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Abstract. We prove that certain fields have the property that their absolute
Galois groups are free as profinite groups: the function field of a real curve with
no real points; the maximal abelian extension of a 2-variable Laurent series field
over a separably closed field; and the maximal abelian extension of the function
field of a curve over a finite field. These results are related to generalizations of
Shafarevich’s conjecture. Related results about quasi-free groups are also shown,
in particular that the commutator subgroup of a quasi-free group is quasi-free.

§1: Introduction.

This paper shows that the absolute Galois groups of certain fields are free as profinite
groups. Although these fields arise in geometric contexts, our results are related to Sha-
farevich’s conjecture on absolute Galois groups, which he posed in the context of number
theory. In its original form, that conjecture states that the absolute Galois group of Qab

is free, where Qab is the maximal abelian extension of Q. Since Qab is also the maximal
cyclotomic extension of Q, Shafarevich’s conjecture has been generalized to assert that for
any global field K, the absolute Galois group of the maximal cyclotomic extension of K is
free (see e.g. [Ha2]). That conjecture remains open in the number field case (where it would
be sufficient to prove it for Q, by [FJ], Prop. 17.6.2); but it was proven in the function field
case in [Ha1] and [Po1] (cf. also [HJ4]). In that case, the conjecture is equivalent to saying
that for any curve over F̄p, the absolute Galois group of the function field is free. In [Ha1]
and [Po1] even more was shown: that freeness holds for any curve over any algebraically
closed field.

The result in [Ha1] and [Po1] suggests asking what happens over fields K that are
“almost” algebraically closed; i.e. such that [K̄ : K] is finite, where K̄ is the algebraic
closure. By the theorem of Artin-Schreier, these are precisely the real closed fields (e.g.
R); and in Theorem 4.2 we show that the function field of a curve X over a real closed
field R has free absolute Galois group if and only if X has no R-points.

Another natural generalization of Shafarevich’s conjecture is to assert that for any
global field K, the absolute Galois group of the maximal abelian extension of K is free.
In Theorem 4.1 we show that this holds in the function field case. The proof relies on
the corresponding result in [Ha1] and [Po1] about the maximal cyclotomic extension. The
number field case of this conjecture, too, remains open.

While Shafarevich’s conjecture and its generalizations above concern one-dimensional
function fields, it is also possible to consider higher dimensional versions. There, for
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cohomological reasons one must rule out the case of finite coefficient fields; and here we
consider function fields over a separably closed field. In the local case of a smooth surface
over a separably closed field k, Theorem 4.6 shows that the absolute Galois group of the
maximal abelian extension of k((x, y)) is free. The first example of the global case would
be to ask whether the same holds for k(x, y) for k separably closed. This remains open.

The key approach here is to use that a profinite group is free if and only if it is
projective and quasi-free ([HS], Theorem 2.1); see Section 2 below for definitions. In the
current paper it is shown that the absolute Galois group of the function field of any curve
over a real closed field is quasi-free, as is the maximal abelian extension of k((x, y)) for k any
field (using Theorem 2.4). Projectivity is classical in the situation of Theorem 4.2, and it
follows from [COP] (as generalized in Theorem 4.4 below) in the situation of Theorem 4.6;
so in each case freeness then results. This same approach could also be used to provide
another proof of the freeness result of [Ha1] and [Po1] referred to above, which we use here
to obtain the freeness of the maximal abelian extension of the function field of a curve over
a finite field (Theorem 4.1).

One could also use the above approach in considering the two-dimensional global
version of Shafarevich’s conjecture. Namely, let Kab be the maximal abelian extension of
K = k(x, y), for k algebraically closed. Then the absolute Galois group GKab is free if
and only if it is projective and quasi-free. Here GKab is the commutator subgroup of GK ;
and projectivity would follow from knowing for every ` that a Sylow `-subgroup of this
commutator is a free pro-` group. This condition would imply a conjecture of Bogomolov
[Bo], asserting that the commutator subgroup of every Sylow `-subgroup of GK is a free
pro-` group. That conjecture is open, as is the quasi-freeness of GKab , even in the case
of K = C(x, y). The above considerations suggest a stronger conjecture that if k is an
algebraically closed field (or even a field containing all roots of unity) and K is a function
field over k, then GKab is free. Such a conjecture has been proposed by F. Pop.

After providing background material and definitions concerning profinite groups, Sec-
tion 2 of this paper proves a key result on quasi-free groups (Theorem 2.4): that the
commutator subgroup of a quasi-free group is quasi-free, of the same rank. Section 3,
which discusses aspects of field arithmetic, reinterprets the results of the previous section
in terms of absolute Galois groups of abelian extensions, and shows (in Theorem 3.4) that
the absolute Galois group of the function field of a curve over a large field is quasi-free.
The results on free absolute Galois groups are shown in Section 4, using results from the
previous sections together with other results.

I wish to thank R. Parimala, J.-L. Colliot-Thélène, M. Jarden, F. Pop, and P. Zalesskii
for discussions about this material and about this manuscript, and the referee for suggesting
improvements. I also thank MSRI for providing the opportunity to begin working on and
discussing these results.
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Section 2. Profinite groups.

Let Π be a profinite group (i.e. an inverse limit of finite groups). An embedding problem
E for Π is a pair of epimorphisms (α : Π → G, f : Γ → G) of profinite groups; it is non-
trivial if kerf is non-trivial and it is finite if Γ is finite. (Here and below, homomorphisms
are required to be continuous.) A weak solution to E = (α, f) consists of a homomorphism
λ : Π → Γ such that f ◦ λ = α. A solution is called proper if it is surjective. A finite
embedding (α, f) in which we also have a splitting s : G → Γ of f is called a finite split
embedding problem. Every finite split embedding problem has a weak solution given by
s ◦ α. A profinite group Π is projective if every finite embedding problem for Π has a
weak solution. Being projective is equivalent to having cohomological dimension at most
1 ([Gru], Theorem 4; or [Se], I, §3.4 Prop. 16 and §5.9 Prop. 45).

A subset S of a profinite group Π converges to 1 if S ∩ (Π−N) is finite for every open
normal subgroup N of Π. Similarly, a map φ : S → G to a profinite group G converges to
1 if S ∩ φ−1(G − N) is finite for every open normal subgroup N of G. The rank of Π is
the smallest cardinal number m = d(Π) such that Π has a set of (topological) generators
of cardinality m that converges to 1. In fact, if the rank of Π is infinite, any two such
generating sets have the same cardinality ([FJ], Prop. 17.1.2). Note that if the rank m of
Π is infinite, then there are at most m (continuous) homomorphisms from Π to any finite
group, since the kernel must be open. Thus a finite embedding problem for Π can have at
most m (weak or proper) solutions, if m = d(Π) is infinite.

A profinite group Π is free on a generating set S that converges to 1 if every map S → G

to a profinite group G that converges to 1 uniquely extends to a group homomorphism
Π → G. For every cardinal m there is a free profinite group of rank m ([FJ], §17.4),
denoted F̂m; this is unique up to isomorphism. A profinite group Π is ω-free if every finite
embedding problem for Π has a proper solution. Every free profinite group is ω-free. And
by a theorem of Iwasawa ([Iw], p.567), a profinite group of countable rank is free if and
only if it is ω-free. But this equivalence fails for uncountably generated profinite groups
([Ja1], Example 3.1). Instead, there is the following result of Melnikov and Chatzidakis
([Ja1], Lemma 2.1): if m is an infinite cardinal, then a profinite group Π is free of rank
m if and only if every non-trivial finite embedding problem for Π has exactly m proper
solutions.

