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Introduction.

In recent years, much progress has been made on the structure of fundamental groups of

algebraic curves by means of patching techniques in formal and rigid geometry. A number

of these results have concerned curves over algebraically closed fields of characteristic p —

e.g. the proofs of the Abhyankar Conjecture ([Ra], [Ha5]) and of the geometric case of the

Shafarevich Conjecture ([Po1], [Ha6]), and the realization of Galois groups over projective

curves ([Sa1], [St1]).

While the rigid approach to patching is often regarded as more intuitive than the

formal approach, its foundations are less well established. But constructions involving

the formal approach have tended to be technically more cumbersome. The purpose of the

current paper is to build on previous formal patching results in order to create a framework

in which such constructions are facilitated. In the process we prove a result asserting

that singular curves over a field k can be thickened to curves over k[[t]] with prescribed

behavior in a formal neighborhood of the singular locus, and similarly for covers of curves.

Afterwards, we obtain applications to fundamental groups of curves over large fields.

The structure of the paper is as follows: Section 1 concerns patching problems for

projective curves X∗ over a power series ring R = k[[t1, . . . , tn]]. It is shown (Theorem

1) that giving a coherent projective module over X∗ is equivalent to giving such modules

compatibly on a formal neighborhood of each singular point of the closed fibre X , and

on the formal thickening along the complement of the singular locus S of X . Section 2

applies this to thickening problems, in both the absolute and relative senses. Namely, it

shows (Theorem 3) that such an X∗ can be constructed from its closed fibre X and from

complete local thickenings near S, such that X∗ is a trivial deformation away from S.

Moreover (Theorem 2), given a morphism X → Z and a thickening Z∗ of Z, such that the

local thickenings near S are compatible with that of Z, there is a unique such thickening

X∗ of X that is compatible with the given data. In Section 3 these results are applied

to the problem of thickening and deforming covers. Theorem 4 there combines the results

of Sections 1 and 2 to show that covers of reducible k-curves can be thickened to covers

of curves over k[[t]], and Theorem 5 then shows how this can be used over large fields to
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construct Galois covers with desired Galois groups and inertia groups, in many cases, over

a generic curve of a given genus. This result is applied in Section 4 to obtain information

about the structure of fundamental groups of curves. In the affine case, we obtain (Theorem

6) a simple proof of a key result needed in Raynaud’s proof of the Abhyankar Conjecture

for the affine line, without the use of rigid machinery such as Runge pairs used in [Ra]. We

state this result for the case of large fields, rather than just for algebraically closed fields.

We then prove a result on finite quotients of π1 of curves with prescribed ramification,

over large fields (Theorem 7). Corollaries 1-4 of Theorem 7 provide examples of this.

Finally, we fix some terminology that will be used in the paper. If A is an algebra over

a ring R, then A will be called generically separable if its total ring of fractions is separable

over that of R, and no non-zero-divisor of R becomes a zero-divisor of A. A morphism

φ : X → Z of schemes is generically separable if over each affine open subset U = SpecR of

Z, the corresponding R-algebra is generically separable. If φ is both finite and generically

separable, then we call it a cover. If G is a finite group, then by a G-Galois cover we will

mean a cover φ : X → Z together with a homomorphism ι : G→ AutZ(X) with respect to

which G acts simply transitively on each generic geometric fibre of φ. If Z is irreducible,

then a cover X → Z is Galois if X is also irreducible and X → Z is AutZ(X)-Galois. If

(Z, ζ) is a pointed irreducible scheme, then the pointed Galois étale covers of Z, with base

points over ζ, form an inverse system whose automorphism group π1(Z, ζ) is the algebraic

fundamental group of (Z, ζ). Up to isomorphism, this group is independent of the choice of

the base point ζ, and the reference to ζ is usually suppressed. We also let πA(Z) denote the

set of (isomorphism classes of) continuous finite quotients of π1(Z). Thus a finite group

G is in πA(Z) if and only if G is the Galois group of a Galois étale cover of Z. If we are

working over a given field k, and if g is a non-negative integer, then πA(g) will denote the

set of finite groups G for which there is a dense open subset MG in the moduli space Mg

of curves of genus g, such that G ∈ πA(U) for every U corresponding to a k-point of MG.
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Section 1. Patching Problems

Over the complex numbers, covers of curves can be constructed by cutting and pasting in

the metric topology. Over more general fields, this method does not apply, and the Zariski

topology is too weak to patch together open subsets of distinct covers. But by working over

a complete field, such as k((t)), one can recapture some of the machinery of the complex

situation. There, one can either work with the t-adic metric and rigid analytic spaces, or

with schemes over k[[t]] and formal geometry. Here we take the latter approach.

The formal approach began with Zariski’s Theorem on Formal Functions, and came to

fruition with Grothendieck’s Existence Theorem [Gr1, 5.1.6]. As a result, it is possible to

construct Galois covers of a given k-curve by giving the cover locally in the formal topology

and then patching. (Cf. [Ha3], which realized every finite group as a Galois group of a

branched cover of the line over any non-archimedean local field.) For certain constructions,

though, it is necessary to give some of the data even more locally, viz. at the complete local

ring of a point, rather than along open subsets of the closed fibre. For this reason, a formal

patching theorem allowing such patchings was proven in [Ha4, Theorem 1], and used to

realize certain groups as Galois groups with certain types of specified ramification. Still

more involved constructions (e.g. those of [Ha5] and [St1]) require the use of k[[t]]-curves

with reducible fibres. While these situations can be reduced to that of [Ha4, Theorem 1],

the reduction leads to much lengthier and more involved proofs. In the present section

we derive a more general result from [Ha4, Theorem 1] which can be used more easily in

patching constructions. Later in the paper, we use this result in obtaining results about

thickenings of curves and about fundamental groups in characteristic p.

Following the notation of [Ha2], for any scheme T , let M(T ) denote the category of

coherent OT -modules. Similarly, let F(T ) [resp. P(T )] denote the subcategory of M(T )

consisting on free [resp. projective] modules. Also, let A(T ), AF(T ), AP(T ) denote the

categories of coherent OT -algebras which, as OT -modules, lie in M(T ), F(T ), P(T ) respec-

tively. Also let S(T ), SF(T ), SP(T ) denote the corresponding categories of generically

separable algebras, and for any finite group G let G(T ), GF(T ), GP(T ) denote the corre-

sponding categories of G-Galois OT -algebras.

Let k be a field, let m be a non-negative integer, and let R = k[[t1, . . . , tm]], with

maximal ideal I = (t1, . . . , tm). Let X∗ be a connected projective normal R-curve, let X

be its closed fibre, and let S be a non-empty finite subset of X that contains all the singular

points of X . (Thus X−S is a regular affine curve.) For any affine open subset U ⊂ X−S,

we may consider the ring of formal functions on X∗ along U , viz. ÔX∗,U = lim
←

Ã/InÃ,

where Spec Ã = Ũ is any affine open subset of X∗ with closed fibre U . In this situation,
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define a module patching problem M for (X∗, S) to consist of the following:

(i) a finite ÔX∗,U -module MU for every irreducible component U of X − S;

(ii) a finite ÔX∗,ξ-module Mξ for every ξ ∈ S;

(iii) an ÔX∗,ξ,℘-module isomorphism µU,ξ,℘ : MU ⊗ÔX∗,U
ÔX∗,ξ,℘ →̃Mξ⊗ÔX∗,ξ

ÔX∗,ξ,℘ for

each choice of U, ξ, ℘ where ξ lies in S, ℘ is a minimal prime of ÔX∗,ξ containing I, U is

the closure of the point ℘ in X − S (i.e. the irreducible component of X − S containing

℘), and ÔX∗,ξ,℘ is the completion of the localization of ÔX∗,ξ at ℘.

A morphism of module patching problems for (X∗, S) consists of morphisms between

the corresponding MU ’s and Mξ’s which are compatible with the µU,ξ,℘’s. Thus the module

patching problems for (X∗, S) form a category, which we denote by M(X∗, S). Similarly,

we may define the notions of projective module patching problem, algebra patching problem,

etc., and the corresponding categories P(X∗, S), A(X∗, S), etc.

Note that there is a natural “base change” functor βS : M(X∗) → M(X∗, S), and

similarly for P(X∗, S), A(X∗, S), etc. Namely, βS assigns to each object M in M(X∗)

the induced modules MU = M ⊗OX∗ ÔX∗,U for each U and Mξ = M ⊗OX∗ ÔX∗,ξ for

each ξ, along with the induced isomorphisms µU,ξ,℘. A solution to a module patching

problem M in M(X∗, S) is an object in M(X∗) that maps to M under the base change

functor (and similarly for the other types of patching problems). The main theorem of this

section asserts, in particular, that every projective module patching problem has a unique

solution, up to isomorphism; see below.

If X∗, X, S are as above, and if S′ is a finite subset of X containing S, then every

patching problem for (X∗, S) induces a patching problem for (X∗, S′). More precisely, the

induced patching problem is the image of the given one under a certain functor γS,S′ :

M(X∗, S) → M(X∗, S′) [resp. P,A, etc.], which we now define. Specifically, suppose we

are given a module patching problem M = ({MU}, {Mξ}, {µU,ξ,℘}). Then each irreducible

component U ′ of X − S′ lies in a unique irreducible component U of X − S, and we

define M ′U ′ = MU ⊗ÔX∗,U
ÔX∗,U ′ . Also, if ξ ∈ S, let M ′ξ = Mξ; while if ξ ∈ S′ − S,

then ξ is a smooth point on a unique irreducible component U of X − S, and let M ′ξ =

MU ⊗ÔX∗,U
ÔX∗,ξ. Finally, we need to define µ′U ′,ξ,℘ for each ξ ∈ S′ and each minimal

prime ℘ of ÔX∗,ξ containing (t), where U ′ is the irreducible component ofX−S′ containing

℘. If ξ ∈ S, then we may consider the open set U as in (iii) above, and the natural map

j : MU →M ′U ′ . Then j induces an isomorphism

j∗ : MU ⊗ÔX∗,U
ÔX∗,ξ,℘ →̃M ′U ′ ⊗ÔX∗,U′

ÔX∗,ξ,℘, (1)

and so we may take µ′U ′,ξ,℘ = µU,ξ,℘ ◦ j−1
∗ . On the other hand, if ξ ∈ S′ − S, then by the
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above definitions of M ′U ′ and M ′ξ we have natural identifications

iU ′ : M ′U ′ ⊗ÔX∗,U′
ÔX∗,ξ,℘ →̃MU ⊗ÔX∗,U′

ÔX∗,ξ,℘

and

iξ : M ′ξ ⊗ÔX∗,ξ
ÔX∗,ξ,℘ →̃MU ⊗ÔX∗,U′

ÔX∗,ξ,℘,

and we may take µ′U ′,ξ,℘ = i−1
ξ ◦ iU ′ . So in each of these cases we have defined the modules

M ′U ′ , M ′ξ and the isomorphisms µ′U ′,ξ,℘, and we then define the desired γS,S′ : M(X∗, S) →

M(X∗, S′) by

γS,S′({MU}, {Mξ}, {µU,ξ,℘}) = ({M ′U ′}, {M ′ξ}, {µ
′
U ′,ξ,℘}). (2)

The constructions in the cases of P,A, etc. are similar.

It is easy to check that γS,S′ really is a functor, and also that

γS,S′ ◦ βS = βS′ : M(X∗) → M(X∗, S).

Moreover, we have the following

Lemma. With X∗, S, S′ as above, the functor γS,S′ is faithful.

Proof. We first show that γS,S′ is injective on isomorphism classes. So let

M = ({MU}, {Mξ}, {µU,ξ,℘})

be a patching problem for (X∗, S), and let

M
′
= ({M ′U ′}, {M ′ξ}, {µ

′
U ′,ξ,℘}) = γS,S′(M)

as in (2) above. We claim that M is determined up to isomorphism by M
′
.

