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Abstract. We consider fundamental groups of affine varieties in char-

acteristic p > 0, especially in the case of complements of normal crossing

divisors in projective space. In particular, we disprove a conjecture of

Abhyankar concerning which finite groups can be Galois groups of cov-

ers in characteristic p, by showing that fewer groups than expected can

occur. The proof uses valuation theory to establish a necessary condi-

tion for a finite group to be a Galois group, and uses group theory to

show that this condition is non-trivial. We prove both local and global

versions of our results.

1 Introduction

A longstanding problem is to determine the algebraic fundamental group π1(X)
of a variety X over a field k of characteristic p > 0. For X irreducible, this funda-
mental group is defined as the inverse limit of the Galois groups of the (connected)
finite étale Galois covers Y → X . The set πA(X) of (continuous) finite quotients of
π1(X) is precisely the set of these Galois groups, and in particular one would like to
know which finite groups occur in πA(X). This paper considers this situation in the
global case thatX = Pn

k−D, and in the local case thatX = Spec k[[x1, . . . , xn]]−D,
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where in either case D is a normal crossings divisor and k is algebraically closed.
We also discuss open subsets of the affine line over a finite field.

The above problem is rather well-understood in the case of curves over an
algebraically closed field k. Let π′1(X) be the “prime-to-p quotient” of π1(X), i.e.
the inverse limit of the Galois groups of only those covers ofX whose degree is prime
to p. Equivalently, π′1(X) is the inverse limit of the finite groups G/p(G), where G
ranges over the finite Galois groups over X , and p(G) denotes the subgroup of G
generated by all the elements having order a power of p. Grothendieck’s comparison
theorem [9], XIII, Cor. 2.12 states that for k-curves X , the group π′1(X) can be
identified with the prime-to-p quotient of the profinite completion of the topological
fundamental group of a curve overC having the same genus g and the same number
of punctures r. In particular, if r > 0 (i.e. if X is an affine curve), then π′1(X) is
the free pro-prime-to-p group on 2g + r − 1 generators. Concerning the set πA(X)
of all finite quotients of π1(X) (not just those of order prime to p), for X an affine
curve, S.S. Abhyankar posed the following conjecture in his 1957 paper [1]:

Conjecture 1.1 (Abhyankar) A finite group G is a Galois group of some finite
étale Galois cover Y → X if and only if G/p(G) occurs as Galois group over X,
i.e., is a quotient of π′1(X).

More generally, we will say that Abhyankar’s Conjecture holds for a variety X
in characteristic p if Conjecture 1.1 is satisfied by X . The original conjecture, for
affine curves over an algebraically closed field, was proven in papers of M. Ray-
naud [23] and D. Harbater [12] (see also [13]). In [1] and later papers, Abhyankar
gave examples that hinted that the conjecture should hold for higher dimensional
varieties. More recently ([3], Conjectures (2.2) and (3.2)) he explicitly stated a con-
jecture that is equivalent to 1.1, in the formal local case and for the complement of
a normal-crossings hypersurface in Pn

k .
The first author’s investigations of these higher dimensional cases brought him

in contact with the second author’s work on inverse Galois problems for differential
and difference equations (see [21], [22], [18]). The remarkable parallelism between
these theories led to the discovery that certain valued fields, which we call “fields
of generalized Laurent series”, can be used to show that Abhyankar’s Conjecture
does not hold in general, i.e. that the condition G/p(G) ∈ πA(X) is not sufficient
to ensure that G occurs as Galois group over a higher dimensional X as above.
We will make this statement more precise by stating the simplest special cases of
Theorems 3.3 and 4.5.

(1) Let X = Spec(k[[x1, x2]][(x1x2)
−1]). If G is the group of a connected Galois

cover of X then so is G/p(G). Moreover:
(i) G contains a prime-to-p subgroup A ⊂ G which maps surjectively to G/p(G)
and which is itself a Galois group over X ;
(ii) If p(G) 6= 1 then there is a non-trivial p-subgroup P ⊂ G which is
normalized by some choice of this subgroup A; and
(iii) For arbitrary G, p(G) is generated by the p-subgroups P such that P is
normalized by some choice of this subgroup A (depending on P ).

(2) Let X be the complement in P2
k of three lines in general position (i.e. not all

of them passing through one point). Then any Galois group for X again has the
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properties (i), (ii), and (iii) of the above statement (1).

For X in (1) or (2) above, the condition on A in (i) (i.e. that A is a finite
quotient of π′1(X)) is just that the prime-to-p group A is abelian with at most two
generators. (See Proposition 3.1 and Corollary 4.2(b).) For such X , conditions (i),
(ii), and (iii) are each non-trivial constraints on the groupG, beyond the assumption
that the prime-to-p group G/p(G) is a quotient of π′1(X). This is shown in examples
constructed by R. Guralnick, which appear in the appendix to this paper. Hence
the higher dimensional version of Abhyankar’s Conjecture, as posed above, does not
hold. A similar situation occurs for open subsets of the affine line over a finite field.
These additional constraints on Galois groups are new to the above situations; for
affine curves over an algebraically closed field, the issue does not arise, because
conditions (i)-(iii) are always satisfied for any finite group G such that G/p(G) is a
Galois group over X (as follows from the fact that π′1(X) is the prime-to-p quotient
of the profinite completion of a free group).

This paper is organized as follows: Section 2 defines and studies fields of gen-
eralized Laurent series, a class that includes such fields as k((x))((y)). Section 3
applies those results to the case of Galois groups over the complement of a normal
crossings divisor in the formal local case in dimension ≥ 2, in particular proving
conditions (i)-(iii) above. Section 4 similarly treats the global case in dimension ≥ 2.
Finally, Section 5 shows why these results imply that Abhyankar’s Conjecture does
not hold in these cases, and similarly why it does not hold in the one-dimensional
case over a finite field. In that section we also discuss several possible variants of
Abhyankar’s Conjecture and discuss their relationships.

We conclude this introduction by fixing terminology for the paper. Given a
finite group G, its rank is the size of the smallest generating set for G. If N
is a normal subgroup of G, then a subgroup H ⊂ G is a supplement [resp. a
complement] to N in G if the quotient map G → G/N restricts to a surjection
[resp. an isomorphism] on H . Thus H is a supplement to N if and only if H,N
generate G; and H is a complement to N if and only if G is a semidirect product of
N andH . For a profinite groupG, we denote by p(G) the closed subgroup generated
by the pro-p-subgroups of G. (This agrees with the above definition of p(G) for
finite groups.) Equivalently, for a profinite group G, we have that p(G) = lim

←
p(H),

where H runs over the finite quotients of G. A finite [resp. profinite] group G is a
quasi-p [resp. pro-quasi-p] group if p(G) = G.

Suppose that X is a regular connected scheme and Y is a normal scheme. Then
a cover f : Y → X is a finite generically separable morphism. A (branched) cover is
Galois if Y is connected and if the Galois group G = Gal(Y/X) of automorphisms
of Y preserving f acts simply transitively on a generic geometric fibre of f . The
branch locus D of Y → X is the locus of points where the cover is not étale; this
is of pure codimension 1 by Purity of Branch Locus. The cover is tamely ramified
if the inertia group over the generic point of each irreducible component of D has
order prime to p. If X = SpecR and Y = SpecS we will also say that S is
Galois over R with Galois group G (so in particular, we are allowing ramification).
As above, the fundamental group π1(X) [resp. the prime-to-p fundamental group
π′1(X)] is the inverse limit of the Galois groups of Galois finite étale covers of X
[resp. of those whose degrees are prime to p]. We also define the tame fundamental
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group πt
1(X,D) to the the inverse limit of the Galois groups of tamely ramified

Galois covers Y → X that are étale away from D. Thus πt
1(X,D) is a quotient of

π1(X −D), and π′1(X −D) is a quotient of πt
1(X,D).

2 Fields of generalized Laurent series

In this section we study a class of valued fields that we call fields of general-
ized Laurent series. This class of fields includes, among others, fields of the form
k((x1)) · · · ((xn)). These fields, which will be used later in the paper in proving the
results mentioned in the introduction, are also useful for Krull’s theory of maxi-
mally complete valued fields (also called maximal fields, maximal valued fields and
spherically complete valued fields; cf. [14] and [24] for more about these fields). We
will develop the theory of fields of generalized Laurent series in a self-contained
manner, with the exception of two references to [24].

Let k be any field and let H be an abelian group, written additively. We write
k[H ] for its group algebra over k. Since H is additive, it is natural to introduce
a (superfluous) variable z. The elements of k[H ] are now written as finite sums∑

h∈H c(h)zh with coefficients c(h) ∈ k, and the multiplication is given by the rule

zh1zh2 = zh1+h2 . Here, we are only interested in the case where H is torsion free,
i.e. H has no nontrivial elements of finite order. Then H embeds into Q ⊗ H .
The latter is a vector space over Q and can be given a total group order. Thus H
can also be given some total group order which will be denoted by o. The field of
generalized Laurent series k((zH,o)) is the set of formal expressions

∑
h∈H c(h)zh,

with all c(h) ∈ k, such that the support (i.e. {h ∈ H | c(h) 6= 0}) of the expression
is a well ordered subset of H . (See also [24], p. 103). In k((zH,o)) one can add
and multiply in the usual way. Thus the product of two elements

∑
c(h)zh and∑

d(h)zh is defined as
∑

e(h)zh with e(h) =
∑

a+b=h c(a)d(b). One easily verifies

that the expression for e(h) is in fact a finite sum and that
∑

e(h)zh again has a
well ordered support.

In order to see that k((zH,o)) is a field one has to show (apart from trivialities)
that every non zero element x has an inverse. One can write x = c · ze · (1 − r)
with c ∈ k∗, e ∈ H and r =

∑
h>0 r(h)z

h ∈ k((zH,o)). It suffices to show that 1− r

has an inverse. For n ≥ 1 one writes rn =
∑

h∈H c(n, h)zh with c(n, h) ∈ k. The
verification of the following assertions is straightforward:

(i) For each h ∈ H , the number of integers n ≥ 1 with c(n, h) 6= 0 is finite.
(ii) For h ∈ H one defines u(h) :=

∑
n≥1 c(n, h) and u := 1 +

∑
h∈H u(h)zh.

The support of the last expression is well ordered and thus u ∈ k((zH,o)).
(iii) u is the inverse of 1− r.

For a unit x ∈ k((zH,o))∗, let v(x) ∈ H be the smallest element of the support
of x =

∑
c(h)zh. Then the map v : k((zH,o))∗ → H is a valuation (in additive

notation) on k((zH,o)). Usually, one introduces a symbol ∞ which is larger than
any element in H and one extends v by putting v(0) = ∞. The value group is
clearly H . The valuation ring consists of the elements

∑
h≥0 c(h)z

h ∈ k((zH,o)).

Its maximal ideal consists of the elements
∑

h>0 c(h)z
h ∈ k((zH,o)) and the residue

field of k((zH,o)) is k. The crucial property of k((zH,o)) is that it has no “immediate
extensions”, i.e.:
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Lemma 2.1 Let L ⊃ k((zH,o)) be an extension of valued fields. Suppose that
L has the same value group and residue field as k((zH,o)). Then L = k((zH,o)).

Proof The extension of v to L will also be called v. Take a non-zero element
x ∈ L. We want to show that x ∈ k((zH,o)).

We claim that we can write x = c(h)zh + x̃ with h ∈ H, c(h) ∈ k∗ and either
x̃ = 0 or v(x̃) > h = v(x) (with respect to the order on H). Namely, let h = v(x).
So x = yh, with y ∈ L and v(y) = 0. Thus y reduces to an element ȳ ∈ k∗ which is
a unit in the residue field. Take c(h) = ȳ. So either y− c(h) = 0 or v(y− c(h)) > 0.
Let x̃ = x− c(h)h. Then h, c(h), and x̃ satisfy the claim.

