles should be H"(F, Z/mZ(n—1)), for n > 1. Cohomological invariants
(such as the Rost invariant) often take values in H"(F, Z/mZ(n—1)) for some n > 1; and thus
such local-global principles for cohomology could be used to obtain local-global principles
for other algebraic objects.

In Theorem 0.8(1) of [Kat86|, Kato proved such a principle with n = 3 for the function
field F' of a smooth proper surface X over a finite field, both with respect to the discrete
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valuations on F that arise from codimension one points on X, and alternatively with respect
to the set of closed points of X (in the latter case using the fraction fields of the complete local
rings at the points). He also proved a related result [Kat86, Theorem 0.8(3)| for arithmetic
surfaces, i.e. for curves over rings of integers of number fields. The corresponding assertions
for n > 3 are vacuous in his situation, for cohomological dimension reasons; and the analogs
for n = 2 do not hold there (e.g. if the unramified Brauer group of the surface is non-trivial).

Unlike the classical case of dimension one, in dimension two it is also meaningful to consider
local-global principles for fields that are not global, e.g. k((z,y)) or k((¢))(x). In [COP02,
Theorem 3.8|, the authors start with an irreducible surface over a finite field of characteristic
not dividing m; and they take the fraction field F' of the henselization of the local ring at
a closed point. In that situation, they prove a local-global principle for H3(F,Z/mZ(2))
with respect to the discrete valuations on F. Also, while not explicitly said in [Kat86], it
is possible to use Theorem 5.2 of that paper to obtain a local-global principle for function
fields F' of curves over a non-archimedean local field, with respect to H*(F,Z/mZ(2)). This
was relied on in [CPS12, Theorem 5.4] and [Hul2] (cf. also [PS98, pp. 139 and 148]).

1.1. Results

In this manuscript, we show that when I is the function field of a curve over an arbitrary
complete discretely valued field K, local-global principles hold for the cohomology groups
H"(F,Z/mZ(n — 1)) for alln > 1.

In particular we obtain the following local-global principle with respect to points on the
closed fiber X of a model X of F over the valuation ring of K (where k is the residue field):

Theorem (3.2.3). Let n > 1 and let A be one of the following algebraic groups over F':
(i) Z/mZ(n — 1), where m is not divisible by the characteristic of k, or
(i1) Gy, if char(k) = 0 and K contains a primitive m-th root of unity for all m = 1.
Then the natural map
H"(F,A) - [ [ H"(Fp, A)
PeX
1s injective, where P ranges through all the points of the closed fiber X.

Here Fp denotes the fraction field of the complete local ring of X at P.
We also obtain a local-global principle with respect to discrete valuations if K is equichar-
acteristic:

Theorem (3.3.6). Suppose that K is an equicharacteristic complete discretely valued field of
characteristic not dividing m, and that X s a reqular projective T'-curve with function field
F. Let n > 1. Then the natural map

H"(F,Z/mZ(n—1)) > | | H"(F,,Z/mZ(n - 1))
’UEQ)’(‘
18 1njective.
Here Q¢ is the set of discrete valuations on [’ that arise from codimension one points

on X. Also, in the above results and henceforth, the cohomology that is used is Galois
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cohomology, where H"(F, A) = H"(Gal(F),
scheme over F' and n > 0, with H(F, A) =
we similarly have H° and H!.)

These results also yield new local-global principles for torsors under linear algebraic groups
by the use of cohomological invariants such as the Rost invariant ((GMS03, p. 129]), following
a strategy used in [CPS12| and [Hul2|. We list some of these applications of our local-global
principles in Section 4. Note that although we also obtained certain local-global principles
for torsors for linear algebraic groups in [HHK11|, the results presented here use a different
set of hypotheses on the group. In particular, here we do not require that the group G be
rational, unlike in [HHK11].

(F=eP)) for A a smooth commutative group
(F). (For non-commutative group schemes,

A
A(F

1.2. Methods and structure of the manuscript

Our approach to obtaining these local-global principles uses the framework of patching
over fields, as in [HH10|, [HHKO09|, and [HHK11|. The innovation is that these principles
derive from long exact Mayer-Vietoris type sequences with respect to the “patches” that arise
in this framework. These sequences are analogous to those in [HHK11]| for linear algebraic
groups that were not necessarily commutative (but where only H® and H' were considered
for that reason).

In Section 2, we derive Mayer-Vietoris sequences and local-global principles in an abstract
context of a field together with a finite collection of overfields (Section 2.5). This allows
us to isolate the necessary combinatorial, group-theoretic, and cohomological properties of
our fields and Galois modules. The combinatorial data of the collection of fields we use is
encoded in the notion of a I'-field; see Section 2.1. The key group-theoretic property of our
Galois modules is “separable factorization”, introduced in Section 2.2. The cohomological
properties we require are formulated in the concept of global domination of Galois coho-
mology (Sections 2.3 and 2.4). An essential ingredient in our arguments is the Bloch-Kato
conjecture.

In Section 3, we apply our results to the situation of a function field over a complete
discretely valued field. In Section 3.1 we obtain a local-global principle with respect to
“patches.” This is used in Section 3.2 to obtain a local-global principle with respect to points
on the closed fiber of a regular model. Finally, in Section 3.3, we obtain our local-global
principle with respect to discrete valuations with the help of a result of Panin [Pan03] for
local rings in the context of Bloch-Ogus theory. This step is related to ideas used in [Kat86].

In Section 4, we combine our local-global principles with cohomological invariants taking
values in H"(F,7Z/mZ(n — 1)), to obtain our applications to other algebraic structures.

Acknowledgments. The authors thank Jean-Louis Colliot-Théléne, Skip Garibaldi, Yong
Hu, and Annette Maier for helpful comments on this manuscript.

2. PATCHING AND LOCAL-GLOBAL PRINCIPLES FOR COHOMOLOGY

This section considers patching and local-global principles for cohomology in an abstract

algebraic setting, in which we are given a field and a finite collection of overfields indexed
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by a graph. The results here will afterwards be applied to a geometric setting in Section 3,
where we will consider curves over a complete discretely valued field.

In the situation here, we will obtain a new long exact sequence for Galois cohomology with
respect to the given field and its overfields, which in a key special case can be interpreted
as a Mayer-Vietoris sequence. In [HHK11, Theorem 2.4|, we obtained such a sequence for
linear algebraic groups that need not be commutative. Due to the lack of commutativity,
the assertion there was just for H% and H!; and that result was then used in [HHK11] to
obtain local-global principles for torsors in a more geometric context. In the present paper,
we consider commutative linear algebraic groups, and so higher cohomology groups H" are
defined. It is for these that we prove our long exact sequence, which we then use to obtain a
local-global principle for Galois cohomology in the key case of H"(F,Z/mZ(n—1)) with n >
1. This is carried out in Sections 2.5 and 3.1. (Note that the six-term cohomology sequence

in [HHK11, Theorem 2.4] is used in our arguments here, in the proofs of Theorems 2.1.5
and 2.2.4.)

2.1. I'-Fields and patching

Our local-global principles will be obtained by an approach that formally emulates the
notion of a cover of a topological space by a collection of open sets, in the special case that
there are no nontrivial triple overlaps. In this case, one may ask to what extent one may
derive global information from local information with respect to the sets in the open cover.
We encode this setup combinatorically in the form of a graph whose vertices correspond to the
connected open sets in the cover and whose edges correspond to the connected components
of the overlaps (though we do not introduce an associated topological space or Grothendieck
topology).

In our setting the global space will correspond to a field F' whose arithmetic we would like
to understand, and the open sets and overlaps correspond to field extensions of F'. This setup
is formalized in the definitions below, which draw on terminology in [HH10| and [HHK11].

2.1.1. Graphs and I'-fields

By a graph ', we will always mean a finite multigraph, with a vertex set V and an edge
set €; i.e. we will permit more than one edge to connect a pair of vertices. But we will not
permit loops at a vertex: the two endpoints of an edge are required to be distinct vertices.

By an orientation on I' we will mean a choice of labeling of the vertices of each edge e € &,
with one chosen to be called the left vertex I(e) and the other the right vertex r(e) of e. This
choice can depend on the edge (i.e. a vertex v can be the right vertex for one edge at v, and
the left vertex for another edge at v).

Definition 2.1.1. Let I" be a graph. A I'-field F, consists of the following data:

(1) For each v €V, a field F,,
(2) For each e € €, a field F,,
(3) An injection S : F,, — F, whenever v is a vertex of the edge e.

Often we will regard «{ as an inclusion, and not write it explicitly in the notation if the

meaning is clear.
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A T'-field F, can also be interpreted as an inverse system of fields. Namely, the index set
of the inverse system is the disjoint union V i €; and the maps consist of inclusions of fields
5 F, — F, as above.

Conversely, consider any finite inverse system of fields whose index set can be partitioned
into two subsets V i €, such that for each e € € there are exactly two elements in v,v" € V
having maps F, — F, and F,, — F_ in the inverse system; and such that there are no other
maps in the inverse system. Then such an inverse system of fields, called a factorization
inverse system in [HHK11, Section 2|, gives rise to a graph I" and a I-field F, as above.

Given a I'-field F,, we may consider the inverse limit F of the fields in F,, with respect
to the associated inverse system, in the category of rings. Equivalently,

Fr = {a.ean

veV

Ly, = Ly, @y, for each e incident to v and w} .

We may also regard Fp as a subring of [[ .. Fe, by sending an element a, = (a,)wev to
(Ge)eee, Where a, = (5a, = (5,a, if € is incident to v and w.

Note that if F, is a I'-field, then we may regard each field F),, F, naturally as an Fr-algebra
in such a way that all the inclusions ¢ are Fr-algebra homomorphisms.

Lemma 2.1.2. If F, is a I'-field, then Fr is a field if and only if T is connected.

Proof. If I is disconnected, there are elements a, of the inverse limit Fr such that a; = 0
for all £ € V L € that lie on one connected component of I', but ag = 1 for all £ on another
component. Hence Fr has zero-divisors and is not a field. Conversely, if Fr is not a field,
then there is a zero-divisor a,. The set of vertices and edges £ such that a; = 0 forms an open
subset of I, since ¢a, = a. = ({,a,, whenever v, w are the vertices of an edge e. This open
subset is neither empty nor all of I, since a, is a zero divisor. Hence I' is disconnected. [J

Notation 2.1.3. We will say for short that F, is a I'/F'-field if I" is a connected graph, F' is
a field, and F, is a I'-field with Fr = F.