Namely, first note that for all ξ ∈ S, Mξ = M ′ξ. Next, for any irreducible component

U of XS, let TU = (S′ − S) ∩ U . Also let

ÔX∗,TU
=

∏

ξ∈TU

ÔX∗,ξ

and

K̂X∗,TU
=

∏

ξ∈TU

ÔX∗,ξ,℘.
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Then we have an exact sequence

0 → ÔX∗,U
∆
→ÔX∗,U ′ × ÔX∗,TU

−
→K̂X∗,TU

→ 0,

where ∆ is the diagonal inclusion and where the arrow labeled “−” is given by subtraction

as elements of K̂X∗,TU
(where we view ÔX∗,U ′ as contained in K̂X∗,TU

via a diagonal map

∆). Tensoring over ÔX∗,U with MU and using that K̂X∗,TU
is flat over ÔX∗,U , we obtain

the exact sequence

0 →MU
∆
→M ′U ′ ×

∏

ξ∈TU

M ′ξ
−
→

∏

℘

M ′℘ → 0,

where ℘ ranges over the minimal primes containing (t) in ÔX∗,ξ for all ξ ∈ TU ; where

M ′℘ = M ′ξ ⊗ÔX∗,ξ
ÔX∗,ξ,℘ for such pairs (℘, ξ); and where the subtraction in M ′℘ takes

place after applying µ′U ′,ξ,℘ to the element of M ′U ′ . So MU is determined, as a submodule

of M ′U ′ ×
∏

ξ∈TU
M ′ξ, by the patching problem for (X∗, S′). Thus the map j : MU →M ′U ′

is also determined, and hence so is the isomorphism j∗ (as in (1) above) for each ξ ∈ S.

Since µ′U ′,ξ,℘ = µU,ξ,℘ ◦ j−1
∗ , we have that µU,ξ,℘ is determined as well.

It remains to show that γS,S′ is injective on morphisms. So suppose that

φ = ({φU}, {φξ}) : ({MU}, {Mξ}, {µU,ξ,℘}) → ({NU}, {Nξ}, {νU,ξ,℘})

is a morphism in M(X∗, S), inducing a morphism

φ′ = ({φ′U ′}, {φ′ξ}) : ({M ′U ′}, {M ′ξ}, {µ
′
U ′,ξ,℘}) → ({N ′U ′}, {N ′ξ}, {ν

′
U,ξ,℘})

in M(X∗, S′). By the previous paragraph (with N replacing M), we have that the mor-

phism ∆ : NU → N ′U ′ ×
∏

ξ∈TU
N ′ξ is injective. Hence the morphism φU : MU → NU is

determined by φ′, as is φξ : Mξ → Nξ for ξ ∈ S′ − S Moreover, for ξ ∈ S, we have that

Mξ = M ′ξ, Nξ = N ′ξ, and φξ = φ′ξ; so the morphism φξ : Mξ → Nξ is trivially determined

by φ′. Thus φ′ determines φ.

We now have the following generalization of [Ha4, Theorem 1(3)], where as above

R = k[[t1, . . . , tm]], with maximal ideal I = (t) (where we write t for t1, . . . , tm):

Theorem 1. (Patching Theorem.) Let X∗ be a connected projective normal R-curve, let

X be its closed fibre, and let S be a non-empty finite subset of X that contains all the

singular points of X .

(a) Then the base change functor βS : P(X∗) → P(X∗, S) is an equivalence of categories.
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(b) The corresponding assertions hold for the categories AP of finite projective algebras,

and for the categories GP of projective G-Galois algebras for any finite group G.

Proof. (a) Since X∗ is projective, say X ⊂ Pn
R, by taking a generic projection we obtain

a finite morphism f : X∗ → P1
R. After composing f with a suitable finite morphism

g : P1
R → P1

R, we may assume that f maps the points of S to the point ∞ at infinity

on the closed fibre of P1
R. Let S′ ⊂ X be the fibre over ∞ ∈ P1

k ⊂ P1
R. Thus S′ is a

non-empty finite subset of X that contains S. Since γS,S′ ◦βS = βS′ , and since the functor

γS,S′ is faithful, it suffices to prove the theorem with S′ replacing S. So we are reduced

to the case that S = f−1(∞). Thus there are forgetful functors f∗ : P(X∗) → P(P1
R) and

f∗ : P(X∗, S) → P(P1
R, {∞}).

We first prove that βS induces a bijection on isomorphism classes of objects. So

given an object M = ({MU}, {Mξ}, {µU,ξ,℘}) in P(X∗, S), we obtain an element f∗(M) =

N = (NA1
k
, N∞, ν) in P(P1

R, {∞}). Here NA1
k

=
∏

UMU , viewed as a k[x][[t ]]-module;

N∞ =
∏

ξMξ, viewed as a k[[x−1, t ]]-module; and

ν : NA1
k
⊗k[x][[t ]] k((x

−1))[[t ]] →̃N∞ ⊗k[[x−1,t ]] k((x
−1))[[t ]]

is the k((x−1))[[t ]]-isomorphism induced by {µU,ξ,℘}. Now the base change functors β∞ :

P(P1
R) → P(P1

R, {∞}) and βA∞ : AP(P1
R) → AP(P1

R, {∞}) are equivalences of categories

by [Ha4, Theorem 1(3)] and by the version for that result for AP. So up to isomorphism

there is a unique projective coherent OP1
R
-module N in P(P1

R) such that β∞(N) = N .

Let End(N) ∈ AP(P1
R) be the sheaf of endomorphisms of N . Similarly, we may consider

End(N) ∈ AP(P1
R, {∞}), which satisfies βA∞(End(N)) = End(N).

Let OX∗ ∈ AP(X∗, S) be the image of OX∗ under βAS : AP(X∗) → AP(X∗, S).

Then to give M in P(X∗, S) is equivalent to giving its image N = f∗(M) in the category

P(P1
R, {∞}), together with a homomorphism α : OX∗ → End(N) in AP(P1

k[[t ]], {∞}) cor-

responding to the module structure over (X∗, S). Since βA∞ is an equivalence of categories,

it follows that α is induced by a unique homomorphism α : OX∗ → End(N) in AP(P1
k[[t ]]),

where N is as above. Giving the pair (N,α) is equivalent to giving an OX∗ -module M in

P(X∗), and it is immediate that βS(M) ≈M . Moreover, M is unique up to isomorphism,

since (as observed above) N determines N up to isomorphism, and since α determines α.

Thus βS is indeed bijective on isomorphism classes of objects.

It remains to show that βS induces a bijection on morphisms. So let M1,M2 be ob-

jects in P(X∗), and let M i = βS(Mi) in P(X∗, S) for i = 1, 2. Also, let Ni = f∗(Mi) in

P(P1
k[[t ]]) and let N i = f∗(M i) in P(P1

k[[t ]], {∞}). As before, let αi : OX∗ → End(N i) be

the homomorphism in AP(P1
k[[t ]], {∞}) corresponding to the module structure of M i over
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(X∗, S), and similarly for αi : OX∗ → End(Ni) in AP(P1
k[[t ]]). If ψ : N1 → N2 is a mor-

phism in P(P1
k[[t ]]), then by composing with ψ on the left and right respectively, we obtain

induced morphisms ψ∗ : End(N1) → Hom(N1, N2) and ψ∗ : End(N2) → Hom(N1, N2) in

P(P1
k[[t ]]). Similarly, if ψ : N1 → N2 is a morphism in P(P1

k[[t ]], {∞}), then by compos-

ing with ψ we obtain morphisms ψ∗ : End(N1) → Hom(N1, N2) and ψ
∗

: End(N2) →

Hom(N 1, N2) in P(P1
k[[t ]], {∞}). Observe that to give a morphism φ : M1 → M2 in

P(X∗, S) is equivalent to giving a morphism ψ : N1 → N2 in P(P1
k[[t ]], {∞}) such that

ψ∗ ◦ α1 = ψ
∗
◦ α2. Similarly, giving a morphism φ : M1 → M2 in P(X∗) is equivalent to

giving a morphism ψ : N1 → N2 in P(P1
k[[t ]]) such that ψ∗ ◦ α1 = ψ∗ ◦ α2.

Now let φ : M1 → M2 be a morphism in P(X∗, S), and let ψ : N1 → N2 be

the morphism in P(P1
k[[t ]], {∞}) induced by forgetting the (X∗, S)-structure of φ. By the

previous paragraph, we have that ψ∗◦α1 = ψ
∗
◦α2. Since β∞ : P(P1

k[[t ]]) → P(P1
k[[t ]], {∞})

is an equivalence of categories, there is a unique morphism ψ : N1 → N2 in P(P1
k[[t ]]) that

induces ψ, and this morphism satisfies ψ∗ ◦α1 = ψ∗ ◦α2. Hence ψ is induced by a (unique)

morphism φ : M1 → M2 in P(X∗) via f∗. Here φ induces φ via βS , because ψ induces ψ

and αi induces αi. Since any map in Hom(M1,M2) that induces φ ∈ Hom(M1,M2) must

induce ψ ∈ Hom(N1, N2) and hence ψ ∈ Hom(N1, N2) (using that β∞ is an equivalence

of categories), it follows that φ is the unique morphism in Hom(M1,M2) that induces φ.

So indeed βS is an equivalence of categories.

(b) This follows purely formally from part (a), as in the proofs of [Ha2, Prop. 2.8]

and [Ha4, Theorem 1].

Remark. The requirement above that the modules be projective (or equivalently, flat) is

solely due to the corresponding requirement of [Ha4, Theorem 1(3)]. If the latter require-

ment can be eliminated, then so can the former.

Corollary. Under the hypotheses of the above theorem, with m ≤ 1, and with

U = X − S, let YU → Spec ÔX∗,U and Yξ → ÔX∗,ξ (for all ξ ∈ S) be normal covers [resp.

G-Galois normal covers]. Suppose that for every ξ ∈ S, and for every minimal prime ℘ of

ÔX∗,ξ containing I, an isomorphism is given between the covers that YU and Yξ induce

over k(℘)[[t ]]. Then there is a unique normal cover [resp. G-Galois normal cover] Y → X∗

that induces the given covers, compatibly with the above identifications.

Proof. This follows from Theorem 1 in the same way that [Ha4, Proposition 4(b)]

followed from [Ha4, Theorem 1].
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Section 2. Thickening Problems

In [Gr2, Cor. 7.4], Grothendieck showed that if X is a smooth proper curve over a field

k, and if R is a complete local ring with residue field k, then X is the closed fibre of a

smooth proper R-curve. Thus each such X has a thickening over R. In this section, we

consider the situation in which the given curve X is not necessarily smooth. Here, we

show for R = k[[t]] that if we are given thickenings near the singular points of X , then

there is an R-curve with closed fibre X and inducing the given local thickenings. This is

proven in the relative case in Theorem 2 (where the thickening is shown to be unique) and

in the absolute case in Theorem 3. The proofs use Theorem 1 from Section 1. We begin

by introducing terminology.

Let X be a projective k-curve that is connected and reduced (but not necessarily

irreducible), and let S be a non-empty finite closed subset of X containing the singular

locus. Let X ′ = X − S. By a thickening of (X,S) we will mean a projective normal

k[[t]]-curve X∗ together with an isomorphism φ : X→∼ X∗(t) from X to the closed fibre of

X∗, such that the restriction φ′ : X ′→∼ X ′∗(t) extends to a trivialization X ′ ×k k[[t]]→
∼ X ′∗

away from S. Here X ′∗ = Spec ÔX∗,X′ (cf. §1).

By an isomorphism of thickenings (X∗, φ)→∼ (X̃∗, φ̃) of (X,S) we will mean an iso-

morphism I : X∗→∼ X̃∗ of k[[t]]-schemes such that φ̃ = I(t) ◦ φ. Here I(t) : X∗(t) → X̃∗(t) is

the morphism induced by I via pullback.