In the notation of the claim, if x̃ = 0 then we are done. Otherwise, the idea is
to repeat the above step, inductively obtaining an expression

∑
c(h)zh = k((zH,o))

for x. We now make this precise.
Let D ⊂ H consist of all d ∈ H, d ≥ v(x) such that there exists an element

z ∈ k((zH,o)) with v(x − z) > d. The claim above shows that v(x) ∈ D; thus D is
not empty. Moreover, for a given d ∈ D there is a unique element yd ∈ k((zH,o))
with v(x−yd) > d and yd =

∑
h≤d c(d, h)z

h. In particular for elements d1 < d2 in D

and h ≤ d1 one has c(d1, h) = c(d2, h). Consider the expression y =
∑

c(h)zh with
c(h) = c(d, h) if h ≤ d for some d ∈ D and 0 otherwise. It is easily seen that the
support of y is well ordered. Thus y ∈ k((zH,o)). If x 6= y, then v(x − y) = e ∈ H
with e ≥ d for all d ∈ D. Write x − y = c(e)ze + r with c(e) ∈ k∗ and r ∈ L
with v(r) > e. Then v(x − y − c(e)ze) > e ≥ d for all d ∈ D. This contradicts the
definition of D.

The lemma has the immediate consequence:

Corollary 2.2 The field k((zH,o)) is algebraically closed if k is algebraically
closed and H is a divisible group.

We note in passing that the definition of a maximally complete valued field F
is: “F has the property of the above lemma” (shown there for F = k((zH,o))).

Examples 2.3

(1) k((zZ,o)), with o the natural ordering on Z, is the field k((z)) of the formal
Laurent series over k.

(2) k((zQ,o)), with o the natural ordering on Q, is a field containing the field of
formal Puiseux series ∪m≥1k((z

1/m)). The latter is the algebraic closure of k((z))
provided that k is algebraically closed and of characteristic 0.

For an algebraically closed field k of characteristic p > 0, the algebraic closure
of k((z)) is a subfield of k((zQ,o)) that is strictly larger than the field of Puiseux
series. However, one can write down explicit elements of k((zQ,o)) that are not
in the Puiseux series field but are algebraic over the field k((z)). The standard
example for this is the element

∑
n≥0 z

−1/pn

∈ k((zQ,o)), which is a solution of the

equation tp − t = −z−1. See also [15] for a description of this algebraic closure.

(3) On Z2 one can define many total group orders. Any “archimedean order”
is obtained from an injective homomorphism Z2 → R, e.g. the map (a, b) 7→ a+ bα
with irrational α. Let R2 be given the lexicographical order. Then any “non-
archimedean order” on Z2 is obtained from an injective homomorphism Z2 → R2,
whose image is not contained in a one-dimensional linear subspace. We are in
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particular interested in those orders o satisfying (a, b) ≥ 0 = (0, 0) for all a, b ≥

0. For such o there is an embedding k[[x, y]] → k((zZ
2,o)) with x 7→ z(1,0) and

y 7→ z(0,1). These orders o coincide with the familiar monomial orders of Gröbner
theory. Consider the non-archimedean order o defined by the canonical embedding
Z2 → R2, i.e., (1, 0) 7→ (1, 0) and (0, 1) 7→ (0, 1). Then, with the identifications

x = z(1,0) and y = z(0,1), one has k((zZ
2,o)) = k((y))((x)).

A geometric interpretation of an embedding k[[x, y]] ⊂ k((zZ
2,o)) is the follow-

ing. The valuation of the field k((zZ
2,o)) induces a valuation on the field of fractions

of k[[x, y]] which is centered at the maximal ideal (x, y) (i.e., the ideal (x, y) lies
in the maximal ideal of the valuation ring). The valuation defines a sequence of
blowings up of Spec(k[[x, y]]).

(4) Let an additive group H with total group order o be given and let x denote
a variable. Then the field k((zH,o))((x)) is again a generalized field of Laurent

series, namely k((zH
′,o′)) where H ′ = H ⊕ Z and the total group order o′ is given

by (h, n) > (0, 0) (with h ∈ H, n ∈ Z) if either n > 0 or n = 0 and h > 0.

(5) The field of fractions of the formal power series ring k[[x1, . . . , xn]] will be
denoted, as usual, by k((x1, . . . , xn)). We note that this is not a field of generalized
Laurent series if n > 1. Moreover we note that the fields k((x1, x2)), k((x2))((x1)),
k((x1))((x2)) are all distinct. The last two fields are fields of fields of generalized
Laurent series for distinct total orders on Z2 (viz. the lexicographic and reverse
lexicographic orders). More generally, if o is the lexicographic order on Zn, relative
to any total order on the integers 1, . . . , n, then the field of generalized Laurent
series k((zZ

n,o)) is a field of n-fold iterated Laurent series.

(6) More generally, let o be any total order on Zn such that (a1, . . . , an) ≥ 0
whenever ai ≥ 0. The embedding k[[x1, . . . , xn]] ⊂ k((zZ

n,o)) is defined by xi 7→ zei ,
where e1, . . . , en is the standard basis of Zn. This embedding induces an embedding
of fields k((x1, . . . , xn)) ⊂ k((zZ

n,o)). We note that this is a separable field extension
if k is an algebraically closed field having characteristic p > 0. Indeed, {x1, . . . , xn}
is a p-basis of the first field and {ze1 , . . . , zen} is a p-basis of the second field.

Corollary 2.2 suffices for proving that the exact sequence 1 → p(π1(X)) →
π1(X) → π′1(X) → 1 splits in the local and global cases (see Corollaries 3.4(a)
and 4.7(a) below) and thus for proving the constraint (i) of the introduction. For
the more refined constraints (ii) and (iii) of the introduction, we will need more
information on the structure of the finite field extensions of k((zH,o)).

Proposition 2.4 Let K denote the field k((zH,o)). Let L ⊃ K be a finite
extension, and let l and I denote the residue field and the value group of L.
(1) The valuation of K extends uniquely to a valuation of L.
(2) We have [L : K] = [l : k] · [I : H ].
(3) Suppose that k is algebraically closed and that L ⊃ K is a Galois extension with
Galois group G. Let H ′ ⊂ I be the unique subgroup of the abelian group I such that
H ′ ⊃ H, the index (H ′ : H) is prime to p, and (I : H ′) is a power of p. Then there
is a field K ′ with K ⊂ K ′ ⊂ L such that

(a) K ′ is K-isomorphic to k((zH
′,o)), and K ′ ⊃ K is a Galois extension with

group isomorphic to H ′/H.
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(b) The Galois group of L ⊃ K ′ is a p-group.
(c) One has p(G) = Gal(L/K ′) = the unique Sylow p-subgroup of G, and
G/p(G) = Gal(K ′/K).
(d) There is a subgroup A ⊂ G which maps bijectively to G/p(G); i.e. the exact
sequence 1 → p(G) → G → G/p(G) → 1 splits.

Proof (1) This holds for L/K purely inseparable, so we may assume L/K is
Galois. Let G denote its Galois group and let w be an extension of the valuation v
to L. The group G operates transitively on the set of all extensions of the valuation
v; see [24], Chap. F, Thm. 1, p. 166. Let D ⊂ G denote the subgroup consisting
of the elements g ∈ G with g(w) = w. Then according to [24], Chap. F, Thm. 3,
p. 180, the field LD is an extension of K which has the same value group and the
same residue field. By Lemma 2.1 one has LD = K. Thus D = G and w is the
unique extension of the valuation v.

(2) (See also [24], Chap. G, Thm. 1, p. 230). We will write v for the additive
valuations on K and L. Consider representatives b1, . . . , bs ∈ L of a basis of l over k
and representatives c1, . . . , ct ∈ L of I/H . The collection {bicj} is certainly linearly
independent over K. We have to show that it is a basis.

Consider any non-zero element x ∈ L. Then v(x) = h + v(cj) for some j

and some h ∈ H . The image of x · z−hc−1j in l is non zero. Thus we can write

x = (
∑

i yiz
h)bicj + x̃ with all yi ∈ k and v(x̃) > v(x). If x̃ happens to be 0, then

we are done. If not, we have to apply the same procedure to x̃. By “induction”
(i.e. proceeding as in the proof of Lemma 2.1), one obtains that x is a K-linear
combination of the {bicj}.

(3) We may consider L as a subfield of k((zQ⊗H,o)). Choose an element h′ ∈ H ′

and let m be the smallest positive integer with mh′ ∈ H . Write h := mh′. Choose
x ∈ L with v(x) = h′. Then v(xm) = h and xm can be written as c · zh · (1 + s)
with c ∈ k∗ and s ∈ L, v(s) > 0. The element c clearly has an mth root.

We claim that (1 + s)1/m lies in L, and hence zh
′

∈ L and k((zH
′,o)) ⊂ L.

In order to prove the claim, it suffices to consider the case where m 6= p is prime.
The element f = (1 + s)1/m belongs to k((zQ⊗H,o)) and satisfies fm = 1 + s. If
f 6∈ L, then L(f)/L is a cyclic Galois extension of degree m. From part (2) one
concludes that the value group v(L∗) of L has index m in the value group of L(f).
Take an element u ∈ L(f) with v(u) 6∈ v(L∗). Then 1, u, u2, . . . , um−1 is a basis
of L(f) over L. In particular one can write f = a0u

0 + a1u + · · · + am−1u
m−1

with all ai ∈ L. The values v(aiu
i) for the non zero terms are distinct. Thus

v(a0) = 0 and v(aiu
i) > 0 for i 6= 0. Let j ≥ 1 be such that v(aju

j) is the smallest

element of {v(a1u), . . . , v(am−1u
m−1)}. Then 1 + s = am0 +mam−10 aju

j + r where
v(r) > v(aju

j). Thus v(aju
j) = v(1 + s− am0 ). This contradicts v(u) 6∈ v(L∗), and

thereby proves the claim.
The extension k((zH,o)) ⊂ k((zH

′,o)) is clearly Galois with group isomorphic to

the prime-to-p groupH ′/H . This proves (a) of (3). By (2) the degree [L : k((zH
′,o))]

is equal to [I : H ′], which is a power of p. Thus (b) and (c) and are proved. Finally,
since the groups p(G) and G/p(G) have relatively prime order, the exact sequence
1 → p(G) → G → G/p(G) → 1 splits [11], Thm. 15.2.2. Thus the required A of
part (d) exists.
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Remarks 2.5 (a) A more explicit way to arrive at the required subgroup
A ⊂ G in the above proof is again to consider L as a subfield of k((zQ⊗H,o)). For
every homomorphism µ : Q⊗H/H → k∗ one defines the automorphism σµ of the
field extension k((zQ⊗H,o)) ⊃ k((zH,o)) by the formula

σµ(
∑

h∈Q⊗H

c(h)zh) =
∑

h∈Q⊗H

µ(h)c(h)zh.

For every Galois extension K ⊂ F with F contained in k((zQ⊗H,o)), the map
µ 7→ σµ|F is a homomorphism Hom(Q ⊗ H/H, k∗) → Gal(F/K). For the field

F = k((zH
′,o)) this homomorphism is clearly surjective. Let A denote the image of

Hom(Q⊗H/H, k∗) → Gal(L/K) = G. Then A maps surjectively to G/p(G). The
map is injective since A has no elements of order p.

(b) By Remark (a), a generalized field of Laurent series k((zH,o)) has explicit
automorphisms! Let µ : H → k∗ be a group homomorphism. We associate
to µ the automorphism σµ of k((zH,o)) given by the formula σµ(

∑
h c(h)z

h) =∑
h µ(h)c(h)z

h.

We apply the above remark to the field of generalized Laurent series F :=
k((zQ

n,o)), where k is an algebraically closed field of characteristic p > 0 and
where the total group order o satisfies (a1, . . . , an) ≥ (0, . . . , 0) if a1, . . . , an ∈ Q

and all ai ≥ 0. Let A be the group of the automorphisms of F consisting of the
σµ such that the homomorphism µ : Qn → k∗ is trivial on Zn. By definition,
A ≈ Hom(Q/Z, k∗)n. Since k is algebraically closed and has characteristic p > 0,

one can identify Hom(Q/Z, k∗) with Ẑ′, i.e., the prime-to-p quotient of the profinite

completion Ẑ of Z. In this way A is identified with (Ẑ′)n.
Applying this to Example 2.3(5), we may choose o so that k((zZ

n,o)) equals
k((x1)) · · · ((xn)) ⊂ F , and we obtain:

Corollary 2.6 Let k be algebraically closed of characteristic p, write K for the

field k((x1)) · · · ((xn)), let K
′ = K[x

1/m
i | 1 ≤ i ≤ n; (m, p) = 1], and let Ksep be

the separable closure of K. Then the surjective homomorphism of groups

Gal(Ksep/K) → Gal(K ′/K) ≈ (Ẑ′)n has a section.