2.1.2. Patching problems

Given a I'/F-field F,, and a finite dimensional vector space V' over F', we obtain an inverse
system Vi, = V ®p Fe of finite dimensional vector spaces over the fields Fy (for £ € VL €).
Conversely, given such an inverse system, we can ask whether it is induced by an F-vector
space V. More precisely, let Vect(F') be the category of finite dimensional F-vector spaces;
define a vector space patching problem V, over F, to be an inverse system of finite dimensional
Fe-vector spaces; and let PP(F,) be the category of vector space patching problems over F,.
There is then a base change functor Vect(F') — PP(F,). If it is an equivalence of categories,
we say that patching holds for finite dimensional vector spaces over the I'/F-field F,.

We may consider analogous notions for other objects over F. In particular let A be a
group scheme over F' (which we always assume to be of finite type). Let Tors(A) denote the
category of A-torsors over F'; the objects in this category are classified by the elements in
the Galois cohomology group H'(F, A).

An object T in Tors(A) induces an A-torsor patching problem T, over F,, i.e. an inverse

system consisting of Ag.-torsors T¢ for each £ € V 1 &, together with isomorphisms ¢ :
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(Ty)r, — T for v a vertex of an edge e. These patching problems form a category PP(F,, A),
whose morphisms correspond to collections of morphisms of torsors which commute with the
maps ¢¢. (Once we choose an orientation on the graph I', an A-torsor patching problem can
also be viewed as collection of A-torsors T, for v € V, together with a choice of isomorphism
(Tuey)r. = (Toe))r. for every edge e € €.) As before, we obtain a base change functor
Tors(A) — PP(F.,, A); and we say that patching holds for A-torsors over the I'/F-field F, if
this is an equivalence of categories. For short we say that patching holds for torsors over F,
if it holds for all linear algebraic groups A over F. (Our convention is that a linear algebraic
group over F'is a smooth closed subgroups A < GL,, p for some n.)

2.1.3. Local-global principles and simultaneous factorization

Local-global principles are complementary to patching. Given a I'/F-field F,, and a group
scheme A over F', we say that A-torsors over F satisfy a local-global principle over F, if an
A-torsor T is trivial if and only if each induced F,-torsor T, := T x g F, is trivial. In [HHK11],
criteria were given for patching and for local-global principles in terms of factorization. Before
recalling them, we introduce some terminology and notation.

If F, is a I'/F-field, and if " is given an orientation, then there are induced maps 7, 7, :
[ Toev Fo = [ loce Fe defined by (m(a))e = ayey and (m(a))e = are) for a = (ay)vev € [ [ey Fo-
Similarly, if A is a group scheme over F', there are induced maps m,m, : [ [,y A(F),) —
[ l.ce A(F.) given by the same expressions, for a = (ay)vev € [ [,cp A(Fy). We say that a
group scheme A over F' satisfies simultaneous factorization over a I'/F-field F, (or for short,
is factorizable over F,) if the map of pointed sets m - m, ' : [[,cp A(F,) — [l A(FY),
defined by a — m(a)m,.(a)!, is surjective. In other words, if we are given a collection of
elements a, € A( .) for all e € &, then there exist elements a, € A(F,) for all v € V such
that a, = al(e)a for all e, Wlth respect to the inclusions Fjy, Fi) — F.. Note that
this factorization Condltlon does not depend on the choice of orientation, since if we reverse
the orientation on an edge e then we may consider the element o’ € [[ .. A(F¢) such that

al, = a7! and where the other entries of a’ are the same as for a.

eeé

2.1.4. Relations between patching, local-global principles and factorization

The following two results are essentially in [HHK11].

Theorem 2.1.4. Let I" be a connected graph, F a field, and F, a I'/F-field. Then the
following conditions are equivalent:

(1) GL,, is factorizable over F, for alln > 1.
(ii) Patching holds for finite dimensional vector spaces over F,.
(iii) Patching holds for torsors over F,.

Proof. 1t was shown in [HHK11, Proposition 2.2| that (i) is equivalent to (ii); and in [HHK11,
Theorem 2.3| it was shown that (ii) implies (iii). It remains to show that (iii) implies (i).
Fix an orientation for I' and let g = (ge)eee € GLy([ [ce Fe). We wish to show that there
exists h € GL,,(] [,y F») such that g = m(h)m, (k)"
Consider the patching problem for GL,-torsors over F, that is given by trivial torsors

Te = (}me5 over [ for each { € V u &, together with transition functions GL, p, =
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(Tre))r. = (Tue))r. = GLy g, given by multiplication by g. € GL,(F.), for each e € €. By
hypothesis (iii), there is a GL,-torsor T over F' that induces this patching problem. But T
is trivial, since H'(F,GL,) = 0 by Hilbert’s Theorem 90 ([KMRT98, Theorem 29.2|); i.e.
there is an isomorphism GL, r — 7. The induced isomorphisms GL, p, — T, = GL, g,
are given by multiplication by elements h, € GL,(F},). Since T induces the given patchmg
problem, we have hyey = gehr(e) € GL,(F,) for every e € €. Therefore g = m(h)m,(h)™", with
h = (hy)vev € GL, (] [ ce F) as desu"ed O

Theorem 2.1.5. Let I' be a connected graph, F a field, and F, a T'/F-field. Assume that
patching holds for finite dimensional vector spaces over F,. Then a linear algebraic group A
over F is factorizable over F, if and only if A-torsors over F' satisfy a local-global principle
over F,.

Proof. This assertion is contained in the exactness of the sequence given in [HHK11, Theo-
rem 2.4[; i.e. m - m; ! is surjective if and only if H'(F, A) — [[,cp H'(F,, A) is injective. O

Note that the hypothesis of Theorem 2.1.5 does not imply that the equivalent condi-
tions in the conclusion of that theorem necessarily hold. (In particular, in Example 4.4
of [HHKO09] there is a non-trivial obstruction to a local-global principle, by Corollaries 5.6
and 5.5 of [HHK11|). Thus patching need not imply factorization over F, for all linear al-
gebraic groups over F'. But as shown in the next section (Corollary 2.2.5), patching does
imply factorization for all linear algebraic groups if we are allowed to pass to the separable
closure of F'. This will be useful in obtaining local-global principles for higher cohomology.

2.2. Separable factorization

As asserted in Theorems 2.1.4 and 2.1.5, there are relationships between factorization
conditions on the one hand, and patching and local-global properties on the other. Below,
in Theorem 2.2.4 and Corollary 2.2.5, we prove related results of this type, concerning
“separable factorization”, which will be needed later in applying the results of Section 2.5.
We also prove a result (Proposition 2.2.3) that will be used in obtaining our long exact
sequence in Section 2.5, and hence our local-global principle there.

2.2.1. Separably factorizable group schemes

Let F, be a I'/F-field, and write Gal(F') for the absolute Galois group Gal(F*?/F). Given
an F-scheme A, we have morphisms A(F*P) — A(F, ®p F*P) for each vertex v € V, and
A(F, ®p F*P) — A(F, ®p F*P) when v € V is a vertex of I' on the edge e € €. These are
induced by the inclusions F*P — F, ®r F*P and F, Qp P — F, Qp F5P.

If Ais an F-scheme, and L < L' are field extensions of F, then the natural map A(L) —
A(L') is an inclusion. (This is immediate if A is affine, and then follows in general.) In
particular, given a I'/F-field F, as above, the maps A(F) — A(F,) and A(F,) — A(F,) are
injective for v a vertex of an edge e in I'.

If we choose an orientation for the graph I', then as in Section 2.1.3 we may define maps

T, T ] Loey A(F @p F5P) — [ e A(Fe ®p F5P) by (m(a))e = ae) and (7-(a))e = ar(e)-
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Lemma 2.2.1. Consider an affine F-scheme A, a graph I' with a choice of orientation, and
a I'/F-field F,. Then

Ky

A(FP) = [,y ARy @p F*?) == [c¢ A(F. @5 F*)

1s an equalizer diagram of sets.

Proof. The hypothesis that F' equals FT is equivalent to having an exact sequence of F-vector
spaces 0 — F — [[,cp Fo = | loce Fe, given by m - w1 on the right. Since F™%P is a flat
F-module, we have an exact sequence 0 — F5P — [ ., F, @ [P — [[.cc Fo @ F°P. This

in turn tells us that in the category of rings,

F* = lim (F: @ F*P).

gevLe

eeé

Write A = Spec(R). By the inverse limit property above, it follows that a homomorphism
R — F*P? is equivalent to a homomorphism ¢ : R — | [ oy Fv ® F*® such that m¢ = 7,9,
where m, 7, ¢ | [pep Fo @ F*P — | [ e Fe ® F°P are the two projections. This gives the
desired equalizer diagram. U

This lemma, and the notion of factorizability in the previous section, motivate the following
definition.

Definition 2.2.2. Let F, be a I'/F-field, and suppose that A is a group scheme over
F. We say that A is separably factorizable (over F,) if the pointed set map m - m ! :

[ Loy A(F, ®@p F5P) — [ .ce A(Fe @p F5P) is surjective for some (hence every) orientation
on I

Lemma 2.2.1 and Definition 2.2.2 then yield:

Proposition 2.2.3. Let F, be a I'/F-field, and let A be a group scheme over F. Choose
any orientation on I', and take the associated maps m, .. Then A is separably factorizable
iof and only if

—1
T T

0

A(F=r)

[Loev A(E, ®F F°7)

[Lece A(Fe ®F F=P)

0

is an exact sequence of pointed Gal(F')-sets (and in fact an exact sequence of Galois modules
in the case that A is commutative).

2.2.2. Patching and separable factorization
The following theorem and its corollary complement Theorems 2.1.4 and 2.1.5.

Theorem 2.2.4. Let T be a connected graph, F a field, and F, a T'/F-field. Then the
following conditions are equivalent:

(i) GL,, is factorizable over F,, for alln > 1.
(ii) GL,, is separably factorizable over F,, for alln > 1.
(#ii) Every linear algebraic group over F' is separably factorizable over F,.
8



Proof. We begin by showing that (i) implies (iii). Fix an orientation for I". Let A be a linear
algebraic group over F', and suppose we are given g € [ [ .. A(F. ®p F*P). We wish to show
that there exists h € [ [ oy A(F, ®p F*P) such that g = m(h)m.(h) "

Since € is finite, there is a finite separable field extension L/F such that g is the image
of ¢ € [[.ece A(Fe ®p L). Let A" = Rp/p Ay, the Weil restriction of A, = A xp L from L
to I (see [BLR90|, Section 7.6); this is a linear algebraic group over F'. We may then view
g€ [Lee A(FL).

