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Abstract. Let X be a curve over an algebraically closed field k of arbitrary char-
acteristic, and let S be a finite set of points of X. Let K be the function field of X,
and let LS be the maximal algebraic extension of K that is unramified over S. We
prove that ΠK,S = Gal(LS/K) is a free profinite group, of rank equal to the cardi-
nality of k. Taking S empty, this implies the function field version of a conjecture of
Shafarevich. The freeness of ΠK,S , which can be interpreted as a statement about
fundamental groups, is proven as a consequence of showing that embedding problems
over X can be solved with some control over ramification; and that result is proven
using formal patching.

Section 1. Introduction

This paper considers fundamental groups of curves over an algebraically closed
field k of arbitrary characteristic p ≥ 0, in the local and birational situations. For
affine curves X in characteristic 0, π1(X) is known by reduction to the case of
k = C [Gr1, XIII, Cor. 2.12], where classical methods provide the answer. And in
characteristic p > 0, if X is an affine curve then the set πA(X) of finite quotients
of π1(X) is known, as a result of the recent proof ([Ra], [Ha3]) of Abhyankar’s
conjecture [Ab]. But in that case the fundamental group π1(X) itself is quite
complicated and is far from being understood. Many finite groups are quotients of
π1(X), but many embedding problems have obstructions, and so it is difficult even
to formulate a conjecture as to the structure of the profinite group π1(X). The
present paper shows that the situation is quite different in the local and birational
cases.

Specifically, if X is a smooth projective curve over k, and S is a finite set of closed
points of X , then we determine the fundamental group of the semi-localization XS

of X at S. In particular, if S is empty then this is the fundamental group of the
generic point of X , i.e. the absolute Galois group of the function field K of X .
And if S consists of a single closed point s, then this is the fundamental group of
Spec(OX,s). What we show is that every non-trivial finite embedding problem for
XS has many solutions (Theorem 4.1), and that π1(XS) is a free profinite group,
of rank equal to the cardinality of k (Theorem 4.4). We also prove a more precise
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version of the theorem on embedding problems, which shows that although an
embedding problem for a given affine curve cannot in general be solved (because π1

is not free), a slight modification of the problem can be solved. That is, if G→ H
is a surjective group homomorphism, then any H-Galois cover of the curve can be
lifted to a G-Galois cover having a few extra branch points (Theorem 3.6). This
lifting theorem is shown using a formal patching result from [Ha3] together with
Abhyankar’s conjecture [Ha3, Theorem 6.2] (that G is in πA of a given curve of
genus g with r > 0 points deleted if and only if each prime-to-p quotient of G is
generated by a set of at most 2g + r − 1 elements).

Our results imply in particular the function field version of a conjecture of Sha-
farevich. Specifically, Shafarevich conjectured that the absolute Galois group of
Qab is a free profinite group of countable rank. (He discussed this conjecture in
his talks at Obervolfach in 1964 on the class field tower problem, and it appeared
later in [Be].) That conjecture would imply more generally that for any number
field K, the absolute Galois group of the maximal cyclotomic extension Kcycl is
free of countable rank. His conjecture has been further generalized to ask if this
assertion about Kcycl holds for arbitrary global fields K. The function field case
of this generalized conjecture is a special case of our Theorem 4.4, by taking our
k to be the algebraic closure of Fp, with S empty (cf. Corollary 4.2(b)). I have
learned from F. Pop that he has independently found a proof of the function field
case of Shafarevich’s conjecture [Po3], using rigid analytic techniques and ideas
from [Po2]. Meanwhile, the full Shafarevich conjecture has been generalized even
further by Fried and Völklein [FV, introduction]; viz. they conjecture that if K is a
countable Hilbertian field whose absolute Galois group GK is projective, then GK

is free of countable rank.

Our results can also be interpreted from the perspective of Grothendieck’s an-
abelian conjecture [Gr2]. According to that conjecture, if F is a field of finite
type over its prime field, with separable closure F sep, then affine F -curves ought to
be determined by their fundamental groups, together with the induced actions of
Gal(F sep/F ) on π1. Special cases have been shown for affine curves over number
fields [Na]. Also, the birational analog of this conjecture has been proven by Uchida
[Uc], in the case that F is finite. That is, a smooth projective curve X over a finite
field, with function field K, is determined by the absolute Galois group of K, to-
gether with the action of Frobenius on K. A generalization of this birational result
has recently been proven by Pop [Po1], and an analog for number fields K (rather
than for function fields K of F -curves) follows from previous work of Neukirch [Ne].

In the case of curves over algebraically closed fields k, the conjecture in [Gr2]
does not apply, and is clearly false in characteristic 0. Indeed, in characteristic 0, if
g ≥ 0 and r > 0, then any two affine curves of the form (genus g)− (r points) have
isomorphic fundamental groups. Yet in characteristic p > 0, this last assertion is
false, and even two curves of the form P1− (4 points) can have non-isomorphic π1’s
[Ha4, Theorem 1.8], because different embedding problems have solutions. (This is
despite the fact that two such curves must have the same πA because of Abhyankar’s
conjecture.) Thus at least some pairs of affine curves over an algebraically closed
field k of characteristic p > 0 can be distinguished by their fundamental groups, as
well as by the embedding problems that can be solved. What the results of this
paper show is that this is never the case in the birational and semi-local situations.
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In particular, the fundamental groups of such k-curves XS convey no information
about the particular curve, but only about the cardinality of k.

The structure of this paper is as follows: Section 2 discusses the formal patching
result that is needed in our construction, and section 3 then uses this to prove
Theorem 3.6 on liftings of covers of affine curves. In section 4 this result is used
to obtain the result about solutions to embedding problems in the birational and
semi-local cases (Theorem 4.1), and that implies the freeness of fundamental groups
and absolute Galois groups (Theorem 4.4).

Conventions:
For the remainder of the paper we fix an algebraically closed field k of charac-

teristic p ≥ 0, and we let Ω = k((t)). Affine and projective spaces An and Pn will
be over k unless otherwise specified.

If X is a scheme and ξ is a point of X such that the complete local ring ÔX,ξ is

a domain, then we let K̂X,ξ be the fraction field of ÔX,ξ. If X is integral, then a
cover of X is a finite generically separable morphism Y → X of schemes (cf. [Ha3,
sect. 1]). If G is a finite group then a G-Galois cover is a cover Y → X together
with a homomorphism ρ : G→ AutX(Y ) such that G acts simply transitively on a
generic geometric fibre of the cover via ρ.

For any finite group G and any prime number p, we will write p(G) for the quasi-
p-part of G, i.e. the (normal) subgroup of G generated by the Sylow p-subgroups
of G. Thus G/p(G) is the maximal prime-to-p quotient of G. On the other hand if
p = 0, then we let p(G) = {1}. A finite group G is a quasi-p-group if p(G) = G.