Proof By Corollary 2.2, F = k((zQ
n,o)) is algebraically closed and hence

contains Ksep. Any σu ∈ A preserves the property of an element being separa-
bly algebraic over K, i.e. leaves Ksep invariant as a set. So we have a surjection

A → Gal(Ksep/K), whose composition with Gal(Ksep/K) → Gal(K ′/K) ≈ (Ẑ′)n

is an isomorphism on A. The inverse of this isomorphism is the desired section.

Remarks 2.7 (a) While the above presentation is elementary, Proposition 2.4
and Corollary 2.6 can also be understood in terms of ramification theory of valued
fields. Namely, suppose K is a valued field with algebraically closed residue field
and with no immediate extensions (as in the above results, by Lemma 2.1). Then
K is its own inertia field. Also, the ramification field is an abelian pro-prime-to-
p Galois extension of the inertia field, and the separable closure is a Galois pro-p
extension of the ramification field; cf. [16], §5. The conclusions of Proposition 2.4(d)
and Corollary 2.6 follow from these properties.

(b) See also [19] and [20], §1, Proposition 1, for related results about iterated
Laurent series fields.
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3 Local covers

In this section we study Galois groups of covers of “local spaces”, over an
algebraically closed field k of characteristic p. That is, we consider Galois étale
covers of Spec k[[x1, . . . , xn]][(x1 · · ·xn)

−1], or equivalently Galois branched covers
of Spec k[[x1, . . . , xn]] that are branched only over the locus of (x1 · · ·xn). The case
of tame covers is handled in the following classical result (cf. [10], Theorem 2.3.2,
or [2]):

Proposition 3.1 If SpecR → Spec k[[x1, . . . , xn]] is a tamely ramified Galois
cover with branch locus contained in the locus of (x1 · · ·xr) for some r ≤ n, then R

is contained in k[[x1, . . . , xn]][x
1/m
1 , . . . , x

1/m
r ] for some integer m ≥ 1, not divisible

by p. The Galois group of the given cover is abelian, of order prime to p, and of
rank at most r.

Proof Let X = Spec k[[x1, . . . , xn]] and let Y = SpecR. Let m be the
greatest common divisor of the ramification indices of Y → X over the divisors
(xi), for i = 1, . . . , r; here m is prime to p by the tameness hypothesis. Let

X ′ = Spec k[[x1, . . . , xn]][x
1/m
1 , . . . , x

1/m
r ] = Spec k[[x

1/m
1 , . . . , x

1/m
r ]] and let Y ′ be

the normalization of Y ×XX ′. Then X ′ is regular, and Y ′ → X ′ is étale in codimen-
sion 1 by Abhyankar’s Lemma. By Purity of Branch Locus, Y ′ → X ′ is étale ev-

erywhere. But k[[x
1/m
1 , . . . , x

1/m
r ]] is a complete local ring with algebraically closed

residue field; so Hensel’s Lemma implies that Y ′ is a trivial cover of X ′ (i.e. a dis-

joint union of copies of X ′). Hence R is contained in k[[x1, . . . , xn]][x
1/m
1 , . . . , x

1/m
r ].

The Galois group of the given cover is as claimed, since it is a quotient of that of
X ′ → X , viz. a product of r copies of a cyclic group of order m.

In particular, the above proposition shows that such a tamely ramified cover
has degree prime to p.

We now turn to the more general case, in which wild ramification is permitted
— i.e. in which the orders of the inertia groups over the (xi) can be divisible by p.
We first prove a lemma.

Lemma 3.2 Let E be a field, let A ⊃ E[[x]] be a finite Galois extension of
discrete valuation rings with group G, and let E′ be a separable field extension of
E (not necessarily algebraic over E). Let A′ be the compositum of A and E′[[x]] in
an algebraic closure of E′((x)), and let G′ = Gal(A′/E′[[x]]).

(a) If y ∈ A is a uniformizer for A, then y is a uniformizer for A′.
(b) Under the natural inclusion G′ →֒ G, the inertia subgroup of G′ maps
isomorphically onto the inertia subgroup of G.

Proof The ring B := A⊗E[[x]] E
′[[x]] is a complete semi-local ring, since it is

finite over E′[[x]]. Here B is equal to a product B1 × · · · × Bs of complete local
domains Bi; and the total ring of fractions of B is of the form L = L1 × · · · × Ls,
with Li the field of fractions of Bi. The ring L is an extension of E′((x)), and the
action of G on B extends to an action on L such that LG = E′((x)). Thus G acts
transitively on the components of Spec(B), i.e. on the factors Bi, or equivalently
on the minimal prime ideals P i of B (where P i corresponds to Bi).

Let y generate the maximal ideal of A and put E1 := A/(y). Then B/(y) ∼=
E1 ⊗E E′ since x ∈ (y). Since E′ is a separable extension of E, it follows that
E1 ⊗E E′ is reduced [17], 27.D. Thus E1 ⊗E E′ is a product of fields F1 × · · · × Fs,
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where Fi can be identified with the residue field of Bi. Let yi ∈ Bi denote the image
of y under the projection B → Bi. Then Bi/(yi) = Fi and therefore Bi is a complete
discrete valuation ring with uniformizer yi. Each of the Bi can be identified with
A′, the compositum of A and E′[[x]] in an algebraic closure of E′((x)). This proves
part (a).

Now identify A′ with B1. The subgroup G′ of G consists of the σ ∈ G such
that σ fixes P 1. Let σ be an element of the inertia group of G = Gal(A/E[[x]]).
Then σ is the identity modulo (y) and induces the identity on B/(y). In particular
P 1 is fixed under σ and thus σ belongs to the inertia group of G′. Hence G and G′

have the same inertia groups. This proves part (b).

Theorem 3.3 Suppose that G is the Galois group of a Galois branched cover
of Spec k[[x1, . . . , xn]] that is branched only over (x1 · · ·xr), where 1 ≤ r ≤ n.

(a) Then p(G) has an abelian supplement of order prime to p and rank ≤ r.
(b) If I is an inertia group over some (xi), then the abelian supplement A may
be chosen so as to normalize the p-group p(I). Hence if p divides the order
of G, then A may be chosen so as to normalize a non-trivial p-subgroup of G.
(c) The subgroup p(G) is generated by the collection of p-subgroups that are
normalized by such supplements.

Proof The given branched cover corresponds to a finite extension R of the ring
R0 := k[[x1, . . . , xn]]. Here R is an integrally closed domain, and R[(x1 · · ·xr)

−1] is
étale over R0[(x1 · · ·xr)

−1]. Moreover the fraction field of R is a Galois extension,
with group G, of the fraction field F := k((x1, . . . , xn)) of R0. By Proposition

3.1, the corresponding G/p(G)-extension R̃ = Rp(G) of R0 is contained in the ring

R0[x
1/m
1 , . . . , x

1/m
r ] for some integer m ≥ 1 not divisible by p. Also G/p(G) is

abelian, of order prime to p, and of rank ≤ r, by 3.1.
If the order of G is prime to p, then p(G) = 1 and the assertion is immediate

from Proposition 3.1. So assume p divides the order of G. We begin by proving
parts (a) and (b); and after reordering the xi’s we may assume that i = 1.

Let φ : F →֒ K := k((xn))((xn−1)) · · · ((x1)) be the natural embedding given
by φ(xi) = xi. In the terminology of Section 2, the field K may be identified with
the generalized Laurent series field k((zZ

n,o)), where o is the lexicographic order
on Zn, and where xj is identified with zej for j = 1, . . . , n. Let v be the discrete
valuation on F associated to (x1), and let w be a discrete valuation on R (or its
fraction field) over v, for which I is an inertia group. The completion of the local

ring of R0 at v is E[[x1]], where E = k((x2, . . . , xn)). Let R̂w denote the completion
of the local ring of R at w, and let Lw denote its field of fractions. Then the inertia
group of R̂w over E[[x1]] is also I.

Let L be the compositum of Lw andK (as extensions of E((x1))) in an algebraic
closure K̄ of K. (Thus L can also be viewed as the compositum of R and K in
K̄.) The extension K ⊂ L is a finite Galois extension whose Galois group G′ is
identified with a subgroup of G. Write E′ := k((xn))((xn−1)) · · · ((x2)); this is the

generalized Laurent series field k((zZ
n−1,o′)), where o′ is the lexicographic order on

Zn−1. The integral closure of E′[[x1]] in L is the unique discrete valuation ring
of L lying over the discrete valuation of E′((x1)) = K. By Example 2.3(6), E′ is
separable over E. So viewing G′ as a subgroup of G, it follows from Lemma 3.2(b)
that the inertia group of G′ is the same as that of G over (x1).
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Consider the compositum L̃ of K and R̃. Then L̃ is a subfield of L, and is a
Galois extension ofK with Galois group G/p(G), since R̃ is linearly disjoint from K

over R0 (because R0[x
1/m
1 , . . . , x

1/m
r ] is, and R̃ ⊂ R0[x

1/m
1 , . . . , x

1/m
r ]). So G′ maps

surjectively to G/p(G), and the map G′/p(G′) → G/p(G) is surjective. Part 3 of
Proposition 2.4 asserts that p(G′) is a p-group, and provides a prime-to-p abelian
subgroup A0 ⊂ G′ which is a supplement to p(G′) in G′ and hence to p(G) in G.
Since G/p(G) is abelian of rank ≤ r, there is a subgroup A ⊂ A0 which is of rank
≤ r and is still a supplement to p(G) in G. Since I is normal in G′, the subgroup
A ⊂ G′ normalizes I and hence its characteristic subgroup p(I). Since p(G′) is a
p-group, and since I ⊂ G′, it follows that p(I) is a p-group. This proves part (a)
and the first part of (b). The second part of (b) follows from Proposition 3.1, since
that implies that if p divides the order of G then the cover is not tamely ramified;
i.e. some p(I) is non-trivial.

For part (c), let N be the normal subgroup of G generated by the groups p(I),
where I ranges over all the inertia groups over the various (xi)’s. Each p(I) is a
p-group contained in p(G), and so N ⊂ p(G). Now the subcover corresponding
to N ⊂ G is tamely ramified, since N contains each p(I); hence this cover is of
degree prime-to-p by Proposition 3.1. So the index of N in G is prime-to-p. Hence
N = p(G), i.e. p(G) is generated by the p-groups p(I). The assertion now follows
from part (b).

Corollary 3.4 Let X = Spec k[[x1, . . . , xn]][(x1 . . . xr)
−1], with 1 ≤ r ≤ n.

(a) Then π′1(X) is isomorphic to Ẑ
′r, and the exact sequence

1 → p(π1(X)) → π1(X) → π′1(X) → 1 splits. (∗)

(b) The group p(π1(X)) is generated by the collection of pro-p-subgroups P such
that P is normalized by the image of some splitting of the exact sequence.

Proof Let R0 = k[[x1, . . . , xn]], let S0 = R0[(x1 . . . xr)
−1], and let S [resp. S′]

be the maximal unramified [resp. maximal pro-prime-to-p unramified] extension of

S0. By Proposition 3.1, S′ is the union of the rings S0[x
1/m
1 , . . . , x

1/m
r ], as m ranges

over positive integers prime to p. The Galois group of this extension is Ẑ
′r, so the

first part of (a) follows.
Let R be the integral closure of R0 in S, let 1 ≤ i ≤ r, and let I be an inertia

group of R over the ideal (xi) of R0. Consider the following

Claim: The subgroup p(I) ⊂ I is a pro-p-group, and there is a splitting
σ : π′1(X) → π1(X) of (∗) whose image normalizes p(I).

Once this is proven, the second part of (a) is automatic, and part (b) also
follows because the various inertia groups I generate π1(X) (since SpecR0 has no
unramified covers). So it remains to prove the claim.

For each normal subgroup N ⊂ π1(X) of finite index, let GN = π1(X)/N ,
let IN = I/(I ∩N), and let ΣN be the set of prime-to-p abelian supplements AN

to p(GN ) in GN that are of rank ≤ r and that normalize p(IN ). Then IN is an
inertia group over (xi) for a GN -Galois cover of X , and so p(IN ) is a p-group. Thus
I = lim

←
IN is a pro-p-group. By Theorem 3.3(b), ΣN is a non-empty set (which is

finite, since GN is). Since the inverse limit of a non-empty family of non-empty
finite sets is non-empty, we have that Σ := lim

←
ΣN is non-empty. Let A ∈ Σ. Then

A is an abelian pro-prime-to-p subgroup of π1(X) which is topologically generated
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by a set of m ≤ r elements and which normalizes p(I). Moreover A is a supplement

to p(π1(X)), i.e. A surjects onto π′1(X) ≈ Ẑ
′r. Since m ≤ r, it follows that A ≈ Ẑ

′r

and the surjectionA → π′1(X) is an isomorphism. So the inverse of this isomorphism
is a splitting σ : π′1(X) → A ⊂ π1(X) of (∗) whose image normalizes p(I). This
proves the claim, and hence the Corollary.