Since GL,, is factorizable over F, by condition (i), Theorem 2.1.4 implies that patching
holds for finite-dimensional vector spaces over F,. Thus [HHK11, Theorem 2.4| applies,
giving us a six-term cohomology sequence for A’; and we may consider the image of g under
the coboundary map [ [, A (F.) — H'(F,A’). This image defines an A’-torsor J’ over F
(viz. the solution to the patching problem that consists of trivial torsors over each F, and
for which the transition functions are given by ¢'). But H'(F, A’) may be identified with
H'(L, A) by Shapiro’s Lemma ([Ser97|, Corollary to Proposition 1.2.5.10), since A’(F*%P)
is the Galois module induced from A(F*®) via the inclusion Gal(L) — Gal(F). So T’
corresponds to an A-torsor T over L. There is then a finite separable field extension E/L
over which T becomes trivial. After replacing L by E, we may assume that T and hence T’
is trivial. Hence by the exactness of the six-term sequence in [HHK11, Theorem 2.4|, ¢’ is
the image of an element h' € [[,op A'(F,) = ||,y A(F, ®F L) under m - 7', The image
he|l,ep A(F, ®p FP) of I is then as desired, proving that condition (iii) holds.

Condition (iii) trivially implies condition (ii). It remains to show that condition (ii) implies
condition (i).

If condition (ii) holds, then Proposition 2.2.3 yields a short exact sequence of pointed
Gal(F')-sets

T T

1
0 —— GLp(F*P?) —— [,y GLn(Fy ®p F*P) —— [[ ¢ GLa(Fe ©F ) ——0.
This in turn yields an exact sequence of pointed sets in Galois cohomology that begins
0 — H(F,GL,) — | [ E)(F, (GL,),) — | | H(F, (GL,).) — H'(F, GLy).
veV eel

But the last term vanishes by Hilbert’s Theorem 90. The remaining short exact sequence is
then equivalent to the condition that GL, is factorizable over F,, i.e. condition (i). U

Corollary 2.2.5. Let I" be a connected graph, F a field, and F, o T'/F-field. Then patching
holds for finite dimensional vector spaces over F, if and only if every linear algebraic group
over F' is separably factorizable over F,.

Proof. This is immediate from Theorem 2.1.4 and Theorem 2.2.4, which assert that these
two conditions are each equivalent to GL,, being factorizable over F, for all n > 1. O

2.3. Globally dominated field extensions and cohomology

To obtain our results, we will want to relate the cohomologies H"(F, A) and H"(F¢, A) for
¢ a vertex or edge of I'. One difficulty with this in general is the potential difference between
the absolute Galois groups of F' and F¢. To bridge this gap, we will use the Galois module
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A(F¢®p F*°P), which was studied in Section 2.2.1. Its cohomology H"(Gal(F'), A(F:®p F*P))
is meant to approximate the cohomology group H"(F¢, A).

Our strategy will be carried out using the notion of “global domination,” which we in-
troduce and study below. The condition that a Galois module has globally dominated
cohomology will provide an important ingredient in demonstrating the existence of Mayer-
Vietoris type sequences and local-global principles for its Galois cohomology groups. These
applications are developed in Section 2.5.

2.3.1. Globally dominated extensions

Definition 2.3.1. Fix a field F'. For any field extension L/F', with separable closure L%, let
L& denote the compositum of L and F*P taken within L*°P. If E/L is a separable algebraic

field extension, we say that E/L is globally dominated (with respect to F') if E is contained
in L84,

Thus a separable algebraic field extension E/L is globally dominated if and only if E
is contained in some compositum E'L < L[*P, where E'/F is a separable algebraic field
extension. Also, the subfield L8 < L*P can be characterized as the maximal globally
dominated field extension of L. Since the extension F*P/F' is Galois with group Gal(F'), it
follows that the extension L&/L is Galois and that Gal®(L) := Gal(L8%/L) can be identified
with a subgroup of Gal(F).

Lemma 2.3.2. Let L/F be a field extension, and let A be a commutative group scheme
defined over F. Then we may identify:

H™(Gal(F), A(L ®p F*P)) = H"(Gal*?(L), A(L#)).
Proof. We may identify the group H"(Gal(F), A(L ® F*?)) as a limit of groups
H"(Gal(E/F),A(L® E)),
and the group H"™(Gal®d(L), A(L#%)) as a limit of groups
H"(Gal(LE/L), A(LE)),

where both limits are taken over finite Galois extensions F/F', and where LE is a compositum
of L and E. Therefore the result will follow from a (compatible) set of isomorphisms

H"(Gal(E/F), A(L® E)) =~ H"(Gal(LE/L), A(LE)).

Write LQE = H:’ll E; for finite Galois field extensions F;/L. We can also choose LE = Fj.
We have A(L® E) = [ [, A(E;). Let G = Gal(E£/F) and let G; be the stabilizer of E; (as
a set) with respect to the action of G on L ®r E. Then we may identify the G-modules
A(L® E) and Indg, A(E;). We therefore have

H(G, A(L® E)) =~ H™(G,IndS. A(Ey)) = H™(G, A(Ey)) = H"(Gal(LE/L), A(LE))

by Shapiro’s Lemma ([Ser97|, Corollary to Proposition 1.2.5.10), as desired. O
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2.3.2. Globally dominated cohomology

It remains to compare the cohomology with respect to the maximal globally dominated
extension and the full Galois cohomology. For this we make the following

Definition 2.3.3. Let A be a commutative group scheme over F' and L/F a field exten-
sion. We say that the cohomology of A over L is globally dominated (with respect to F') if
H™(L#, A) = 0 for every n > 0.

Proposition 2.3.4. Let A be a commutative group scheme over F' and L/F a field extension.
Suppose that the cohomology of A over L is globally dominated. Then we have isomorphisms:

H™(Gal(F), A(L ® F*®)) = H"(Gal*!(L), A(L#Y)) = H"(Gal(L), A(L*P))
for alln = 0.

Proof. The identification of the first and second groups was given in Lemma 2.3.2, and it
remains to prove the isomorphism between the second and third groups. By the global
domination hypothesis, H"(Gal(L8%), A(L**?)) = H"(L#4, A) = 0 for all n > 0. Hence from
the Hochschild-Serre spectral sequence

HP(Gal*d (L), HY(Gal(L8Y), A(L*P))) = HP™(Gal(L), A(L*P))

for the tower of field extensions L < L84 < L**P (viz. by [HS53, Theorem II1.2]), the desired
isomorphism follows. O

The notion of globally dominated cohomology can also be described just in terms of finite
extensions of fields. First we prove a lemma.

Lemma 2.3.5. Suppose that a field Ey is a filtered direct limit of subfields E;, each of
which is an extension of a field E. Let A be a commutative group scheme over E, and let
a € H"(E,A) for some n = 0. If the induced element oy, € H"(Ey, A) is trivial, then there
is some i such that ap, € H"(E;, A) is trivial.

Proof. Since ap, € H"(Ey, A) is trivial, we may find some finite Galois extension L/E, such
that o, may be written as a cocycle in Z"(L/Ey, A(L)) and such that it is the coboundary
of a cochain in C"~*(L/Ey, A(L)). Now the Galois extension L/Fj is generated by finitely
many elements of L, and the splitting cochain is defined by an additional finite collection of
elements in A(L), each of which is defined over some finitely generated extension of E (since

A is of finite type over E). So we may find finitely many elements a4, ..., a, € Ey such that
QB(ay,...ar) = 0. But since Fj is the filtered direct limit of the fields £j, there is an i such
that ay,...,a, € E;; and then ap, = 0 as desired. O

Proposition 2.3.6. Let A be a commutative group scheme over F' and L/F a field extension.
Then the cohomology of A over L is globally dominated if and only if for every finite globally
dominated field extension L'/L, every n > 0, and every o € H"(L', A), there exists a finite
globally dominated extension E/L" such that ag = 0.

Proof. First suppose that the cohomology of A over L is globally dominated, and let o €

H™(L', A) for some finite globally dominated field extension L'/L and some n > 0. Then
11



area = 0 by hypothesis; and so by Lemma 2.3.5 there is some finite globally dominated
extension E/L’ such that ag = 0, as desired.

Conversely, suppose that the above condition on every o« € H"(L', A) holds. Let a €
H"™(L#4, A). Then « is in the image of some element & € H"(L', A) for some finite extension
L'/L that is contained in L. Now L' is globally dominated, so by hypothesis there exists a
finite globally dominated field extension E/L’ such that &g = 0. Thus o = Gpea = (Ag)pea =
0. This shows that H"(L&, A) is trivial, so the cohomology is globally dominated. O

2.4. Criteria for global domination

In the case of cyclic groups, the condition for cohomology to be globally dominated will
be made more explicit here, using the Bloch-Kato conjecture to reduce to consideration
of just the first cohomology group. That conjecture asserts the surjectivity of the norm
residue homomorphism KM(F) — H*(F,Z/mZ(e)) of graded rings. This surjectivity was
proven for m prime in [Voell] and [Wei09|, with the general case then following via [GS06],
Proposition 7.5.9. Since every element in the Milnor K-group KM(F) is by definition a sum
of n-fold products of elements of KM(F'), the following assertion is then immediate:

Proposition 2.4.1. Let F' be a field and let m be a positive integer not divisible by char(F').
Then for every n =1, every element of H"(F,Z/mZ(n)) is a sum of n-fold cup products of
elements of H'(F,Z/mZ(1)).

2.4.1. Global domination for cyclic groups

Proposition 2.4.2. Let L/F be a field extension, and m an integer not divisible by the
characteristic of F'. Then the following are equivalent:

(i) The cohomology of Z/mZ over L is globally dominated.
(ii) For every finite globally dominated field extension L'/L and every positive integer r
dividing m, every Z/rZ-Galois field extension of L' is globally dominated.
(iii) The multiplicative group (L84)* is m-divisible; i.e. ((L&4)*)™ = (L84)*,

Proof. (i) = (ii): A Z/rZ-Galois field extension of L' corresponds to an element a €
HY(L',Z/rZ(1)). Let B be the image of a in H'(L&4, Z/rZ(1)) = H'(L*,Z/rZ), where
the equality holds because the field L& = LFP contains a primitive m-th root of unity. It
suffices to show that 5 = 0.

In the long exact cohomology sequence associated to the short exact sequence of constant
groups 0 — Z/rZ — Z/mZ — 7/(m/r)Z — 0, the map H°(L&, Z/mZ) — H°(L#, Z/(m/r)Z)
is surjective, so the map H'(L&4, Z/rZ) — H'(L#4,Z/mZ) is injective. But the latter group
is trivial, by hypothesis. Hence g = 0.

(ii) = (iii): Given a € (L8)*, we wish to show that a € ((L&4)*)™. Let ¢ be a primitive
m-th root of unity in F*P < L8 and let L' = L((,a) < L#. Thus L'/L is finite and
separable. The field £ = L/(a*/™) < L* is Galois over L', with Galois group cyclic of
order r for some r dividing m. Thus the extension E/L’ is globally dominated, by (ii); i.e.
E < [/® = [#9, Hence a € ((L&4)%)™.