Section 2. Formal patching.

This section describes a formal patching result [Ha3, Proposition 2.3] that was
used in the proof of Abhyankar’s conjecture [Ha3, Theorem 6.2], and that will be
needed in Section 3 of this paper. Roughly, the result says the following: Let G be
a finite group generated by subgroups G1 and G2, and let Wi → Xi be connected
Gi-Galois covers of k-curves for i = 1, 2. By taking a disjoint union of copies of
Wi, indexed by the left cosets of Gi in G, we obtain induced disconnected G-Galois
covers IndG

Gi
Wi → Xi. Let T ∗ be a projective k[[t]]-curve whose closed fibre is a

union ofX1 and X2 meeting at a single point τ ∈ T ∗. Suppose that “patching data”
is given for IndG

G1
W1 and IndG

G2
W2 over Spec(ÔT∗,τ ). Then there is a connected

G-Galois cover W ∗ → T ∗ whose closed fibre is a union of IndG
G1
W1 and IndG

G2
W2

meeting over τ , and that agrees with the given patching data.
For technical reasons it is easier to prove this result under the extra condition

that all the spaces are fibred over a smooth curve L. In practice this does not seem
to be a significant restriction, but it does make the result more cumbersome. Also,
the full result allows for the possibility that G is not generated by G1 and G2 alone,
but rather is generated by those two groups together with the Galois group I of
the patching data over ÔT∗,τ .

The precise situation is the following: Let T ∗ be an irreducible projective k[[t]]-
scheme of relative dimension 1, whose closed fibre is a union of two smooth ir-
reducible curves X1, X2 that meet at a single point τ ∈ T ∗. Assume also the
technical condition that there is a smooth projective k-curve L together with a
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covering morphism φ : T ∗ → L ×k Spec(k[[t]]) over k[[t]], and that φ is flat. (Here
φ is automatically flat if T ∗ is normal.)

For i = 1, 2 let X ′

i = Xi − {τ}, so that X ′

i is an affine curve, say Spec(Ri).

Let X ′

i
∗ = Spec(Ri[[t]]); we regard this as a “thickening” of X ′

i. Also, let X̂ ′

i
∗ =

Spec(K̂Xi,τ [[t]]) and T̂ ∗ = Spec(ÔT∗,τ ).
Now consider a finite group G, together with subgroups G1, G2, I that generate

G. For i = 1, 2 let W ′

i
∗ → X ′

i
∗ be an irreducible normal Gi-Galois cover, and let

Ŵ ′

i
∗ be an irreducible component of W ′

i
∗×X′

i
∗ X̂ ′

i
∗ such that Ii = Gal(Ŵ ′

i
∗/X̂ ′

i
∗) is

contained in I. Also, let N̂∗ → T̂ ∗ be an irreducible normal I-Galois cover, together
with isomorphisms N̂∗×

T̂∗ X̂ ′

i
∗ →̃ IndI

Ii
Ŵ ′

i
∗ of I-Galois covers of X̂ ′

i
∗, for i = 1, 2.

Proposition 2.1. [Ha3, Proposition 2.3] In the above situation, there is an irre-

ducible normal G-Galois cover V ∗ → T ∗ such that V ∗ ×T∗ X ′

i
∗ ≈ IndG

Gi
W ′

i
∗ as

G-Galois covers of X ′

i
∗ for i = 1, 2, and V ∗ ×T∗ T̂ ∗ ≈ IndG

I N̂
∗ as G-Galois covers

of T̂ ∗.

This result relies on general formal patching results in [Ha2], which are proven
by factoring matrices of power series. The significance of Proposition 2.1 is that
it allows one to go from Gi-Galois covers of curves Xi to G-Galois covers. Note
that the proposition yields a G-Galois cover of a k[[t]]-curve T ∗, rather than of a k-
curve. But by taking the generic fibre, we obtain an irreducible G-Galois cover of a
curve over the field Ω = k((t)). Then, since k is algebraically closed, the “Lefschetz
principle” allows us to obtain such a cover of a k-curve.

The above strategy will be used in section 3 to prove the lifting result for covers,
Theorem 3.6. A similar strategy was used in [Ha3] to prove the general case of
Abhyankar’s conjecture. Namely, Raynaud had previously shown [Ra] that that
conjecture holds for the affine line, i.e. that every quasi-p-group is a Galois group
over A1. In the case of the affine curve P1 −{0,∞}, the conjecture says that every
cyclic-by-quasi-p-group G must be a Galois group of an unramified cover. This
is done [Ha3, Proposition 5.2] by using the above proposition to patch together
a p(G)-Galois cover of the affine line (which exists by Raynaud’s result) and an
appropriate cyclic-by-p cover of the twice-punctured projective line. (In the con-
struction, the latter is actually defined over Ω, and a model for it over k[[t]] is in fact
ramified along the fibre (t = 0).) For a general affine curve U , if G is predicted by
Abhyankar’s conjecture to be a Galois group over U , then we can reduce to the case
that G is generated by a prime-to-p-subgroup that occurs over U , together with a
cyclic-by-quasi-p-subgroup (which occurs over P1 − {0,∞}, by the previous case).
Patching these together by the above proposition then yields the full conjecture
[Ha3, Theorem 6.2]. (See also [Ha4, sect. 1] for a further discussion of this.)

Application 2.2. Proposition 2.1 can be used to prove a key step in Raynaud’s
proof of Abhyankar’s conjecture for A1. Namely, let G be a quasi-p-group having
a Sylow p-subgroup S, such that G is generated by quasi-p-subgroups G1, . . . , Gn

that are each Galois groups over the affine line. Assume that each Gi has a Sylow
p-subgroup Si that is contained in S. Then G is a Galois group over the affine line
[Ra, Thm. 2.2.1(2)].

We sketch a proof of this result of Raynaud using the above proposition. First,
adjoining S to the set of Gi’s, we are reduced by induction to the case that n = 2.
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For i = 1, 2, take smooth irreducible Gi-Galois covers Wi → Xi = P1 that are
branched only over infinity. We may assume that the inertia groups over infinity
are the Sylow p-subgroups of Gi, by [Ha2, Theorem 2 and Lemma to Theorem 4] or
by [Ra, Cor. 2.2.6]. In particular one of the inertia groups of Wi over infinity is Si.
To prove the result, it suffices (by the Lefschetz principle) to patch the Gi-Galois
covers Wi together to obtain an irreducible G-Galois cover of the line over k[[t]]. In
order to do this using the above proposition, we can take X1 to be the line (y = x)
in (x, y)-space T = P1 × P1, and X2 to be the line (y = −x), where the origin
(x = y = 0) corresponds to the point at infinity on each line Xi. Setting t = xy,
X1∪X2 is the fibre of T over (t = 0). Take T ∗ to be the completion of T along this
fibre. In order to apply the proposition in this situation, we need to find patching
data over the complete local ring at the origin.