Remark 3.5 A splitting in Corollary 3.4 can be described explicitly, in terms
of the groupA ⊂ Aut(J/K) described at the end of Section 2, whereK = k((zZ

n,o))
and J = k((zQ

n,o)). For simplicity take r = n. The natural embedding of F =
k((x1, . . . , xn)) into K extends to an embedding φ : F sep →֒ J . Consider the
infinite intermediate Galois extensions F ⊂ L1 ⊂ L2 ⊂ F sep corresponding to the
groups π′1(X) and π1(X). By linear disjointness (as in the proof of Theorem 3.3),
the Galois group of φ(L1)K/K is again π′1(X). The Galois group H of the Galois
extension φ(L2)K/K is a subgroup of π1(X). The group A, which is isomorphic to

Ẑ
′n, leaves the fields φ(L1) and φ(L2) setwise invariant. The actions of A on φ(L1)

and φ(L2) induce continuous homomorphisms A → π′1(X) and A → H ⊂ π1(X),
where the former is an isomorphism. The composition A → π1(X) → π′1(X) is a
continuous isomorphism which yields the required splitting.

The natural embedding of F = k((x1, . . . , xn)) into K = k((zZ
n,o)) gives us an

inclusion Gal(Ksep/K) →֒ Gal(F sep/F ). The natural surjection Gal(Ksep/K) →

Gal(K ′/K) ≈ Ẑ
′n (where K ′ is as in Corollary 2.6) is the composition of the above

inclusion and the natural surjection Gal(F sep/F ) → Ẑ
′n. Moreover this latter

surjection factors through the surjection π1(X) → π′1(X) in Corollary 3.4. So by
Corollary 2.6 we obtain:

Corollary 3.6 Let X = Spec k[[x1, . . . , xn]][(x1 · · ·xr)
−1] and let F be the

function field of X. Then the natural surjection Gal(F sep/F ) → π′1(X) ≈ Ẑ
′n has

a section which lifts a section of π1(X) → π′1(X) in Corollary 3.4(a).

4 Coverings of the complement of a hypersurface in a projective space

We now turn to covers of “global spaces” over an algebraically closed field k of
characteristic p. In particular, we consider spaces X that are of the form Pn

k −D,
where D is a divisor in Pn

k . Here, we require D to have only normal crossings as
singularities (or for short, to be a “normal crossings divisor”). That is, for every

point Q on D, we require that the ideal of D in the complete local ring ÔPn,Q of
Q is generated by an element of the form y1 · · · yt, where {y1, . . . , yn} is a basis of

the maximal ideal of ÔPn,Q and 1 ≤ t ≤ n. (There is also a more restrictive notion
of “strong normal crossing”, which requires that each irreducible component of D
be smooth; but we allow the more general notion here.)

Theorem 4.1 [Abhyankar, Fulton] Let n > 1, and let D be a divisor with
normal crossings in Pn

k . Let G be the Galois group of a Galois branched cover
of Pn that is at most tamely ramified over D and is étale elsewhere. Then G is
abelian.

Proof The inertia group along any irreducible component of the ramification
locus is cyclic, since the cover is tamely ramified. Also, since Pn

k has no unramified
covers (by applying Bertini’s Theorem to reduce to the well-known case of n = 1),
the inertia groups of the components of the ramification locus together generate G.
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If two components of the ramification locus meet at a point Q1 of the cover
over a point Q ∈ Pn, then their inertia groups are contained in the inertia group at
Q1. Passing to the complete local rings at Q and Q1, it follows from Proposition
3.1 that the inertia group at Q1 is abelian and hence the inertia groups of the
two components commute. So to prove the theorem, it suffices to prove that any
two components of the ramification locus meet; and this in turn follows from the
following

Claim. There is only one irreducible component of the ramification locus over
each irreducible component of the branch locus.

We now prove the claim. Let D =
∑

Dj be the branch locus of the tamely
ramified cover f : Y → Pn, where D is a divisor with normal crossings. We
want to show that Ej := f−1(Dj) is irreducible. Let g : D̃j → Dj ⊂ Pn be the

normalization of Dj, and let Ẽj = D̃j ×Pn Ej . Thus D̃j is smooth.

A local analysis shows that Ẽj is also smooth. Namely, suppose that a point P
on Dj is an r-fold normal crossing on D, and a t-fold normal crossing on Dj (with
t ≤ r). After a change of variables, we may assume that locally near P (i.e. in the
complete local ring at P ), the divisor D is given by x1 · · ·xr = 0, and Dj is given
by x1 · · ·xt = 0. Replacing Y by a cover, we may assume by Proposition 3.1 that
Y is given locally by ymi

i = xi, with i = 1, . . . , r, and that Ej is given locally by

y1 · · · yt = 0. So locally, Ẽj is the disjoint union of the loci yi = 0, for i = 1, . . . , t;
and this is smooth.

So to prove that Ej is irreducible, it suffices to show that Ẽj is connected. This
follows from the Fulton-Hansen connectedness theorem [7], which says that V is an
irreducible projective variety of dimension > n, and F : V → Pn × Pn is finite,
then F−1(∆) is connected, where ∆ is the diagonal. Here, taking V = D̃j ×Y , and
taking F = g×f , we have that V is of dimension 2n−1 (which is > n since n > 1).

So Ẽj = D̃j ×Pn Ej = F−1(∆) is irreducible, as asserted, proving the claim.

Corollary 4.2 [Abhyankar, Fulton] Let n > 1, and let D be a divisor with nor-
mal crossings in Pn, having irreducible components D1, . . . , Dr of degrees d1, . . . , dr.
Let q be the largest power of p that divides all the di, and let d′i = di/q.

(a) Let Y → Pn be a tamely ramified Galois cover branched only at D. Then for
some integer m ≥ 1, Y is dominated by a cover of the form ymi = fi (for i = 1, . . . r),
where fi defines Di on the complement of a hyperplane. If the cover is cyclic of
degree m prime to p, then it is given by an equation of the form ym =

∏
fai

i , for
some integers ai ≥ 0 such that

∑
aidi ≡ 0 (modm).

(b) πt
1(P

n, D) = π′1(P
n − D) = Ẑ

′r/(d1, . . . , dr)Ẑ
′ = Ẑ

′r/(d′1, . . . , d
′
r)Ẑ
′, with

the ith coordinate vector of Ẑ
′r mapping to a generator of the unique inertia group

over Di.

Proof (a) After a change of variables we may assume that no Di is the hyper-
planeH at infinity where xn+1 = 0. Working in affine coordinates onAn = Pn−H ,
let Di be given by the polynomial fi ∈ k[x1, . . . , xn]. First consider a cyclic tamely
ramified cover Y → Pn, say of degree m. If p divides m, then Y has a tamely
ramified subcover of degree p; a contradiction, since that cover would have to be
unramified over Pn, which is simply connected. So m is prime to p. By Kummer
theory, the function field of Y is given by F [f1/m], where F = k(x1, . . . , xn) and
f ∈ k[x1, . . . , xn] is of the form

∏
fai

i , with ai ≥ 0. Since the cover is unramified



14 David Harbater, Marius van der Put, and with an appendix by Robert Guralnick

over the hyperplane at infinity, we have that
∑

aidi ≡ 0 (modm). By the above, a
cyclic tame cover is dominated by a cover of the form ymi = fi, where i = 1, . . . r.
Hence the same follows for all abelian tamely ramified covers.

(b) Let F ∗ := F [x
1/m
i | 1 ≤ i ≤ r; (m, p) = 1] and let F̃ be the maximal

subextension of F ∗ that is unramified overH , the hyperplane at infinity. By (a), the
function fields of tamely ramified covers of Pn branched at D are precisely the finite

subextensions of F̃ over F . Now Gal(F ∗/F ) = Ẑ
′r, with the ith coordinate vector

generating inertia over Di. Also, F̃ is the fixed field of {(a1, . . . , ar) |
∑

diai = 0}.

So Gal(F̃ /F ) = Ẑ
′r/(d1, . . . , dr)Ẑ

′ = Ẑ
′r/(d′1, . . . , d

′
r)Ẑ
′, which is a pro-prime-to-p

group. So πt
1(P

n, D) = π′1(P
n −D) = Gal(F̃ /F ), and (b) is shown.

Remark 4.3 The above results were stated in [2], but the claim in the proof
of Theorem 4.1 was proven in [2] only in the case of strong normal crossings (i.e.
assuming also that each component of D is smooth). See also [25] for a brief
presentation of Abhyankar’s proof in that case. Later, Fulton ([6], cf. also Deligne
[5]) proved the claim without the hypothesis of smooth components; but the proof
there was given only for n = 2. The proof extends to general n ≥ 2, though; and
that is what we have given above. (Fulton also says in [6] that the result with n = 2
can be used to deduce the following assertion in dimension n > 2: If Y → Pn is a
tamely ramified Galois cover whose branch locus D has the property that a generic
plane section of D is a curve with only normal crossings, then the Galois group is
abelian.)

The above results have the following consequence:

Corollary 4.4 Let n > 1, and let D be a normal crossing divisor in Pn
k with

irreducible components D1, . . . , Dn+1. Let Q be a point of Pn lying in D1∩· · ·∩Dn,
and suppose that the degree of Dn+1 is a power of p. Then any tamely ramified
Galois branched cover of Pn that is étale away from D is totally ramified over Q.

Proof Let G be the Galois group and let di be the degree of Di. Thus dn+1 =

pu for some u ≥ 0. By Corollary 4.2, the natural surjection π : Ẑ
′n+1 → G,

which maps the ith coordinate vector to a generator of inertia over Di, has the
property that its kernel contains (d1, . . . , dn, p

u). Choose an integer m such that
mpu ≡ 1 modulo the order of the Galois group G. Then the kernel of π also contains
(md1, . . . ,mdn,mpu) and hence contains (md1, . . . ,mdn, 1). Thus the inertia group
over Dn+1 is contained in the subgroup of G generated by the inertia groups over
the other Di. Since the inertia groups together generate G (because Pn is simply
connected), the result follows.

We now come to the key result:

Theorem 4.5 Let n > 1, and let D be a reduced hypersurface in Pn
k with

irreducible components D1, . . . , Dr of degrees d1, . . . , dr, and with r ≤ n+1. Suppose
that D has only normal crossings. Let X = Pn

k − D and let Y → X be a Galois
finite étale cover of X with group G.

(a) Suppose either that r ≤ n, or that some di is a pth power. Then there is
an abelian supplement A ⊂ G to p(G) having rank at most max(r, n), and having
order prime to p.
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(b) Suppose either that r ≤ n and p(G) 6= 1, or that di is a pth power and
Dj is wildly ramified for some pair i 6= j. Then A may be chosen to normalize a
non-trivial p-subgroup of G.

(c) Suppose either that r ≤ n, or that at least two di’s are pth powers, or that
some di is a pth power and the corresponding Di is tamely ramified. Then p(G)
is generated by the set of p-subgroups P ⊂ G such that P is normalized by some
choice of A.

Proof By Corollary 4.2(b), the group G/p(G) has a generating set of at most
max(r, n) elements (using that some di is a pth power, in the case that r = n+1). So
if A is any abelian supplement to p(G) in G that has order prime to p and normalizes
some subgroup P ⊂ G, then A contains a subgroup A0 that is generated by at most
max(r, n) elements and also has the other properties of A. So it suffices to prove
the result without the condition on the rank of A. In the remainder of this proof,
this is what we do.