(iii) = (i): By (iii), H'(L8,Z/mZ) = HY (LY, Z/mZ(1)) = (L84)*/((L84)*)™ is trivial.

12



It remains to show the triviality of H" (L8, Z/mZ) = H"(L#4, Z/mZ(n)) for n > 1. So let
a lie in this cohomology group. By Proposition 2.4.1, we may write v = Y7, o, with each
«; having the form
Qp = Q1 U U QG g,
where o, j € H' (L8, Z/mZ). But this H' is trivial. Hence each «; is trivial, and « is trivial,
as desired. U

2.4.2. Global domination for commutative group schemes

Using the above result, the question of global domination for the cohomology of a finite
commutative group scheme A can be reduced to the case of cyclic groups of prime order. We
restrict to the case that the characteristic of /' does not divide the order of A (equivalently,
Apsep is a finite constant group scheme of order not divisible by char(F)).

Corollary 2.4.3. Let L/F be a field extension, and S a collection of prime numbers unequal
to char(F'). Suppose that the cohomology of the finite constant group scheme Z/{Z over L is
globally dominated for each ¢ € S. Then for every finite commutative group scheme A over
F of order divisible only by primes in S, the cohomology of A over L is globally dominated.

Proof. We wish to show that H"(L8!, A) = 0 for n > 0. Since A is a finite étale group
scheme defined over F, it becomes split (i.e. a finite constant group scheme) over F*® and
hence over L84 = LF*P 1In particular, the base change of A to L8 is a product of copies
of cyclic groups Z/mZ, where each prime dividing m lies in S. Since cohomology commutes
with taking products of coefficient groups, we are reduced to the case that A = Z/mZ for
m as above. The result now follows from condition (iii) of Proposition 2.4.2, since a group
is m-~divisible if it is /-divisible for each prime factor ¢ of m. O

In characteristic zero, we also obtain a result in the case of group schemes that need not
be finite. First we prove a lemma. If A is a group scheme over a field E and m > 1, let A[m]
denote the m-torsion subgroup of A, i.e. the kernel of the map A — A given by multiplication
by m. Thus there is a natural map H"(F, Alm]) — H"(E, A).

Lemma 2.4.4. Let A be a connected commutative group scheme over a field E of character-
istic zero, and let n = 1. Then every element of H"(E, A) is in the image of H"(E, Alm]) —
H"(E,A) for some m > 1.

Proof. The group H"(E, A) is torsion by [Ser97, 1.2.2 Cor. 3|, and so for every o € H"(E, A)
there exists m > 1 such that ma = 0 (writing A additively). Since char(£) = 0 and A is
connected, there is a short exact sequence 0 — A[m] — A — A — 0 of étale sheaves. This
yields an exact sequence H"(E, A|m|) — H"(E, A) — H"(E, A) of groups, where the latter
map is multiplication by m. Thus « is sent to zero under this map, and hence it lies in the
image of H"(E, A[m]). O

Proposition 2.4.5. Assume that char(F) = 0, and let L/F be a field extension. Suppose
that the cohomology of the finite constant group scheme Z/{Z over L is globally dominated for
every prime £. Then for every smooth commutative group scheme A over I, the cohomology
of A over L is globally dominated.
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Proof. Let ae H™(L&4, A), for some n > 0. We wish to show that a = 0.

The short exact sequence 0 — A — A — A/A° — 0 of étale sheaves yields an exact
sequence H"(L#4, A%) — H™(L8Y, A) — H"™(L#d, A/A%) of groups. But Corollary 2.4.3 as-
serts that the cohomology of the finite commutative group scheme A/A° over L is globally
dominated, since char(F) = 0; i.e. H"(L#4, A/A%) = 0. So a € H"(L#, A) is the image of
some element o’ € H"(L#4, A%). By Lemma 2.4.4, a° lies in the image of H"(L&d, A°[m]) for
some m > 1. Since A°[m] is a finite commutative group scheme over L, a second application
of Corollary 2.4.3 yields that H"(L&d, A°[m]) = 0. So a® = 0 and hence a = 0. O

2.5. Mayer-Vietoris and local-global principles

We now use the previous results to obtain our long exact sequence, which in particular
gives the abstract form of our Mayer-Vietoris sequence, and we then prove the abstract form
of a local-global principle for Galois cohomology.

Theorem 2.5.1. Given an oriented graph U, fix a I'/F-field F, and consider a separably
factorizable smooth commutative group scheme A over F. Suppose that for every £ € Vi &,
the cohomology of A over F¢ is globally dominated. Then we have a long exact sequence of
Galois cohomology:

O—>H0(F>A) —>HU€VH0(FU’A) —>H

-

HYF,A)—1]]

HC(F., A)
J

eeé

HI(FU,A) — Heeg HI(FE,A) _—

veV

Proof. By hypothesis, the cohomology of A over F¢ is globally dominated. By Proposi-
tion 2.3.4, with L = Fg, we may identify H"(Gal(F), A(Fe ®p F*P)) = H"(F¢, A).

Since A is separably factorizable, by Proposition 2.2.3 we have a short exact sequence of
Gal(F')-modules

eyt

00— A(F*P) —— [ [oey A(F% @ F°P) —— [ [ ¢ A(Fe ©p F*P) ——0.

veV

This induces a long exact sequence in Galois cohomology over F. Applying the above
identification to the terms of this sequence, we obtain the exact sequence asserted in the
theorem. U

Corollary 2.5.2. Given a separably factorizable smooth commutative group scheme A over
F and a T'/F-field F,, the long exact sequence in Theorem 2.5.1 holds in each of the following
cases:

(i) A is finite; and for every £ € V u &, and every prime ¢ dividing the order of A, the
cohomology of ZJUZ over F¢ is globally dominated.

(ii) F is a field of characteristic zero; and for every £ € V u &€, and every prime number
{, the cohomology of Z/VZ over F¢ is globally dominated.

Proof. By Theorem 2.5.1 it suffices to show that the cohomology of A over Fy is globally dom-
inated. In these two cases, this condition is satisfied by Corollary 2.4.3 and Proposition 2.4.5

respectively. O
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An important case is that of a graph I' that is bipartite, i.e. for which there is a partition
V =7V, 1'Vy such that for every edge e € €, one vertex is in V and the other is in V;. Given
a bipartite graph I' together with such a partition, we will choose the orientation on I' given
by taking [(e) and 7(e) to be the vertices of e € € lying in Vy and V; respectively.

Corollary 2.5.3 (Abstract Mayer-Vietoris). In the situation of Theorem 2.5.1, assume that
the graph T is bipartite, with respect to a partition V = Vo 1 Vy of the set of vertices. Then
the long exact cohomology sequence in Theorem 2.5.1 becomes the Mayer-Vietoris sequence

0 A(F) ——TLoev, AR * [len, A(F) ———— [ Lee A(F.)
/
Hl(F7 A) i> Hve\?o Hl(Fvv A) x Hve\?l Hl(Fvv A) — Hee& Hl(F67 A)
/

;

H2(F, A) —2~

where the maps A and — are induced by the diagonal inclusion and by subtraction, respec-
tively.

Theorem 2.5.4 (Abstract Local-Global Principle). Fiz a I'/F'-field F,, and fix a positive
integer m not divisible by the characteristic of F'. Suppose that the following conditions hold:
(i) T is bipartite, with respect to a partition V = Vo L'V of the set of vertices;
(11) for every & €V u &, the cohomology of Z/mZ over Fg is globally dominated;
(iii) given v € Vo, and elements a, € FX for all e € € that are incident to v, there
exists a € F) such that a./a € (F))™ for all e (where we identify F, with its image
i¢(F,) € F.).
Then for all n > 0, the natural local-global maps
o, HY (P, Z/mZ(n)) — | [ H"*N(F,, Z/mZ(n))
veV

are injective.

Proof. Given hypothesis (i), as above we choose the orientation on I' such that [(e) € Vo and
r(e) € Vq for all e € €. Consider the homomorphisms:

Py | [ H (R 2/mZ()) — | | H(F., Z/mZ(j)),

veV ee€

where for a € [[,op H'(F,, Z/mZ(j)) the e-th entries of p'/(a), pi’(a) are given by

P (a)e = (auen)r. — () r P37 (@) = (ue))r.-

Using hypothesis (ii), Theorem 2.5.1 allows us to identify the kernel of o,, with the cokernel
of

P | [ HY (P, Z/mZ(n) — | | H(F.,Z/mZ(n)).
veV 5 eeé



Thus it suffices to show that p™" is surJectlve for n = 1. This in turn will follow from showing
that pg™ is surjective, since the image of py" is contained in that of p™™ (using that T is
bipartite, and setting a,, = 0 for all v € Vy).

Writing Hy = [[,cp H"(Fy,Z/mZ(n)) and H = [],.. H"(Fe,Z/mZ(n)), we note that
py" : Hy — Hp is a homomorphism of graded rings. By hypothesis (iii), py' is surjective,
since H'(E,Z/mZ(1)) = E*/(E*)™ for any field E of characteristic not dividing m. By
Proposition 2.4.1, every element in H is a sum of n-fold products of elements in H}, for
n > 1. But since the map pg* is a ring homomorphism, and p(l]’1 is surjective, it follows that

7,

po" is surjective as well for all n > 1. O

3. CURVES OVER COMPLETE DISCRETE VALUATION RINGS

We now apply the previous general results to the more specific situation that we study in
this paper: function fields F' over a complete discretely valued field K. In Section 3.1 we
will obtain a Mayer-Vietoris sequence and a local-global principle in the context of finitely
many overfields F¢ of F' (“patches”). This can be compared with Theorem 3.5 of [HHK11].
We will afterwards use that to obtain local-global principles with respect to the points on
the closed fiber of a model (in Section 3.2), and with respect to the discrete valuations on F
or on a regular model of F' (in Section 3.3). These will later be used in Section 4 to obtain
applications to other algebraic structures.

3.0.1. Notation

We begin by fixing the standing notation for this section, which follows that of [HH10],
[HHKO09|, and [HHK11|. Let T" be a complete discrete valuation ring with fraction field K
and residue field k£ and uniformizer ¢, and let X be a projective, integral and normal T-
curve. Let F be the function field of X. We let X be the closed fiber of X , and we choose
a non-empty collection of closed points P < X, containing all the points at which distinct
irreducible components of X meet. Thus the open complement X \ P is a disjoint union of
finitely many irreducible affine k-curves U. Let U denote the collection of these open sets U.