To do this, consider the restriction Ŵi → X̂ of Wi → P1 over X̂ = Spec(ÔP1,∞).

Then IndP
Si
Ŵi → X̂ is a P -Galois cover, where P ⊂ S is the p-subgroup of G

generated by S1 and S2. Let Xo = Spec(K̂P1,∞), and let W o
i → Xo be the

restriction of Ŵi → X̂ over Xo. By [Ha1, Thm. 1.2, Prop. 2.1], there is a fine
moduli space MP for P -Galois covers of Xo, viz. a certain direct limit of affine
spaces An. The points ξi ∈ MP corresponding to the covers IndP

Si
W o

i → Xo lie in
some common An in this direct limit, and we may choose a morphism from the affine
u-line A1

k to this An such that the point (u = 1) maps to ξ1 and the point (u = −1)
maps to ξ2. Pulling back by this map yields a P -Galois cover of the affine u-line
over X̂ = Spec(k[[x]]), and hence of Spec(k((x))[u]). Setting y = xu, this latter
space is isomorphic to Spec(k((x))[y]), and the fibres over (y = x) and (y = −x) are

respectively isomorphic to IndP
Si
W o

i → Xo for i = 1, 2. Hence we obtain a P -Galois

cover N∗ → Spec(k[[x]][y]) whose restriction N̂∗ → T̂ ∗ = Spec(k[[x, y]]) provides
the desired patching data. Thus Proposition 2.1 applies, and as indicated above,
Raynaud’s result follows. �

Another application of Proposition 2.1 (i.e. of [Ha3, Proposition 2.3]) is to the
problem of realizing finite groups as Galois groups of unramified covers of projec-
tive curves X over algebraically closed fields k of characteristic p > 0 (or equiva-
lently, finding finite quotients of π1(X) for projective curves X). Such covers are
constructed in the 1994 Ph. D. thesis of Katherine Stevenson [St], by using this
patching result to paste together covers of curves of lower genus. As a consequence,
she shows in particular that if G is a finite group having g generators, then G is
the Galois group of an unramified cover of a generic projective curve of genus g. So
by the Classification Theorem, each finite simple group can be realized as a Galois
group of an unramified cover of a generic projective curve of genus 2.

Section 3. Lifting problems.

The main result of this section (Theorem 3.6) concerns lifting problems for affine
curves. It says that if U → X is an H-Galois cover of curves that is unramified
away from a given finite set B 6= ∅, and if H = G/N , then there is a G-Galois cover
Z → X that is unramified over a given finite subset S ⊂ X − B, and such that
Z/N ≈ U as H-Galois covers of X . Moreover, the number of additional branch
points is at most n+1, where n is the number of generators of N/p(N). In addition,
if N is non-trivial, then there are infinitely many choices of Z; in fact, as many as
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the cardinality of k. The result also shows that we may allow B to be empty in the
split case.

There are two reasons why the additional branch points are necessary in Theorem
3.6. The first, which applies even in characteristic 0, is that Gmay not be a quotient
of π1(X −B), and hence there might not be any G-Galois covers Z → X branched
only at B. The second reason, which presents difficulties in characteristic p > 0,
is that even if G is a quotient of π1(X − B), it is possible that every such Z → X
fails to dominate U → X . These issues are discussed further in the remarks and
question after Theorem 3.6.

Theorem 3.6 follows from Theorem 3.5, which shows that in the above situation
we may choose one of the additional n + 1 branch points in advance. The proof
of 3.5 uses formal patching (Proposition 2.1) to obtain an analogous lifting result
(Lemma 3.2) over k((t)); this is then descended to a family of liftings parametrized
by a k-variety E (3.3 and 3.4) which can afterwards be specialized to k.

We continue to work over a fixed algebraically closed field k of characteristic
p ≥ 0, and write Ω = k((t)). Throughout this section, we consider the following
hypotheses (3.1):

Hypotheses (3.1). Let

(∗) 1 → N → G→ H → 1

be an exact sequence of finite groups, with N non-trivial, and N/p(N) generated
by n elements (n ≥ 0). Let U → X be a connected H-Galois cover of smooth
projective k-curves, unramified away from some (possibly empty) finite set B ⊂ X .

Lemma 3.2. Under Hypotheses (3.1), assume that the exact sequence (*) is split,
and choose ξ0 ∈ X − B. Let Uo = U ×k Ω, Xo = X ×k Ω, Bo = B ×k Ω, and
ξo
0 = ξ0 ×k Ω. Then there is a projective k[[t]]-curve Σ∗ with general fibre Xo; a G-

Galois cover V ∗ → Σ∗ whose general fibre V o = V ∗ ×k[[t]] Ω is a smooth connected
Ω-curve; and a set of k[[t]]-points B′∗ = {η∗1 , . . . , η

∗

n} of Σ∗ having pairwise disjoint
support, such that

(i) V o/N ≈ Uo as H-Galois covers of Xo;
(ii) the support of B′∗ is disjoint from the closures of Bo and ξo

0 in Σ∗, and
V o → Xo is étale away from Bo ∪{ξo

0}∪B
′o (where B′o is the generic fibre

of B′∗);
(iii) the N -Galois cover V o → Uo has non-trivial inertia groups over ξo

0 , and
also over some point of B′o (provided, in the latter case, that n > 0);

(iv) no point of B′o is of the form ξ ×k Ω for any ξ ∈ X(k); and
(v) V ∗ is irreducible and normal, and its closed fibre is connected and generi-

cally smooth.

Proof. Write B = {ξ1, . . . , ξr}. Let x ∈ OX,ξ0
be a local uniformizer of X at ξ0.

Let T be a copy of P1
k with parameter t; let Σ be the blow-up of X×T at the point

(ξ0, (t = 0)); and let σ ∈ Σ be the point at which the exceptional divisor meets the
proper transform of (t = 0) ⊂ X×T . Then Σ is a regular subvariety of X×T ×Y ,
where Y is a copy of P1

k with parameter y, and where Σ is given in a neighborhood
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of σ by xy = t. Thus σ ∈ X × T × Y is the point (ξ0, (t = 0), η), where η ∈ Y is
the point (y = 0).

The blow-up Σ contains a copy of X , viz. the proper transform of (t = 0) ⊂
X×T . Also, Σ contains a copy of Y , viz. the exceptional locus of the blow-up map
Σ → X×T . We will identify these copies with X and Y respectively. These curves
intersect only at the point σ, which is identified with ξ0 ∈ X and with η ∈ Y .