Meanwhile, by a thickening problem Θ for (X,S) we will mean the assignment, for

each closed point ξ ∈ S, of

(i) a Noetherian normal complete local domain Rξ containing k[[t]], such that t lies in the

maximal ideal of Rξ; and

(ii) a k-algebra isomorphism Fξ : Rξ/(t)→
∼ ÔX,ξ .

Here, Fξ corresponds to an isomorphism φξ : Spec ÔX,ξ→
∼ SpecRξ/(t) of k-schemes.

Let Θ = {(Rξ, Fξ)} and Θ̃ = {(R̃ξ, F̃ξ)} be thickening problems for (X∗, S). By an

isomorphism ρ : Θ→∼ Θ̃ we will mean a collection of k[[t]]-isomorphisms ρξ : Rξ →̃ R̃ξ, for

ξ ∈ S, such that Fξ = F̃ξ ◦ ρξ : Rξ/(t)→
∼ ÔX,ξ for all ξ ∈ S, where ρξ : Rξ/(t)→

∼ R̃ξ/(t) is

the map induced by ρξ modulo (t).

With (X,S) as above, any thickening of (X,S) induces a thickening problem for

(X,S). Namely, if (X∗, φ) is a thickening of (X,S), then let R̃ξ = ÔX∗,ξ for each ξ ∈ S; let

φ̃ξ : Spec ÔX,ξ→
∼ Spec R̃ξ/(t) be the pullback of φ to Spec ÔX,ξ; and let F̃ξ : R̃ξ/(t)→

∼ ÔX,ξ

be the corresponding k-algebra isomorphism. We then call Θ(X∗,φ) = {(R̃ξ, F̃ξ)} the

induced thickening problem for (X,S). Also, we say that a thickening (X∗, φ) of (X,S) is
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a solution to a thickening problem Θ if Θ is isomorphic to the induced thickening problem

Θ(X∗,φ).

Theorem 3 below guarantees a solution to such thickening problems. This is done

by first proving an analogous result in the relative situation (Theorem 2, below), which

relies on the patching results in Section 1 for projective algebras. The relative result is

in a sense stronger, in that the solution in that situation is unique (up to isomorphism).

Before stating that result, we consider the relative analogs of the terms that were defined

above in the absolute situation.

So let Z∗ be a connected projective normal k[[t]]-curve whose closed fibre Z is a

connected, reduced, projective k-curve. Suppose that (Z∗, id) is a thickening of (Z, SZ),

for some SZ ⊂ Z. Let X be another connected, reduced, projective k-curve, let ψ : X → Z

be a finite generically separable morphism, and suppose that SX := ψ−1(SZ) contains the

singular locus of X . Write Z ′ = Z − SZ and X ′ = X − SX . By a thickening of (X,SX)

relative to ψ : X → Z and the inclusion j : Z ↪→ Z∗ (or for short, a relative thickening

of (X,SX), if the morphisms ψ and j are understood) we will mean a thickening (X∗, φ)

of (X,SX) (in the above absolute sense), together with a finite morphism ψ∗ : X∗ → Z∗,

such that the closed fibre of ψ∗ is j ◦ ψ ◦ φ−1, and such that ψ∗ : X∗ → Z∗ is a trivial

deformation of ψ : X → Z away from SX and SZ . This last condition means the following:

Let X ′∗ and Z ′∗ be the completions of X∗ and Z∗ along X ′ = X − SX and Z ′ = Z − SZ ,

and let ψ′ : X ′ → Z ′ and ψ′∗ : X ′∗ → Z ′∗ be the pullbacks of ψ and ψ∗ over Z ′ and

Z ′∗. Then the content of the condition is that there are trivializations X ′ ×k k[[t]]→
∼ X ′∗

and Z ′ ×k k[[t]]→
∼ Z ′∗ that carry ψ′∗ to the morphism X ′ ×k k[[t]] → Z ′ ×k k[[t]] induced

by ψ′. By an isomorphism of relative thickenings (X∗, φ, ψ∗)→∼ (X̃∗, φ̃, ψ̃∗) of (X,SX) as

above, we will mean an isomorphism I : (X∗, φ)→∼ (X̃∗, φ̃) of absolute thickenings such

that ψ∗ = ψ̃∗ ◦ I.

Similarly, by a thickening problem for (X,SX) relative to ψ : X → Z and j : Z ↪→ Z∗

as above, we will mean a thickening problem {(Rξ, Fξ)} for (X,SX) together with a finite

injective k[[t]]-algebra homomorphism ιξ : ÔZ∗,ψ(ξ) ↪→ Rξ for each ξ ∈ SX , whose reduction

ιξ : ÔZ,ψ(ξ) ↪→ Rξ/(t) modulo (t) has the property that Fξ ◦ ιξ : ÔZ,ψ(ξ) ↪→ ÔX,ξ is the

map induced by completely localizing ψ at ξ. Suppose we are given relative thickening

problems Θ = {(Rξ, Fξ, ιξ)} and Θ̃ = {(R̃ξ, F̃ξ, ι̃ξ)}. Then by an isomorphism Θ→∼ Θ̃

of relative thickening problems for (X∗, SX) we will mean an isomorphism ρ = {ρξ} :

{(Rξ, Fξ)}→
∼ {(R̃ξ, F̃ξ)} of the corresponding absolute thickening problems, such that ι̃ξ =

ρξ ◦ ιξ for each ξ ∈ SX .

As for absolute thickenings, each relative thickening induces a relative thickening

problem. Namely, let (X∗, φ, ψ∗) be a thickening of (X,SX) relative to ψ : X → Z and
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j : Z ↪→ Z∗. Let {(Rξ, Fξ)} be the (absolute) thickening problem for (X,SX) induced by

(X∗, φ). For each ξ ∈ SX let ιξ : ÔZ∗,ζ → Rξ be the k[[t]]-algebra homomorphism induced

by ψ∗, where ζ = ψ(ξ). Then ιξ is injective because ψ is generically separable, and the

induced relative thickening problem Θ(X∗,φ,ψ∗) is given by {(Rξ, Fξ, ιξ)}. As before, we

say that a relative thickening (X∗, φ, ψ∗) of (X,SX) is a solution to a relative thickening

problem Θ if Θ is isomorphic to the induced relative thickening problem Θ(X∗,φ,ψ∗).

Relative thickening problem can be interpreted in terms of patching problems for Z∗

(cf. Section 1); and in the next result we use Theorem 1 of §1 to find a unique solution to

a given relative thickening problem. To do this we construct finite modules over rings of

the form ÔZ∗,U and ÔZ∗,ζ in such a way that they are compatible over each ÔZ∗,ζ,℘ (cf.

§1); here ζ ∈ SZ and ℘ ranges over the minimal primes of ÔZ∗,ζ containing the ideal (t).

To ease the notation, we will denote ÔZ∗,ζ,℘ simply by ÔZ∗,℘.

Theorem 2. Every relative thickening problem has a solution, which is unique up to

isomorphism.

Proof. Let ψ : X → Z, j : Z ↪→ Z∗, SX and SZ be as above. Consider the map

that assigns, to each thickening of (X,SX) relative to ψ, j, its induced relative thickening

problem. Then the theorem is equivalent to the assertion that this map is a bijection on

isomorphism classes.

For surjectivity, let Θ = {(Rξ, Fξ, ιξ)} be a thickening problem for (X,SX) rela-

tive to ψ, j. For each ζ ∈ SZ , let Rζ be the direct product of the rings Rξ, where ξ

ranges over ψ−1(ζ). This is an ÔZ∗,ζ-algebra via the inclusions ιξ, and there is an ÔZ,ζ-

algebra isomorphism Fζ = {Fξ} : Rζ/(t)→
∼ ÔX,ζ :=

∏

ξ∈ψ−1(ζ) ÔX,ξ. For each prime

ideal ℘ of ÔZ∗,ζ that is minimal among those containing (t), we may consider the com-

plete localization Rζ,℘ of the ÔZ∗,ζ-algebra Rζ at ℘. The isomorphism Fζ induces an

isomorphism Fζ,℘ : Rζ,℘/(t)→
∼ ÔX,℘̄ :=

∏

P̄∈ψ−1(℘̄) ÔX,P̄ of ÔZ,℘̄-algebras, where ℘̄ is

the reduction of ℘ modulo (t). As in §1, let U = SpecA be the closure in Z − SZ of

the point corresponding to ℘ (or equivalently, corresponding to ℘). Thus U is the ir-

reducible component of Z − SZ “containing ℘”, and there is an inclusion A ↪→ ÔZ,℘.

Similarly, there is an inclusion B ↪→ ÔX,℘, where V = SpecB = ψ−1(U) ⊂ X , and we

have ÔX,℘̄ = B ⊗A ÔZ,℘̄. Since ψ is generically separable, the inclusion ÔZ,℘̄ ↪→ ÔX,℘̄

is étale. So by [Gr2, I, Cor. 6.2], the ÔZ,℘̄-algebra isomorphism Fζ,℘ : Rζ,℘/(t)→
∼ ÔX,℘̄

extends uniquely to an ÔZ∗,℘-isomorphism F ∗ζ,℘ : Rζ,℘→
∼ ÔX,℘̄[[t]]. Also, we may identify

ÔZ∗,U = A[[t]], since (Z∗, id) is a thickening of (Z, SZ); and this induces an identification

ÔZ∗,℘ = ÔZ,℘̄[[t]] = k(℘)[[t]]. So letting X∗U = SpecB[[t]] and X∗ζ = SpecRζ , for every

℘ as above we have an isomorphism between the covers that ψ∗U : X∗U → Spec ÔZ∗,U and
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ψ∗ζ : X∗ζ → Spec ÔZ∗,ζ induce over k(℘)[[t]]. Also, X∗U is normal since it is the trivial

deformation of a smooth curve, and X∗ζ is normal since each Rξ is. So by the Corollary

to Theorem 1, there is a unique normal cover X∗ → Z∗ that induces these two covers,

compatibly with the above identifications.

Note that ψ∗U : X∗U → Spec ÔZ∗,U and ψ : X → Z restrict to the same cover ψU : V →

U , relative to the above identifications. Similarly ψ∗ζ : X∗ζ → Spec ÔZ∗,ζ and ψ restrict to

the same cover ψζ : Xζ → Zζ , where Zζ = Spec ÔZ,ζ and Xζ = X ×Z Zζ . So applying

Theorem 1 in the case of m = 0 (i.e. no deformation variables), we conclude that there

is an identification φ : X→∼ X∗(t) between X and the closed fibre of X∗, with respect to

which the restriction of ψ∗ to X∗(t) becomes identified with ψ : X → Z. Thus (X∗, φ, ψ∗)

is a thickening of (X,SX) relative to ψ, j, and is a solution to the given relative thickening

problem Θ. This proves surjectivity.

For injectivity, suppose that (X∗, φ, ψ∗) and (X̃∗, φ̃, ψ̃∗) are thickenings of (X,SX)

relative to ψ, j, and that each is a solution to a thickening problem Θ = {(Rξ, Fξ, ιξ)}

for (X,SX) relative to ψ, j. Thus we may identify ÔX∗,ξ and ÔX̃∗,ξ with Rξ as ÔZ,ψ(ξ)-

algebras, compatibly with the identifications of X with the closed fibres of X∗ and X̃∗.

Thus the pullbacks ψ∗ζ : X∗ζ → Spec ÔZ∗,ζ and ψ̃∗ζ : X̃∗ζ → Spec ÔZ∗,ζ are isomorphic,

compatibly with the above identifications. Moreover, so are the pullbacks ψ∗U : X∗U →

Spec ÔZ∗,U and ψ∗U : X̃∗U → Spec ÔZ∗,U , since each is a trivial deformation of ψU : V → U

(because X∗ and X̃∗ are thickenings of (X,SX) relative to ψ, j).