(a) The first case (i.e. r ≤ n) reduces to the second case, since if r ≤ n we may
adjoin linesDr+1, . . . , Dn+1 such that the enlarged divisor still has normal crossings.
So assume we are in that case. After reordering the components, we may assume
that dn+1 is a power of p, say pu with u ≥ 0. Take a point Q in the intersection
D1 ∩ · · · ∩Dn. Let Y2 → Y1 → Pn denote the branched covers corresponding to G
and G/p(G). By Corollary 4.4, Y1 → Pn is totally ramified over Q; let Q1 ∈ Y1 be
the unique point over Q. Choose a point Q2 ∈ Y2 above Q1. Then the stabilizer
G′ ⊂ G of Q2 maps surjectively to G/p(G). That is, G′/p(G′) → G/p(G) is an
isomorphism, and so every supplement to p(G′) in G′ is also a supplement to p(G)
in G. After completing the two local rings at Q and Q2, and using that D has
normal crossings, one obtains from the above a finite extension k[[x1, . . . , xn]] ⊂ R
where R is an integrally closed domain; its field of fractions is a Galois extension,
with group G′, of the field of fractions F := k((x1, . . . , xn)) of R0 := k[[x1, . . . , xn]];
and R0[(x1 · · ·xn)

−1] ⊂ R[(x1 · · ·xn)
−1] is étale. By Theorem 3.3(a), there is an

abelian prime-to-p supplement A to p(G′) in G′. Any such A is a supplement to
p(G) in G.

(b) Again we may assume that we are in the second case. Namely, in the first
case, some Dj (with j ≤ r) is wildly ramified (by Theorem 4.1), and we may adjoin
lines Dr+1, . . . , Dn+1 as in (a), with di = 1, a power of p, for r < i ≤ n + 1. This
reduces us to the latter case, and after renumbering the components of G, we may
assume that i = n+ 1.

Retaining the notation from the proof of (a), we have that Y2 → P1 is wildly
ramified over Q, since it is wildly ramified over Dj. Thus the order of G

′ is divisible
by p. So by the second part of Theorem 3.3(b) applied to G′, the group A above
may be chosen to normalize a non-trivial p-subgroup of G′ ⊂ G.

(c) By adding extra lines, the first case reduces to the third. The second and
third cases are subsumed by the hypothesis that for every component Di of D that
is wildly ramified, there is a j 6= i such that dj is a pth power. So assume that
condition. Since every tamely ramified cover is of degree prime-to-p by Corollary
4.2, it suffices to show that if Di is wildly ramified and if I is an inertia group
over Di, there is a choice of A in (a) that normalizes p(I) (which is a p-group
since I is an inertia group over the generic point of a divisor). After reordering the
components of D, we may assume that i = 1 and that dn+1 is a pth power. Let D′1
be a component of the ramification locus of Y2 → P1, lying over D1, and having
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inertia group I. With notation as in (a), choose Q2 such that D′1 passes through
Q2. So by the first part of Theorem 3.3(b) applied to G′, the group A in (a) may
be chosen to normalize p(I).

Corollary 4.6 Let n > 1 and 0 ≤ r ≤ n, let D ⊂ Pn be the locus of x0 · · ·xr =
0, and let X = Pn − D. Then the Galois group of any Galois étale cover of X
satisfies these properties:

(i) There is an abelian supplement A ⊂ G to p(G) having rank at most r, and
having order prime to p.
(ii) The group A in (i) may be chosen to normalize a non-trivial p-subgroup of
G, if p divides the order of G.
(iii) p(G) is generated by the set of p-subgroups P ⊂ G such that P is normalized
by some choice of A in (i).

Proof Apart from the assertion on rank, this is a special case of Theorem 4.5.
But G/p(G) has rank r by Corollary 4.2, since each component of D has degree
1. So as in the comments at the beginning of the proof of Theorem 4.5, we may
replace A by a subgroup A0 of rank ≤ r, which has the same properties.

Corollary 4.7 Let n > 1, and let D be a normal crossings hypersurface in Pn
k

having at most n+ 1 irreducible components. Let X = Pn −D.
(a) If r ≤ n or the degree of some irreducible component of D is a pth power,

then the exact sequence

1 → p(π1(X)) → π1(X) → π′1(X) → 1

splits. This splitting may be chosen so that its image normalizes a non-trivial pro-
p-subgroup of π1(X).

(b) If r ≤ n or at least two irreducible components of D have degrees that are
pth powers, then p(π1(X)) is generated by the set of pro-p-subgroups P ⊂ π1(X)
such that P is normalized by the image of some choice of section.

Proof This follows from Theorem 4.5 in the same way that Corollary 3.4 fol-
lowed from Theorem 3.3, and using in the second part of (a) above the fact that
there exist covers that are wildly ramified over every component of D.

In particular, Corollary 4.7 applies if D = (x0 · · ·xr = 0), a union of coordinate

hyperplanes. In this situation π′1(X) is isomorphic to Ẑ
′r by Corollary 4.2(b), so

π1(X) is a split extension of a free abelian pro-prime-to-p group of rank r by a
pro-quasi-p group. Moreover the possible splittings satisfy the extra normalizing
condition of 4.7(b).

5 Which groups are Galois groups of covers?

We return to the problem of finding πA(X), the class of finite Galois groups over
X , in either the local or the global case. We would like to describe πA(X) in terms of
the (known) class of prime-to-p groups in πA(X). We show here that the results of
Sections 3 and 4, which provide additional necessary conditions for a group to be in
πA(X), contradict the higher dimensional case of Abhyankar’s Conjecture 1.1. (The
fact that these conditions are really new restrictions is group-theoretic, and follows
from the Appendix to this paper.) We also show that Abhyankar’s Conjecture fails
in general for curves over finite fields, because of similar extra conditions there. In
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all these situations, the extra conditions suggest possible variations on Abhyankar’s
Conjecture which would generalize the classical case of curves over an algebraically
closed field, and which may possibly apply more generally.

Let X be a variety over a field k of characteristic p. For any finite group G, let
S(G) be the set of prime-to-p supplements H to p(G) ⊂ G such that H ∈ πA(X).
Also, let P(G) be the set of p-subgroups P ⊂ G that are normalized by some
H ∈ S(G) (which can depend on P ). We then have six classes of finite groups, viz.
those satisfying each of these (progressively stronger) conditions in turn:

(1) G/p(G) ∈ πA(X).
(2) S(G) (or equivalently, P(G)) is nonempty.
(3) P(G) contains a nontrivial p-group, or p(G) = 1 ∈ P(G).
(4) The groups in P(G) together generate p(G).
(5) p(G) is the normal closure of some P in P(G).
(6) P(G) contains a Sylow p-subgroup of G.

(By definition of S(G) and P(G), the condition p(G) = 1 ∈ P(G) in (3) is equiva-
lent to saying that p(G) = 1 and G ∈ πA(X).)

Condition (1) is trivially necessary in order for G to be a Galois group over
X . In several situations, Abhyankar has conjectured that (1) is also sufficient. We
consider several key cases, over a field k of characteristic p:

Example 5.1 Let X be an affine k-curve, with k algebraically closed. Thus
X is obtained by deleting r ≥ 1 points from a smooth projective curve of genus
g ≥ 0. Then Abhyankar’s Conjecture holds forX , i.e. condition (1) is necessary and
sufficient for a finite group G to lie in πA(X). In this situation, a prime-to-p group
is in πA(X) if and only if it can be generated by a set of 2g+r−1 elements or fewer;
i.e. if and only if the group is a quotient of the free group on 2g+ r− 1 generators.
Because of this freeness, conditions (1)-(6) are all equivalent to each other, and to
the condition that G ∈ πA(X). Indeed, in [12], Abhyankar’s Conjecture was shown
by proving that every group that satisfies (6) in this situation must be a Galois
group over X , and then observing that conditions (1) and (6) are equivalent here.

Example 5.2 Let X = Spec k[[x1, . . . , xn]][(x1 · · ·xr)
−1], where n > 1 and

1 ≤ r ≤ n, and where k is algebraically closed. By Theorem 3.3, in order for G
to be a Galois group over X , not only is condition (1) necessary, but (2), (3), and
(4) are as well. In this situation, a prime-to-p group is in πA(X) if and only if it is
abelian and can be generated by a set of r elements or fewer.

Consider in particular the case of r = 2. Then conditions (1)-(6) are inequiv-
alent, by the Appendix. (Namely, Theorem 6.1 of the Appendix shows that condi-
tions (F1)-(F6) there are distinct for the class of prime-to-p abelian groups of rank
≤ 2, i.e. to conditions (1)-(6) above.) Thus Abhyankar’s local conjecture in higher
dimensions does not hold — e.g. any group that satisfies (1) but not (2) will not
occur. Moreover, conditions (2) and (3) are also insufficient to imply that a group
is in πA(X). One might ask whether condition (4) is both necessary and sufficient,
or perhaps whether one of the two strictly stronger conditions (5) or (6) is. This
remains open.

On the other hand, if r = 1, then conditions (1)-(6) are all equivalent. It is
thus natural in this case to expect Abhyankar’s Conjecture to hold in that case —
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i.e. that these conditions are necessary and sufficient for a finite group G to be a
Galois group over X . But this too remains open.

Example 5.3 Let X be the complement of a normal crossings divisorD in Pn
k ,

with n > 1 , and where k is algebraically closed. Say D has irreducible components
D1, . . . , Dr, with Di of degree di. By Corollary 4.2, a prime-to-p group is in πA(X)

if and only if G is abelian and has generators g1, . . . , gr such that
∏

gdi

i = 1. If
some di is a pth power, then this condition is equivalent to the group being abelian
and generated by r− 1 or fewer elements (since the ith generator can be omitted).
In this situation, conditions (1)-(6) are the same as in the previous example, but
with r−1 instead of r. Thus the conditions are again strictly increasing in strength,
by the Appendix. By Theorem 4.5(a) and (b), any finite group in πA(X) satisfies
conditions (2) and (3). If at least two di’s are pth powers, then any finite group in
πA(X) satisfies condition (4), by Theorem 4.5(c). So this holds if all di = 1.

In particular, consider the case of r = 3 and all di = 1, i.e. X is the complement
of three coordinate hyperplanes in Pn (with n ≥ 2). By the above, any Galois group
overX satisfies condition (4). The Appendix shows that (4) is strictly stronger then
(1), and so Abhyankar’s Conjecture does not hold here. That is, condition (1) is
insufficient to guarantee that a group is in πA(X). Again, one can ask whether one
of (4), (5), and (6) is both necessary and sufficient. This too is open.

On the other hand, if r ≤ 2 then again the six conditions are equivalent to each
other. Moreover, in these situations, Abhyankar’s Conjecture does hold for X ; i.e.
these conditions are necessary and sufficient for a group G to be a Galois group
over X . Namely, (1) is necessary, as always. In the other direction, note that (1) is
equivalent to G = p(G) if r = 1, and is equivalent to G/p(G) being cyclic if r = 2.
Since X ≈ A1 × Pn−1 if r = 1, and X ≈ (A1 − {0})× Pn−1 if r = 2, sufficiency
follows from Abhyankar’s Conjecture for A1 [23] and for A1 − {0} [12].

Example 5.4 Let k be a finite field of characteristic p, and let X be an affine
open subset of P1

k, say with r ≥ 1 points missing. Let k̄ be an algebraic closure of
k and let X̄ = X ×k k̄. We have the fundamental exact sequence

1 → π1(X̄) → π1(X) → Gk → 1

where Gk = Gal(k̄/k). Since Gk is pro-cyclic and π′1(X̄) is free pro-prime-to-p of
rank r−1, it follows that any finite prime-to-p group in πA(X) must be an extension
of a cyclic group by a group of rank ≤ r − 1. (This disproves a recent suggestion
by Abhyankar that any finite group G is a Galois group over X if G/p(G) has rank
≤ r.)

In particular take r = 2 and X = A1
k−{0}. If G is the Galois group of an étale

cover Y → X , then G/p(G) is metacyclic (i.e. cyclic-by-cyclic). Let K = k((x)),

the fraction field of the complete local ring of P1
k at x = 0. Let X̂ = SpecK and let

Ŷ be a connected component of the pullback Y ×X X̂. Then Ŷ → X̂ corresponds to
a Galois field extension of K, with group H ⊂ G. Here Y → X extends to a cover
of P1

k branched at {0,∞}, and H is the decomposition group at some point over 0

(corresponding to the choice of connected component Ŷ ). Since k is a finite field
of characteristic p, the inertia group I ⊂ H has a unique Sylow p-subgroup P ; the
subgroup P is normal in the decomposition group H ; and H/P is metacyclic. By
[12], Lemma 5.3 (or by the Schur-Zassenhaus Theorem [8]), p(H) has a prime-to-p
supplement E ⊂ H that normalizes a given Sylow p-subgroup of H . Thus E is also
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a supplement to p(G) in G. Now the composition E →֒ H → H/P is injective, since
E is prime-to-p whereas the kernel of H → H/P is a p-group. So E is metacyclic.