Following [HS] and [RSZ], we say that a profinite group Π is quasi-free if there is a
cardinal number m such that every non-trivial finite split embedding problem for Π has
exactly m proper solutions; to indicate the cardinal, we may say that Π is m-quasi-free. It
is easy to see that m is necessarily infinite. Also, m is necessarily equal to the rank of Π
[RSZ]; so being m-quasi-free is equivalent to being quasi-free of rank m. As a variant on
the result of Melnikov and Chatzidakis, if m is an infinite cardinal, then a profinite group
Π is free of rank m if and only if it is projective and m-quasi-free ([HS], Theorem 2.1, or
[FJ], Lemma 25.1.8). If Π has countable rank, freeness is also equivalent to the condition
that Π is projective and every finite split embedding problem for Π has a proper solution
([HS], Corollary 2.8), in analogy with Iwasawa’s theorem.
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The main goal of this section is to show (in Theorem 2.4 below) that if Π is a quasi-free
profinite group, then its commutator subgroup Π′ is also quasi-free, of the same rank. We
begin with some lemmas.

Lemma 2.1. Let Π be a profinite group, let Π1 be a closed subgroup that contains the
commutator subgroup of Π, and let E = (α : Π → G, f : Γ → G) be a finite embedding
problem for Π with proper solutions β1, β2 having kernels M1,M2. Assume that Π1∩M1 =
Π1 ∩M2 and that Z ∩N = 1, where Z is the center of Γ and N = ker f . Then M1 = M2.

Proof. Let Π0 = Π1(M1 ∩M2) ⊂ Π. We first claim that M1 ∩M2 = Π0 ∩M2. Here the
containment M1 ∩M2 ⊂ Π0 ∩M2 is clear. For the other containment, let m2 ∈ Π0 ∩M2.
Since m2 ∈ Π0, we may write m2 = p1m for some p1 ∈ Π1 and m ∈ M1 ∩M2 ⊂ M2. Here
p1 = m2m

−1 ∈ M2. Therefore p1 ∈ Π1 ∩M2 = Π1 ∩M1 ⊂ M1. Thus p1 ∈ M1 ∩M2, and
so m2 = p1m ∈ M1 ∩M2. This proves the claim.

Define β̃ : Π → Γ ×G Γ by β̃(x) = (β1(x), β2(x)), and let Γ̃ = β̃(Π). So ker β̃ =
M1 ∩M2 = Π0 ∩M2, by the previous paragraph. We next claim that β̃(Π0) ∩ β̃(M2) = 1.
To see this, let p ∈ β̃(Π0) ∩ β̃(M2). So p = β̃(p0) = β̃(m2) for some p0 ∈ Π0 and
m2 ∈ M2. Hence β̃(p0m

−1
2 ) = 1; i.e., p0m

−1
2 ∈ ker(β̃) ⊂ M2. Since m2 ∈ M2, so is p0;

thus p0 ∈ Π0 ∩M2 = ker, β̃. So p = β̃(p0) = 1, thereby showing the claim.
By assumption, the commutator subgroup Π′ of Π is contained in Π1 and hence in Π0;

so the commutator subgroup Γ̃′ = β̃(Π′) of Γ̃ is contained in β̃(Π0). Now β̃(M2) ⊂ β̃(Π) =
Γ̃, so the commutator group [Γ̃, β̃(M2)] is contained in [Γ̃, Γ̃] = Γ̃′ ⊂ β̃(Π0). Meanwhile,
β̃(M2) is a normal subgroup of Γ̃ = β̃(Π) since M2 is normal in Π. So [Γ̃, β̃(M2)] is
contained in β̃(M2) and hence in β̃(Π0) ∩ β̃(M2) = 1 by the previous claim. Thus β̃(M2)
is contained in Z̃, the center of Γ̃. But the projection Γ×G Γ → Γ onto the first coordinate
maps β̃(M2) onto β1(M2) and maps Z̃ into Z. So the containment β̃(M2) ⊂ Z̃ implies that
β1(M2) ⊂ Z. Now fβ1(M2) = α(M2) = fβ2(M2) = 1, so β1(M2) ⊂ ker f = N . Hence
β1(M2) ⊂ Z ∩N = 1. Thus M2 ⊂ ker β1 = M1. Similarly M1 ⊂ M2.

Lemma 2.2. Let Π be a quasi-free profinite group of rank m, and let Π′ be its commutator
subgroup. Let p be a prime number. Then there exist m open normal subgroups of Π′ having
index p.

Proof. Define a 2×2-matrix Ap over Fp as follows: If p = 2 the rows are (0 1) and (1 1); and
if p 6= 2 the rows are (0 a) and (1 0), where a ∈ F∗p is not a square. Let r be the order of Ap

in GL(2, p). So the cyclic group Cr acts on the two-dimensional Fp-vector space F2
p via left

multiplication of the matrix Ap on column vectors. This action is irreducible over Fp, since
the minimal polynomial fp(x) ∈ Fp[x] of Ap is irreducible. (Namely, f2(x) = x2 − x − 1
and fp(x) = x2 − a for p odd.)

Let Γ = C2
p×|| Cr, where the conjugation action of Cr on the group C2

p ≈ F2
p is via

Ap as above. Since this action is irreducible, C2
p has no non-trivial proper subgroup that

is normal in Γ. Note that if Z is the center of Γ, then C2
p is not contained in Z; and

hence Z ∩ C2
p = 1, being a normal subgroup of Γ contained in C2

p . Also, the commutator
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subgroup Γ′ of Γ is non-trivial since Γ is non-abelian, and it is contained in C2
p since Γ/C2

p

is abelian. Again by irreducibility, Γ′ = C2
p . So the maximal abelian quotient of Γ is Cr.

Since Π is quasi-free of rank m, Π has m distinct open normal subgroups with quotient
group isomorphic to Cr. Picking one of them, say Λ, and an epimorphism α : Π → Cr

with kernel Λ, we obtain a finite split embedding problem for Π given by this map and the
split exact sequence 1 → C2

p → Γ → Cr → 1. Again, since Π is quasi-free of rank m, there
are m distinct proper solutions β : Π → Γ to this embedding problem. Taking kernels, we
have that there are m distinct normal subgroups M ⊂ Π such that Π/M ≈ Γ and M ⊂ Λ
(using that there are only finitely many epimorphisms to a given finite group with a given
kernel). For each such M , the subgroup of Π generated by Π′ and M is the minimal
normal subgroup of Π that contains M and has abelian quotient; i.e. Π′M = Λ = kerα

(by the maximality assertion in the previous paragraph). Thus Π′/(Π′ ∩ M) ≈ Λ/M =
ker((Π/M) → (Π/Λ)) ≈ ker(Γ → Cr) = C2

p .
So for any two such normal subgroups M1,M2 (among the m given by solutions to

the embedding problem), we may apply Lemma 2.1; and conclude that if Π′ ∩ M1 =
Π′ ∩ M2 then M1 = M2. That is, the m solutions to the embedding problem induce m

distinct normal subgroups of Π′ having quotient C2
p . Taking the inverse images of 1× Cp

and of Cp × 1 under such quotient maps, we obtain m normal subgroups of Π′ having
quotient group Cp, possibly with repetitions. If there are precisely m′ ≤ m distinct normal
subgroups of Π′ with quotient Cp arising this way, then the number of normal subgroups
of Π′ with quotient C2

p obtained by taking intersections is also m′. But there are (at least)
m of them, as noted above. So in fact m′ = m.