Now by the Corollary to Theorem 1, ψ∗ : X∗ → Z∗ is determined by the above data

together with the induced isomorphism between the pullbacks of ψ∗U and ψ∗ζ over k(℘)[[t]],

for each prime ℘ of ÔZ,ζ that is minimal among those containing (t). And the same is true

for ψ̃∗ : X̃∗ → Z∗. But these two induced isomorphisms agree modulo (t), since both are

given by Fζ =
∏

ξ∈ψ−1(ζ) Fξ. So by [Gr2, I, Cor. 6.2], the two induced isomorphisms agree,

compatibly with the above identifications. So the two relative thickenings are isomorphic.

This proves injectivity.

Observe that the injectivity part of the above proof actually shows more: Namely, any

isomorphism between two relative thickening problems lifts uniquely to an isomorphism

between the corresponding thickenings.

A relative thickening (X∗, φ, ψ∗) of (X,SX) will be called G-Galois if the morphism

ψ∗ : X∗ → Z∗ is G-Galois. Similarly, we will call a relative thickening problem Θ =

{(Rξ, Fξ, ιξ)} for (X,SX) G-Galois if X → Z is G-Galois, each ιζ : ÔZ∗,ζ → Rζ is G-

Galois (where Rζ =
∏

ξ∈ψ−1(ζ)Rξ and ιζ =
∏

ξ∈ψ−1(ζ) ιξ), and the above G-actions agree

over the rings ÔZ,ζ . Combining the observation of the previous paragraph with Theorem 3,
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we deduce:

Corollary. Every G-Galois relative thickening problem has a G-Galois solution, which is

unique up to isomorphism.

Namely, by the theorem, the given thickening problem has a solution, and by the

above observation, the automorphisms of the thickening problem lift to automorphisms

of the solution. Note that the corollary can also be deduced using the Galois version of

Theorem 1 (though of course the uniqueness proof in Theorem 2 also relies on Theorem 1).

Remark. In the above definitions and results (as in the corollary to Theorem 1), the

assumptions on normality and on m = 1 (i.e. one deformation variable) are used only to

guarantee that the algebras being patched are projective as modules, so that Theorem 1

can be applied. But if [Ha2, Theorem 1(b)] can be generalized to the case of modules

that need not be projective, then the same will hold for Theorems 1 and 2 above, and in

particular the normality hypothesis in the definitions above could be dropped.

In the definition of “relative thickening problem”, we are given injections ιξ that put

an ÔZ∗,ψ(ξ)-algebra structure on each Rξ. In the proposition below, this requirement is

eliminated (thus considering absolute thickening problems), in the case that Z∗ is a trivial

deformation of a smooth curve Z. Uniqueness, however, is no longer asserted. First we

prove two lemmas:

Lemma 1. Let T be a ring that is complete with respect to an ideal I, and let M be a

T -module such that
⋂∞
n=1 I

nM = (0). Let y1, . . . , ys ∈M , and suppose that their images

in M/IM generate M/IM as a T/I-module. Then y1, . . . , ys generate M as a T -module.

Proof. Let m ∈ M . By hypothesis,
⋂∞
n=1 I

nM = (0). Hence to show that m is in the

T -span of y1, . . . , ys, it suffices to show that there exist a1, . . . , as ∈ T such that for all n

we have m− (a1y1 + · · ·asys) ≡ 0 (mod InM). Since T is complete, in order to do this it

suffices to construct sequences {ai,n}
∞
n=1 in T for i = 1, . . . , s such that

m ≡ a1,ny1 + · · · + as,nys (mod InM) for all n (∗)

and such that ai,n+1 ≡ ai,n (mod In) for all i, n. We do this by induction.

Namely, for n = 1 there exist a1,1, . . . , as,1 ∈ T such that m ≡
∑s
i=1 ai,1yi (mod IM),

since y1, . . . , ys generate M/IM as a T/I-module. Given a1,n, . . . , as,n inductively, there

exist elements t1,n, . . . , tN,n ∈ In and m1,n, . . . , mN,n ∈ M such that m −
∑s
i=1 ai,nyi =

∑N
j=1 tj,nmj,n ∈ InM . By the case n = 1 applied to mj,n, we find that there exist elements

b1,j,n, . . . , bs,j,n ∈ T such that mj,n ≡ b1,j,ny1 + · · ·+bs,j,nys (mod IM). Thus the elements
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ai,n+1 := ai,n+
∑N

j=1 bi,j,ntj,n ∈ T satisfy the relation (*) with n+1 replacing n, and also

satisfy ai,n+1 ≡ ai,n (mod In).

Using Lemma 1 we obtain

Lemma 2. Let k be a field, and let R be a Noetherian complete local domain containing

k[[t]], such that t lies in the maximal ideal of R. Let ι : k[[z]] ↪→ R/(t) be a finite ring

extension. Then there exists an injective k[[t]]-algebra homomorphism ι : k[[z, t]] ↪→ R

lifting ι, and making R a finite k[[z, t]]-algebra.

Proof. Since ι : k[[z]] ↪→ R/(t) is finite, the maximal ideal m of R/(t) has the property

that ι−1(m) = (z), the maximal ideal of k[[z]]. In particular, ι(z) ∈ m. Choose r ∈ R

whose reduction modulo (t) is ι(z).

Since R is complete, and since r, t lie in the maximal ideal m of R, it follows that

for every f(z, t) =
∑

i,j aijz
itj ∈ k[[z, t]], the infinite sum

∑

i,j aijr
itj is a well defined

element f(r, t) ∈ R. Moreover the assignment f(z, t) 7→ f(r, t) is a well-defined k[[t]]-

algebra homomorphism ι : k[[z, t]] → R lifting ι.

If f(z, t) ∈ k[[z, t]] is non-zero, then we may write f(z, t) = tng(z, t) for some non-

negative integer n and some g(z, t) ∈ k[[z, t]] that is not a multiple of t. So the reduction

of g modulo (t) is non-zero, and hence is not in the kernel of ι. Thus g 6∈ ker(ι). Also,

ι(tn) = tn 6= 0. Since R is a domain, f = tng 6∈ ker(ι). This proves that ι is injective.

Finally, since R is a Noetherian domain and the ideal tR is non-zero, it follows that
⋂∞
n=1 t

nR = (0) [AM, Cor. 10.18]. So applying Lemma 1 with T = k[[z, t]], I = (t), and

M = R, and using that R/(t) is finite over k[[z]] = T/(t), we have that R is finite over

k[[z, t]].

Applying Lemma 2 to Theorem 2, we obtain:

Proposition 1. Let Θ be a thickening problem for (X,SX), where X is a connected

reduced projective k-curve and SX ⊂ X is a non-empty finite closed subset containing

the singular locus of X . Let ψ : X → Z be a finite generically separable morphism to a

smooth projective k-curve Z, such that SX = ψ−1(SZ) for some finite subset SZ ⊂ Z. Let

Z∗ = Z ×k k[[t]]. Then for some solution (X∗, φ) to the (absolute) thickening problem Θ,

there is a finite morphism ψ∗ : X∗ → Z∗ whose closed fibre is ψ ◦ φ−1.

Proof. Fix any ζ ∈ SZ , and let z be a local parameter on Z at ζ. Then for each ξ ∈ Sζ =

ψ−1(ζ), the restriction of ψ to Spec ÔX,ξ corresponds to an inclusion ψξ : k[[z]] ↪→ ÔX,ξ,

and hence (by composing with Fξ
−1 : ÔX,ξ →̃Rξ/(t) ) an inclusion ιξ : k[[z]] ↪→ Rξ/(t).

Since ψ is finite, this inclusion makes Rξ/(t) into a finite k[[z]]-algebra. Applying Lemma

2, this lifts to an inclusion ιξ : k[[z, t]] ↪→ Rξ that makes Rξ a finite k[[z, t]]-algebra.
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Moreover we have the equality Fξ ◦ ιξ = ψξ : ÔZ,ζ ↪→ ÔX,ξ. So by the above Theorem 2,

the conclusion follows.

Using the Proposition, we obtain the desired existence theorem for solutions to abso-

lute thickening problems:

Theorem 3. Every thickening problem has a solution.

Proof. Let Θ be a thickening problem for (X,SX), where X is a connected reduced

projective k-curve and SX ⊂ X is a non-empty finite closed subset containing the singular

locus of X . If there is a finite generically separable morphism ψ : X → P1
k such that

SX = ψ−1(∞), then by applying the above proposition to Z = P1 and SZ = {∞}, we

conclude that there is a solution (X∗, φ) to Θ. Thus it suffices to show that such a ψ

exists.

Let X̃ be the normalization of X and let SX̃ ⊂ X̃ be the inverse image of SX ⊂ X

in X̃. By Riemann-Roch for smooth projective curves, if m is a sufficiently large integer,

then there is a rational function f on X̃ which is regular away from SX̃ , and which has

a pole of order m at each point of SX̃ . Here f corresponds to a morphism ψ̃0 : X̃ → P1

such that ψ̃−1
0 (∞) = SX̃ . Moreover, by taking m prime to p, we may assume that ψ̃0 is

generically separable. Now the rational function 1/f ∈ K(X̃) has a zero at each point of

SX̃ , and so by [Se, IV, 1.2(4)] there is an integer N such that if n ≥ N then 1/fn descends

to an element in the maximal ideal of the local ring of X at each of the points of SX .

(Actually, Serre assumes that the base field k is algebraically closed, but that assumption

was not used in obtaining [Se, IV, 1.2(4)].) Meanwhile, the restriction of 1/fn to X̃ − SX̃
descends to a rational function on the smooth curve X̃ − SX̃ ≈ X − SX , corresponding

to a morphism to P1. So the morphism ψ̃ : X̃ → P1 corresponding to fn, which satisfies

ψ̃−1(∞) = SX̃ , descends to a morphism ψ : X → P1 such that ψ−1(∞) = SX . If n is

chosen prime to p, then ψ̃ is generically separable (since ψ̃0 is) and hence so is ψ.

Remark. In the absolute case (i.e. Theorem 3), unlike the relative case (i.e. Theorem 2),

the solution need not be unique up to isomorphism. For example, let X be the elliptic

curve given in affine coordinates by y2 = x(x2 − 1), and let S = {ξ}, where ξ is the point

where x = y = 0. Thus y is a local uniformizer at ξ, and we may identify ÔX,ξ with k[[y]].

Let Rξ = k[[y, t]], and let Fξ : Rξ/(t)→
∼ ÔX,ξ be the obvious map. Thus (Rξ, Fξ) defines

a thickening problem Θ for (X,S). The trivial thickening of (X,S) is given by the space

X∗ = X ×k k[[t]], together with the obvious isomorphism of X with the closed fibre of

X∗. Moreover this is a solution to the thickening problem Θ. But another solution to Θ

is given by the thickening (X̃∗, φ̃), where X̃∗ is the elliptic curve over k[[t]] that is given

in affine coordinates by y2 = (x− t)(x2 − 1), and where φ̃ is the obvious isomorphism of
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X with the closed fibre of X̃∗. But these two solutions are not isomorphic, because the

generic fibres of X∗ and X̃∗ are elliptic curves over k((t)) that have different j-invariants.

Section 3. Thickening and Deforming Covers

In order to use formal geometry to construct covers with desired Galois groups and inertia

groups, one wants to begin with a degenerate cover X → Z of a possibly reducible base

curve Z, having the desired Galois group. The next step is to thicken both X and Z to

obtain a cover of irreducible normal curves over k[[t]]. Theorem 4 below shows that such a

thickening of covers is possible, and its proof relies on the results of the previous sections.

Then Theorem 5 and its corollaries provide the set-up so that actual constructions can be

performed (as will be done in the following section).

Below we fix a field k, and consider k-curves Z that are reduced and connected but

not necessarily irreducible. Given a cover ψ : X → Z, we consider the existence of covers

ψ∗ : X∗ → Z∗ of normal k[[t]]-curves whose closed fibre is ψ : X → Z, with specified

behavior near the singular points.