The above may be done in turn for each of the points over 0, and we may
similarly proceed with the points over ∞. The p-groups p(D), where D ranges over
all the decomposition groups of Y → X over 0 and ∞, together generate p(G);
while p(D) is generated by the Sylow p-subgroups of D. Thus we have proven

Theorem 5.5 Let k be a finite field of characteristic p, and let G be the Galois
group of a Galois finite étale cover of X = A1

k − {0}. Then p(G) has a prime-
to-p metacyclic supplement A ⊂ G. Moreover, this supplement may be chosen
to normalize a non-trivial p-subgroup of G provided p(G) 6= 1; and the set of p-
subgroups that can be normalized by such supplements together generate p(G).

This result is an analog of Theorems 3.3 and 4.5. The above proof is also
analogous to the proofs of those results, using k((x)) here rather than the fields of
generalized Laurent series there.

Example 1a of Section 6.4 of the Appendix now shows that Abhyankar’s Con-
jecture does not hold for X = A1

k − {0}; i.e. that there are finite groups G such
that G/p(G) is in πA(X) but G is not in πA(X). Namely, take any pair of distinct
odd primes r, p such that r divides p− 1 (so that k contains a primitive rth root of
unity). Let A = (Z/rZ)2. Then A is a Galois group of a Galois étale cover Y → X ,
viz. Y is given over k′ by yr = x, where k′/k is the field extension of degree r.
Example 1a of Section 6.4 of the Appendix gives a group G such that G/p(G) ≈ A
but such that p(G) has no prime-to-p metacyclic supplement in G; and so Theorem
5.5 shows that G is not a Galois group over X .

On the other hand, for the affine line A1
k, Abhyankar’s Conjecture remains

open. In this case, the conjecture says that πA consists of the cyclic-by-quasi-p
groups, with the cyclic part corresponding to Frobenius. As in the case r = 1 of
Example 5.2 and the case r = 2 of Example 5.3, conditions (1)-(6) are all equivalent
here, suggesting that the conjecture holds in this situation.

At the other extreme, there is the Inverse Galois Problem over k(x); this can be
viewed as the case in which every point ofA1

k is permitted to be in the branch locus.
The expectation is that every finite group occurs over k(x); and this expectation is
equivalent to Abhyankar’s Conjecture 1.1 over k(x) if every finite prime-to-p group
is a Galois group over k(x). Whether that latter property holds is open in general,
but it is known to hold if p = 2 (since every odd ordered group is solvable by the
Feit-Thompson Theorem, and every solvable group is a Galois group over the global
field k(x) by Shafarevich’s Theorem). But by the Appendix, conditions (1)-(6) are
all equivalent if π′A is the class of all finite prime-to-p groups. So this suggests that
the Inverse Galois Problem should have an affirmative answer for k(x), with k a
finite field of characteristic p, at least if p = 2.

6 Supplements in p′ by quasi p-groups

Appendix by Robert Guralnick. 1

6.1 Introduction. This appendix considers several group-theoretic conditions
that are motivated by the preceding paper, and proves results that are used in Sec-
tion 5 of that paper.

1The author thanks MSRI for its hospitality during the Fall 1999 semester and acknowledges
the support of NSF grant DMS 9970305.
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We first recall some notation. If X and Y are subsets of a group G, we let XY
denote the set of products xy, x ∈ X, y ∈ Y . If X is a normal subgroup and Y is
a subgroup, then XY = Y X is a subgroup of G. If G = XY , we say that Y is a
supplement to X in G. If, in addition, X ∩ Y = 1, we say that Y is a complement
to X . If X is normal and Y is a complement to X , then G is a semidirect product
of X and Y .

Let C be a class of finite groups. Motivated by the previous article, we consider
the general problem of given a finite group G with a normal subgroup Q such
that G/N is in C, when does there exist a subgroup H of G such that G = QH
with H in C. Note that if this is the case, then G is the homomorphic image of a
semidirect product QJ with J ∼= H . Thus, one may be able to reduce questions
about extensions to split extensions.

Now fix a prime p. More precisely, we focus on the case when Q = p(G) is the
subgroup generated by all the Sylow p-subgroups of G (and so G/Q is a p′-group,
i.e. a group whose order is not divisible by p). A group H is said to be a quasi
p-group if H = p(H).

Recall that a group is metacyclic if it is cyclic-by-cyclic (i.e an extension of a
cyclic group by a cyclic group). If C is any class of abelian groups closed under
quotients containing a rank 2 p′-group or is the class of metacyclic groups (or
metacyclic p′-groups), we show that there are five additional properties that may
be considered (each stronger than the previous) which are distinct. In particular,
the classes given by the properties (F1)-(F6) below are distinct for C the class of
all abelian groups, abelian p′-groups or rank 2 abelian or abelian p′-groups. We do
show that for many classes of groups the classes (F1) - (F6) coincide.

We now fix a prime p and a class C of finite groups. For a finite group G, let
S(G) be the set of supplements H to p(G) such that H ∈ C. Also, let P(G) be the
set of p-subgroups P of G that are normalized by some H ∈ S(G). We then have
six classes of finite groups – those satisfying each of the conditions listed below.
Note that (F(i + 1)) implies (Fi) for i = 2, 3, 4, 5, and (F2) implies (F1) if C is
closed under quotients.

(F1) G/p(G) is in C.
(F2) S(G) is nonempty.
(F3) P(G) contains a nontrivial p-group, or p(G) = 1 and G ∈ C.
(F4) The groups in P(G) together generate p(G).
(F5) p(G) is the normal closure of some P in P(G).
(F6) P(G) contains a Sylow p-subgroup of G.

Let S ′(G) denote the set of prime-to-p supplements to Q in C. It is easy to
see that if C is also closed under subgroups, then H ∈ S(G) implies that there is a
p′-subgroup H1 of H in S ′(G). See Lemma 6.6. Thus, under the natural condition
that C is closed under subgroups, we may replace C by the set of p′-groups in C
in each of the conditions (Fi). If we let (Fi)′ denote this condition, then (Fi) and
(Fi)′ are equivalent. In the setting we are working in, it is more natural to consider
classes of p′-groups and also to consider classes which are closed under quotients.
Our first main result is:

Theorem 6.1 If C is any class of abelian groups containing a rank 2 elementary
abelian subgroup of order prime to p or C is the class of metacyclic groups or
metacyclic p′-groups, then the families (Fi), 1 ≤ i ≤ 6 are distinct.
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The second main result deals with general classes C. We say a class C is closed
under Frattini extensions if it satisfies the following property: if N is normal in
G and is contained in the Frattini subgroup, and if G/N is in C, then G is in C.
Similarly, we say C is closed under central Frattini extensions if it satisfies: if N is
central in G and is contained in the Frattini subgroup, and if G/N is in C, then G
is in C.

See below for the definition of the Frattini subgroup and some basic properties.
Some examples of such classes are the collection of nilpotent groups, π-groups
(groups whose order is product of primes all in π for π some set of primes), solvable
groups and d-generated groups. Also, note that if we have several classes closed
under Frattini extensions, so is the intersection. So for example the family of d-
generated nilpotent groups, for d a positive integer, is also such a class.

Theorem 6.2 If C is a class of finite groups closed under Frattini extensions,
then (F1) implies all (Fi). If, in addition, C is closed under quotients, then the
families (F1)-(F6) coincide.

We remark that if C is any class of nilpotent groups, then closure under Frattini
extensions is equivalent to closure under central Frattini extensions. In fact, the
previous theorem is valid for any normal subgroup of G, not just p(G) — see
Theorem 6.7. Moreover, if Q contains p(G), then of course all quotients are p′-
groups. If C is a class closed under Frattini extensions, then so is the class Cπ, the
set of π-groups in C. Thus if the previous result applies to C then it applies to the
subclass of p′-groups of C as well; i.e. (F1)-(F6) still coincide even if we restrict
attention just to p′-supplements. Below we also prove at least a partial converse to
the previous theorem. In the next result, we need to assume that our classes are
closed under quotients and normal subgroups (for example any class of finite groups
defined by identities). We suspect that a variation on our methods will show that
Theorem 6.1 holds for the classes considered in the next result (i.e. (F1)-(F6) are
all distinct).

Theorem 6.3 If C is a class of p′-groups closed under normal subgroups and
quotient groups but not closed under central Frattini extensions, then there exists a
finite group G such that G/p(G) is in C with S(G) empty. In particular (F1) and
(F2) are distinct.

The appendix is organized as follows. In the next section, we consider classes
closed under Frattini extensions and prove Theorem 6.2. In the following section,
we prove Theorem 6.3. In the last section, we give several more examples to prove
Theorem 6.1.

6.2 Classes closed under Frattini extensions. We prove Theorem 6.2 in
this section. Let G be a finite group. Recall that the Frattini subgroup Φ(G) is the
intersection of all the maximal subgroups of G.

We recall some easy properties of Φ(G). See [4], Chapter 8 or [8], Chapter 5.
We will use a special case of the so-called Frattini argument – if N is normal in G
and R is a Sylow r-subgroup of N , then G = NNG(R). This follows from the fact
that all conjugates of R in G are already conjugate in N (by Sylow’s theorem).

Lemma 6.4 1. If G = 〈X,Φ(G)〉, then G = 〈X〉.
2. Φ(G) is nilpotent.
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3. G is nilpotent if and only if G/Φ(G) is nilpotent if and only if G/Φ(G) is
abelian of squarefree exponent.

Proof The first statement is by definition of the Frattini subgroup. We prove
the second and third statements as special cases of the following: if N is normal
in G and contains Φ(G), then N/Φ(G) nilpotent implies that N is nilpotent. (The
second assertion is the case N = Φ(G) while the third assertion is the case N = G
together with the elementary observation that if G is nilpotent, then G/Φ(G) is
abelian of squarefree exponent.)

Recall that a finite group is nilpotent if and only if each of its Sylow sub-
groups is normal and hence characteristic. Let R be a Sylow r-subgroup of N .
Then RΦ(G)/Φ(G) is characteristic in the nilpotent group N/Φ(G) and so is
normal in G/Φ(G). Thus, RΦ(G) is normal in G. By the Frattini argument,
G = NG(R)RΦ(G) = NG(R)Φ(G) = NG(R). Thus, R is normal in G (and so in N
as well). Hence N is nilpotent.

We give some examples of classes which are closed under Frattini extensions.

Lemma 6.5 The following classes of finite groups are closed under Frattini
extensions:

1. d-generated groups;
2. nilpotent groups;
3. solvable groups;
4. π-groups.

Proof Since any set which generates modulo the Frattini subgroup, generates,
the property of d-generation clearly is closed under Frattini extensions. Solvability
is closed under extensions and since the Frattini subgroup is nilpotent, solvability
is closed under Frattini extensions. If G/N is nilpotent, the result follows by the
previous lemma. Finally, we consider the family of π-groups.

Suppose that L is a normal subgroup of G and G/L is a π-group and L is a π′-
group (π′ denotes the complementary set of primes to π). By the Schur-Zassenhaus
Theorem (cf [8]), G = LH with H a complement (and π-group). If M is a maximal
subgroup containing H , then M cannot contain L (for G = LH = LM and so
G = M). Thus, L is not contained in the Frattini subgroup of G.

Now let N be any normal subgroup of G contained in Φ(G). Let R be a
Sylow r-subgroup of N for some prime r dividing |N |. Since N is nilpotent, R is
characteristic in N and normal in G. Thus, by the previous paragraph, G/R is not
an r′-group, whence neither is G/N (since |G : R| = |G : N ||N : R| and r does not
divide |N : R|). So the only primes dividing |G| are those dividing |G/N |, yielding
the result.

It is clear that abelian groups and metacyclic groups are closed under quotients
and subgroups but are not closed under central Frattini extensions.

Lemma 6.6 Let G be a finite group, Q a normal subgroup and P a Sylow
p-subgroup of Q.