Since Σ ⊂ X × T × Y , the rational functions x, t, y on Σ define morphisms
Σ → P1. Let z = x+ y. Then we obtain a morphism Φ = (z, t) : Σ → P1 × P1 to
(z, t)-space. This morphism is finite and generically separable, and the fibre over
(t = 0) is the union of X and Y in Σ (under the identifications made in the previous
paragraph), meeting at σ.

Let L be the projective z-line over k, let λ ∈ L be the point (z = 0), let L∗ be
the projective z-line over k[[t]], let L′ = L − {λ} = Spec(k[z−1]), and let L′∗ =
Spec(k[z−1][[t]]). Thus L∗ = L × T ∗, where T ∗ = Spec(k[[t]]). Let φ : Σ∗ → L∗

be the pullback of Φ : Σ → L × T under L∗ → L × T . Thus Σ∗ is the completion
of Σ along the locus of (t = 0). Also, we may identify Σ̂∗ = Spec(ÔΣ∗,σ) with

Spec(ÔΣ,σ), which is isomorphic to Spec(k[[x, y]]). By construction, the closed
fibre of φ is the union of X and Y , which meet only at σ.

Choose n + 1 distinct points η0, . . . , ηn ∈ Y , where η0 is the point (y = ∞),
and where no ηj is the point η ∈ Y . For each j, let η∗j be the inverse image of ηj

under y : Σ∗ → Y (i.e. under the composition of Σ∗ → Σ with y : Σ → Y ). Thus
η∗j ≈ ηj ×k T

∗ for all j. Also, for each i, let ξ∗i be the proper transform of ξi ×k T
∗

under the blow-up map Σ∗ → X × T ∗. Thus ξ∗i ≈ ξi ×k T
∗ for i ≥ 1, and ξ∗0 = η∗0 .

By the splitting assumption, we may regard H as a subgroup of G, such that H
and N together generate G. By [Ha3, Thm.6.2] in the case that p > 0, and by [Gr1,
XIII, Cor. 2.12] in the case that p = 0, we know that there is a smooth connected
N -Galois cover W → Y that is étale except over {η0, . . . , ηn}.

We claim that W → Y may be chosen so that the inertia groups are non-trivial
over η0 and (if n > 0) over η1. To see this, first consider the case that the order of N
is prime to p. In this case, N has a set of n generators, and so there are non-trivial
elements a0, . . . , am ∈ N (1 ≤ m ≤ n) that generate N and satisfy a0 · · · am = 1.
By [Gr1, XIII, Cor. 2.12], W → Y may be chosen so that ai generates an inertia
group over ηi, for each i ≥ 0 – proving the claim in this case. On the other hand, if
p divides the order of N , then the Sylow p-subgroups of N are non-trivial. Applying
[Ha2, Theorem 2] to the initial choice of W given by the previous paragraph, we
obtain a new N -Galois cover of Y such that over the actual branch points of the
original W the inertia is the same as before, but over the other ηi’s the inertia
groups are now the Sylow p-subgroups of N . So this new W has non-trivial inertia
over every ηi, and thus is as desired. This proves the claim.

Let X ′ = X−{ξ0}; let R1 be the ring of functions on X ′; let X ′∗ = Spec(R1[[t]]);

and let X̂ ′∗ = Spec(K̂X,ξ0
[[t]]). Also, let µ ∈ U be a point over ξ0 ∈ X ; let U ′ be

the inverse image of X ′ in U ; let U ′∗ = U ′ ×X′ X ′∗; and let Û ′∗ = Spec(K̂U,µ[[t]]).
Similarly, let Y ′ = Y −{η} = Spec(R2), where R2 = k[y−1]; let Y ′∗ = Spec(R2[[t]]);

and let Ŷ ′∗ = Spec(K̂Y,η[[t]]). Also, let W ′ be the inverse image of Y ′ in W ; let

W ′∗ = W ′×Y ′ Y ′∗; let ω ∈ W be a point over η ∈ Y ; and let Ŵ ′∗ = Spec(K̂W,ω [[t]]).

Since U → X and W → Y are respectively unramified over the points ξ0 and
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η, we can apply Proposition 2.1, with Σ∗ playing the role of the T ∗ of that result,
and taking G1 = H , G2 = N , I = I1 = I2 = {1}, v = t, X1 = X , X2 = Y ,

W ′

1
∗ = U ′∗, W ′

2
∗ = W ′∗, and N̂∗ = Σ̂∗. This yields an irreducible normal G-Galois

cover ψ : V ∗ → Σ∗ such that V ∗ ×Σ∗ X ′∗ ≈ IndG
H U ′∗, V ∗ ×Σ∗ Y ′∗ ≈ IndG

N W ′∗,

and V ∗ ×Σ∗ Σ̂∗ is trivial, as G-Galois covers of X ′∗, Y ′∗, and Σ̂∗ respectively.
The branching of ψ : V ∗ → Σ∗ is determined by that of its patches. On the

patch over X ′∗, it is branched only at B∗ = {ξ∗1 , . . . , ξ
∗

r}. On the patch over Y ′∗,
there is ramification only over B′∗ = {η∗1 , . . . , η

∗

n} and over η∗0 = ξ∗0 , with constant

non-trivial inertia over η∗0 and (if n > 0) over η∗1 . Finally, on the patch over Σ̂∗,
the cover is trivial and hence unramified. Since the closed fibre of Σ∗ is generically
smooth, and since the closed fibre of V ∗ → Σ∗ is generically unramified, it follows
that the closed fibre is generically smooth. By [Ha3, Lemma 2.4(b)], the closed
fibre of V ∗ is connected.

Consider the intermediate H-Galois cover V ∗/N → Σ∗. Its pullback over X ′∗

agrees with U ′∗, while the pullbacks over Y ′∗ and N̂∗ are trivial. The same is true
of the H-Galois cover U×X Σ∗ (where the pullback is with respect to the morphism
x : Σ∗ → X). So by [Ha3, Cor. 2.2], there is an isomorphism V ∗/N→̃U×X Σ∗ asH-

Galois covers. Also, since the trivial N -Galois cover IndG
H U ′∗ → U ′∗ is unramified,

and since V ∗ ×Σ∗ X ′∗ ≈ IndG
H U ′∗, we have that V ∗ → V ∗/N is unramified over

the patch X ′∗, and in particular at the locus over B∗.
Now by construction of Σ as a blow-up, the generic fibre Σ∗o of Σ∗ → Spec(k[[t]])

is isomorphic to Xo. Identify Σ∗o with Xo, and let ξo
i and ηo

j denote the Ω-
points of Xo corresponding to the generic points of the loci ξ∗i and η∗j . Thus

ξo
i = ξi ×k Spec(Ω), ηo

j = ηj ×k Spec(Ω), and ηo
0 = ξo

0 . Let Bo = {ξo
1 , . . . , ξ

o
r}

and B′o = {ηo
1 , . . . , η

o
n}. Then the restriction ψo : V ∗o → Xo of the morphism

ψ : V ∗ → Σ∗ to the generic fibre is ramified only over Bo ∪ {ξo
0} ∪ B′o ⊂ Xo.