More explicitly, by a thickening problem for covers, over k, we will mean the following

data:

(i) A cover ψ : X → Z of geometrically connected reduced projective k-curves, together

with a finite closed set S ⊂ Z containing the singular locus of Z;

(ii) For every ζ ∈ S, a Noetherian normal complete local domain Rζ containing k[[t]],

and whose maximal ideal contains t, together with a finite generically separable

Rζ-algebra Aζ ;

(iii) For every ζ ∈ S, a pair of k-algebra isomorphisms Fζ : Rζ/(t)→
∼ ÔZ,ζ and Eζ :

Aζ/(t)→
∼ ÔX,ζ :=

∏

ξ∈ψ−1(ζ) ÔX,ξ that are compatible with the given inclusions

ιζ : Rζ ↪→ Aζ and ÔZ,ζ ↪→ ÔX,ζ . That is, the following induced diagram commutes:

Aζ/(t)
∼
> ÔX,ζ

∧ ∧

ῑζ

∪
∪

Rζ/(t)
∼
> ÔZ,ζ

Given such a thickening problem for covers, write Z ′ = Z − S and X ′ = X − ψ−1(S).

A solution to such a thickening problem for covers consists of a cover ψ∗ : X∗ → Z∗ of

projective normal k[[t]]-curves whose closed fibre is isomorphic to X → Z; whose pullback

ψ′∗ : X ′∗ → Z ′∗ := Spec ÔZ∗,Z′ is a trivial deformation of the restriction ψ′ : X ′ → Z ′;
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and whose pullbacks over the complete local rings at the points of S are given by Rζ ⊂ Aζ ,

compatibly with the above isomorphisms.

Similarly, for any finite group G we may consider the corresponding notions of a G-

Galois thickening problem for covers, and the solution to such a problem. Namely, for the

former notion we require that ψ : X → Z and Rζ ⊂ Aζ are each G-Galois, compatibly with

Fζ . Similarly, for the latter notion, we require that ψ : X∗ → Z∗ be G-Galois, and that

this G-Galois action induce the actions on the closed fibre and on the extensions Rζ ⊂ Aζ .

Combining Theorems 2 and 3, we then obtain the following

Theorem 4. Every thickening problem for covers has a solution, as does every thickening

problem for G-Galois covers.

Proof. Suppose we are given a thickening problem for covers as above. The data {(Rζ , Fζ)}

define a thickening problem for the curve Z, and by Theorem 3 there is a solution (Z∗, φ).

Thus in particular there is an inclusion j : Z ↪→ Z∗ which identifies Z with the closed fibre

of Z∗.

Meanwhile, the decomposition ÔX,ζ =
∏

ξ∈ψ−1(ζ) ÔX,ξ lifts to a decomposition Aζ =
∏

ξ∈ψ−1(ζ)Aξ, where Aξ := E−1
ζ (ÔX,ξ) is a finite generically separable Rξ-algebra. For

each ξ ∈ X over ζ ∈ S, we have that Eζ restricts to an isomorphism Eξ : Aξ/(t)→
∼ ÔX,ξ,

and ιζ restricts to an inclusion of k[[t]]-algebras ιξ : ÔZ,ζ ↪→ Aξ. By (iii), Eξ and ιξ

are compatible, i.e. the reduction ιξ : ÔZ,ζ ↪→ Rξ/(t) modulo (t) has the property that

Eξ ◦ ιξ : ÔZ,ζ ↪→ ÔX,ξ is the map induced by completely localizing ψ at ξ. Thus the

data {(Aξ, Eξ, ιξ)} defines a thickening problem for (X,ψ−1(S)) relative to ψ and j. By

Theorem 2, there is a solution (X∗, φ, ψ∗) to this relative thickening problem. It is then

immediate that the cover ψ∗ : X∗ → Z∗ is a solution to the given thickening problems for

covers.

The G-Galois case is similar, using the Corollary to Theorem 2.

Remark. The above proof shows more: Namely that once we are given Z∗ as above, the

cover ψ : X∗ → Z∗ is unique up to isomorphism. This is because of the uniqueness

assertion in Theorem 2. But the choice of Z∗ is not unique, since there is no uniqueness

in Theorem 3.

Let Nk be the set of natural numbers such that k contains a primitive nth root of

unity. For each n ∈ Nk, we may choose a primitive nth root of unity ωn ∈ k such that

ωmmn = ωn for all m,n ∈ Nk. Now consider a G-Galois cover ψ : X → Z of smooth

connected k-curves such that each ramification point is k-rational and each ramification

index lies in Nk. Thus in particular, the cover is tamely ramified. Let ξ ∈ X(k), lying over
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ζ ∈ Z(k), be a point with ramification index n. The corresponding extension ÔZ,ζ ⊂ ÔX,ξ

of complete local rings is Galois, and its Galois group, which is cyclic of order n, is the

inertia group ofX → Z at ξ. Let z, x be uniformizers at ζ, ξ respectively. Then by Kummer

theory this extension of complete local rings is given by xn = az for some a ∈ k∗, and

the automorphism cξ : x 7→ ωnx generates the inertia group. Moreover the automorphism

cξ is independent of the choices of x, z and a; and if k is algebraically closed then we

may take a = 1. As in [St1], we will call this element cξ ∈ G the canonical generator of

the inertia group at ξ. This is determined by the point ζ up to conjugacy. If the branch

points of X → Z are given with an ordering, say ζ1, . . . , ζr, then we say that the cover has

description (c1, . . . , cr), where cj is a canonical generator of inertia at a point over ζj, and

where each cj is determined up to conjugacy. (This notion is related to that of “branch

cycle description” of covers over the complex numbers [Fr], but is weaker, since the entries

of a branch cycle description are determined up to uniform conjugacy.)

Consider a G-Galois cover ψ : X → Z of semistable k-curves, i.e. that every singularity

of X or of Z is an ordinary double point rational over k. Let SZ be the set of double points

of Z, and suppose that the points of SX := ψ−1(SZ) are k-rational. Let ν : Z̃ → Z be

the normalization of Z, and let ν̂ : X̃ → X be the pullback of ν under ψ : X → Z. Thus

for each point ξ ∈ SX , the inverse image ν̂−1(ξ) ⊂ X̃ consists of two points. Suppose that

X̃ is smooth and that the (possibly disconnected) G-Galois cover ψ̃ : X̃ → Z̃ is tamely

ramified over SZ̃ := ν−1(SZ). If, for each ξ ∈ SX , the canonical generators of inertia at

the two points of ν̂−1(ξ) are inverses in G, then we will call the G-Galois cover X → Z

admissible.

Thus if X → Z as above is an admissible G-Galois cover, then the complete local ring

at any point ζ ∈ SZ is of the form k[[u, v]]/(uv). Moreover, if ξ ∈ SX lies over ζ, then the

complete local ring at ξ is of the form k[[x, y]]/(xy), and the inclusion ÔZ,ζ ⊂ ÔX,ξ is given

by xn = au, yn = bv, where n is the ramification index at the point and where a, b ∈ k∗.

At the two points of X̃ lying over ξ, the canonical generators of inertia are elements g and

g−1 of G, where g acts on ÔX,ξ by g(x) = ωnx, g(y) = ω−1
n y.

Let ψ : X → Z be an admissible G-Galois cover, and let X ′ = X − SX and Z ′ =

Z − SZ . Let ψ∗ : X∗ → Z∗ be a G-Galois cover of normal k[[t]]-curves whose closed fibre

is ψ : X → Z, and whose pullback ψ′∗ : X ′∗ → Z ′∗ := Spec ÔZ∗,Z′ is a trivial deformation

of the restriction ψ′ : X ′ → Z ′. We will call ψ∗ : X∗ → Z∗ an admissible thickening

of ψ : X → Z if for each ζ ∈ SZ and ξ ∈ ψ−1(ζ), the extension of complete local rings

ÔZ∗,ζ ⊂ ÔX∗,ξ is given by

k[[t, u, v]]/(uv− tn) ⊂ k[[t, x, y]]/(xy− abt),
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where as above xn = au, yn = bv (a, b ∈ k∗); n is the ramification index over ζ; and the

canonical generator g ∈ G (as above) acts by g(x) = ωnx, g(y) = ω−1
n y. To indicate the

dependence on ζ, we sometimes write a = aζ , b = bζ , n = nζ .

In these terms, we obtain the following corollary of Theorem 4:

Corollary. Every admissible cover has an admissible thickening.

Proof. Let X → Z be an admissible G-Galois cover as above, and preserve the above

notation. Thus at each ζ ∈ SZ we have a ramification index nζ ∈ Nk and elements

aζ , bζ ∈ k∗. For each ζ ∈ SZ choose a point of X̃ over ζ, let g ∈ G be the canonical

generator of inertia at that point, of order nζ , and let Iζ ⊂ G be the subgroup generated by

g. Let Rζ = k[[t, u, v]]/(uv− tnζ), and let Aζ = IndGIζ
k[[t, x, y]]/(xy−aζbζt). Thus we have

compatible isomorphisms Fζ : Rζ/(t)→
∼ ÔZ,ζ and Eζ : Aζ/(t)→

∼ ÔX,ζ :=
∏

ξ∈ψ−1(ζ) ÔX,ξ.

Thus we have a thickening problem for G-Galois covers, and by Theorem 4 there is a

solution. This solution is then an admissible thickening of X → Z.

Remark. Theorems 3 and 4 can also be viewed from the perspective of rigid geometry, and

in these terms are related to [Sa1] and [Sa2].

Florian Pop [Po2] has defined a field k to be large if it has the property that every

smooth geometrically irreducible k-variety with a k-point has a dense set of k-points.

This includes many familiar classes of fields, e.g. algebraically closed fields, fields that are

complete with respect to a discrete valuation, PAC fields, the fields Qtr and Qtp of totally

real and totally p-adic algebraic numbers, etc. Also, every algebraic extension of a large

field is large. For such fields, it is possible to specialize the solution to a thickening problem

for covers, and one obtains the following consequence of Theorem 4:

Theorem 5. Let k be a large field, and consider a G-Galois thickening problem for k-

covers given by ψ : X → Z and by extensions ιζ : Rζ ↪→ Aζ , for ζ ∈ S ⊂ Z. Suppose that

away from S the branch locus of X → Z consists of m distinct k-points, and that for ζ ∈ S

the branch locus of the generic fibre of ιζ : Rζ ↪→ Aζ consists of mζ distinct k((t))-points.

Let γ be the arithmetic genus of Z.

Then there is a smooth projective k-curve Z# of genus γ, and a smooth connected

G-Galois branched cover of curves X# → Z# whose branch locus consists of m+
∑

ζ∈Smζ

distinct k-points. Moreover the inertia groups at these points (and, in the tame case, the

description) may be taken to be equal to those arising from ψ and the ιζ ’s as above.

Proof. By Theorem 4, there is a solution ψ∗ : X∗ → Z∗ to the given G-Galois thickening

problem. The scheme Z∗ is flat over the discrete valuation ring k[[t]], since its structure

sheaf OZ∗ is torsion-free over k[[t]]. So OZ∗ is locally free over k[[t]]. Here the morphism
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ψ∗, as well as the G-action and the branch points, are all defined over k[[t]]; and the inertia

groups away from S (and the description, in the tame case) agree with that of ψ, since

ψ∗ is a trivial deformation of ψ away from S. Since the structure is of finite type, there

is a k[t]-subalgebra T ⊂ k[[t]] of finite type, over which the covering morphism, G-Galois

action, and branch points are defined, and such that the structure sheaf of the base space

is locally free over T . Let V = Spec T . Thus V is a k-scheme whose function field K(V )

is contained in k((t)). Since k is algebraically closed in k((t)), it follows that K(V ) and k

are linearly disjoint over k. Hence V is a geometrically irreducible k-variety.