Remark. a) Lemma 2.2 is a weak form of Theorem 2.4 below, in the case of a split
embedding problem corresponding to a short exact sequence 1 → Cp → Cp → 1 → 1.

b) In Lemma 2.2, Π′ has at most m open normal subgroups (and hence exactly m of
index p), because the cardinality of these is equal to the rank of Π′ ([FJ], Prop. 17.1.2) and
because the rank of the closed subgroup Π′ ⊂ Π is at most that of Π ([FJ], Cor. 17.1.5).

Let ι : Π0 → Π1 be a homomorphism of profinite groups (e.g. an inclusion), let
f : Γ → G be an epimorphism of finite groups, and let αi : Πi → G be an epimorphism for
i = 0, 1. Thus Ei = (αi : Πi → G, f : Γ → G) is a finite embedding problem for Πi. We say
that E1 induces E0 if α0 = α1 ◦ ι. If E1 induces E0 and if βi : Πi → Γ is a weak solution to
Ei for i = 0, 1, we say that β1 induces β0 if β0 = β1 ◦ ι. Note that if β1 is a proper solution
to E1, then the induced solution β0 to E0 need not be proper.

Lemma 2.3. Let Π be a profinite group that is quasi-free of rank m, let Π′ be its commu-
tator subgroup, and let E = (α : Π′ → G, f : Γ → G) be a non-trivial finite split embedding
problem for Π′. Then there is an open normal subgroup Π1 ⊂ Π containing Π′ together
with an embedding problem E1 = (α1 : Π1 → G, f : Γ → G) that induces E, such that Π1

has a set of m open subgroups each of which is the kernel of a proper solution to E1 that
induces a proper solution to E.
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Proof. Let Λ̃ = ker α ⊂ Π′ and let N = ker f 6= 1. By [FJ], Lemma 1.2.5(c), there is
an open normal subgroup Π0 ⊂ Π containing Π′, together with an embedding problem
E0 = (α0 : Π0 → G, f : Γ → G) that induces E . Let Λ0 = kerα0 ⊂ Π0. So Λ̃ = Π′ ∩ Λ0.

Since Π is quasi-free of rank m, there are m open normal subgroups Φ ⊂ Π such
that Π/Φ ≈ C2 (arising from the embedding problem for Π corresponding to the exact
sequence 1 → C2 → C2 → 1 → 1). Thus in particular we may choose such a Φ that does
not contain Λ0 (since only finitely many subgroups of Π contain the finite index subgroup
Λ0). Note that Φ and Λ0 generate Π, since (Π : Φ) = 2. Let Π1 = Π0 ∩ Φ ⊂ Π and let
Λ1 = Λ0 ∩ Φ = Λ0 ∩ Π1 ⊂ Π. Thus Π1 is an open normal subgroup of Π0, and Λ1 is an
open normal subgroup of the groups Π1, Λ0 and Π0. Here (Λ0 : Λ1) = (Π0 : Π1) = 2, since
(Π : Φ) = 2 and since Φ does not contain Λ0. So Π0 is generated by Λ0 and Π1. Hence the
natural map Π1/Λ1 ↪→ Π0/Λ0 = G (through which the isomorphism G = Π′/Λ̃ →∼ Π0/Λ0

factors) is an isomorphism, and we have isomorphisms Π0/Λ1 →∼ Π0/Λ0×Π0/Π1 →∼ G×C2.
So the restriction α1 : Π1 → G of α0 : Π0 → G is surjective with kernel Λ1, and α1 in turn
restricts to α : Π′ → G, whose kernel Λ̃ is contained in Λ1. Thus the embedding problem
E1 = (α1 : Π1 → G, f : Γ → G) induces E . So the natural map G = Π′/Λ̃ → Π1/Λ1 is an
isomorphism; and hence Π1 = Π′Λ1. Moreover α1 lifts to a surjection α̂1 : Π0 → G × C2

having kernel Λ1, corresponding to the above isomorphism Π0/Λ1 →∼ G× C2.
Every open subgroup of a quasi-free group is also quasi-free of the same rank [RSZ].

So Π0 is quasi-free of rank m. Let Γ̂ be the semi-direct product of N ×N with the group
G×C2, where G acts on each factor N as it does in Γ, and where C2 acts by interchanging
the two copies of N . Also, let f̂1 : Γ̂ → G × C2 be the canonical surjection, and consider
the finite split embedding problem Ê1 = (α̂1 : Π0 → G × C2, f̂1 : Γ̂ → G × C2) for Π0.
Since Π0 is quasi-free of rank m, this embedding problem has m proper solutions.

Consider any proper solution to Ê1, say β̂1 : Π0 → Γ̂. So M := ker β̂1 is normal in Λ1

and in Π0, with quotient groups Λ1/M ≈ N × N and Π0/M ≈ Γ̂. Here H := Λ0/M =
(N ×N)×|| C2, with C2 = Λ0/Λ1 interchanging the two factors of N ×N = Λ1/M . Let M1

be the inverse image of 1×N under the quotient map Λ1 → N×N ; thus Π1/M1 ≈ Γ. Also,
M is the largest normal subgroup of Π0 that is contained in M1 (since any such subgroup
would also have to be contained in the inverse image of N × 1); so M is determined by
M1 and thus distinct choices of M lead to distinct choices of M1. Thus there are m

distinct choices for M1, arising from the m choices for M . Each such choice for M1 is
the kernel of a proper solution β1 to the embedding problem E1, inducing a weak solution
β := β1|Π′ : Π′ → Γ to E with kernel Π′ ∩M1. It remains to show that β is surjective.

If n ∈ N and ι is the involution in C2, the commutator [(n, 1), ι] ∈ [N × N,C2] ⊂
H = (N × N)×|| C2 is equal to (n, n−1) ∈ N × N . Thus N × N = Λ1/M is generated by
1 × N = M1/M and the commutator subgroup H ′ of H = Λ0/M (where H ′ ⊂ N × N

because H/(N × N) is abelian). So Λ1 is generated by M1 and Λ′0, the commutator
subgroup of Λ0. Since Λ′0 ⊂ Π′, we have that Π′M1 = 〈Π′,Λ′0,M1〉 = Π′Λ1 = Π1. Hence
the natural inclusion β(Π′) ≈ Π′/ker β = Π′/(Π′ ∩M1) ↪→ Π1/M1 = Γ is an isomorphism.
So β : Π′ → Γ is surjective, as desired.
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Theorem 2.4. Let m be an infinite cardinal. If Π is a quasi-free profinite group of rank
m, then so is its commutator subgroup Π′.

Proof. Let E = (α : Π′ → G, f : Γ → G) be any non-trivial finite split embedding problem
for Π′. Let N = ker f 6= 1 and let Z be the center of Γ. We wish to show that E has
exactly m distinct proper solutions.