Here the closure of B′o ∪ {ξo
0} in Σ∗ consists of η∗0 , . . . , η

∗

n, and these n+ 1 loci are
pairwise disjoint because they respectively meet the closed fibre at the n+1 distinct
points η0, . . . , ηn ∈ Y , and nowhere else. Since U ×k Spec(Ω), W ×k Spec(Ω), and
Σ×k[t] Spec(Ω) are smooth over Ω, it follows that V ∗o is also smooth over Ω. Also,
V ∗o is connected since V ∗ is irreducible. Moreover the inertia groups over the point
ηo
0 = ξo

0 (and over ηo
1 if n > 0) are non-trivial because of the corresponding property

for V ∗. Thus the conditions of the lemma are satisfied. �

Remarks. (a) In the above lemma, we may replace condition (iii) above by

(iii)′ V o → Xo is at most tamely ramified over B′o.

Namely, this is automatic if char(k) = 0; and if char(k) = p then the cover W → Y
obtained in the above proof may be chosen to be at most tamely ramified except
possibly over η0, by [Ha3, Thm.6.2]. But in this case it is possible that the inertia
groups over B′o are all trivial, or that the inertia over ξo

0 is trivial; so we cannot
simultaneously insure that both (iii) and (iii)′ hold.

(b) The proof of the lemma shows that the result remains true if we add the
additional condition:

(vi) The N -Galois cover V o → Uo (cf. (i)) is unramified over Bo. �

Proposition 3.3. Under Hypotheses (3.1), assume that either the exact sequence
(*) is split or that B is non-empty. Let ξ0 ∈ X−B. Then there exist a k-subalgebra
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A ⊂ Ω of finite type; an irreducible regularG-Galois cover πE : VE → XE = X×k E
(where E = Spec(A)) such that VE is smooth over E; and a set of E-points B′

E =
{η1,E , . . . , ηn,E} of XE having pairwise-disjoint support, such that

(i) VE/N ≈ U ×k E as H-Galois covers of XE ;
(ii) the support ofB′

E is disjoint from those ofBE = B×kE and ξ0,E = ξ0×k E,
and VE → XE is étale away from BE ∪ {ξ0,E} ∪B′

E ;
(iii) the N -Galois cover VE → U ×k E has non-trivial inertia groups over the

generic point of ξ0 ×k E and (if n > 0) over the generic point of some ηi,E

(where 0 < i ≤ n).
(iv) no ηj,E (for j > 0) is of the form ξ ×k E for any ξ ∈ X(k);
(v) for every closed point e ∈ E, the fibre Ve of VE → XE over e is irreducible,

k-smooth, and non-empty.

Proof. Case 1: The exact sequence (*) is split.

We proceed as in the proof of [Ha3, Prop. 2.6, case (ii)]. Namely, let V ∗ → Σ∗,
V o → Xo, and B′o be as in the conclusion of Lemma 3.2. Since the connected
normal G-Galois cover V ∗ → Σ∗ is of finite presentation, it descends to a regular
k[t]-algebra R ⊂ k[[t]] of finite type over k[t]. That is, for some such algebra R, if
we let A = R[t−1] and E = Spec(A), then the following exist:

(1) a connected normal projective R-scheme ΣR such that ΣR ×RE is isomor-
phic to XE = X ×k E;

(2) a set B′

E = {η1,E, . . . , ηn,E} of n pairwise disjoint E-points of XE that do
not meet (B ∪ {ξ0}) × E, and that satisfy B′

E ×E Ω = B′o; and
(3) an irreducible normal projective R-scheme VR together with a G-Galois

covering morphism VR → ΣR that induces V ∗ → Σ∗ over k[[t]], and such
that VE = VR ×R E is regular and satisfies (i) - (iv).

It remains to verify (v) of the Proposition. Since VR induces V ∗, part (v) of
Lemma 3.2 implies that the fibre of VR over (t = 0) is connected and generically
smooth. Moreover V ∗ is normal. Applying [Ha2,Proposition 5] to VR → Spec(R),
and letting ε be the point (t = 0), it follows that for all k-points e in a dense
open subset E′ of Spec(R), the fibre Ve is irreducible. We may assume that E′ is
a basic open subset Spec(A′) of E = Spec(R)− (t = 0); thus A′ = A[f−1] for some
non-zero f ∈ A. Replacing A by A′, and VE → XE by the pullback over E′, we
obtain condition (v) as well. (Alternatively, we could have used the Bertini-Noether
Theorem [FJ, Propositions 8.8, 9.29] instead of [Ha2,Proposition 5].)

Case 2: B is non-empty.

Let U0 → X − B be the restriction of U → X over X − B. This is an H-
Galois unramified cover, and it corresponds to a surjective homomorphism α :
π1(X − B) → H . Since B is non-empty, the k-curve X − B is affine and so has
cohomological dimension 1 [Se, Prop.1]. Thus there is a lifting α̃ : π1(X −B) → G
of α, i.e. a (not necessarily surjective) homomorphism α̃ such that ν ◦ α̃ = α, where
ν : G → H = G/N is the quotient map. Let J ⊂ G be the image of α̃, and let
M = J ∩ N . Let W0 → X − B be the J-Galois étale cover corresponding to the
surjection α̃ : π1(X − B) → J , and let W → X be its completion to a J-Galois
cover of smooth complete k-curves. Then H = J/M , and W/M ≈ U as H-Galois
covers of X .
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Let Γ be the semi-direct product NoJ , where the action of J on N in Γ is taken
to be the same as the conjugation action of J on N in G. Then there is a surjective
homomorphism Γ → G given by taking N ⊂ Γ to N ⊂ G by the identity map, and
taking J ⊂ Γ to J ⊂ G by the identity map. (This is a well-defined homomorphism
because of the way that Γ was defined as a semi-direct product.) Let N1 be the
kernel of Γ → G, and let N2 be the kernel of Γ → H . Thus N2/N1 ≈ N .

Applying the result in Case 1, we obtain a connected Γ-Galois cover ṼE → X
of smooth k-curves, and a set B′, such that conditions (i) - (v) of the proposition

are satisfied with VE replaced by ṼE , U replaced by W , G replaced by Γ, and H
replaced by J . Let VE = ṼE/N1. Then the G-Galois cover VE → X , together with
the set B′

E , will satisfy conditions (i) - (v) of the proposition. (Note in particular
that condition (iii) is preserved when passing from Γ to G, because the quotient
map Γ → G is injective on N ⊂ Γ.) �

Remarks. (a) As in the remark after Lemma 3.2, we may, in the split case of
Proposition 3.3, alter the statement of 3.3 by replacing condition (iii) by

(iii)′ for every closed point e ∈ E, the fibre Ve → X is at most tamely ramified
over B′

e = B′

E ∩ (X × {e}).