Thus we have a G-Galois cover of projective V -curves XV → ZV whose branch points

are V -rational, which induces X∗ → Z∗ via pullback by Spec k[[t]] → V , and such that

ZV → V is flat. The composition T ↪→ k[[t]]→→k (where t 7→ 0 under the second map)

corresponds to a k-valued point τ of V , and the fibre over this point is the original G-Galois

coverX → Z. So there is a dense open subset U1 ⊂ V such that for all closed points µ ∈ U1,

the corresponding fibre Xµ → Zµ of XV → ZV is a cover with branch points defined over

k(µ), and with inertia groups (and description, in the tame case) as desired. Also, by [Ha4,

Prop. 5] (or by the Bertini-Noether theorem [FJ, Proposition 9.29]), there is a dense open

subset U2 ⊂ V such that for all closed points µ ∈ U2, the fibre Xµ → Zµ is a morphism of

geometrically irreducible varieties over k(µ). So for µ ∈ U = U1 ∩ U2, the fibre over µ has

both properties. Moreover, since ZV → V is flat, it follows by [Ht, III, Cor. 9.10] that the

arithmetic genus of the fibre Zµ is equal to that of Zτ = Z, viz. γ.

Since the field k is large, and since V (k) 6= ∅, it follows that the set of k-points of V

is dense. So the dense open set U contains a k-point µ, and the fibre over µ is then as

desired.

For any semistable k-curve U , let πadm
A (U) be the set of (isomorphism classes of) finite

groups G such that there exists a connected G-Galois admissible cover of U , unramified

off the singular locus. In the case that U is smooth, this is just the set πA(U) of finite

Galois groups of connected étale covers of U , i.e. the continuous finite quotients of π1(U).

Also, for any integer γ, by πA(γ) we denote the set of groups G for which there is a dense

open subset MG in the moduli space Mγ of curves of genus γ, such that G ∈ πA(U) for

all k-curves U in MG. The above two results then yield the following

Corollary 1. Let k be a large field, and let Z be a connected semistable k-curve of

arithmetic genus γ, with singular locus S. Let ∆ ⊂ Z − S be a (possibly empty) finite set

of closed points.

(a) Then there is a smooth projective k-curve Z# and a finite subset ∆# ⊂ Z# of

k-points with |∆#| = |∆|, such that πadm
A (Z − ∆) ⊂ πA(Z# − ∆#).
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(b) Moreover, given a connected G-Galois admissible cover X → Z, there is a smooth

connected G-Galois cover X# → Z# with branch locus ∆# as above, such that the two

covers have the same inertia groups and, in the tame case, the same description.

Proof. Let X → Z be as in (b), and for ζ ∈ S let nζ ∈ Nk and aζ , bζ ∈ k∗ be as before.

By the Corollary to Theorem 4, this cover has an admissible thickening X∗ → Z∗, viz. a

solution to the thickening problem for G-Galois covers given by the extensions Rζ ⊂ Aζ

for ζ ∈ S, where Rζ = k[[t, u, v]]/(uv− tnζ ) and Aζ = IndG〈gζ〉
k[[t, x, y]]/(xy− aζbζt). The

extension Rζ ⊂ Aζ is ramified only over the maximal ideal of Rζ , and in particular is

unramified over the general fibre (i.e. away from t = 0). So by Theorem 5 there is a

smooth connected G-Galois cover X# → Z# branched at a set ∆# of cardinality equal to

that of ∆, with the desired properties. This proves (a) and (b).

In fact, more is true, when k is algebraically closed (and perhaps in general for large

fields). In the case that ∆ 6= ∅ in the above corollary, we also have that ∆# 6= ∅, and so

the curve Z# − ∆# is a smooth affine curve. So πA(Z# − ∆#) depends only on the genus

of Z# and on |∆#|, by the Abhyankar Conjecture [Ha5]. Thus the conclusion of part (a)

holds for all smooth projective k-curves Z# and all subsets ∆# ⊂ Z# with |∆#| = |∆|.

On the other hand, in the case that ∆ = ∅, the conclusion of part (a) of the corollary

does not hold in general for arbitrary Z# in characteristic p, even if k = k, since πA can

vary among projective curves of a given genus. For example, let Z consist of two copies of

P1 meeting at two points, so that the arithmetic genus is 1. The curve Z has an unramified

connected admissible cover X → Z that is cyclic of order p = char k, but supersingular

elliptic curves Z# do not have any unramified p-cyclic covers. Nevertheless, we have the

following result in that case:

Corollary 2. If Z is a connected semistable projective curve of arithmetic genus γ over a

large field k, then πadm
A (Z) ⊂ πA(γ).

Proof. This follows from the above result via [St1, Proposition 4.2], which asserts that if

G ∈ πA of a smooth projective curve of genus γ, then G ∈ πA of all curves that correspond

to points in some dense open subset of Mγ.
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Section 4. Applications to Fundamental Groups

In this section we consider applications of the above results to fundamental groups of

curves in characteristic p, in both the tame and wild cases. Our goal is to construct covers

with given Galois group, branch locus, and inertia groups, by patching together simpler

(known) covers. In doing so, we will use the results of the previous sections on patching

and thickening problems, together with specialization. In order to specialize we will need

to assume that the base field k is large (e.g. algebraically closed), as in Theorem 5 of

Section 3. Using this approach, we provide (in Theorem 6) a simple proof of a key step in

Raynaud’s proof of the Abhyankar Conjecture for A1, by patching together covers of the

line at wildly ramified branch points. We also show how to patch together covers at tamely

ramified points, thereby obtaining Theorem 7 on the construction of covers of curves of

a given genus. This leads to several examples of explicit applications, which appear in

corollaries to that result.

We first consider the wildly ramified case. Here, for example, we will patch together

two (or more) étale covers of the affine line, by suitably identifying the ramification points

over infinity. In the inductive step, we will consider copies of the u-line and v-line over k,

and will construct a new cover with desired properties (e.g. larger inertia) by solving an

appropriate patching problem. We begin by recalling some basic facts.

Let k be a field of characteristic p, and let X = SpecR be an affine scheme over k,

and let P be a non-trivial finite p-group. Then P contains a central cyclic subgroup A

of order p; let P = P/A. Every A-Galois étale cover of X is given by an Artin-Schreier

equation yp − y = r, for some r ∈ R, and the set of isomorphism classes of such covers

may be identified with the group Hom(π1(X), A). Here the group operation is given by

(α · β)(g) = α(g)β(g), or on the ring level by adding the elements r in the Artin-Schreier

equations.

If we pick a P -Galois étale cover and then consider the isomorphism classes of P -Galois

étale covers that dominate it, then the resulting set is a principal homogeneous space for

the above group. Namely, the given P -Galois cover corresponds to an element γ in the

set Hom(π1(X), P ), and the group Hom(π1(X), A) acts on the fibre Homγ(π1(X), P ) of

Hom(π1(X), P ) → Hom(π1(X), P ) over γ by (α · γ)(g) = α(g)γ(g). Here this action is

transitive since if γ, γ′ are in the fibre Homγ(π1(X), P ), then g 7→ γ(g)γ′(g)−1 lies in

Hom(π1(X), A), by centrality of A.

The action of Hom(π1(X), A) on Homγ(π1(X), P ) can be expressed on the ring level

as follows: Choose a sequence of normal subgroups N0 ⊃ N1 ⊃ · · · ⊃ Nm of P , where

(Ni+1 : Ni) = p, N0 = P , Nm−1 = A, and Nm = 1. Let P i = P/Ni. Thus P 0 = 1,
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Pm−1 = P , and Pm = P . Any P -Galois cover may then be expressed by a sequence

of Artin-Schreier equations zp1 − z1 = r1, . . . , z
p
m − zm = rm, where for 0 ≤ i ≤ m the

equations zp1 − z1 = r1, . . . , z
p
i − zi = ri define a P i-Galois cover Xi = SpecRi → X

and where each rj ∈ Rj−1. Given a P -Galois étale cover corresponding to the sequence

(r1, . . . , rm−1, rm) and given an A-Galois cover given by yp − y = r with r ∈ R = R0, the

latter cover acts by taking the former to the P -Galois cover corresponding to the sequence

(r1, . . . , rm−1, rm + r).

If Q ⊂ P and Y → X is a Q-Galois étale cover, then there is an induced P -Galois

étale cover IndPQ Y → X , where IndPQ Y is a disjoint union of copies of Y , indexed by

the left cosets of Q in P . On the ring level, if Y = Spec T , then R ⊂ T is given by an

n-tuple (r1, . . . , rn) as above, where #Q = pn. The corresponding induced P -Galois ring

extension R ⊂ IndPQ T is given by (r′1, . . . , r
′
m), where #P = pm and where the entries r′i

are given by entries of rj interspersed with entries of 0, corresponding to values of i for

which Q ∩ P i = Q ∩ P i+1 (with notation as above).

In order to patch together covers of the u-line and of the v-line over a field k, we will

use the cone given by uv = t2, whose fibre modulo t consists of a union of the two given

lines crossing normally. The tangent plane to the cone along the line L : (u = v = t)

is given by u + v = 2t, and so the complement of L is an affine open subset of the cone,

obtained by inverting u+v−2t. If the given covers have p-group ramification at the origin,

then the patched cover will be taken to have ramification over the line L. To accomplish

the patching via the results of the previous section, we work over the complete local rings

at the origin, and use the following lemma:

Lemma. Let k be a field, R = k[[t, u, v]]/(uv − t2), and R′ = R[1/(u + v − 2t)]. Let

P be a p-group, and consider P -Galois étale ring extensions k((u)) = R′/(v) ⊂ Ω1 and

k((v)) = R′/(u) ⊂ Ω2. Then there is a P -Galois étale extension R′ ⊂ Ω of domains whose

reductions modulo (v) and (u) are k((u)) ⊂ Ω1 and k((v)) ⊂ Ω2 respectively, such that

the normalization of R in Ω is totally ramified over the locus (u = v = t).

Proof. Let X̂ = Spec Ω1 and Ŷ = Spec Ω2. These are (possibly disconnected) P -Galois

covers of Û := Spec k((u)) and V̂ := Spec k((v)) respectively. Also, let D = SpecR and

D′ = SpecR′.

We proceed by induction on the order of P . Let A ⊂ P be a central cyclic subgroup

of order p, and P = P/A. Let X = X̂/A → U and Y = Ŷ /A→ V be the P -Galois covers

dominated by the P -Galois covers X̂ and Ŷ . Let P i = Pi∩P for i = 1, 2. Since #P < #P ,

the inductive hypothesis applies to the quotient situation. So there is a connected P -Galois

étale cover C
′
→ D′ whose fibre over t = 0 has the property that its pullbacks to k((u))
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and k((v)) agree with those of X and Y , and such that the normalization C of D in C
′
is

totally ramified over (u = v = t).

Since cdp(R
′) ≤ 1 [AGV, X, 5.1], C

′
→ D′ is dominated by a P -Galois étale cover

C′′ → D′. Thus the fibres of C′′ and X̂ over Û are P -Galois covers whose quotients by

A yield the same P -Galois cover. Since Hom(π1

(

Spec k((u))
)

, A) acts transitively on the

fibres of Hom(π1

(

Spec k((u))
)

, P ) → Hom(π1

(

Spec k((u))
)

, P ), there is an A-Galois cover

zp − z = r that carries C′′ to X̂; here r ∈ k((u)). Similarly, there is an A-Galois cover

zp − z = s carrying C′′ to Ŷ , where s ∈ k((v)).

For n >> 0, we may write r = f/un and s = g/vn, where f ∈ uk[[u]] and g ∈ vk[[v]].

Choose such an n, and an element h ∈ tk[[t]], and consider the A-Galois cover E′ → D′

given by zp − z = e, where e =
f + g + h

(u+ v − 2t)n
∈ R′. Let C′ → D′ be the P -Galois étale

cover obtained by letting this A-Galois cover act on C′′ → D′, and let C → D be the

normalization of D in C′. (Thus if C′′ → D′ corresponds to the m-tuple (r1, . . . , rm) as

above, then C′ → D′ corresponds to (r1, . . . , rm−1, rm + e) .) Since e ≡ r (mod v) and

e ≡ s (mod u) in R, it follows that the fibre of C′ → D′ over (t = 0) has the property that

its pullbacks to k((u)) and k((v)) agree with those of X̂ and Ŷ respectively.