By Remark (b) after Lemma 2.2 above, Π′ has at most m open normal subgroups.
So for any finite group H, Hom(Π′,H) has cardinality at most m (using that each open
normal subgroup of Π′ is the kernel of at most finitely many homomorphisms Π′ → H).
Taking H = Γ, we have that E has at most m distinct proper solutions; and it suffices to
show that there are at least that many.

By Lemma 2.3, there is an open normal subgroup Π̄ of Π containing Π′, together with
an embedding problem Ē = (ᾱ : Π̄ → G, f : Γ → G) that induces E , such that Π̄ has m

open subgroups M̄ each of which is the kernel of a proper solution β̄ to Ē that induces a
proper solution β to E , say with kernel M . Since Ē induces E , we have M = Π′∩ M̄ . Also,
Π′ contains the commutator subgroup of Π̄. By Lemma 2.1 (with Π̄, Π′, Ē here playing
the roles of Π, Π1, E there), if Z ∩ N = 1 then distinct choices of β̄ that have distinct
kernels M̄ yield distinct open subgroups M ⊂ Π′ and hence distinct proper solutions β to
E . So in this case we are done; and we are therefore reduced to the case that Z ∩N 6= 1.

We may thus assume that there is a cyclic subgroup C of prime order p in Z ∩N . By
Lemma 2.2, Π′ has m distinct open normal subgroups of index p; and so Hom(Π′, C) has
cardinality m. Let β : Π′ → Γ be the proper solution to E given by some choice of α1 and
M1 in the previous paragraph. Since C is central in Γ, for each ε ∈ Hom(Π′, C) we obtain
a homomorphism β · ε : Π′ → Γ given by (β · ε)(a) = β(a)ε(a) for a ∈ Π′. The composition
of β · ε with the quotient map Γ → G is the surjection α : Π′ → G, since this is true for
β and since C ⊂ N = ker(Γ → G). Moreover, the compositions of β and of β · ε with
Γ → Γ/C also agree, and the former is surjective; so Γ is generated by C and the image
of β · ε. In particular, β · ε is surjective if and only if its image contains C. Also, distinct
choices of ε yield distinct homomorphisms β · ε. So it suffices to show that the image of
β · ε contains C for m choices of ε ∈ Hom(Π′, C).

Let ∆ ⊂ Π′ be the inverse image of C under β. Since β : Π′ → Γ is surjective, the
image of β|∆ is C. Also, for each ε ∈ Hom(Π′, C), the image of the restriction (β · ε)|∆
is either C or 1. Let S be the set of ε ∈ Hom(Π′, C) such that this image is C; thus
card S ≤ m. For any ε ∈ S, the map β · ε is surjective, since its image contains C; and so
it suffices to show that the cardinality of S is m. If the complement of S in Hom(Π′, C) has
cardinality less than m, then the cardinality of S is m, and we are done. On the other hand,
if the cardinality of the complement of S is m, then fix some ε0 in this complement. For
any other ε in the complement of S, consider the map uε := ε−1

0 ·ε : Π′ → C sending a ∈ Π′

to ε0(a)−1ε(a). The restriction of this map to ∆ is trivial, since (β · ε)(a) = (β · ε0)(a) = 1
for a ∈ ∆. So (β · uε)|∆ = β|∆, whose image is C; and hence uε ∈ S. Since distinct ε’s in
the complement of S induce distinct uε’s in S, it follows that the cardinality of S is m.
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Theorem 2.4 has the following analog for free profinite groups:

Proposition 2.5. Let Π be a free profinite group of infinite rank m, and let Π1 be a
closed subgroup of Π that contains the commutator subgroup Π′ of Π. Then Π1 is also free
profinite of rank m.

Proof. If Π1 has finite index in Π, then it is an open subgroup, and [FJ], Proposition 17.6.2,
says that it is free of rank m. On the other hand, suppose that Π1 has infinite index in
Π. Then Π1 is normal in Π with (infinite) abelian quotient Π/Π1, because Π1 contains Π′.
So the desired conclusion follows from [FJ], Corollary 25.4.8.

Remark. a) In Proposition 2.5, if we instead allow m to be a finite cardinal greater than
1, then the profinite group Π1 is still free. Namely, if Π1 has index i in Π, then Π1 is free
of rank 1 + i(m − 1) if i is finite ([FJ], Proposition 17.6.2), and of rank m if i is infinite
([FJ], Corollary 25.4.8).

b) In the case that Π1 = Π′, Proposition 2.5 can also be deduced from Theorem 2.4
above. Namely, since Π is free profinite of rank m, and since m is infinite, we have that Π
is quasi-free of rank m. So by Theorem 2.4, Π′ is also quasi-free of rank m. Since Π′ is a
closed subgroup of the free profinite group Π, it follows from [FJ], Corollary 22.4.6, that
Π′ is projective. Since Π′ is projective and quasi-free of rank m, it is free of rank m by
[HS], Theorem 2.1.

The following result is another variant of Theorem 2.4, considering just the existence
of finite quotients rather than embedding problems.

Proposition 2.6. Let Π be a profinite group with the property that every finite group is
a quotient of Π by an open normal subgroup. Then the commutator subgroup Π′ of Π also
has this property.

Proof. We proceed as at the end of the proof of Lemma 2.3. Let N be any finite group, and
let H = (N×N)×|| C2, where C2 acts by interchanging the two copies of N . By hypothesis,
Π has a closed normal subgroup M such that Π/M = H. Let p : Π → H be the canonical
surjection, let Π1 = p−1(N × N), and let M1 = p−1(1 × N). Thus M ⊂ M1 ⊂ Π1 ⊂ Π,
and Π′ ⊂ Π1 since Π/Π1 is abelian. As in the proof of Lemma 2.3, M is the largest normal
subgroup of Π contained in M1, and N ×N = Π1/M is generated by 1×N = M1/M and
the commutator subgroup H ′ of H = Π/M . So Π1 is generated by M1 and Π′. Hence
the natural inclusion Π′/(Π′ ∩M1) ↪→ Π1/M1 ≈ N is an isomorphism. Thus Π′ ∩M1 is a
closed normal subgroup of Π′ with quotient group isomorphic to N .

Section 3. Field arithmetic.

Let K be a field, with separable closure Ks. The absolute Galois group of K is the
profinite group GK := Gal(Ks/K). An embedding problem for K is an embedding problem
E = (α : GK → G, f : Γ → G) for GK . Here the epimorphism α corresponds to a G-Galois
field extension L of K together with a K-inclusion i : L ↪→ Ks. A proper solution to E
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corresponds to a Γ-Galois field extension M of K that contains L, together with a K-
inclusion j : M ↪→ Ks that extends i, where the restriction map Gal(M/K)→→Gal(L/K)
corresponds to f . Thus E has a proper solution if and only if the given G-Galois field
extension of K can be embedded into a Γ-Galois field extension (hence the terminology).
Note that if G and Γ are finite, then there are only finitely many K-inclusions i and j as
above, for given field extensions L and M . Also, if m := cardK is infinite, then K has
at most m field extensions of finite degree; and so a finite embedding problem for K can
have at most m (weak or proper) solutions.

In the above situation, suppose that K is a function field over a subfield F (i.e.
separable and of finite transcendence degree over F , with F algebraically closed in K),
and let β be a proper solution to E = (α : GK → G, f : Γ → G) corresponding to a pair
(M, j) extending (L, i). We say that the proper solution β is regular (with respect to F )
if the algebraic closures of F in L and in M are the same (regarding L ⊂ M).