1. If H is minimal among supplements to Q, then H ∩Q ≤ Φ(H) and H ∩Q
is nilpotent.

2. There exists a subgroup H ≤ NG(P ) such that G = QH and H ∩ Q is
contained in the Frattini subgroup of H (and is in particular nilpotent).
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3. If G/Q is a π-group and G = HQ, then H contains a supplement H1 to Q
in G which is a π-group.

Proof We prove 1. If H ∩ Q is not contained in the Frattini subgroup of H ,
then H = M(H ∩ Q) for M a maximal subgroup of H not containing Q. Thus,
G = QH = QM , contradicting the minimality of H .

By the Frattini argument, G = QNG(P ). Let H be a minimal supplement to
Q in G contained in NG(P ). This proves 2.

For the final result, take H1 to be a minimal supplement to Q contained in
H . Then H1 is a Frattini extension of the π-group G/Q ∼= H1/(Q ∩ H1). Since
π-groups are closed under Frattini extensions, the result follows.

Theorem 6.7 Let G be a finite group and Q a normal subgroup. Let P be a
Sylow p-subgroup of Q. Let C denote a class of finite groups closed under Frattini
extensions.

1. If G/Q ∈ C, then there exists a subgroup A of NG(P ) in C with G = QA
and A ∩Q nilpotent and contained in the Frattini subgroup of A.

2. G is the homomorphic image of a semidirect product QH with H ∈ C and
H normalizing P .

Proof We prove the first statement. Let A be a minimal supplement to Q
contained in NG(P ) (note that NG(P ) is a supplement and so A exists). By the
previous lemma, A∩Q is contained in the Frattini subgroup of A. Since A/(A∩Q) ∼=
G/Q ∈ C, this implies that A ∈ C and normalizes P .

We now show that the first statement implies the second. Let H be any supple-
ment to Q in G with H ∈ C (and normalizing P ). Let J be the semidirect product
QH (given by the action of H on Q). Consider the multiplication map m : J → G
given by xh ∈ J 7→ xh ∈ G. It is straightforward to see that this is a surjective
homomorphism.

Since the intersection of any two classes of finite groups closed under Frattini
extensions is also closed under Frattini extensions, we may replace C in the above
theorem by any class containing G/Q and closed under Frattini extensions. In
particular, if G/Q is a π-group, we may replace C by the set of π-groups in C
(which is also a class closed under Frattini extensions).

Note the previous theorem immediately yields Theorem 6.2, by taking Q =
p(G) to obtain that (F1) implies (F6), and using the comment just before the
statement of (F1)-(F6) for the other implications.

6.3 Classes not closed under Frattini extensions. If C is a class of finite
groups not closed under Frattini extensions, it is clear that we cannot always find
a supplement in C to a normal subgroup N with quotient in C — just take G not
in C with G/Q in C with Q contained in the Frattini subgroup. If G = QH , then
H = G. We need to work harder if we insist that Q = p(G). In this section, we
show that it is possible to construct such an example if C is closed under quotients
and normal subgroups but not closed under central Frattini extensions.

Observe that if C is a class of r-groups for some prime r or more generally
a class of nilpotent groups, then closure under Frattini extensions is precisely the
same as closure under central Frattini extensions.

We start with two lemmas.
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Lemma 6.8 If C is not closed under Frattini extensions, then exists a finite
group H not in C and a minimal normal subgroup N such that H/N is in C. If C
is not closed under central Frattini extensions, then exists a finite group H not in
C and minimal central subgroup N such that H/N is in C.

Proof Let H be a finite group and N a normal subgroup with H/N in C but
H not in C where N is contained in the Frattini subgroup (and for the second part,
N also central in H). Assume that |H ||N | is minimal.

If N is not a minimal normal subgroup, there exists a nontrivial proper normal
subgroup L of H contained in N . If H/L is in C, the pair (H,L) is also an example
with |L| < |N |, a contradiction to the minimality of |H ||N |. If H/L is not in C,
consider the pair (H/L,N/L).

If H is a group, we let H ′ denote the commutator subgroup of H .

Lemma 6.9 Let r be a prime and N an r-subgroup of the Frattini subgroup of
H. If N is normal in G and x ∈ N , then x = hry for some h ∈ H and y ∈ H ′.
Moreover, N = 〈Φ(T ) ∩N | T ∈ Sylr(H)〉.

Proof If U is an r-group, we note that Φ(U) = 〈U ′, ur|u ∈ U〉. Since a product
of rth powers is an rth power modulo H ′, we see that the second result implies the
first.

We first show that N∩Φ(T ) is nontrivial. Assume the contrary. Thus, T ′∩N =
1. In particular, N is abelian (and indeed is elementary abelian since any rth power
of an element of N would be in Φ(T )).

Since 1 → N → H → H/N → 1 is nonsplit (as N is contained in the Frattini
subgroup of G), the same is true when we restrict this sequence to T (since the
index |H : T | = |H/N : T/N | is prime to p and N is a p-group, the restriction map
from H2(H/N,N) → H2(T/N,N) is injective).

Let M be a subgroup of T such that T = 〈M,N,Φ(T )〉 and M ∩ N ≤ Φ(T )
(since T/Φ(T ) is an elementary abelian r-group, this is easily done). Then T = MN
(because this true modulo Φ(T )) and M ∩ N ≤ M ∩ N ∩ Φ(T ) = 1. Thus, the
sequence 1 → N → T → T/N → 1 splits, a contradiction and so N ∩ Φ(T ) 6= 1 as
asserted.

We now complete the proof. Let N0 = 〈N ∩ Φ(T )|T ∈ Sylr(G)〉. Then N0 is
nontrivial and normal in G. Now pass to G/N0. Then Φ(T/N0) = N0Φ(T )/N0

and so Φ(T/N0) ∩ N/N0 = (N0Φ(T ) ∩ N)/N0 = N0(Φ(T ) ∩ N)/N0 = 1. On the
other hand, the argument above shows that Φ(T/N0)∩N/N0 6= 1 unless N/N0 = 1.
Thus, N = N0 as required.

We will use the following standard easy commutator identities. See [4] or [8].

Lemma 6.10 If H is a group and [x, y] = z with z central in H, then [xe, y] =
[x, ye] = ze and (xy)e = xeye[x, y]e(e−1)/2 for any positive integer e. If H ′ is
contained in Z(H), then [a, bc] = [a, b][a, c].

The following group will be necessary for our construction. Let r be any prime
distinct from p. Let V and W be vector spaces over the field of r elements, each
of dimension d. We construct the group R = R(d, r) which is generated by V and
W subject only to the relations that the commutator subgroup R′ is contained in
Z(R), the center of R. In particular, R is nilpotent of class 2. Since V and W
each have exponent r, this implies that [v, w]r = [vr, w] = 1 for v ∈ V and w ∈ W .
Thus, R′ is an elementary abelian r-group. Clearly, also R/R′ ∼= V ⊕W is also an
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elementary abelian r-group. Since V and W intersect R′ trivially, we will identify
V and W with their images in R/R′.

Let Γ be the subgroup of the automorphism group of R preserving V and
W setwise. Note that any automorphism of V can be lifted to an automorphism
of R (which is trivial on W – just lift elementary automorphisms and diagonal
automorphisms). Thus, Γ maps onto GL(V ) × GL(W ). If γ is in the kernel of
this map, then γ fixes each [v, w] with v ∈ V and w ∈ W . Thus, γ is the identity
restricted to R′. Also for v ∈ V or W , γ(v) = vy for some y ∈ R′ (depending upon
v) and so γr(v) = vyr = v. Similarly, we see that the kernel is abelian, whence is
an elementary abelian r-group.

Note also that the map v ⊗ w → [v, w] extends to a surjection V ⊗W → R′.
This surjection is GL(V ) × GL(W )-equivariant. Since V ⊗ W is an irreducible
GL(V )×GL(W )-module, this implies that R′ ∼= V ⊗W .

Suppose that S is an r′-subgroup of GL(V ) × GL(W ). Then S embeds in Γ
(this uses the fact that the kernel is an r-group). Let us identify W = V ∗, the dual
of V . Then GL(V ) embeds diagonally in GL(V )×GL(W ) by acting on the second
copy via the dual representation. Assume further that S is actually contained in the
diagonal copy of GL(V ). Then, as a GL(V )-module, we can identify R′ = End(V )
with GL(V ) acting via conjugation. In particular, GL(V ) leaves invariant a cyclic
subgroup Z of R′. If 1 6= z ∈ Z, then since z is invertible in End(V ), it is the sum
of d simple tensors and no fewer (simple tensors correspond to rank one elements
in End(V )). Indeed, we need the following:

Lemma 6.11 Let R0 be a subgroup of R generated by fewer than d elements.
Then z is not in the Frattini subgroup of R0.

Proof Consider the image of R0 in V ⊕W . Since it is generated by fewer than
d elements, this implies that R0 ≤ 〈V0,W0, R

′〉 for some proper subspaces V0 ⊂ V
and W0 ⊂ W .

Thus, any xi ∈ R0 is of the form viwizi with vi ∈ V0, wi ∈ W0 and zi ∈ R′.
Since V,W and R′ all have exponent r, applying Lemma 6.10, we see that xr

i =

[vi, wi]
r(r−1)/2zri and [x1, x2] = [v1, w1][w2, v1]. Thus, Φ(R0) ≤ [W0, V0]. This can

be identified with V0 ⊗W0 ⊂ V ⊗W and so does not contain z.

We now prove Theorem 6.3.

Theorem 6.12 Let C be a class of p′-groups closed under quotients and normal
subgroups but which is not closed under central Frattini extensions. Then there
exists a finite group G with G/p(G) in C such that S(G) is empty.

Proof Let H be a group not in C but with H/N in C for N ≤ Φ(H) with N
central in H . By Lemma 6.6, we may take N to be a minimal central subgroup of
H contained in Φ(N).

Since N is central, it follows that N has prime order r for some prime r dividing
|G/N | and in particular r 6= p.

Fix a set of generators hi, 1 ≤ i ≤ s for H . Let J be a cyclic group of order
p and V a J-module in characteristic r such that J has no fixed points on V and
dimV = d > s. Let W = V ∗ and define the group R = R(d, r) as above. Since
J has order prime to r, J has no fixed points on V ∗ either. As noted above,
J embeds in Γ and acts on R. As above, let Z denote the group of scalars in
R′ = V ⊗ V ∗ = End(V ).
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Let Q be the semidirect product of R and J . Let Q0 = p(Q). Since J is a p-
group, it follows that Q = Q0R. Set R0 = R∩Q0. Now consider Q/R0 = (R/R0)J .
Then p(Q/R0) = J is normal, whence J centralizes R/R0. Since J has no fixed
points on V or V ∗, this implies that both V and V ∗ are contained in R0. Since R
is generated by V and V ∗, this implies R = R0, i.e. Q = p(Q).

We now take G to the central product of Q and H where we identify Z with
N – more precisely, G = (Q ×H)/D. Here D = 〈(y, z)〉 with z a generator for Z
and y a generator for N . We may identify Q and H with their images in G (since
in Q×H , they do not intersect D).

We show that there is no supplement A to Q in C. Suppose to the contrary, A
is such a supplement. Since C is closed under normal subgroups, we may assume
that no proper normal subgroup of A is a supplement to Q. Since A is in C, A is a
p′-group. In particular, A ∩Q has order relatively prime to |J | and so A ∩Q ≤ R.

Thus, RA/R is a complement to Q/R in G. Since G/Q and Q/R have relatively
prime orders, the Schur-Zassenhaus theorem implies that any two complements to
Q/R are conjugate. Thus, RA and RH are conjugate in G and so we may assume
that RA = RH .

Since RA = RH , for each h ∈ H , there exists x ∈ R with hx ∈ A. Now choose
r1, . . . , rs ∈ R with hiri ∈ A.

Let M be the normal closure in A of 〈hiri, 1 ≤ i ≤ s〉. Then HM = HR,
whence QM = G. By the choice, this implies that A = M .