Also in the split case, we may strengthen 3.3 by adding a condition

(vi) for every closed point e ∈ E, the N -Galois cover Ve → Ve/N ≈ U (cf. (i))
is unramified at the points lying over B.

Namely, by the remarks after Lemma 3.2, the corresponding condition(s) can be
made to hold in the split case for V o → Xo over Ω, and in the passage to E we
may demand the analogous condition (iii)′E [resp. (vi)E ]. The specialization to e
will then satisfy (iii)′ [resp. (vi)] above.

(b) See also the remark after Theorem 4.1 concerning another variant of the
above result and the three following, in terms of embedding problems. �

Lemma 3.4. In the situation of Proposition 3.3, let i1, . . . , im be the values of i > 0
satisfying (iii) of Proposition 3.3. Let βi = prX ◦ ηi,E : E → X for i = 1, . . . , n,
where prX : XE = X ×k E → X is the projection onto the first factor. Let
β = (βi1 , . . . , βim

) : E → X(m), where X(m) is the mth symmetric power of X .
(a) For every e ∈ E, the fibre Ve → X of VE → XE over e is a connected

G-Galois cover of smooth k-curves satisfying

(i) Ve/N ≈ U as H-Galois covers of X ;
(ii) Ve → X is étale away from B ∪ {ξ0, βi1(e), . . . , βim

(e)}, where the second
set consists of m+ 1 distinct points, none of which lies in B; and

(iii) the inertia groups of Ve → X are non-trivial over ξ0, and over βij
(e) for all

j = 1, . . . ,m.

(b) Each βij
is a dominating morphism from E to X , and β is a dominating

morphism from E to a subvariety Y ⊂ X(m), where dim(Y ) ≥ 1 if n > 0.
(c) If e, e′ ∈ E satisfy β(e) 6= β(e′), then the covers Ve → X and V ′

e → X are
non-isomorphic.

Proof. (a) By Proposition 3.3(v), Ve is connected, smooth, and non-empty. Part (i)
of (a) then follows from Proposition 3.3(i). Part (ii) follows from (ii) of Proposition
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3.3 together with the fact that the E-points ηi,E of Proposition 3.3 are disjoint.
Part (iii) follows from 3.3(iii) and from the definition of the βij

’s, together with the
fact that inertia groups either stay the same or become larger upon specialization.

(b) By Proposition 3.3(iv), each βij
: E → X is non-constant. But X is an

irreducible curve; so βij
is a dominating morphism. Let Y ⊂ X(m) be the closure of

the image of β. Thus β : X(m) → Y is dominating. If n > 0 then Proposition 3.3(iii)
implies that m ≥ 1, and so in particular βi1 exists. The dominating morphism
βi1 : E → X factors through β, and so dim(Y ) ≥ 1.

(c) This is immediate from (ii) and (iii) of part (a), since covers with distinct
branch loci are distinct. �

Theorem 3.5. Under Hypotheses (3.1), assume either that the exact sequence
(*) is split or that B is non-empty. Let S be a finite subset of X − B, and let
ξ0 ∈ X − (B ∪ S).

(a) Then there is a smooth connected G-Galois cover Z → X such that Z/N ≈ U
as H-Galois covers of X ; such that Z → X is ramified only over B ∪ {ξ0} ∪B′, for
some subset B′ ⊂ X − S consisting of at most n points; and such that the inertia
groups over ξ0 are non-trivial.

(b) If n > 0, then up to isomorphism there are exactly κ such covers Z → X ,
where κ is the cardinality of k.

Proof. (a) Let E, βi, β be as in Lemma 3.4. Since each βij
: E → X is dominating

and since X is an irreducible curve, we have that Dj = β−1
ij

(B ∪ {ξ0} ∪ S) is a

proper closed subset of E. Hence so is D = D1∪· · ·∪Dm. By definition of D, each
βij

(E −D) is disjoint from B ∪ {ξ0} ∪ S. The desired assertion now follows from
part (a) of Lemma 3.4, by taking Z = Ve for any e ∈ E−D, and using that m ≤ n.

(b) Let Y be as in Lemma 3.4(b). Let D ⊂ E be as in part (a), and let β′

be the restriction of β to E − D. Now dim(Y ) ≥ 1, and β′ : E − D → Y is a
dominating morphism. So the cardinality of the image of β′ is κ, and there is a
subset Σ ⊂ (E − D)(k) of cardinality κ such that β(e) 6= β(e′) for e 6= e′ in Σ.
(Namely, just pick one point in each non-empty fibre of β′.) By Lemma 3.4(c),
distinct points in Σ yield distinct G-Galois covers Z → X as in (a) above. Thus
there are at least κ non-isomorphic choices for Z → X . But the opposite inequality
holds by set theory, since there are at most κ non-isomorphic finite covers of X
over k. �

Remarks. (a) Theorem 3.5 can be strengthened in the split case, because of
Remark (a) after Proposition 3.3. Namely, using (vi) of that remark, we may
require in 3.5(a) and (b) that Z → Z/N ≈ U is unramified at the points lying over
B. Also, using the replacement of (iii) by (iii)′ in that remark, we see that we may
assert that Z → X is at most tamely ramified away from B ∪ {ξ0}, in Theorem
3.5(a). But by doing this we lose (iii) of 3.3, and hence also (b) of 3.4. Since 3.4(b)
was used in the proof of 3.5(b), we cannot also assert this tameness in 3.5(b).

(b) The proof of 3.2, and hence that of 3.5, used the assertion of Abhyankar’s
conjecture [Ha3, Theorem 6.2]. Without relying on that result, it is nevertheless
possible to prove a weaker version of Theorem 3.5, which would still be sufficient
for use in Theorem 4.1 below (via a correspondingly weakened 3.6). Namely, if s is
the number of Sylow p-subgroups of N , then we can show the assertion obtained



12 DAVID HARBATER

by allowing B′ to have at most n+ s points (rather than at most n points) in the
statement of 3.5. This follows from the result obtained by allowing B′∗ to have
n+ s points in 3.2.