The Galois cohomology of a field K is the same as the group cohomology of GK ,
and so K and GK have the same cohomological dimension. We say that K is free [resp.
quasi-free, ω-free, projective] if GK is. So K is projective if and only if it has cohomological
dimension ≤ 1. Also, if K is quasi-free of rank m0, then card K ≥ m0. We say that a
profinite group G is a Galois group over K if there is a Galois field extension L of K with
Galois group isomorphic to G; this is equivalent to saying that GK has a closed normal
subgroup N such that GK/N is isomorphic to G.

For any field K, let Kab denote its maximal abelian extension (in a given separable
closure). By considering the absolute Galois group Π = GK and its commutator Π′ =
GKab , we may restate Proposition 2.6, Theorem 2.4 and Proposition 2.5 in field-theoretic
terms as follows:

Proposition 3.1. Let K be a field.
a) If K has the inverse Galois property (i.e. every finite group is a Galois group over

K), then the same holds for Kab.
b) Let m be an infinite cardinal. If K is quasi-free of rank m, then so is Kab.
c) Let m be an infinite cardinal. Let K1 be an abelian extension of K. If the absolute

Galois group of K is free of rank m, then the same holds for K1.

Recall that a field K is called large [Po2] (or ample; see [FJ], Remark 16.12.3) if every
smooth K-curve (i.e. 1-dimensional K-scheme of finite type) with a K-point has infinitely
many K-points. Examples of large fields include fraction fields of henselian (e.g. complete)
discrete valuation rings; real closed fields (e.g. R); the field of totally real (or totally p-
adic) algebraic numbers; algebraically closed fields; more generally pseudo-algebraically
closed fields (PAC fields: fields K such that smooth geometrically integral K-variety has
a K-rational point); and algebraic extensions of large fields [Po2]. The property of being
large is equivalent to the property that for every smooth integral K-variety X, if X has a
K-point then X(K) is Zariski dense (using that the union of smooth K-curves containing
a given smooth K-point on an integral K-variety X is Zariski dense in X). It is also
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equivalent to the condition that K is existentially closed in K((t)); i.e. every K-variety
with a K((t)) point has a K-point. See [Po2], Proposition 1.1.

A key property of large fields (first shown by F. Pop) is the following: Let F be a large
field and let K be the function field of a smooth projective F -curve. Then every finite
split embedding problem for K has a proper regular solution. Versions of this result have
appeared in [Po1], [Po2], [HJ2], and [HJ3] (see also [Ha3], §5.1, for a further discussion).
Hence large Hilbertian fields K have the property that every finite split embedding problem
has a proper solution. If in addition GK is projective then GK is ω-free; and if also K

is countable then Iwasawa’s theorem ([Iw], p.567) applies and so GK is free of countable
rank ([Po2], Theorem 2.1).

Remark 3.2. In the case that m is countable (which is the case that we will use in
Theorem 4.1), Proposition 2.5 and hence also Proposition 3.1(c) follow from ideas related
to the above. Namely, if Π is free profinite of countably infinite rank, then Π is isomorphic
to the absolute Galois group of any countable Hilbertian PAC field of characteristic 0 ([FV],
Theorem A). Any algebraic extension of a PAC field is PAC ([FJ], Corollary 11.2.5), and
any abelian extension of a Hilbertian field is Hilbertian ([FJ], Theorem 16.11.3). So K1 is
also a countable Hilbertian PAC field, and hence its absolute Galois group is also free of
countable rank.

As in [HS], call a field K very large if every smooth K-curve with a K-point has exactly
m K-points, where m is the cardinality of K. This is equivalent to the property that for
every smooth integral K-variety X, if X has a K-point then every non-empty open subset
of X contains exactly m K-points (using the same reasoning as for the corresponding
characterization of large).

Observe that every large field is infinite, as is every very large field (e.g. by considering
the curve P1

K). Hence every very large field is large. Also, if K is an infinite field of
cardinality m, then every K-variety (of finite type) has at most m K-points.

The proof of the following proposition is due to F. Pop (not previously published).

Proposition 3.3. (Pop) Let K be a large field of cardinality m. Then K is very large.

Proof. Let X be a smooth K-curve with a K-point P , where K is large. We wish to show
that the cardinality of X(K) is equal to m. Since X is a K-variety, X(K) has cardinality
at most m = cardK. So it suffices to prove the reverse inequality; and for this we may
assume that X is connected. Possibly after deleting finitely many points (other than P )
from X, we may embed X in A2

K . After replacing X by its image in A2
k, and making a

change of variables in the plane, we may assume that X is a smooth plane curve containing
the origin, defined by a polynomial f such that ∂f/∂y does not vanish at the origin. We
claim that for each a ∈ K we may choose a pair of K-points (x1, y1), (x2, y2) ∈ X(K) such
that x2 6= 0 and x1/x2 = a. If this is shown, we obtain an injection i : K ↪→ X(K)×X(K);
and this then implies that the cardinality of X(K) is at least m, as desired.

So it suffices to prove the claim. Let a ∈ K. Consider affine 4-space A4
K with
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coordinates X1, Y1, X2, Y2, and the subvariety Va ⊂ A4
k defined by:

f(X1, Y1) = 0, f(X2, Y2) = 0, X1 − aX2 = 0.

Here Va
∼= (X ×K X) ∩ Ha ⊂ A2

K ×K A2
K = A4

K , where Ha is the affine hyperplane
X1 − aX2 = 0 in A4

K . The partial derivatives of the above three polynomials with respect
to Y1, Y2, X1 respectively are non-zero at the origin in A4, since ∂f/∂y is non-zero at the
origin in A2. So in a neighborhood of the origin in A4, Va is a K-curve having the origin
as a smooth K-point.

Let Xa be the unique irreducible component of Va containing the origin. The smooth
locus X◦

a of Xa contains the origin and is a geometrically irreducible K-curve, since it
is irreducible and has a smooth K-point. Here X◦

a(K) is infinite because K is large and
X◦

a(K) is non-empty. But there are only finitely many points (x1, y1, x2, y2) ∈ X◦
a(K)

with x2 = 0, since at such points x1 = 0 and there are then only finitely many possible
values of y1, y2. So there exists (x1, y1, x2, y2) ∈ X◦

a(K) with x2 6= 0, and hence there exist
(x1, y1), (x2, y2) ∈ X(K) with x2 6= 0 and a = x1/x2. This proves the claim.

Theorem 3.4. The function field K of a smooth projective curve over a large field F is
quasi-free, of rank equal to the cardinality of F .

Proof. In [HS], Theorem 4.3, it was shown that if F is a very large field of cardinality m,
and K is the function field of a smooth projective F -curve, then every non-trivial finite
split embedding problem E for K has m proper regular solutions. Hence the set of all
proper solutions to E also has cardinality m. That is, (the absolute Galois group of) K

is m-quasi-free, or equivalently quasi-free of rank m (by [RSZ]; see the discussion before
Lemma 2.1 above). The result now follows from Proposition 3.3 above.

Remark 3.5. (a) As the proof of Theorem 3.4 shows, under the hypotheses of the theo-
rem, every non-trivial finite split embedding problem for K has exactly m proper regular
solutions, where m = cardF . So this theorem strengthens Pop’s result ([Po1], [Po2]) that
if K is the function field of a smooth projective curve over a large field, then every finite
split embedding problem for K has at least one proper regular solution.