For a point P € P, we let Rp be the local ring (9)2713 at P, and we let ﬁp be the completion

at its maximal ideal. Let Fp be the fraction field of ﬁp. For a component U € U, we let Ry
be the subring of F' consisting of rational functions on X that are regular at the points of
U, ie.

Ry={feF|feOg,foral QeU}.

We also let RU be the t-adic completion of Ry, and we let £y be the ﬁeld of fractions of
RU Here Rp and RU are Noetherian integrally closed domains (because X is normal), and
in particular Krull domains.

For a point P € P and a component U € U, we say that P and U are incident if P is
contained in the closure of U. Given P e P and U € U that are incident, the prime ideal
sheaf J defining the reduced closure T of U in X induces a (not necessarily prime) ideal Jp
in the complete local ring Rp We call the height one prime ideals of Rp containing Jp the
branches on U at P. We let B denote the collection of branches on all points in P and all

components in U. For a branch g on P € P and U € U, the local ring of Rp at  is a discrete
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valuation ring R,. Let ﬁp be its p-adic (or equivalently t-adic) completion, and let F, be
the field of fractions of ép. Note that this is a complete discretely valued field containing
Fy and Fp (see [HH10], Section 6, and [HHKO09|, page 241).

Associated to the curve X and our choice of points P, we define a reduction graph I' =1"¢
whose vertex set is the disjoint union of the sets P and U and whose edge set is the set B of
branches. The incidence relation on this (multi-)graph, which makes it bipartite, is defined
by saying that an edge corresponding to a branch p € B is incident to the vertices P € P
and U € U if p is a branch on U at P. We choose the orientation on I' that is associated
to the partition P L U of the vertex set. We will consider the I-field F, = FX*¥ defined by

FX7 = Fy for €€ P, U, B,

3.1. Mayer-Vietoris and local-global principles with respect to patches

Using the results of Section 2.5, we now obtain the desired Mayer-Vietoris sequence for the
['-field F, that is associated as above to the function field F' and a choice of points P on the
closed fiber of a normal model X (see Theorem 3.1.3). In certain cases we show that this se-
quence splits into short exact sequences, possibly starting with the H? term (Corollaries 3.1.6
and 3.1.7). Related to this, we obtain a local-global principle for H"(F,Z/mZ(n — 1)), in
this patching context.

Theorem 3.1.1. With F' and F, as above, F, is a I'/F-field, and patching holds for finite
dimensional vector spaces over F,. Thus every linear algebraic group over F' is separably
factorizable over F,.

Proof. According to [HHK11, Corollary 3.4], the fields F¢ for £ € PLULB form a factorization
inverse system with inverse limit F'. That is, F, is a I'/F-field. That result also asserts that
patching holds for finite dimensional vector spaces over F,. The assertion about being
separably factorizable then follows from Corollary 2.2.5. O

3.1.1. Global domination and Mayer-Vietoris

The following result relies on a form of the Weierstrass Preparation Theorem that was
proven in [HHK12|, and which extended related results in [HH10|] and [HHKO09|. Another
result that is similarly related to Weierstrass Preparation appears at Lemma 3.1.4 below.

Theorem 3.1.2 (Global domination for patches). If £ € W P u B and if m is a positive
integer not divisible by char(k), then the cohomology of Z/mZ over F¢ is globally dominated.

Proof. By Proposition 2.4.2; it suffices to show that (ngd)X = ((Fggd)x)m. So let a € (ngd)x.
Thus a € FeF" < F;™ for some finite separable extension F'/F. Let X' — X be the
normalization of X in F’, so that X’ is a normal projective T-curve with function field
F'. Using [HH10, Lemma 6.2], we may identify F¢ @ F" with [ [, F{,, where ' ranges
through the points, components or branches, respectively, lying above £ on X'. We also see
by this description that for each £, the field Fg’, is the compositum of its subfields F; and

F'. Applying [HHK12, Theorems 3.3 and 3.7| to the curve X' and the field F{,, and again
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using [HH10, Lemma 6.2], it follows that there is an étale cover X” of X’ such that a = bc™
for some b € F" < F*P and c € I, = FeF" < Fggd; here F” is the function field of X”

and &” is any point, component or branch, respectively, on X" that lies over & on X'. Now
be (F*P)*, and char(F") does not divide m, so b e ((F*P)*)™. Thus a € ((Fé.gd)x)m. O
Theorem 3.1.3 (Mayer-Vietoris for Curves). Let A be a commutative linear algebraic group
over F. Assume that either

(i) A is finite of order not divisible by the characteristic of k; or
(i1) char(k) = 0.

Then we have a long exact Mayer-Vietoris sequence:
0 —— A(F) —— ey AFp) * [ye AlFr) ——— [Loes A(F)
; J
Hl(Fv A) i> HPE? Hl(vaA) X HUEU Hl(FUvA) — H@EB HI(FW’A)
J
(
A

H2(F, A) —2~

Proof. Let T" be the bipartite graph I'¢, as above. By Theorem 3.1.1, A is separably
factorizable over F,. Now for each prirrie ¢ unequal to the characteristic of k, and each
¢ € Wu P u B, the cohomology of Z/{Z over Fy is globally dominated, by Theorem 3.1.2.
The conclusion now follows from Corollaries 2.5.2 and 2.5.3. O

3.1.2. Local-global principles with respect to patches

Lemma 3.1.4. Let m be a positive integer that is not divisible by char(K). Let P be a closed
point of X, let p1,..., s be the branches of X at P, and let a; € FJ;. Then there exists
a € Fp such that a;/a € (F))™ for every i.

Proof. Since F,, is the p;-adic completion of Fip, the Approximation Theorem [Bou72, VI.7.3,
Theorem 2| implies that the elements a; can all be p;-adically approximated arbitrarily well
by an element a € F5. The result now follows by applying the strong form of Hensel’s Lemma
(see [Bou72, II1.4.5, Corollary 1 to Theorem 2J) to the polynomials Y™ —a;/a € }A%pi [Y]. O

Theorem 3.1.5 (Local-Global Principle). Let X be a normal projective curve over a com-
plete discrete valuation ring T with residue field k, let P be a non-empty finite subset of the
closed fiber X that includes the points at which distinct irreducible components of X meet,
and let W be the set of components of X ~P. Suppose that m is an integer not divisible by
the characteristic of k. Then for each integer n > 1, the natural map

H"(F,Z/mZ(n — 1)) — | [ " (Fp,Z/mZ(n — 1)) x | | H*(Fy,Z/mZ(n — 1))
Pe? Uel
18 1njective.
Proof. The graph I'; 5 is bipartite, with the set of vertices V partitioned as Vou'Vy with Vo =

P and V; = U. So hypothesis (i) of Theorem 2.5.4 holds. Hypothesis (ii) of that theorem,
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concerning global domination, also holds, by Theorem 3.1.2. Finally, hypothesis (iii), in this
case concerning the lifting of elements of the fields F} to an element of Fjz modulo m-th
powers, holds by Lemma 3.1.4. Thus Theorem 2.5.4 applies, and the conclusion follows. [J

In some cases we can allow arbitrary Tate twists, and as a result the Mayer-Vietoris
sequence splits into shorter exact sequences:

Corollary 3.1.6. Let m be an integer not divisible by the characteristic of k, and suppose
that the degree [F () = F| is prime tom (e.g. if m is prime or F' contains a primitive m-th
root of unity). Let r be any integer. Then the Mayer-Vietoris sequence in Theorem 3.1.8 for
A =7Z/mZ(r) splits into exact sequences

0 A(F) [ per AWFP) x | [ye AlFT) HpEB A(Fy)
/
(
Hl(FvA) —>HPETPH1(FP7A) X HUequ(FUvA) —>HpeBH1(Fp7A) —0
and

O—>H"(F,A) —>HPG?HH(FP>A) X HUean(FU>A) - HpeB Hn(vaA) —0
for alln > 1.

Proof. If F' contains a primitive m-th root of unity, then A = Z/mZ = 7Z/mZ(n — 1) over F'
and its extension fields, for all n. Hence in the Mayer-Vietoris sequence in Theorem 3.1.3(i),
the maps vp : H"(F, A) = [ pep H"(Fp, A) % [ [pey H"(Fu, A) are injective for all n > 1,
by Theorem 3.1.5. The result now follows in this case.

More generally, let F' = F(u,,) and similarly for Fp and Fy;. As above, tp is injective.
Using the naturality of tp with respect to I, we have ker(tp) < ker (v orespr/p). Further, by
the injectivity of tp/, ker(tpr o resp ) = ker(respr/p) S ker(corpporespp). But corores :
H™(F,A) — H"(F,A) is multiplication by [F" : F] (|GS06|, Proposition 3.3.7), which is
injective since |A| = m and [F’ : F] is prime to m. Thus these kernels are all trivial, and
again the result follows. O

In Corollary 3.1.6, the initial six terms need not split into two three-term short exact
sequences; i.e. the map on H'(F, A) need not be injective. In fact, for A = Z/mZ with
m > 1, a necessary and sufficient condition for splitting is that the reduction graph I' is a
tree ([HHK11], Corollaries 5.6 and 6.4). But in the next result, there is splitting at every
level.

Corollary 3.1.7. Suppose that char(k) = 0 and that K contains a primitive m-th root of
unity for all m = 1. Then the Mayer-Vietoris sequence in Theorem 3.1.3(ii) for Gy, splits
mto exact sequences

0— H"(F,Gn) — HPE? H"(Fp,Gp) x HUGU H"(Fy,Gm) — HpeB Hn(Fme) —0

for alln = 0.
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Proof. By Theorem 3.1.3(ii), it suffices to prove the injectivity of the maps H"(F,G,,) —
[1per H'(Fp,Gm) % [y H"(Fuy,Gy) for all n > 1. The case n = 1 follows from the
vanishing of H'(F,G,,) by Hilbert’s Theorem 90. It remains to show injectivity for n > 1.
Since K contains all roots of unity, for each m we may identify the Galois module G,,[m] =
o, With Z/mZ and Z/mZ(n — 1).

By Theorem 3.1.3(ii), the desired injectivity will follow from the surjectivity of the map

[[H" ' (Fp,Gu) x [ [H" ' (Fu,Gun) = [ [ H" ' (Fp, Gu).