For n >> 0 and for a generic choice of h ∈ tk[[t]], the P -Galois cover C → D is totally

ramified over (u+ v − 2t), i.e. over (u = v = t), since C = C/A → D is. Hence C and C′

are irreducible. Writing C′ = Spec Ω, the extension R′ ⊂ Ω is then as desired.

Combining the above with the results of Section 3, we obtain the following proof

of [Ra, Théorème 2.2.3], which was shown in §5 of [Ra] using the machinery of §§3-4 of

that paper. The proof here uses the machinery of formal geometry as above, rather than

rigid geometry as in [Ra]. In applying Theorem 5 above, the proof here uses a strategy

that is related to that of an earlier, unpublished version on [Ra] (although that used rigid

methods). Also, we state the result a bit more generally than in [Ra], viz. for large fields

rather than just for algebraically closed fields. This is possible since Theorem 5 above

required only that the base field k be large. In the framework of [Ra], this more general

conclusion can also be obtained, since the “large” hypothesis allows specialization to k as

in Theorem 5.

Theorem 6. Let G be a finite group generated by subgroups G1, . . . , Gn, and let P be a

p-subgroup of G containing subgroups P1, . . . , Pn such that Pi ⊂ Gi. Let k be a large field

of characteristic p and suppose that for each i there is a smooth geometrically connected

Gi-Galois cover of P1
k branched only at ∞, where Pi is an inertia group. Then there is a

smooth geometrically connected G-Galois cover of P1
k branched only at ∞, where P is an

inertia group.
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Proof. Let G̃ ⊂ G be the subgroup generated by G1, . . . , Gn−1, and let P̃ ⊂ P be the

subgroup generated by P1, . . . , Pn−1. Thus P̃ ⊂ G̃, and P̃ ⊂ P is a p-group. Also, G is

generated by its subgroups G̃ and Gn, and P contains the subgroups P̃ and Pn. So by

induction we are reduced to proving the case n = 2.

So we have a group G generated by subgroups G1 and G2, together with a G1-Galois

cover and a G2-Galois cover of the line over k, each branched only over one point, and with

P1 and P2 respectively occurring as as inertia groups. We write these covers as X → U and

Y → V , where U and V are copies of P1
k with affine parameters u and v. We may assume

that the ramification occurs over the points u = 0 and v = 0 respectively, and we let ξ ∈ X ,

η ∈ Y be points with inertia groups P1, P2 respectively. Thus Spec ÔX,ξ → Û := Spec k[[u]]

is a P1-Galois cover, and Spec ÔY,η → V̂ := Spec k[[v]] is a P2-Galois cover, each totally

ramified over the closed point. Let X̂ = IndPP1
Spec ÔX,ξ and Ŷ = IndPP2

Spec ÔY,η; these

are (disconnected) P -Galois covers of Û and V̂ respectively, whose generic fibres correspond

to P -Galois ring extensions k((u)) ⊂ Ω1 and k((v)) ⊂ Ω2.

Let R = k[[t, u, v]]/(uv− t2) and R′ = R[1/(u+ v− 2t)]. Thus R is the complete local

ring of a cone at its vertex u = v = t = 0, and R′ corresponds to the open set obtained

by deleting the line u = v = t. By the lemma, there is a connected normal P -Galois étale

cover C′ → D′ = SpecR′ whose fibre over t = 0 has the property that its pullback to

k((u)) agrees with that of X̂ and its pullback to k((v)) agrees with that of Ŷ ; and such

that the normalization C of D = SpecR in C′ is totally ramified over (u = v = t).

Let Z be the result of identifying the point (u = 0) in U with the point (v = 0) in V ,

so that the two copies of the projective line meet transversally there. Thus Z is the closure

in (P1
k)

3 of the locus of uv = 0 in A3
k, where the two lines meet at the origin ζ and we have

an isomorphism F : R/(t)→∼ ÔZ,ζ . Applying Theorem 1(b) to (Z, {ζ}) in the G-Galois

case with m = 0 (i.e. no deformation variables), we conclude that there is a G-Galois cover

ψ : X → Z with the property that its fibres over Spec ÔZ,ζ , U
′, V ′ agree with IndGP C,

IndGP1
X , IndGP2

Y respectively. That is, we have a G-Galois thickening problem for covers

(cf. §3), where X → Z is unramified away from ξ, and where the generic fibre of Rζ ⊂ Aζ

is ramified just at a single k((t))-point, viz. (u = v = t), over which P is an inertia group.

So by Theorem 5, there is a smooth projective k-curve Z# of genus 0, and a smooth

connected G-Galois branched cover of curves X# → Z# whose branch locus consists of

exactly one k-point, over which P is an inertia group. Thus we may identify Z# with P1
k

and ζ with the point at infinity; and the cover X# → P1
k is then as desired.

Next we turn to the case of tamely ramified covers. Suppose that Z is a connected

semistable curve over k. Let Z1, . . . , ZN be the irreducible components of Z, and let Z
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[resp. Zi] be the normalization of Z [resp. of Zi]. Thus Z is the union of the Zi’s and

Z is the disjoint union of the Zi’s. Let S be the singular locus of Z and let S be the

inverse image of S under the normalization morphism ν : Z → Z. Thus ν restricts to a

two-to-one morphism S → S. Let Sij = Sji be the subset of S consisting of points whose

two inverse images under ν respectively lie on Zi and Zj , and let Sij = ν−1(Sij) ∩ Zi

and Si =
⋃N
j=1 Sij . For every ζ ∈ S, let σ(ζ) be the unique other element of S that has

the same image under ν. Thus σ is a fixed-point-free involution of S that restricts to a

bijection Sij → Sji for all i, j, and Z is the quotient of Z with respect to the identification

of ζ with σ(ζ) for all ζ ∈ S.

In the above situation, consider a G-Galois admissible cover X → Z (cf. §3). So in

particular, X is a semistable curve. Let X be the pullback of X under Z → Z, and let

X̃i → Zi be the pullback of X → Z under the inclusion Zi ↪→ Z. Thus X is smooth, and

each X̃i → Zi is a G-Galois cover of the form IndGGi
Xi → Zi, where Xi is a connected

component of X̃i and Gi ⊂ G is the decomposition group of this component. Since the

cover is admissible, it follows that the canonical generator of inertia at each point of X̃i

over ζ ∈ Sij is conjugate to the inverse of the canonical generator of inertia at each point

of X̃j over σ(ζ).

Conversely, given Z as above, suppose that we are given a finite group G, subgroups

G1, . . . , GN ⊂ G, and smooth connected Gi-Galois covers Xi → Zi (whose branch loci are

of the form ∆i∪Si, where ∆i and Si are disjoint). Let X̃i = IndGGi
Xi → Zi be the induced

G-Galois cover, whose identity connected component may be identified with Xi. For each

ζ ∈ Sij , pick a point ξζ ∈ Xi lying over ζ, and let gζ ∈ Gi be the canonical generator of

inertia of the Gi-Galois cover Xi → Zi at ξζ .

Writing Z =
⋃

Zi as above, and setting X =
⋃

X̃i, we would like to descend the

(disconnected) G-Galois cover X → Z to a connected admissible G-Galois cover X → Z.

As above, Z is obtained from Z by identifying each ζ ∈ Sij with σ(ζ) ∈ Sji. Given

elements cζ ∈ G such that c−1
ζ = cσ(ζ) for all ζ ∈ S, we may construct a curve X from

X by identifying each g(ξζ) ∈ X̃i with gcζ(ξσ(ζ)) ∈ X̃j transversally, for all g, i, j and all

ζ ∈ Sij . Below we give a criterion for this X to give us the desired connected admissible

G-Galois cover of Z.

For each sequence a = a0, . . . , ar in {1, . . . , N}, let Ca be the set of elements g ∈ G

that can be written in the form h0cζ0h1cζ1 · · · cζr−1
hr, where each hi ∈ Gai

and each

ζi ∈ Sai,ai+1
. Let CG = CG({Gi}, {cζ}) be the union of all the sets Ca, as a varies over

sequences such that a0 = ar = 1. It is easily seen that CG is a subgroup of G.

Proposition 2. In the above construction:
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(a) The curve X is semistable if and only if cζgσ(ζ)c
−1
ζ ∈ 〈gζ〉 for every ζ ∈ S. In this case,

the cover X → Z descends to a G-Galois covering morphism X → Z.

(b) The cover X → Z descends to an admissible G-Galois covering morphism X → Z if

and only if g−1
ζ = cζgσ(ζ)c

−1
ζ for every ζ ∈ S.

(c) If the above G-Galois cover X → Z is admissible, then X is connected if and only if

CG = G.

Proof. (a) The curve X is semistable if and only if each point in X̃i over ζ ∈ Sij is

identified with a unique point of X̃j over σ(ζ) ∈ Sji (where these points are necessarily

distinct, even when i = j, since σ has no fixed points). Now as above, g(ξζ) ∈ X̃i is

identified with gcζ(ξσ(ζ)) ∈ X̃j , and vice versa. Interchanging the roles of i, j does not

yield any additional identifications of a given point over ζ ∈ Sij , since σ is an involution

and since c−1
ζ = cσ(ζ). Now given a point ξ ∈ X̃i over ζ ∈ Sij , the element g ∈ G such

that ξ = g(ξζ) is determined up to right multiplication by a power of gζ . But for any

integer e, we have gcζ(ξσ(ζ)) = ggeζcζ(ξσ(ζ)) if and only if c−1
ζ geζcζ stabilizes ξσ(ζ), i.e. if and

only if c−1
ζ geζcζ is a power of gσ(ζ). So we see that semistability is equivalent to this latter

condition holding. By interchanging ζ and σ(ζ), we deduce that semistability is equivalent

to cζgσ(ζ)c
−1
ζ ∈ 〈gζ〉.

If cζgσ(ζ)c
−1
ζ ∈ 〈gζ〉, so that X is semistable, then the morphism X → Z descends to

a morphism X → Z, since points being identified have the same image. Moreover, in this

case X → Z is a G-Galois cover, since it is generically separable, and since the action of

G on the orbit of ξζ is compatible with the action on the orbit of ξσ(ζ).

(b) The coverX → Z in (a) is admissible if and only if it is semistable and the canonical

generators of inertia at identified points are inverses. Now the point g(ξζ) has canonical

generator ggζg
−1, and gcζ(ξσ(ζ)) has canonical generator (gcζ)gσ(ζ)(gcζ)

−1. These ele-

ments are inverses if and only if g−1
ζ = cζgσ(ζ)c

−1
ζ ; and the condition in (a) is subsumed

by that of (b). So the assertion in (b) follows.

(c) Let Xi be the image of Xi in X, so that IndGGi
X i is the image of X̃i = IndGGi

Xi

in X. Since X → Z is a cover and since Z is connected, it follows that every irreducible

component ofX is in the same connected component ofX as some irreducible component of

IndGGi
X1. So connectivity is equivalent to the condition that the irreducible components of

IndGGi
X1 all lie in the same connected component of X . Now two irreducible components

Y, Y ′ of X lie in the same connected component of X if and only if there is a chain

of irreducible components Y0, . . . , Yr of X respectively lying over irreducible components

Za0
, . . . , Zar

in Z, where Y0 = Y and Yr = Y ′, and where Yi−1 and Yi meet over some

point of Sai−1,ai
, for each i. It now suffices to prove the following
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Claim: For g, g′ ∈ G, the irreducible components g(Xi) and g′(Xj) can be connected by a

chain of components of length r if and only if g−1g′ ∈ Ga for some sequence a = a0, . . . , ar

with a0 = i and ar = j.

Namely, if this claim is shown, then we may take i = j = 1, and g, g′ arbitrary; and conclude

that any two irreducible components of IndGGi
X1 lie in the same connected component of

X if and only if CG = G.

So it remains to prove the claim, and by induction we are reduced to the case r = 1.