(b) The property of being large (or PAC) can be regarded as complementary to the
property of being Hilbertian (see [La], [FJ]). Namely, consider a Galois branched cover
φ : Y → X = A1

K . If K is Hilbertian, then there are infinitely many K-points of X that
remain prime in Y . Meanwhile, to say that K is PAC or large is to say that there are
infinitely many K-points of X that are totally split in Y (in the latter case, assuming
there is one such point). Moreover, as for large fields, this property for curves implies a
corresponding property in higher dimensions. (Note also these properties are analogous to
the two extremes in the Tchebotarev Density Theorem.)

(c) Remark (b) suggests introducing a notion of very Hilbertian; i.e. that for Y → X

as in (b), the cardinality of the set of K-points of X that remain prime in Y is equal to
the cardinality of K. And in fact, the strategy of the proof of Theorem 3.3 also shows
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that every Hilbertian field is very Hilbertian. Namely, if φ is generically given by a poly-
nomial f(x, y) ∈ K[x, y], consider for each a ∈ K the variety Va ⊂ A4

K as in the proof of
Theorem 3.3. Then there exist (x1, x2) ∈ A2(K) which remains prime in Va, such that
x2 6= 0; i.e. such that f(x1, Y ) and f(x2, Y ) are irreducible in K[Y ], with x1/x2 = a. The
property of being very Hilbertian then follows.

(d) If K is a Hilbertian large field, then every finite split embedding problem over K

has a proper solution ([Po2], Main Theorem B), since every finite split embedding problem
over the function field of the K-line has a proper regular solution. In fact, each such
non-trivial embedding problem E = (α : Π → G, f : Γ → G) has infinitely many solutions.
(For example, for each n > 0 there is a proper solution to En = (α : Π → G, fn : Γn

G → G),
where Γn

G is the nth fibre power of Γ over G. Taking projections Γn
G → Γ yields n distinct

proper solutions to E .) Since the properties of large and Hilbertian imply the properties
of being very large and very Hilbertian, this suggests that a large Hilbertian field K is
quasi-free (and of rank equal to the cardinality of K). Surprisingly, this is false, by an
example of Jarden. Namely, according to Examples 3.1 and 3.2 of [Ja1], there is a profinite
group G of uncountable rank that is projective and ω-free but not free, and which is the
absolute Galois group of a Hilbertian PAC (and hence large) field K. Since G = GK is
projective but not free, it cannot be quasi-free.

(e) By another example (also due to Jarden), it is also possible for the absolute Galois
group of a large Hilbertian field K to be quasi-free, yet have rank strictly smaller than
the cardinality of K. Namely, by [FJ], Theorem 23.1.1, there is an uncountable PAC
field K whose absolute Galois group GK is free of countable rank. So K is large, and
GK is quasi-free of countable rank (and in particular ω-free). Also K is Hilbertian by
a theorem of Roquette ([FJ], Theorem 27.3.3), because it is ω-free and PAC. So K is
as claimed. Combining this example with Remark (c) above exposes a subtle point: for
such a Hilbertian field K and any finite Galois extension L of K(x), there will be cardK

elements of K for which the specialization of L is irreducible; but the corresponding Galois
field extensions of K are not linearly disjoint (and up to isomorphism there are fewer than
cardK of them).

Section 4. Main results.

This section contains the main results of this paper, viz. the freeness of the absolute
Galois groups of the function field of a real curve without real points, of the maximal
abelian extension of C((x, y)), and of the maximal abelian extension of the function field
of a curve over a finite field. Each of these is stated in somewhat stronger form below.

Theorem 4.1. (“Geometric Shafarevich Conjecture”) Let p be a prime and let k be a
subfield of F̄p (e.g. a finite field). Let F be a one-variable function field over k, and let
F ab be its maximal abelian extension. Then the absolute Galois group of F ab is free of
countable rank.

Proof. Let F̃ be the compositum of F and F̄p in an algebraic closure of F . Then F̃ is
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the function field of a smooth projective curve over F̄p. Moreover we have containments
F ⊂ F̃ ⊂ F ab ⊂ F̃ ab; i.e. F ab is abelian over F̃ . By [Ha1] or [Po1], the absolute Galois
group of F̃ is a free profinite group of countably infinite rank. So the same holds for F ab,
by Proposition 3.1(c) (or Remark 3.2).

Recall that a field K with algebraic closure K̄ is formally real if −1 is not a sum of
squares in K; and K is real closed if it is a maximal element in the set of formally real
subfields of K̄. If K is real closed then K[

√
−1] is algebraically closed; and so the absolute

Galois group of a real closed field is cyclic of order 2. According to [CT], p.360, and [Ja2],
a field is large if its absolute Galois group is a pro-p group for some prime p; in particular,
real closed fields are large. (More generally, according to [Po2], pp. 18-19, “pseudo-real
closed” fields are large because they satisfy a universal local-global principle.)

Theorem 4.2. Let X be a smooth projective curve over a real closed field R (e.g. R = R),
and let K be the function field of X. Then the absolute Galois group of K is free if and
only if X has no R-points; and if it is free, its rank is equal to the cardinality of R.

Proof. As noted above, every real closed field is large. So Theorem 3.4 says that K is
quasi-free of rank equal to m := card R. Thus K is free (necessarily of rank m) if and only
if it is projective, by [HS], Theorem 2.1.

In general, the function field of an integral variety of dimension d over a real closed
field R with no R-points has cohomological dimension d ([CP], Proposition 1.2.1). So in
our situation, if X(R) is empty then K has cohomological dimension 1, which implies that
it is projective (as noted at the beginning of Section 2 above).

Conversely, if X has an R-point, then it is classical that K is not projective. Namely,
let C = R[

√
−1]. If K = R(X) is projective, then the Z/2-Galois extension C(X)/R(X)

can be embedded in a Z/4-Galois field extension L/R(X) (since the kernel of Z/4 → Z/2
is Frattini). Since R is large, X(R) is infinite; so some P ∈ X(R) is unramified in this
extension. But a decomposition group over P would then surject onto Z/2 and thus be
Z/4, which is impossible since Z/4 is not a Galois group over R. (Alternatively, one can
argue that an R-point on X yields an involution in the absolute Galois group GK of K;
so the cohomological dimension of GK is infinite and thus GK is not projective.)

Remarks 4.3. a) As an example of the theorem, the fraction field of R[x, y]/(x2 + y2 +1)
has free absolute Galois group, of rank equal to the cardinality of R.

b) The proof of [CP], Proposition 1.2.1, is due to Ax and relies on a result of Serre.
But in the proof above, only the dimension 1 case of [CP], Proposition 1.2.1, is needed;
and that case is more classical, essentially going back to Witt [Wi].

c) In the context of Theorem 4.2, one can give a more explicit description of the
absolute Galois group GK of K in the case that X has R-points. Namely, GK is a free
product A ∗ B, where A is a free profinite group of rank m = card (R), and B is a free
product of groups of order 2 indexed by a profinite (i.e. compact, Hausdorff and totally
disconnected) topological space of cardinality m. (See [Za] for the definition of a free
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product in this sense.) This assertion was proven for the projective R-line in [HJ1]. As
M. Jarden has observed to the author, if X is any smooth projective R-curve, then its
function field K(X) can be viewed as a finite extension of R(x), and hence its absolute
Galois group is an open subgroup of that of R(x). By a profinite version of the Kurosh
subgroup theorem [Za], an open subgroup of A ∗ B is a profinite group of the same form,
except that the index space of the second factor could have cardinality less than m. (Indeed,
by Theorem 4.2, if X has no R-points, then GK is free, and there are no factors of order
2.) But if the smooth curve X has an R-point, then it has m such points. Each of them
contains an involution in its decomposition group, and for distinct points these involutions
are non-conjugate. So in this situation, the second factor of the free product has a (possibly
different) index space of cardinality m, and GK has the general form asserted above.