Pe?P Uel ©eEB

So let a € [[ oy H"'(Fy,, Gm), and write @ = (ay)pen, With o, € H"~'(F,, Gy,). For each
© € B, the element ay, is the image of some @, € H"fl(Fp,um@) for some m, > 1, by
Lemma 2.4.4. Since B is finite, we may let m be the least common multiple of the integers
my,. Thus a is the image of & = () € [ [ ep H" Y (Fy, fim)-

By Theorem 3.1.5 and Theorem 3.1.3(i), the map

[[H" ' (Fp.2/mZ(n - 1)) x | | H" (Fy, Z/mZ(n - 1)) - | | H" (F,, Z/mZ(n — 1))

Pe? Uel peB

is surjective. So by the identification p,,, = Z/mZ(n — 1), it follows that & is the image of
some element 3 € [[pep H" N Fp, pim) x [y H" ' (Fu, ptm). Let 8 be the image of 3 in
[1per H HEFp, Gm) x [{yey H" ' (Fu, Gy). Since the diagram

5 € [ pep H" ' (Fp, i) % [ [ye "' (FU, ftm) — HpEB H" N (Fy, pim) 2 &

l |

BETlpey H' ' (Fp,Gu) x [Ty H" 7' (F0,Gw)  ——  [loes "7 (Fp, Gm) 3@
commutes, S maps to «, as desired. 0

Note that Corollaries 3.1.6 and 3.1.7 also provide patching results for cohomology, in
addition to local-global principles. Namely, for n # 1 in Corollary 3.1.6, or any n in Corol-
lary 3.1.7, those assertions show the following. Given a collection of elements o € H™(F¢, A)
for all £ € P 1 U such that ap, ay induce the same element of H"(F,, A) whenever p is a
branch on U at P, there exists a unique v € H"(F, A) that induces all the . In the sit-
uation of Theorem 3.1.3, where splitting is not asserted, a weaker patching statement still
follows: given elements c¢ as above, there exists such an «, but it is not necessarily unique.

3.2. Local-global principles with respect to points

In this section we will investigate how to translate our results into local-global principles
in terms of the points on the closed fiber X of X , rather than in terms of patches. Extending
our earlier notation, if P € X is any point (not necessarily closed), we let Fp denote the
fraction field of the complete local ring }A%p =0 g.p- D particular, if 7 is the generic point of
an irreducible component Xy of the closed fiber X, then Fj, is a complete discretely valued

field, and it is the same as the n-adic completion of F'.
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3.2.1. The field Fg‘

In order to bridge the gap between the fields Fy; and F;,, where 7 is the generic point of
the irreducible component Xy & X containing U, we will consider a subfield Fé‘ of F,, that
has many of the same properties but is much smaller.

Namely, with notation as above, let RZ be the direct limit of the rings }A%V, where V' ranges
over the non-empty open subsets of X, that do not meet any other irreducible component
of X. Equivalently, we may fix one such non-empty open subset U, and consider the direct
limit over the non-empty open subsets V' of U. Here RZ is a subring of ]%7; and we let F,;‘
be its fraction field. Thus Fg‘ is a subfield of F},.

Lemma 3.2.1. Let Xq € X be an irreducible component with generic pointn, and let U < X,
be a non-empty open subset meeting no other component. Then R,’; 15 a Henselian discrete
valuation ring with respect to the n-adic valuation, having residue field k(U) = k(Xy). Its
fraction field F,;‘ is the filtered direct limit of the fields Fy,, where V' ranges over the non-empty
open subsets of U.

Proof. Each Fy is contained in F,?, and every element of FT;‘ is of the form a/b with a,b in

some common Fy . So F,;‘ is the direct limit of the fields Fy .

Viewing n as a prime ideal of }A%V, the fields Fy each have a discrete valuation with respect
to 7, and these are compatible. It follows that FT;L is a discretely valued field with respect
to the n-adic valuation. We wish to show that the valuation ring of FT;L is RZ, with residue
field k(U). Note that the t-adic and n-adic metrics on Ry are equivalent, since \/@ =1.

Since ﬁv is contained in the n-adic valuation ring of Fy, it follows that R,’; is contained
in the valuation ring of Fé‘ To verify the reverse containment, consider a non-zero element
€ F,? with non-negative n-adic valuation. Thus o € F}; for some V; and so a = a/b with
a,b € Ry non-zero and vy(a) = v, (b). Since Ry is a Krull domain, the element b € Ry has a
well defined divisor, which is a finite linear combination of prime divisors; and other than the
irreducible closed fiber V' of Spec(ﬁ’v), each of them has a locus that meets this closed fiber
at only finitely many points. After shrinking V' by deleting these points, we may assume
that b is invertible in Ry [¢t~]. But also vy (a/b) = 0; and thus a/b has no poles on Spec(Ry).
So the element o = a/b € Iy actually lies in }A%V, and hence in RZ as desired. Thus RZ is
indeed the valuation ring of F# Since the valuations on the rings Ry are compatible and
induce that of R;‘, the maximal ideal nR;‘ of RZ is the direct limit of the prime ideals nﬁ’v
of the rings Ry. But }A%V/név = k(V) = k(U) for all V. So the residue field of R} is k(U).

It remains to show that RZ is Henselian. Let S be a commutative étale algebra over RZ,
together with a section o : 7 — Spec(S) of 7 : Spec(S) — Spec(R}!) over the point 7. To show
that RZ is Henselian, we will check that o may be extended to a section over all of Spec(RZ).
Now since S is a finitely generated Rf;—algebra, it is induced by an étale ﬁv—algebra Sy for

some V, together with a morphism 7y : Spec(Sy) — Spec(ﬁv) that induces 7 and has a

section 0¥, : ) — Spec(Sy) over the generic point 7 of the closed fiber of Spec(Ry ). Here o
defines a rational section over V', and hence a section over a non-empty affine open subset of

V. So after shrinking V', we may assume that o}, is induced by a section oy : V' — Spec(Sy).
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But the ring Ji’v is t-adically complete; so by a version of Hensel’s Lemma (Lemma 4.5 of
[HHK09]) the section oy over V extends to a section of my, over all of Spec(Ry). This
in turn induces a section of 7 over Spec(RZ) that extends o, thereby showing that RZ is
Henselian. U

Proposition 3.2.2. Let n be the generic point of an irreducible component Xy of X, and let
U be a non-empty affine open subset of Xy that does not meet any other irreducible component
of X. Let A be a smooth commutative group scheme over F'. Suppose o € H"(Fy, A) satisfies
ar, = 0. Then there is a Zariski open neighborhood V' of n in U such that ap, = 0.

Proof. The ring RU is excellent, by [Val76, Corollary 5] and regularlty, hence so is its local-
ization (RU) at 1. The henselization R}, of (RU) contains Ry, and its completion is Rm
and it is minimal for these properties among henselian discrete valuation rings. So Rl

contained in RZ , and its fraction field F}¥ is contained in FT;L Let c e Z™(Fy, A) represent the
class a. Since ap, = 0, there is a finite Galois extension L/F, such that cr, is the cobound-
ary of a cochain in C"'(L/F,, A(L)). This can be expressed by finitely many polynomial
equations. By excellence, Artin Approximation (|Art69, Theorem 1.10]) applies to R!; and
it follows that cgn is the coboundary of an element of Cn1(Fk A). Thus o rp = 0 and hence
Qpp = 0. The Conclusmn now follows from Lemma 2.3.5, since F h'is the ﬁltered direct limit
of the fields Fy, by the second part of Lemma 3.2.1. U

3.2.2. Local-global principles with respect to points

We now obtain a local-global principle in terms of points on the closed fiber X.

Theorem 3.2.3. Let A be a commutative linear algebraic group over F' and let n > 1.
Assume that either

(i) A = Z/mZ(r), where m is an integer not divisible by char(k), and where either
r=n—1 orelse [F(uy): F| is prime to m; or
(ii)) A = Gy, char(k) =0, and K contains a primitive m-th root of unity for all m = 1.

Then the natural map

— [ [ H"(Fr, A)

PeX

1s injective, where P ranges through all the points of the closed fiber.

Proof. Let a € H"(F, A) be an element of the above kernel. Consider the irreducible compo-
nents X; of X, and their generic points n; € X; € X. Thus ap,, = 0 for each ¢ (taking P = n;).
By Proposition 3.2.2, we may choose a non-empty Zariski affine open subset U; < X;, not
meeting any other component of X, such that « Fy, is trivial. Let U be the collection of these
sets U;, and let P be the complement in X of the union of the sets U;. Then « is in the kernel
of the map on H"(F, A) in Theorem 3.1.5, Corollary 3.1.6, or Corollary 3.1.7 respectively.
Since that map is injective, it follows that a = 0. O
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3.3. Local-global principles with respect to discrete valuations

Using the previous results, we now investigate how to translate our results into local-global
principles involving discrete valuations on our field F', and in particular those valuations aris-
ing from codimension one points on our model X of F. Our main result here is Theorem 3.3.6,
which parallels Theorem 3.2.3(i), and asserts the vanishing of the obstruction II"(F, A) to
such a local-global principle, for n > 1 and A an appropriate twist of Z/mZ.

In the case n = 1, a related result appeared at [HHK11, Corollary 8.11], but with different
hypotheses and for different groups. In fact, for a constant finite group A, the obstruction
[I'(F, A) is non-trivial unless the reduction graph I' of a regular model X of Fisa tree;
see [HHK11|, Proposition 8.4 and Corollary 6.5. (As in [HHK11], “discrete valuations” are
required to have value group isomorphic to Z, and in particular to be non-trivial.)

For the remainder of this section we make the standing assumption that X s reqular.

Lemma 3.3.1. Let P be a point of X and let v be a discrete valuation on Fp. Then the
restriction vg of v to F' is a discrete valuation on F. Moreover zfv 15 induced by a codimension
one point of Spec(Rp) (07“ equivalently, a height one prime of Rp) then vy is induced by a
codimension one point ofX whose closure contains P.

Proof. The first assertion is given at [HHK11, Proposition 7.5]. For the second assertion, if
v is induced by a height one prime of }A%p, then }A%p is contained in the valuation ring of v.
Hence so is the local ring Rp, which is then also contained in the valuation ring of vy. Thus
v is induced by a codimension one point of Spec(Rp), and so by a codimension one point
of X whose closure contains P. U

Given a field F, let Qg denote the set of discrete valuations on E. For v € Qp, write E,
for the v-adic completion of E. If A is a commutative group scheme over E| let

II"(E, A) = ker (H"(E,A) - 1] H"(EU,A)).
UEQE
Similarly, given a normal integral scheme Z with function field E| let {2z < Qf denote the

subset consisting of the discrete valuations on E that correspond to codimension one points
on Z. If Ais as above, let

I (E, A) = ker (H"(E,A) -1 H"(EU,A)).
veQz
Here if Z = Spec(R), we also write LI} (£, A) for III%(E, A).

We will be especially interested in the case that E = F'| the function field of a regular
projective curve X over our complete discrete valuation ring 7' and where Z is either X or
Spec(RP) for some closed point P € X.