To show that latter variant without Abhyankar’s conjecture, we need, in the proof
of 3.2, to show that there is an N -Galois cover of the line branched at s + n + 1
points (rather than n+ 1 points, as before). By [Gr1, XIII, Cor. 2.12], there is an
N/p(N)-Galois cover of the line branched at n+1 points, and since the complement
of those points has cohomological dimension 1 [Se, Prop.1], this lifts to an M -Galois
cover of the line with the same branch locus, where M ⊂ N is a subgroup such that
N is generated by M and p(N) (or equivalently, by M and the s Sylow p-subgroups
of N). The result now follows by [Ha2, Theorem 2], which allows the addition of
new p-inertia to covers at new branch points, and the corresponding enlargement
of the Galois group. Namely, by adding s new branch points (corresponding to the
Sylow p-subgroups of N) and enlarging the group from M to N , we can construct
an N -Galois cover of the line having s+n+1 branch points. This gives the desired
variant of 3.2 (and hence the variant of 3.5). �

Theorem 3.5(b) required that n > 0. But if we do not insist on choosing in
advance one of the extra branch points ξ0, then (b) holds even if n = 0. Namely:

Theorem 3.6. Under Hypotheses (3.1), assume either that the exact sequence (*)
is split or that B is non-empty, and let S be a finite subset of X −B.

(a) Then there is a smooth connected G-Galois cover Z → X such that Z/N ≈ U
as H-Galois covers of X , and such that Z → X is ramified only over B ∪ B′, for
some subset B′ ⊂ X − S consisting of at most n+ 1 points.

(b) Up to isomorphism there are exactly κ such covers Z → X , where κ is the
cardinality of k.

Proof. Part (a) is immediate from 3.5(a), by including ξ0 as an additional point in
B′. To show part (b), let C be the set of isomorphism classes of such covers. By
3.5(a), for each ξ ∈ X − (B ∪ S) we may choose a cover Zξ → X satisfying the
conclusion of 3.5(a) with ξ0 = ξ. This cover is ramified non-trivially over ξ, and
is otherwise unramified away from B ∪ B′

ξ ⊂ X , where B′

ξ ⊂ X − S is a set of at

most n points. Thus if ξ, ξ′ ∈ X − (B ∪ S) are distinct, then the covers Zξ → X
and Zξ′ → X cannot be isomorphic unless ξ′ ∈ B′

ξ. So the map X − (B ∪ S) → C

given by ξ 7→ [Zξ → X ] is finite-to-one. Thus the cardinality of C is at least κ, and
the opposite inequality follows as in 3.5(b). �

Remarks. (a) In the case that (*) is split and B is empty, the n+ 1 in Theorem
3.6 is sharp. To see this, let G be a finite group such that the smallest generating
set of G/p(G) has n elements. Take N = G, so that (*) is split, H is trivial, U = X ,
and B is empty. Then the theorem asserts the existence of a G-Galois cover of X
branched only at B′. By Abhyankar’s conjecture [Ha3, Theorem 6.2], such a cover
exists if and only if B′ contains at least n+ 1 elements.

(b) We can also consider the weaker assertion obtained from 3.6 by dropping the
condition that Z/N ≈ U . If B is empty, then the n+1 in this weaker assertion is still
sharp, by the example in Remark (a). But if B is non-empty, then the n+1 in this
weaker statement may be replaced by n (which is then sharp). Namely, if B consists
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of r > 0 points, and X has genus g, then H/p(H) is generated by 2g+r−1 elements
(since H ∈ πA(X − B)). Hence G/p(G) is generated by 2g + r + n − 1 elements
(using the definition of n). Thus by Abhyankar’s conjecture, G ∈ πA(X −B −B′)
for any subset B′ ⊂ X −B consisting of n elements (but not n− 1 in general, since
the smallest generating set of G/p(G) may have exactly 2g + r + n− 1 elements).

Note that it is indeed possible for this weaker (existence) assertion to hold in
a situation where the stronger (lifting) one fails. For example, suppose that (*)
is split; that G is a quasi-p-group; that N is of the form Z/lm for some prime
l; and that X = P1 and B = {∞}. Then by Abhyankar’s conjecture for the
affine line [Ra], there exists a G-Galois cover Z → X branched only at B, but
not necessarily one such that Z/N ≈ U . Cf. [Se, sect. 5,6], where a necessary and
sufficient condition is given for this latter property. On the other hand, [Se, sect.
7] shows that such a lift Z will necessarily exist if l = p.

(c) Theorem 3.6 can be strengthened in the case that p does not divide the order
of G (e.g. if k has characteristic 0), by

(i) dropping the requirement that B be non-empty if (*) is non-split;
(ii) replacing n+ 1 by n if B is non-empty; and
(iii) specifying in advance the points of B′.

Here (i) follows from (ii), since if B = ∅ then we may add a point to B and then

use (ii). Parts (ii) and (iii) follow from the fact that the prime-to-p part πp′

1 (X−A)
is a free-pro-p′-group on 2g + s − 1 generators, if X is a projective curve of genus
g and A ⊂ X consists of s > 0 points [Gr1, XIII, Cor. 2.12].

(d) Theorem 3.6 leaves open the question of whether the conclusion is also true
in the case that (*) is not split and B is empty – although it is true in characteristic
0, by Remark (c) above.

(e) The remarks after 3.5 also carry over to 3.6. �

Remarks (a) - (c) above suggest the question of whether the n+1 in 3.6 is sharp
when B 6= ∅ (for general G and p), or whether it may be replaced by n. As a special
case, when n = 0, we obtain the following question (where X0 = X −B above):

Question 3.7. If 1 → N → G → H → 1 is an exact sequence of finite groups
with N a quasi-p-group, and if U0 → X0 is a connected unramified H-Galois cover
of smooth affine k-curves, is there a connected unramified G-Galois cover Z0 → X0

such that Z0/N ≈ U0?

In terms of fundamental groups, Question 3.7 can be rephrased as follows: Let
X0 be an affine k-curve, let G be a finite group, let N be a normal quasi-p-subgroup
of G, and let γ : π1(X0) → G/N be a surjective group homomorphism. Then does
γ lift to a surjective group homomorphism β : π1(X0) → G? This is an “embedding
problem,” in the terminology of Section 4 below.

Section 4. Embedding and freeness

This section contains two related theorems: Theorem 4.1 asserts that in the
birational and semi-local cases, the fundamental groups of curves have (many)
solutions to every non-trivial finite embedding problem. Theorem 4.4 says that in
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these situations, the fundamental groups are free profinite groups, of rank equal to
the cardinality of the coefficient field k.

As before, let k be an algebraically closed field of characteristic p ≥ 0. Let X be
a smooth projective k-curve with function field K, and let S be a finite subset of
X (possibly empty). Let Ksep be the separable closure of K. We let ΠK,S denote
the Galois group Gal(LS/K), where LS is the maximal algebraic extension of K
(contained in Ksep) that is unramified over the places of K corresponding to the
points of S. In the case that S is empty, we will also write ΠK,S = ΠK . In that
case, ΠK is the absolute Galois group of K, i.e. the Galois group Gal(Ksep/K).