Finally, we turn to consideration of the absolute Galois group of the maximal abelian
extension K of k((x, y)), where k is a separably closed field of arbitrary characteristic.
As in the previous theorem, we prove that this is free by using that it is projective and
quasi-free. As noted before, projectivity is equivalent to the condition of having cohomo-
logical dimension at most 1; and to show that latter condition, we use a result proven by
J.-L. Colliot-Thélène, M. Ojanguren and R. Parimala ([COP], Theorem 2.3, which was
numbered Theorem 2.2 in their preprint). Their result, though, assumed characteristic
zero. Following a sketch provided by Parimala, we generalize their result and proof to the
characteristic p case (Theorem 4.4), for use in Theorem 4.6 below.

Before stating Theorem 4.4, we recall some notions related to Brauer groups that
are used in the proof (see [COP], §§1,2, and [Gr2], II]). Following [COP], we denote the
cohomological Brauer group H2

ét(X, Gm) of a scheme X by Br(X); and denote by BrAz(X)
the Azumaya Brauer group of X, which is a torsion group classifying equivalence classes of
Azumaya algebras over X. If X = Spec R, we also write Br(R) = Br(X) and BrAz(R) =
BrAz(X). For a field K, Br(K) = BrAz(K), classifying equivalence classes of central simple
algebras over K, with the trivial class consisting of those that are split (i.e. isomorphic
to some Mn(K)). More generally, there is a natural inclusion BrAz(X) ⊂ Br(X), which
is an isomorphism if X is Noetherian of dimension ≤ 1, or is Noetherian and regular of
dimension 2 ([Gr2], II, Cor. 2.2).

Let nBr(K) denote the n-torsion subgroup H2
ét(K, µn) of Br(K) for n > 0, and let

Br(K)(`) denote the `-primary part of Br(K) for ` a prime. If v is a discrete valuation on
a field K with valuation ring R, we say that an element α ∈ Br(K) (or a central simple
algebra D that it represents) is unramified at v if α is in the image of the natural map
Br(R) → Br(K). If X is an integral scheme with function field K, and x is a regular
codimension 1 point of X corresponding to v, we also say that α (or D) is unramified at
x. In this context, if n > 0 is invertible on X, then a class α in nBr(K) is unramified at x

if and only if α is in the kernel of the natural residue map ∂x : nBr(K) → H1
ét(κ(x), Z/n),

where κ(x) is the residue field at x ([COP], §2). Moreover a given α ∈ nBr(K) is unramified
at all but finitely many height one primes x; and the ramification divisor of α on X is the
sum of the closures of the ramified codimension 1 points of X. If X is a regular connected
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Noetherian scheme of dimension ≤ 2 with function field K, then Br(X) consists of the
classes in Br(K) whose ramification divisor on X is empty ([Gr2], II, Prop. 2.3, using
Br(X) = BrAz(X) by [Gr2], II, Cor. 2.2).

If X is an excellent integral scheme with function field K, then the residue map can
also be interpreted in terms of tame symbols. Namely, if there is a primitive nth root of
unity on X, where n is invertible on X, then this root of unity yields an isomorphism
Z/n →∼ µn over X, and hence identifications nBr(X) →∼ H2

ét(K, µ⊗2
n ) and H1

ét(κ(x), Z/n) →∼
H1

ét(κ(x), µn) = κ(x)×/(κ(x)×)n. With respect to these identifications, the residue map ∂x

becomes identified with the tame symbol map δx : H2
ét(K, µ⊗2

n ) → κ(x)×/(κ(x)×)n sending
(a, b)n to (−1)vx(a)vy(b)(avx(b)/bvx(a)), where (a, b)n ∈ H2

ét(K, µ⊗2
n ) is the cup product of

a, b ∈ K×. (See [COP], §2, following [Ka], §1.)
We now have the following generalization of [COP], Theorem 2.3/2.2, for use in The-

orem 4.6:

Theorem 4.4. Let A be an excellent henselian two-dimensional local domain, with fraction
field K and separably closed residue field k, of equal characteristic p ≥ 0. Then the maximal
abelian extension Kab of K has cohomological dimension at most 1, as does the maximal
pro-prime-to-p abelian extension K ′ of K.

In the proof of this theorem, we will rely on the following technical lemma, which was
shown in Section 2 of [COP] and used in proving [COP], Theorem 2.3/2.2. (The lemma
was shown in the proof of [COP], Theorem 2.1, though it was not stated as a separate
result there.)

Lemma 4.5. ([COP], §2) Let A,K, k, p be as in Theorem 4.4. Let L/K be a finite Galois
extension, let B be the integral closure of A in L, and let X → Spec A and Y → Spec B

be regular models such that Y → Spec B → Spec A factors through X → Spec A. Let
ξ ∈ nBr(K), where p6 |n, such that the ramification divisor of ξ on X is a normal crossing
divisor C + E, where C and E are regular curves. Let y ∈ Y be a point of codimension
1 lying over a point x ∈ X of codimension 2. Then the induced element ξL ∈ nBr(L) is
unramified at y provided either
(i) x 6∈ C ∩ E, or
(ii) (π, δ)n ∈ H2

ét(K, µ⊗2
n ) ≈ nBr(K) induces an element of nBr(L) that is unramified at

y, where π, δ locally define the ideals of C,E on X at x ∈ C ∩ E.

Proof of Theorem 4.4. The case p = 0 was shown in [COP], Theorem 2.3/2.2. For p > 0,
we modify that proof:

A field of characteristic p 6= 0 has p-cohomological dimension at most 1 ([Se], II 2.2
Proposition 3). So it suffices to show that cd` ≤ 1 for all ` 6= p. Regard K ⊂ K ′ ⊂
Kab ⊂ K̄, where K̄ is a separable closure of K. Since the extension Kab/K ′ is algebraic,
cd`(Kab) ≤ cd`(K ′) ([Se], II 4.1 Proposition 10). So it suffices to consider just the case
of K ′. By [Se], II 2.3 Proposition 4 and II 1.2 Proposition 1, cd`(K ′) ≤ 1 for ` 6= p if
and only if every finite separable extension F/K ′ satisfies Br(F )(`) = 0. So it suffices to
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show that for every finite separable extension F/K ′ (contained in K̄), every central simple
F -algebra of exponent prime to p is split.

Case I: F is Galois over K. An F -algebra as above is induced via base change from
a central simple algebra D over L, of exponent n prime to p, where L is a finite Galois
field extension of K. Let d = [L : K] and write d = d′pm with d′ prime to p and m ≥ 0.
Thus p does not divide N := nd′. The henselian ring A (and hence K, L, F ) contains all
prime-to-p roots of unity since the residue field k is separably closed of characteristic p.