In the case that Z = X , with closed fiber X and function field F' as before, there is a
related group

II%  (F, A) = ker (H" (F,A) > || H"(Fp, A >
PeX
23



Note that III% | (F, A) is contained in I’} (F, A) by [HHK11, Proposition 7.4], which asserts

that every ﬁeld of the form F, contalns a field of the form Fp. In the above notation,
Theorem 3.2.3 asserts that Il | (F, A) = 0 if condition (i) or (ii) of that result is satisfied.

3.3.1. Relating local-global obstruction on a reqular model to obstructions at closed points

A key step in relating our patches to discrete valuations is the following result, which
parallels Proposition 8.4 of [HHK11|. That result considered only the case n = 1, but
did not require the linear algebraic group to be commutative (since H' is defined even for
non-commutative groups).

Here X (o) denotes the set of closed points of X, and ]_[' denotes the restricted product,
i.e. the subgroup of the product consisting of elements in which all but finitely many entries
are trivial.

Proposition 3.3.2. Let A be a linear algebraic group over F.
(a) The natural map H"(F, A) — || pey H"(Fp, A) induces an exact sequence

0 — II% C(FA) ST (R A) S | [ 1y (Fp, A
PEX(O)
(b) If A is finite and of order not divisible by char(k), or if char(k) = 0, the exact
sequence extends to
0 — IT% C(FA) ST (FA) S | |/ 01, (Fp, A) — 0.
PEX(O)

(¢c) If n > 1 and A satisfies hypothesis (i) or (ii) of Theorem 3.2.3, then ¢ is an isomor-
phism.

Proof. 1t follows from Lemma 3.3.1 that for each P € X(g), the image of I (F, A) un-
der H"(F,A) — H"(Fp, A) lies in HI%P (Fp, A). Thus we obtain a group homomorphism
II7% (F, A) — HPGX(O) H_I%P(Fp, A). To obtain the map ¢, we wish to show that the image
is contained in the restricted product. If o € I (F, A) € H"(F, A) and 7 is the generic
point of an irreducible component of X, then the image of o in H"(F},, A) is trivial, since n
is a codimension one point on X. By Proposition 3.2.2, a has trivial image in H"(Fy, A) for
some Zariski open neighborhood U of 7, and hence in H"(Fp, A) for each P € U. The union
of these sets U, as n varies, contains all but finitely many closed points of X. So indeed the
image of « lies in the restricted product.

The composition ¢¢ is trivial by definition of 1% X(F, A). To complete the proof of
part (a), let « € H_I”X(F ,A) be any element in the kernel of this map. Then the image
of @ in HI%P(FP,A) C H"(Fp,A) is trivial for every closed point P on the closed fiber
X. Meanwhile, for any non-closed point 1 of X (viz. the generic point of an irreducible
component of X), the image of a in H"(F,, A) is also trivial, by the definition of III", since
1 is a codimension one point of X. Hence « lies in Iy | (FLA) € 1% (F, A), as required.

To prove part (b), i.e. that ¢ is surjective, take an element (ap) pex o, in the above restricted

product. Thus ap = 0 for all P € X(g) outside of some finite set P that can be chosen to
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include the points where distinct components of X meet. Since ap € m% (Fp, A), its image
P

in H"(F,, A) is trivial for every branch p of X at P. Let U be the set of components of the
complement of P in X, and let ay = 0 for each U € U. The hypotheses of Theorem 3.1.3 are
satisfied in our situation, and the exact sequence there yields that the tuple (og)eep i is of
the form A(«) for some o € H"(F, A). The image of o under H"(F, A) — | [ pex H"(Fp, A)
is (ap)pex,, € H;?ex(o) HI%P(FP, A). To complete the proof of (b), we show that o €
IH;‘?(F, A), ie. a, = 0 for each v € Q. By [HHK11, Proposition 7.4|, F, contains Fp for
some P e X. If P is a closed point, then the discrete valuation on F;, restricts to a discrete
valuation vp on Fp (which in turn restricts to v on F'). But ap € HI"EP (Fp, A), so a becomes

trivial over (Fp),, and hence over F,. If instead P is a point of codimension one, i.e. the
generic point 1 of some U € U, then v = v,, and «, = 0 because oy = 0 and Fyy < F,.
Part (c) now follows from part (b) and Theorem 3.2.3, which says IIl'; (F,A) =0. O

3.3.2. Local-global principles at closed points

We will use the following statement of Panin which asserts a particular case of the analog
of the Gersten conjecture in the context of the theory of Bloch and Ogus. Here x(z) denotes
the residue field at a point z, and Z® denotes the set of points of Z having codimension i.
As usual, Z/mZ(—r) denotes Hom(Z/mZ(r), Z/mZ) for r > 0, where m is not divisible by
the characteristic of the field. Also, for m as above and for any r € Z, if A is an m-torsion
group scheme then A(r) denotes A ® Z/mZ(r).

Theorem 3.3.3 (|[Pan03, Theorem C|). Suppose that R is an equicharacteristic reqular local
ring with fraction field F, and let Z = Spec(R). Then for any positive integer m that is not
divisible by the characteristic, and any m-torsion finite étale commutative group scheme A
over R, the Cousin complex
0—- H"(Z,A) - H'(F,A) - @ H"  (k(2), A(~1)) — @ H" 2(k(2), A(=2)) — - -
2€Z(1) 2€Z(2)
of étale cohomology groups is exact.

Proposition 3.3.4. Under the hypotheses of Theorem 3.3.3, assume that R is complete.
Then II™(F, A) = II%(F,A) =0 forn > 1.

Proof. Let d be the Krull dimension of R. The assertion is trivial if d < 1, so we may assume
d = 2. Since II"(F, A) < III%(F, A), it suffices to show the vanishing of the latter group.

Let a € HI%(F, A) < H"(F, A). Consider the exact sequence in Theorem 3.3.3. For each
z € ZW| the ramification map H"(F, A) — H" '(k(z), A(—1)) factors through the map to
the completion H"(F,, A). But the image of o in H"(F,, A) vanishes, since o € III%(F, A).
Hence a maps to zero in @, ,0) H" '(k(z), A(—1)), and thus it is induced by a class & €
H"(Z,A).

Let £’ be the residue field of R at its maximal ideal (corresponding to the closed point of
Z). Let 01,...,04 be a regular system of parameters in R. Write ¢ = o7 and write }A%U for
the completion of the local ring of R at the prime ideal (o). Thus }A%U is a complete discrete
valuation ring with uniformizer o; let F, and (o) denote its fraction field and residue field,
respectively. Here k(o) is the fraction field of O, := R/(0), an equicharacteristic regular
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complete local ring of dimension d — 1, such that the residues a9, ...,754 of 09, ...,0, form a
regular system of parameters. By Theorem 3.3.3, the natural maps
H™"(R,, A) — H™"(F,,A) and  H"(Op(), A) — H"(k(0), A)
are injections. The complete local rings R and O, each have residue field ', so by [Art62,
Theorem I11.4.9] we may identify
Hn(Z, A) = Hn(k,, A) = Hn(oﬁ(cr)a A)?

via restriction to the closed point. The natural map H"(Z, A) — H"(Ox(s), A) is thus an
isomorphism. We have the following commutative diagram:

H™(Op(0), A)— H"(k(0), A)

| |

ae H"(Z,A) - Hn(émA)

|

ae H'(F,A) ——= H"(F,,A)

Since o defines a codimension one point of Z, the image of o € Il (F, A) € H"(F,A) in
H"(F,, A) is trivial. Since & maps to «, a diagram chase then shows that & is trivial and
hence so is «a. U

In our situation, with R = ﬁ’p arising from a regular model X , Proposition 3.3.4 asserts:

Corollary 3.3.5. Suppose that K is an equicharacteristic complete discretely valued field of
characteristic not diwviding m, and that X is reqular. Then for every P € X and m-torsion
finite étale commutative group scheme A over Rp, HI"(Fp, A) = I | (Fp,A) =0.

3.3.3. Local-global principles for function fields

Finally, we obtain our local-global principles over our field F' with respect to discrete
valuations:

Theorem 3.3.6. Suppose that K is an equicharacteristic complete discretely valued field of
characteristic not dividing m, and that X is reqular. Let n > 1. Then

1" (F, Z/mZ(n — 1)) = W% (F, Z/mZ(n — 1)) = 0.
If [F(pm) : F] is prime to m then also II"(F, Z/mZ(r)) = W% (F, Z/mZ(r)) = 0 for allr.

Proof. In each of the two cases considered, hypothesis (i) of Theorem 3.2.3 is satisfied. Since
n > 1, Proposition 3.3.2(c) then applies. The theorem now follows by Corollary 3.3.5 and
the containment II"(F, A) < L% (F, A). O

Remark 3.3.7. The case n = 2, concerning Brauer groups, holds even without assuming
equal characteristic (|CPS12, Theorem 4.3(ii)]|, [HHK11, Corollary 9.13]). It would be inter-
esting to know if the same is true for n > 2, and also if Theorem 3.3.6 has an analog for
Gm in characteristic zero as in Theorem 3.2.3(ii). But carrying over the above proof would
require versions of Panin’s result [Pan03, Theorem C] in those situations.
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4. APPLICATIONS TO TORSORS UNDER NONCOMMUTATIVE GROUPS

As an application of our results, in this section we give local-global principles for G-
torsors over F' for certain connected noncommutative linear algebraic groups G, and for
related structures. Our method is to use cohomological invariants in order to reduce to our
local-global principles in Galois cohomology (viz. to Theorems 3.2.3(i) and 3.3.6).

We preserve the notation and terminology established at the beginning of Section 3. In
particular, we write T' for the valuation ring of K, and k for the residue field. We let X
be a normal, integral projective curve over T', with closed fiber X and function field F'. As
before, we write (2p for the set of discrete valuations on the field F', and write €2; for the
subet of Qr consisting of those discrete valuations that arise from codimension one points

on X.

4.1. Relation to prior results

The basic strategy used in this section to obtain local-global principles for torsors was
previously used in [CPS12, Theorem 5.4|, to obtain a local-global principle for G-torsors
over the function field F' of a smooth projective geometrically integral curve over a p-adic
field K, where GG is a linear algebraic F-group that is quasisplit, simply connected, and
absolutely almost simple without an Eg factor. There they used the local-global principle
of Kato for H? together with the fact that the fields under their consideration were of
cohomological dimension three. Our applications arise from our new local-global principles
for higher cohomology groups, and hence do not require any assumptions on cohomological
dimension.