Since d > s, there are proper subspaces, V0 and W0, of V and W , respectively
such that 〈r1, . . . , rs〉 ≤ 〈V0,W0, R

′〉. Let R0 denote this last subgroup. Since
RA = RH and R and H commute, HR0 is normal in HR. Since A is generated by
conjugates of the hiri, it follows that A ≤ 〈hiri, R

′〉 ≤ R0H .
Let B denote the inverse image of A in R × H . Then B ≤ R0 × H (because

the image of A is contained in R0H and D ≤ R0 × H). Thus, by Lemma 6.9,
Φ(B) ≤ Φ(R0) × H ; and so the projection of Φ(B) into R is contained in Φ(R0)
and in particular does not contain z (by Lemma 6.11). Thus D is not contained
in Φ(B) and so B = D × A0 for some subgroup A0. Note that A0

∼= B/D ∼= A.
Consider the projection map τ from B onto H . Since τ(D) ≤ Φ(H), H = τ(B) =
〈τ(D), τ(A0)〉 = τ(A0). Since C is closed under quotients and H is not in C this
implies that A0 is not in C. This contradicts the fact that A ∼= A0 is in C.

6.4 Examples for abelian and metacyclic groups. Continue to keep p a
fixed prime. Now we produce examples for C the class of abelian rank 2 groups or
metacyclic groups – even more, we work with 2-generated r-groups for any prime
r 6= p. Indeed, the quotients we deal with are elementary abelian rank 2 groups of
order r2 or rank 2 abelian groups of order 16 and exponent 4 (to get examples in
the metacyclic category when r = 2).

Let S denote a nonabelian group of order r3. Moreover, if r is odd, then assume
that also S has exponent r. So S can be generated by a pair of elements x, y of
order r with u = [x, y] central of order r. If r = 2, this is the dihedral group of
order 8. Note that S is not abelian and for r odd is not metacyclic (because it has
exponent r).

If r = 2, we will need another group. So let T = 〈x, y, u|u2 = x4 = y4 =
[x, u] = [y, u] = 1, u = [x, y]〉. Note that u is central and generates T ′ and T/T ′ is
abelian of rank 2 and so metacyclic but T is neither abelian nor metacyclic.
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Applying the construction in the previous section with H = S or T respectively
yields the following:

Example 1a. Let r be a prime distinct from p. There exists a finite group G with
G/p(G) elementary abelian of order r2 such that there is no abelian supplement to
p(G) in G. If r is odd, then there is no metacyclic supplement to p(G).

Example 1b. Assume p 6= 2. There exists a finite group G with G/p(G) ∼=
Z/4× Z/4 such that there is no abelian or metacyclic supplement to p(G) in G.

So we see that the families (F1) and (F2) are distinct for C the class of abelian
or metacyclic groups (and other such classes).

We now give three more examples to show that the classes (F2)-(F6) are dis-
tinct for metacyclic groups and for abelian p′-groups (and more particularly, when
G/p(G) is elementary abelian of order r2 or Z/4 × Z/4). Example 2 shows that
(F2) and (F3) are distinct. The remark after example 2 shows that (F3) and (F4)
are distinct. Example 3 shows that (F4) and (F5) are distinct. Example 4 shows
that (F5) and (F6) are distinct.

The form of the examples are all quite similar. We will need to use some
standard properties of extraspecial groups. See [4] or [8]. If r is a prime, then a
finite r-group E is called extraspecial if E′ = Z(E) = Φ(E) has order r. Recall
that E′ is the commutator subgroup of E, Z(E) = 〈z〉 is the center. Necessarily,
|E| = r1+2d for some d and there are two isomorphism classes of such groups for a
given r and d. If r is odd, we take E to be the group of exponent r. If r = 2, this
is not possible and we allow either choice. Note that if a and b are in E and do not
commute, then 1 6= [a, b] ∈ E′ is some nontrivial power of z. Thus, [a, b′] = z for
some b′, a power of b.

Set V = E/E′. This is a vector space of dimension d over the field of r elements.
The map (v1, v2) 7→ [v1, v2] is a nondegenerate alternating form on V . Thus, we can
talk about totally singular and nonsingular subspaces of V (always with respect to
this alternating form). So in particular, a subspace is totally singular if and only if
its preimage in E is abelian.

Let Γ be the group of automorphisms of E which are trivial on E′. Then Γ
preserves this alternating form. Thus, we have the sequence 1 → ∆ → Γ → Sp(V )
by mapping Γ into GL(V ). Note that ∆ is an elementary abelian r-group. If r is
odd, then in fact, Γ ∼= ∆Sp(V ) (semidirect). We can identify the complementary
Sp(V ) with the centralizer of an involution which is inversion mod E′. If r = 2,
Γ (which is the full automorphism group of E) also preserves the quadratic form
q : V → E′ given by q(v) = v2. In this case, we have a (nonsplit) short exact
sequence

1 → ∆ → Γ → O(V, q) → 1,

where O(V, q) is the orthogonal group of the nondegenerate quadratic form q.
In particular, if r is odd, then any subgroup of Sp(V ) can be viewed as acting

on E. If r = 2, then any odd subgroup of O(V, q) embeds in Γ. Depending
upon the choice of E, we can obtain either class of nondegenerate quadratic forms.
In particular, if we choose E so that O(V, q) ∼= O+(2d, 2), then V contains two
maximal totally singular complementary subspaces each of dimension d. It follows
that GL(d, 2) embeds in Γ for the appropriate choice of E (where the representations
of GL(d, 2) on the two maximal totally singular subspaces are dual to one another).
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Let H be a quasi p-subgroup of Γ such that H has no nontrivial fixed points
on V or the dual V ∗. By the trivial H-module, we will mean the module of order
r with trivial H-action. Set Q = EH . The fact that H has no fixed points on V ∗

implies that there is no H-equivariant map from V onto the trivial H-module. This
implies that Q is quasi p (precisely as in the construction of the previous section).

If r is odd, we can take any quasi p-subgroup of Sp(V ) such that H has no
nontrivial fixed points on V (since H ≤ Sp(V ), V ∼= V ∗ as H-modules). If r = 2,
we can take H to be any odd quasi p-subgroup of O(V ) such that H has no fixed
points on V (note H acts completely reducibly on V ). If q is of + type, we can
also take H to be a quasi p-subgroup of GL(d, 2) with no nontrivial fixed points on
V (equivalently, no fixed points on W or W ∗ where W is the module of dimension
d corresponding to the embedding of H ≤ GL(d, 2)). As noted above this is a
subgroup which preserves a pair of complementary totally singular subspaces and
embeds in Γ.

Let U denote either of the subgroups S or T described above. We take x, y to
be the generators given in the description. In particular, x, y have order r if U = S
and order 4 if U = T . Also, [x, y] = u.

Let G = Q ∗ U be the central product where we identify u and z−1. More
precisely, G = (Q × U)/〈(z, u)〉. We identify H , Q and U with subgroups of G.
Because of the identification of u and z−1, we see that Z(E) ≤ U .

Note that G/Q ∼= U/(U ∩Q) is elementary abelian of order r2 (or is isomorphic
to Z/4 × Z/4 if U = T ). Since z = [a, b] for some a, b ∈ E, [xa, yb] = [x, y][a, b] =
uz = 1 in G, it follows that A := 〈xa, yb〉 is abelian. Since U is a supplement to Q
and A covers U/Z(E), it follows that A is an abelian complement to Q in G.

We now take various choices for H . Indeed, it is often convenient to take H to
be a p-group. In the following examples, we will only remark on the nonexistence
of abelian supplements – for r odd, this is equivalent to the nonexistence of a
metacyclic supplement and the same is true for r = 2 with U = T . We also note
that we may always assume that the complement is an r-group (and in particular
a p′-group) by passing to the Sylow r-subgroup of the complement.
We first record two useful facts.

Lemma 6.13 If X is a subgroup of H and has no fixed point on V , then
NG(X) = NH(X)U .

Proof Clearly, NH(X) and U each normalize X (the latter since U commutes
with H). Since G = QU = (EH)U , we may write any g ∈ G in the form g = ehw
with e ∈ E, h ∈ H and w ∈ U . Suppose that g normalizes X . We claim that
g = hw′ with w′ ∈ U and h ∈ NH(X). Since U centralizes H , we may replace
g by gw−1 and so assume that w = 1. Thus, X = ehX(eh)−1 and so Xh :=
hXh−1 = e−1Xe ≤ XE (the last containment follows because E is normal). Then
Xh ≤ XE ∩H = X , whence h ∈ NH(X) and so e ∈ NE(X). Since E is normal in
G, NE(X) = CE(X). Since X has no fixed points on V , CE(X) ≤ Z(E) ≤ U .

Lemma 6.14 There are no abelian supplements to Q contained in HU .

Proof Note that HU ∼= H×U . If A ≤ HU is an abelian supplement to Q, then
HU = (Q ∩ HU)A = (HZ(E))A. Moreover, replacing A by a Sylow r-subgroup,
allows us to assume that A is an r-group and so is contained in the (unique) Sylow
r-subgroup U of HU . Thus, U = Z(E)A. Since Z(E) is generated by u, it is
contained in the Frattini subgroup of U . Thus, A = U is nonabelian.
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Example 2. Let H be of order p (for example, take d to be minimal with p
dividing rd±1). Then NG(P ) does not contain an abelian supplement to Q for any
nontrivial p-subgroup P of G.

Proof The only nontrivial p-subgroup of G is (up to conjugacy) H . By
Lemma 6.13, NG(H) = HU . By Lemma 6.14, HU contains no abelian supple-
ments.

If we take a group which is a direct product of the previous example and a p-
group, then we obtain an example whereNG(P ) does contain an abelian supplement
for some nontrivial p-subgroup P , but the normal closure of all such p-groups does
not contain Q.

The next example shows that Q may be generated by the p-subgroups of G
which contain abelian supplements but the normalizer of a full Sylow p-subgroup
does not contain an abelian supplement. Indeed, NG(P ) contains no abelian sup-
plement for any P whose normal closure is Q. In this example, we view V = V1⊕V2

with each Vi nonsingular with the respect to the alternating form on V .

Example 3. Let H = P1 × P2 of order p2 be a subgroup of of Sp(V1) × Sp(V2)
(and if r = 2, a subgroup of O(V1) × O(V2)), where Pi has no fixed points on Vi

but is trivial on the other space. Thus, H acts on E and so we can define G as
above. Then there is no p-subgroup P of G such that Q = 〈P g | g ∈ G〉 and NG(P )
contains an abelian supplement to Q. However, Q = 〈P g

1 , P
g
2 | g ∈ G〉 and NG(Pi)

contains an abelian supplement for i = 1, 2.

Proof If Q = 〈P g|g ∈ G〉, then since Q/E is a p-group, P must be a full
Sylow p-subgroup of G and so is conjugate to H . As in the previous example,
NG(H) = HU contains no abelian supplements.

On the other hand, since Vi is a nonsingular subspace of V , we can choose
ai, bi ∈ Ri (the preimage of Vi) with [ai, bi] = u. Thus, [xai, ybi] = [x, y]u = 1 and
Si := 〈xbi, yai〉 is abelian. Since this group surjects onto G/Q, it is a supplement.
Since x, y, ai, bi all centralize Pi, Si is an abelian supplement to Q centralizing
Pi.

Example 4. Let H be a quasi p-subgroup of Γ with Sylow p-subgroup P such that
P has no fixed points of V but it contains a nontrivial subgroup P0 which does have
fixed points on V . Assume also that H is generated by the H-conjugates of P0.
Then NG(P ) contains no abelian supplement, but NG(P0) does contain an abelian
supplement and Q = 〈P g

0 |g ∈ G〉.

Proof By Lemmas 6.13 and 6.14, NG(P ) = NH(P )U ≤ HU and HU contains
no abelian supplements to Q.

Since P0 acts trivially on some subspace of V and since p 6= r, this implies that
P0 is trivial on a nonsingular subspace of V , so we can find a, b ∈ E centralizing P0

with [a, b] = u. Thus, 〈xb, ya〉 is an abelian complement that normalizes (indeed
centralizes) P0. Clearly the normal closure of P0 contains H and so Q (since the
normal closure of H in Q is Q).

If r is odd, then we can take H = Sp(V ) – the only condition we need to
satisfy is that P has no fixed points on V (and we can certainly choose such a V )
but P contains an abelian noncyclic subgroup P0. Any abelian noncyclic subgroup
r′-group will have fixed points on V (restrict to an irreducible submodule for the
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the abelian group – the action must be cyclic). Since H/Z(H) is almost always
simple, it follows that H is the normal closure of P0.

If r = 2, we take E to be such that the quadratic form on V has + type. As
noted, then H = GL(d, 2) with d > 2 embeds in Γ. We choose d so that P acts
without fixed points on V and contains a noncyclic abelian subgroup. Thus, H has
the desired properties.
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