For this, we will verify that g(Xi) and g′(Xj) meet at a point over ζ ∈ Sij if and only

if g−1g′ = hcζh
′ for some h ∈ Gi and h′ ∈ Gj . Now g(Xi) and g′(Xj) meet over ζ if

and only if there is a g∗ ∈ G such that g∗(ξζ) ∈ g(Xi) and g∗cζ(ξσ(ζ)) ∈ g(Xj). This is

equivalent to the condition that g∗(Xi) = g(Xi) and g∗cζ(Xj) = g′(Xj) for some g∗ ∈ G;

i.e. that h := g−1g∗ ∈ Gi and h′ := (g∗cζ)
−1g′ ∈ Gj . This in turn is equivalent to the

desired condition that hcζh
′ = g−1g′ for some h ∈ Gi and h′ ∈ Gj .

Remark. In the framework of [Sa1] and [Sa2], a graph is constructed in which edges are

associated to double points and vertices are associated to components. In that set-up, the

group CG above can be interpreted in terms of paths in the associated graph.

The above proposition shows that one obtains a connected G-Galois admissible cover

of curves X → Z if we are given the following data:

• Smooth connected projective k-curves Z1, . . . , ZN of genus γ1, . . . , γN , and smooth con-

nected Gi-Galois covers Xi → Zi, where each Gi is a subgroup of G.

• For each i, disjoint finite subsets ∆i, Si ⊂ Zi of cardinalities di, si, such that Xi → Zi is

étale away from ∆i ∪ Si and tamely ramified over Si; and a canonical generator of inertia

gζ ∈ Gi at a point over each ζ ∈ Si.

• A bijection σ : S → S with no fixed points, where S = ∪Si; and for each i a partition

Si = Si1 ∪ · · · ∪ SiN such that σ(Sij) = Sji for all i, j.

• For each ζ ∈ S, an element cζ ∈ G such that g−1
ζ = cζgσ(ζ)c

−1
ζ , for which the associated

group CG({Gi}, {cζ}) (as in Proposition 2) is equal to G.

Combining the above proposition with the results of §3, we obtain:

Theorem 7. Let k be a large field, let G be a finite group, and suppose we are given

data as above. Then there is a smooth connected projective k-curve Z# of genus γ =
∑

i(γi + si

2 ) − N + 1 and a connected G-Galois cover X# → Z# that is étale except at
∑

i di k-points, where respective inertia groups (and, in the tame case, canonical generators

of inertia) are those of Xi → Zi over the sets Si.
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Proof. Let Z be the semistable curve obtained by taking the union of the curves Zi after

identifying each ζ ∈ Sij with σ(ζ) ∈ Sji. Let sij = #Sij , so that sij = sji. Then the image

Zi of Zi in Z is an irreducible semistable curve with sii/2 nodes, and whose normalization

has genus γi; so Zi has arithmetic genus γi+sii/2. So by [St1, Lemma 2.2], the arithmetic

genus of Z is equal to
∑

i(γi + sii/2) +
∑

i<j sij −N + 1 = γ.

LetX → Z be the cover obtained as in the above construction, by patching the induced

covers IndGGi
Xi → Zi according to the given data. Then Proposition 2 asserts that X → Z

is a connected G-Galois admissible cover of semistable curves. So the conclusion follows

by Corollary 1 to Theorem 5.

By [Gr2, XIII, Cor. 2.12], if G ∈ πA(g) (i.e. if G is the Galois group of an étale cover of

a curve of genus g), then there are generators a1, b1, . . . , ag, bg such that
∏g
i=1 [ai, bi] = 1.

Moreover, the p-rank of G (i.e. the rank of the maximal p-quotient of G) is at most g.

This raises the question of to what extent the converse of these assertions will hold (and

cf. [St2]). In particular, we have the following result, as a consequence of Theorem 7, by

taking each ∆i = ∅ above:

Corollary 1. Let k be a large field of characteristic p. Let G be a finite group generated

by elements a1, b1, a2, b2..., ag, bg, where p is prime to the order of ai for all i. Let

G0 = 〈a1, b1a
−1
1 b−1

1 , a2, b2a
−1
2 b−1

2 , ..., ag, bga
−1
g b−1

g 〉,

and suppose that G0 ∈ πtA(P1
k − {α1, β1, ..., αg, βg}), corresponding to a cover with de-

scription

(a1, b1a
−1
1 b−1

1 , a2, b2a
−1
2 b−1

2 , ..., ag, bga
−1
g b−1

g ). (∗)

Then G lies in πA(g).

Proof. We will construct data as in the situation before the above theorem, and then apply

that result to obtain the corollary.

Let Z0, . . . , Zg be copies of P1
k, let S0 = {α1, β1, ..., αg, βg} ⊂ Z0, and for i > 0 let

Si = {0i,∞i} (the points at 0 and ∞ on this copy of the line). Let X0 → Z0 be the tamely

ramified G0-Galois cover of X0 branched at S0, and with description (*), guaranteed by

the hypotheses of the corollary. For i > 0 let Xi → Zi be a cyclic cover branched over

Si and having Galois group Gi = 〈ai〉 and description (a−1
i , ai). On Si for i > 0, let

g0i
= a−1

i and g∞i
= ai. On S0, let gαj

= aj and gβj
= bja

−1
j bj . For each i > 0 let ∆i = ∅.

Let σ interchange 0i ∈ Zi with αi ∈ Z0, and interchange ∞i ∈ Zi with βi ∈ Z0. Let

S0i = {αi, βi} for i > 0; let Si0 = {0i,∞i} for i > 0; and otherwise let Sij = ∅. For i > 0,

let c0i
= 1 and c∞i

= bi; while on S0 let cαi
= 1 and cβi

= b−1
i . The group CG({Gi}, {cζ})
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contains the elements ai ∈ Gi and the elements bi = c∞i
, and hence CG = G. So the

conclusion follows from Theorem 7.

In the next corollary, we give a family of groups for which all the hypotheses of the

preceding result are satisfied. When g = 2, this result already appears in [St2, Cor. 4.2],

and the machinery developed above enables an easy proof in general.

Corollary 2. Let k be a large field of characteristic p. Let G be a finite group generated

by elements a1, b1, a2, b2, ..., ag, bg, such that p is prime to the order of ai for all i, H =

〈a1, a2, ..., ag〉 is normal in G, and OutH is trivial. Then G lies in πA(g).

Proof: By normality, bia
−1
i b−1

i ∈ H for all i. Thus the group

G0 = 〈a1, b1a
−1
1 b−1

1 , a2, b2a
−1
2 b−1

2 , ..., ag, bga
−1
g b−1

g 〉 ⊂ G

is equal to H. So by Corollary 1, it suffices to show that there is a smooth connected

H-Galois cover of P1
k with description (*) as in that corollary.

For every i, conjugation by bi induces an automorphism of the normal subgroup H,

and by hypothesis this automorphism is inner. So bia
−1
i b−1

i is a conjugate of a−1
i by

some element of H. Thus the above description is equivalent to the simpler description

(a1, a
−1
1 , a2, a

−1
2 , ..., ag, a

−1
g ), and it suffices to construct a cover of the projective k-line

with this description.

This can be done as in [Ha1]. Namely, p is prime to ni, where ni is the order of ai. So

[Ha1, Prop. 3.4] implies that there exists a connected (locally standard) H-mock cover of

P1
k branched at g points z = α1, . . . , αg with description (a1, ..., ag). Applying Theorem 5

above to the thickening problem given by extensions Ri = k[[z − αi, t]] ⊂ Ai, where Ai is

the normalization of Ri[y]/(y
2 − z(z−αi)

ni−1), we obtain an H-Galois cover of the k-line

with description (a1, a
−1
1 , a2, a

−1
2 , ..., ag, a

−1
g ).

Remark. (a) The above proof actually shows a bit more. Namely, rather than assuming

that OutH is trivial, it suffices to assume that every inner automorphism of G restricts to

an inner automorphism of H. This is equivalent to assuming that G = H · ZG(H), where

the second factor denotes the centralizer of H in G. In fact, even less is needed, viz. that

G = H · ZG(x) for all x ∈ H, since this also guarantees that bia
−1
i b−1

i is a conjugate of

a−1
i by some element of H.

(b) Alternatively, one may replace the hypotheses that H is normal in G and OutH

is trivial by the single hypothesis that each commutator [ai, bi] is trivial. For then we

immediately have that bia
−1
i b−1

i is conjugate to a−1
i in H, since they are equal.
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Corollary 3. Let k be a large field of characteristic p. Let G be a finite group generated

by elements a1, b1, a2, b2, ..., ag, bg, such that
∏g

1 [ai, bi] = 1. Assume that the subgroup

H = 〈a1, a2, ..., ag〉 is normal in G and has order prime to p. Then G lies in πA(g).

Proof. Since H is normal, each biaib
−1
i lies in H. Since the order of H is prime to p,

and since
∏g

1 [ai, bi] = 1, it follows from [Gr2, XIII, Cor. 2.12] that there is a connected

H-Galois cover of P1
k − {α1, β1, ..., αg, βg} with description

(a1, b1a
−1
1 b−1

1 , a2, b2a
−1
2 b−1

2 , ..., ag, bga
−1
g b−1

g ).

Here p is prime to the order of each ai, since ai ∈ H. The conclusion now follows from

Corollary 1.

Remark. For the proof of Corollary 3, one does not need the full strength of the above

hypotheses. Namely, one may replace the assumption that H is normal in G and has order

prime to p by the weaker assumption that the group G0 of Corollary 1 has order prime to

p. For example, this holds if the normal closure of H has order prime to p.

As an opposite application of Theorem 7, we can take non-empty sets ∆i and a

construction in genus 0, in order to obtain Galois groups over open subsets of the line. For

example, we have the following

Corollary 4. Let k be a large field of characteristic p. Let G be a finite group generated

by elements a, b, c, d such that abcd = 1, and such that p does not divide the orders of

the subgroups 〈a, b〉 and 〈c, d〉. Then for appropriate λ ∈ k − {0, 1}, the group G lies in

πtA(P1
k − {0, 1,∞, λ}), corresponding to a cover of description (a, b, c, d).

Proof. As in the proof of Corollary 1, we will construct data as in the situation just before

the statement of Theorem 7, and then use that theorem to obtain the desired assertion.

Let N = 2, and let Z1, Z2 be copies of P1
k, of genus γi = 0. Let G1 = 〈a, b〉 and

let G2 = 〈c, d〉. Let ∆i = {0i,∞i} ⊂ Zi and let Si = {1i} ⊂ Zi, where ζi denotes

the point ζ on the line Zi. Thus di = 2 and si = 1. Since the orders of G1 and G2

are prime to p, there are Gi-Galois covers Xi → Zi with branch loci {0i,∞i, 1i}, and

with respective descriptions (a, b, b−1a−1) and (c, d, d−1c−1). Thus g1 := b−1a−1 = cd is

a canonical generator of inertia over 11, and g2 := d−1c−1 = ab = g−1
1 is a canonical

generator of inertia over 12. Let Sii = ∅ and let Sij = Si for i 6= j; let S = S1 ∪ S2; and

define σ : S → S as the map that switches 11 and 12. Finally, let cζ = 1 for ζ ∈ S. So

CG = CG({Gi}, {cζ}) consists of elements expressible in the form h0h1 · · ·hr, where each

hi is in either G1 or G2, with h0, hr ∈ G1. Here, the elements a, b ∈ G1 are expressible by

sequences of length 0, while c, d ∈ G2 are expressible by sequences of length 1 (by taking
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h0 = 1). So the group CG = G, and the hypotheses before Theorem 7 are satisfied. Thus

there is a smooth connected projective k-curve Z# of genus
∑

i(γi+
si

2 )−N +1 = 0 and a

connected G-Galois cover X# → Z# that is étale except at four k-points, with description

(a, b, c, d). Since Z# is of genus 0 and has k-points, it is isomorphic to P1
k. Applying

a projective linear transformation, we may send the four branch points respectively to

0, 1,∞, λ for some λ ∈ k − {0, 1}.
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