Local-global principles for G-torsors were also obtained in [HHK11] (as well as in [HHK09],
in the context of patches). But there the linear algebraic groups G were required to be
rational varieties, whereas here there is no such hypothesis. On the other hand, here we
will be looking at specific types of groups, such as Fg and Fj. Another difference is that
in [HHK11]|, in order to obtain local-global principles with respect to discrete valuations, we
needed to make additional assumptions (e.g. that k is algebraically closed of characteristic
zero, or that @ is defined and reductive over X; see [HHK11, Corollary 8.11]). Here the only
assumption needed for local-global principles with respect to discrete valuations is that K
is equicharacteristic. (If we wish to consider only those discrete valuations that arise from a
given model X of F , then we also need to assume that X is regular.) Thus even in the cases
where the groups considered below are rational, the results here go beyond what was shown
for those groups in [HHK11].

4.2. Injectivity vs. triviality of the kernel

The local-global principles for G-torsors will be phrased in terms of local-global maps on
H'(F,G). Because of non-commutativity, H'(F, G) is just a pointed set, not a group. Thus
there are two distinct questions that can be posed about a local-global map: whether the
kernel is trivial, and whether the map is injective (the latter condition being stronger). And
as in Section 3, there are actually several local-global maps: H'(F,G) — || HY(F,,G),

UEQF
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HY(F,G) — [Toco HY(F,,G), and H(F,G) — [|pex H'(Fp,G), with kernels III(F,G),
II¢(F,G), and Mg (F,G) respectively. (As is common, here we write IIT for IIT".) Note
that if Il ¢ (#, G) = 0 for some model X then III(F,G) = 0; and similarly for injectivity of
the corresponding maps. So we will emphasize the cases of Il ;(F, G) and III %, «(F,G).

4.3. Local-global principles via cohomological invariants

The approach that we take here for obtaining our applications is to use cohomological
invariants of algebraic objects.

Recall that an invariant over F' is a morphism of functors a : S — H, where S :
(Fields/F) — (Pointed Sets) and H : (Fields/F') — (Abelian Groups)(|GMS03|, Part I,
Sect. I.1). Most often, as in [GMS03|, S will have the form S given by Sg(FE) = H'(E, G)
for some linear algebraic group G over F'; this classifies G-torsors over E, and also often
classifies other types of algebraic structures over F. In practice, H(FE) will usually take
values in Galois cohomology groups of the form H"(E,Z/mZ(n — 1)).

The simplest situation is described in the following general result, where we retain the
standing hypotheses stated at the beginning of Section 3, with X a normal model of F.

Proposition 4.3.1. Let a : S — H be a cohomological invariant over F, where H(E) =
H™(E,Z/mZ(r)) for some integers n,m,r with n,m positive, and where m is not divisible
by char(k). Assume either that r = n— 1, or else that the degree [F(ji,,) @ F'| is prime to m.
(a) If a(F) : S(F) — H(F) has trivial kernel, then so does the local-global map S(F) —
| [pex S(Fp). Moreover, if K is equicharacteristic and X is regular, then the same
holds for S(F') — HUEQ)? S(Fy).
(b) Ifa(F) : S(F) — H(F') is injective, then so is the local-global map S(F) — [ [ pex S(Fp).
If in addition K is equicharacteristic and X is reqular, then S(F) — HUGQ)? S(F,) is
injective as well.

Proof. Consider the commutative diagrams

a(F)

S(F) H(F) S(F) H(F)
J J } J
[lpex SFp) 2 [Ty H(FP) Moo, S(FR) LU0 T H(E).

The result follows by a diagram chase, using the fact that the right-hand vertical map in
the first diagram is injective by Theorem 3.2.3(i), and that the corresponding map in the
second diagram is injective in the case that K is equicharacteristic and X is regular, by
Theorem 3.3.6. U

Recall that a linear algebraic group G over F' is quasi-split if it has a Borel subgroup
defined over F. It is split if it has a Borel subgroup over F' that has a composition series
whose successive quotient groups are each isomorphic to G, or G,. If G is reductive, this is
equivalent to G having a maximal torus that is split (i.e. a product GJ,).
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Corollary 4.3.2. Let G be a simply connected linear algebraic group over F. Consider the
Rost invariant R : H' (=, G) — H3(x,Z/mZ(2)) of G, and assume that the characteristic of
k does not divide m. In each of the following cases, IHKX(F, G) = 0. If K is equicharac-
teristic then III(F,G) = 0; and Il ¢ (F, G) = 0 if in addition the given model X is regular.

o (& is a quasi-split group of type Fg or E7.

e (& is an almost simple group that is quasi-split of absolute rank at most 5.

e (& is an almost simple group that is quasi-split of type Bg or Dg.

e (& is an almost simple group that is split of type D7.

Proof. In each of these cases, the Rost invariant R has trivial kernel. This is by [Gar01,
Main Theorem 0.1] in the first case, and by [Gar01l, Theorem 0.5] in the other cases. So the
assertion follows from Proposition 4.3.1(a). O

Corollary 4.3.3. Let m be a square-free positive integer that is not divisible by the charac-
teristic of k, and let A be a central simple F'-algebra of degree m. Then the local-global map
HY(F,SLi(A)) = | pex H'(Ep,SLi(A)) is injective. If in addition K is equicharacteristic
and X is regular, then the map H'(F,SLi(A)) — HUGQ)? H'(F,,SLy(A)) is injective.

Proof. By [MS82, 12.2] (see also [Ser95, 7.2|), given a division algebra A of degree m, there
is a cohomological invariant a : H'(x,SLi(A)) — H3(x,Z/mZ(2)) that is injective if m is
square-free. So the result follows from Proposition 4.3.1(b). U

In particular, Il ¢ (F,SLi(A)) and III(F,SL;(A)) respectively vanish in the above sit-
uations. Also, via the identification of H'(F,SL;(A)) with F*/Nrd(A*), the above result
gives a local-global principle for elements of F'* to be reduced norms from a (central) division
algebra A; cf. also |[Kat86, p. 146].

Other applications can be obtained by using a combination of cohomological invariants.
This is done in the next results.

Proposition 4.3.4. Let G be a simple linear algebraic group of type Eg over F.

(a) Assume char(K) = 0. Then the group G is split over some odd degree extension of
F if and only if Gp, is split over some odd degree extension of Fp for every P e X.

(b) Assume char(K) # 2,3,5. Then the same holds for extensions of degree prime to five
(rather than of odd degree) over F' and each Fp.

(c) Assume in addition that K is equicharacteristic and X is reqular. Then the assertions

in parts (a) and (b) hold with the fields Fp replaced by the fields F, for all v e Q.

Proof. For the forward implications, observe that if G is split over a finite extension F/F of
degree d = [E : F|, and if F'/F is any field extension, then G also splits over the compositum
E' := EF’ in an algebraic closure of F’, and [E’ : F'| divides d. Taking F’ equal to Fp or
F, yields the forward implications. We now show the reverse implications.

Proof of (a) and the corresponding part of (c):

Let Gy be a split simple algebraic group over F of type Fg. Then H'(F,Gy) classifies
simple algebraic groups of type Eg over F, since Gy = Aut(Gp). Given a group G as in the
proposition, let [G] be the class of G in H'(F,Gy), and let r¢ := Rg,([G]) be the associated

Rost invariant, say with order m. Thus rg € H3(F,Z/mZ(2)).
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For each P € X, the group G becomes split over some extension Ep/Fp of odd degree dp.
Thus the Rost invariant of G over Fp maps to zero in H*(Ep, Z/mZ(2)), and hence it is dp-
torsion in H3(Fp,Z/mZ(2)) by a standard restriction-corestriction argument. Thus it is also
d'>-torsion, where d’ is the greatest common divisor of dp and m. Let d be the least common
multiple of the odd integers d'», each of which divides m. Thus drg € H3(F,Z/mZ(2)) has
trivial image in H?*(Fp,Z/mZ(2)) for all P. Tt follows from Theorem 3.2.3(i) that drq is
trivial. Hence the order of the Rost invariant r4 over F' is odd.

Let H'(x,Gy)g S H'(*,Gy) be the subset consisting of classes a such that Rg,(a) has
odd order. By the above, this contains [G]. Now by [Sem09, Corollary 8.7|, since char(F') =
char(K) = 0, there is a cohomological invariant u : H'(x, Go)g — H?®(»,Z/27) such that for
any field extension E/F, the invariant u([Gg]) vanishes if and only if G splits over a field
extension of F of odd degree.

By functoriality of w, the class u([G]) maps to u(|Gp,]) for every P € X. But for
every P € X, Gp, is split over an extension of odd degree and hence u(|Gp,]) is trivial
in H*(Fp,Z/27). By Theorem 3.2.3(i), it follows that u(|G]) is trivial in H?(F,Z/2Z). The
conclusion of (a) now follows from the defining property of w.

The corresponding part of (c¢) is proved in exactly the same way, but with F, replacing
Fp and with Theorem 3.3.6 replacing Theorem 3.2.3(i).

Proof of (b) and the corresponding part of (c):

By the main theorem in [Che94|, since char(F') # 2, 3,5, the Rost invariant of G over a
field extension E/F has trivial image in H*(F,Z/5Z(2)) if and only if G splits over some
finite extension of E having degree prime to five. The desired assertion now follows from
Proposition 4.3.1, taking S(F) to be the subset of H(E, Gy) that consists of elements that
split over some field extension of E having degree prime to five, and with a being the
restriction to this subset of the Rost invariant modulo 5. U

Proposition 4.3.5. Assume that char(K) # 2,3. Then Albert algebras over F' have each of
the following properties if and only if the respective properties hold after base change to Fp
for each P e X.

The algebra is reduced.

The algebra s split.

The automorphism group of the algebra is anisotropic.
Two reduced algebras are isomorphic.

The same holds for base change to F, for each v € ¢, in the case that K is equicharacteristic

and X is reqular.

Proof. Albert algebras are classified by H'(F, ), where G is a split simple linear algebraic
group over F' of type F,. Moreover (see [Ser95, 9.2,9.3]) there are cohomological invariants
f3: H'(F,G) —» H*(F,Z/27), fs : H'(F,G) — H*(F,Z/2Z), g3 : H'(F,G) — H*(F,Z/37),

where H3(F,Z/3Z) = H*(F,Z/3Z(2)). The properties of Albert algebras listed in the
proposition are respectively equivalent to the following conditions involving these invariants
(see [Ser95, 9.4]):

e The invariant g3 vanishes on the algebra.
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e The invariants f3 and g3 each vanish on the algebra.
e The invariants f5 and g3 are each non-vanishing on the algebra.
e The two reduced algebras have the same pair of invariants f3, fs.

By the injectivity of the local-global maps on H*(F, Z/27Z), H*(F,Z/2Z), and H*(F,Z/37(2))
(viz. by Theorems 3.2.3(i) and 3.3.6 respectively), and by the functoriality of the invariants
f3, f5, g3, the assertion then follows. O
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