The group ΠK,S can be reinterpreted in terms of fundamental groups as follows.
Let OX,S be the semi-local ring of X at S; i.e.

OX,S = {f ∈ K | f is regular at the points of S}.

Let XS = Spec(OX,S), the “semi-localization of X at S.” Then ΠK,S = π1(XS)
(taken with respect to the Ksep-valued base point of XS corresponding to the
inclusion of OX,S into Ksep). In particular, if S is empty then we have ΠK =
π1(Spec(K)); and if S = {s} is a single point, then OX,S = OX,s (the usual local
ring of X at the point s), and ΠK,S = π1(Spec(OX,s)).

If Π is any profinite group, then an embedding problem for Π is a pair of surjective
homomorphisms (γ : Π → H, α : G → H) of profinite groups. The embedding
problem is finite if G is a finite group, and is trivial if α is an isomorphism. A weak
solution [resp. proper solution] to the embedding problem is a homomorphism [resp.
surjective homomorphism] β : Π → G such that αβ = γ.

Theorem 4.1. Let S be a finite subset of a smooth projective k-curve X with
function field K.

(a) Every finite embedding problem for ΠK,S has a proper solution.

(b) If such an embedding problem is non-trivial, then the cardinality of the set
of proper solutions is equal to the cardinality of k.

Proof. (a) Let Π = ΠK,S , and let (γ : Π → H, α : G→ H) be any finite embedding
problem for Π. Letting N = ker(α), we may identify H with G/N and α with the
quotient map G→ G/N . The result is immediate if N is trivial, so we may assume
that N is non-trivial. Choose a generating set Σ for N/p(N), consisting of n ≥ 0
generators. By Galois theory, γ : Π → H corresponds to anH-Galois field extension
of K that is unramified over the places corresponding to S, or equivalently to a
connected H-Galois cover U → X of smooth k-curves that is unramified over S.
Let B be a non-empty finite subset of X that contains the branch locus of U → X
and is disjoint from S. By Theorem 3.6(a), there is a smooth connected G-Galois
cover Z → X such that Z/N ≈ U as H-Galois covers of X , and such that Z → X
is ramified only over B and over at most n+1 other points, none of which lies in S.
The G-Galois cover Z → X corresponds to a surjective homomorphism β : Π → G
such that αβ = γ. Thus the embedding problem has a proper solution.

(b) By Theorem 3.6(b), there are card(k) choices of Z → X in the proof of (a).
Distinct choices correspond to distinct solutions to the embedding problem, and so
the result follows. �
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Remark. By using the terminology of embedding problems, it is possible to
reformulate the results in section 3, and their relationship to Theorem 4.1. First,
note that the Hypotheses (3.1) yield an embedding problem (γ : π1(X−B) → H,
α : G → H). Next, observe that the proof of Proposition 3.3, Case 2, shows that
we may replace the hypothesis of (*) being split or B non-empty by the assumption
that the embedding problem has a weak solution (and by the same proof, this is in
fact a weaker hypothesis). So the same carries over to 3.4, 3.5, and 3.6. Hence we
obtain the following variation of 3.6:

Let 1 → N → G→ H → 1 be an exact sequence of finite groups, withN non-trivial,
and N/p(N) generated by n elements (n ≥ 0). Let B,S be disjoint finite subsets
of a smooth projective k-curve X . If an embedding problem (γ : π1(X −B) → H,
α : G → H) has a weak solution, then there is a subset B′ ⊂ X − S containing at
most n+1 points, such that the induced embedding problem (γ̃ : π1(X−(B∪B′)) →
H, α : G→ H) has exactly card(k) distinct proper solutions.

The relationship to Theorem 4.1 can then be seen by observing that ΠK,S is the
inverse limit of the profinite groups π1(X − B), as B ranges over the non-empty
finite subsets of X − S. �

If Π is any profinite group, and I is a subset of Π, then I is called a generating
set of Π if no proper closed subgroup of Π contains I. A generating set converges to
1 if each open subgroup of Π contains all but finitely many elements of I. The rank
of a profinite group Π is the least cardinality of a generating set that converges to
1.

For any set I, let FI be the free group on the generating set I. The free profinite
group F̂I on I is the inverse limit of the quotients FI/N , where N ranges over
the normal subgroups of finite index that contain all but finitely many elements
of I. Thus I is a generating set of F̂I converging to 1, and the rank of F̂I is the
cardinality of I. Since F̂I depends, up to isomorphism, only on the cardinality of
I, we also write F̂κ if κ is the cardinality of I.

According to a result of Iwasawa ([Iw,p.567]; cf. also [FJ,Cor.24.2]), if Π is a
profinite group of countably infinite rank, then Π is a free profinite group if and
only if every finite embedding problem for Π has a proper solution. As a result, we
obtain the following result, in which (b) is the function field version of Shafarevich’s
conjecture (cf. section 1):

Corollary 4.2. Let k be the algebraic closure of Fp, let X be a smooth connected
projective k-curve, let K be the function field of X , and let S be a finite subset of
X .

(a) Then ΠK,S is a free profinite group on countably many generators.
(b) In particular, the absolute Galois group ΠK of K is a free profinite group on

countably many generators.

Proof. (a) Let Π = ΠK,S and r = rank(Π). If r is finite, and G is any finite
group of rank > r, then there is no surjective homomorphism Π → G, and hence
the embedding problem (Π → 1, G → 1) cannot have a proper solution. This
contradicts Theorem 4.1(a), and so actually r is infinite. But since k is countable,
K has at most countably many finite extensions, and hence the rank of Π is at most
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countable. So the rank is countably infinite. The result now follows from 4.1(a)
and Iwasawa’s theorem cited above.

(b) This is just the special case that S is empty. �

Iwasawa’s theorem fails for profinite groups of uncountable rank [Ja, Example
3.1]. That is, there are profinite groups of uncountable rank for which every finite
embedding problem has a proper solution, yet which are not free. Nevertheless
Corollary 4.2 does generalize to arbitrary algebraically closed fields k. Namely, if
κ is the cardinality of k, then we show below that ΠK,S is a free profinite group of
rank κ. To see this, we need the following lemma:

Lemma 4.3. [Ja, Lemma 2.1] Let κ be an infinite cardinal number, and let F be a

profinite group of rank κ. Then F is isomorphic to F̂κ if and only if each non-trivial
finite embedding problem for F has exactly κ proper solutions.

Using this, we obtain the desired freeness result, which generalizes Corollary 4.2:

Theorem 4.4. Let k be an algebraically closed field of cardinality κ. Let X be a
smooth connected projective k-curve, let K be the function field of X , and let S
be a finite subset of X . Then ΠK,S is a free profinite group on κ generators.

Proof. Immediate from Theorem 4.1(b) and Lemma 4.3. �
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