Let B be the integral closure of A in the field L. Since L is finite over K and A is an
excellent domain, B is finite over A ([Gr1], 2e partie, 7.8.3(vi)); so B is also an excellent
domain ([Gr1], 2e partie, 7.8.6(i)). Being finite over a two-dimensional henselian local
domain, B is a two-dimensional semi-local domain which is henselian ([Gr1], 4e partie,
18.5.10) and hence local ([Gr1], 4e partie, 18.5.9(i)). Its residue field k̃ is algebraic over
the separably closed field k; thus k̃ is purely inseparable over k and hence is itself separably
closed. There are finitely many points of codimension 1 on Spec B at which the (class of
the) algebra D ramifies. We may chose a Weil divisor ∆ on Spec B that contains these
points and the closed point of B, and which is invariant under G := Gal(L/K).

Observe that there is a projective birational morphism π : X → Spec B such that X

is connected and regular with function field L and the reduced inverse image of ∆ is a G-
invariant normal crossing divisor on X of the form C +E, where C and E are each regular.
Namely, since Spec B is a normal surface, after finitely many blow-ups we obtain a regular
surface; after finitely many more, the reduced inverse image of ∆ is a curve ∆′ with only
ordinary double points; and after blowing up those double points, the proper transform C

of ∆′ is a regular curve, with the remaining components of the inverse image meeting them
normally and forming a disjoint union E of projective lines (viz. the exceptional divisors of
the last blow-ups). The composition of these blow ups is then the desired π : X → Spec B,
since at each step the surface and the set of blown-up points is G-invariant.

Let S be a finite, G-invariant set of closed points of X that contains all the points of
C ∩E and at least one point on each irreducible component of C + E. Since X → Spec B

is projective and S is finite, there is an affine open subset U = Spec A ⊂ X that contains
S. Let AS be the semi-localization of A at the primes corresponding to the points of S.
Being semi-local and regular, AS is a unique factorization domain. So there is a non-zero
element g ∈ AS whose divisor on Spec AS is the restriction of C + E. Viewing g ∈ L×,
the divisor of g on X is of the form C + E + J , where J is a divisor that does not contain
any point of S, and in particular has no component in common with C + E. Note that
the norm f = NL/K(g) ∈ K× has divisor given by divX(f) = d(C + E) +

∑
σ∈G σJ .

Let M = L(f1/N ) ⊂ K̄, and let DM be the extension of D to M . Since L contains a
primitive N th root of unity, M is a cyclic extension of L. Also M ⊂ F , since L ⊂ F (by
definition of L) and since h := f1/N ∈ K ′ ⊂ F . So in order to show that the given central
simple algebra is split over F it suffices to show that DM is split over M .

Let B1 be the integral closure of B in M and let X1 be the normalization of the
fibre product X ×B B1. Applying resolution of singularities to X1, we obtain a projective
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birational morphism Y → X1 whose composition with X1 → Spec B1 gives a projective
birational morphism Y → Spec B1, and whose composition with X1 → X gives a morphism
q : Y → X compatible with Spec B1 → Spec B. Since Y is a Noetherian regular connected
surface with function field M , the class of DM in Br(M) lies in Br(Y ) provided that the
ramification locus of D on Y is empty. But Br(Y ) = 0 by Corollary 1.10(b) of [COP]
(Corollary 1.9(b) in the preprint). So to show that DM is split it suffices to show that DM

is unramified at every codimension 1 point y on Y .
So let y be a codimension 1 point of Y , and let x = q(y). We may assume x lies on the

locus of C +E, since otherwise D is unramified at x and so DM is unramified at y. Now a
point x on the locus of C + E may have codimension 1 or 2. If such an x has codimension
1, then nd′ · divY (h) = N · divY (h) = divY (f) = d′pm · q−1(C + E) + q−1(

∑
σ∈G σJ)

because hN = f ∈ M×. Since n is prime to p, it follows that n divides the ramification
index e of y over x. But the residue ∂x([D]) ∈ H1(κ(x), Z/n), and ∂y([DM ]) = e∂x([D]);
so ∂y([DM ]) = 0 and thus DM is unramified at y.

So it remains to consider the case that x = q(y) is a codimension 2 point of X. Choose
an identification µn ≈ Z/n on X. By Lemma 4.5 (with L, M, B,B1 playing the roles of
K, L, A,B there), it suffices to show that if x is a point on C ∩ E, with a regular system
of parameters π, δ ∈ OX,x respectively defining C and E locally, then (π, δ)n induces an
element of Br(M) that is unramified at y. For this, it suffices to show that (π, δ)n induces
the trivial element of Br(My), where My is the fraction field of the henselization Oh

Y,y. This
in turn is equivalent to showing that pm ·(π, δ)n = 0 in Br(My), because (π, δ)n is n-torsion
and n is relatively prime to p. Since units in the multiplicative group of Oh

X,x are divisible
by integers that are prime to p, and since f = uπdδd ∈ OX,x for some u ∈ O∗

X,x, we have
hnd′

= f = vnd′
πd′pm

δd′pm ∈ Oh
Y,y for some v ∈ (Oh

X,x)×. The residue field ofOh
Y,y contains

the separably closed field k̃, and so the group of roots of unity in Oh
Y,y is d′-divisible. Thus

(πδ)pm

= ρn for some ρ ∈ My. So in nBr(My) = H2
ét(My, µn) ≈ H2

ét(My, µ⊗2
n ), we obtain

as desired pm · (π, δ)n = pm · (π, π−1)n + (π, ρn)n = 0 + 0 = 0.

Case II: General case. Let M ⊂ K̄ be the Galois closure of F over K; this is finite
over F . By Case I, Br(M)(`) = 0; so [M : F ] Br(F )(`) = 0. Choosing an isomorphism of
Z[1/`]/Z with the `-power roots of unity of F , the Merkurjev-Suslin theorem [MS] gives
an isomorphism K2(E)⊗ (Z[1/`]/Z) ≈ Br(E)(`); so Br(E)(`) is `-divisible. But being an
`-group, Br(E)(`) is also r-divisible for every integer r that is prime to `. So Br(E)(`) is
divisible, and hence is trivial, being [M : F ]-torsion.

Remark. The above proof breaks down in the unequal characteristic case, where charK =
0 and char k = p 6= 0, because of the need in that case to show that cdp ≤ 1.

Using the above result, we obtain:

Theorem 4.6. Let k be a field and let Kab be the maximal abelian extension of K =
k((x, y)), with absolute Galois group GKab .

a) Then GKab is quasi-free of rank equal to the cardinality of Kab (= cardK).
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b) If k is separably closed, then the absolute Galois group of Kab is a free profinite
group of rank equal to the cardinality of Kab.

Proof. a) According to [HS], Theorem 5.1, the absolute Galois group of K is quasi-free
of rank equal to cardK (even without any assumptions on k). By Proposition 3.1(b), it
follows that the absolute Galois group of Kab is also quasi-free of rank cardK. But K and
Kab have the same cardinality; so the assertion follows.

b) By [HS], Theorem 2.1, a profinite group is free of infinite rank m if and only if it is
projective and is quasi-free of that rank. As noted before, GKab is projective if and only
if Kab has cohomological dimension 1; and that latter property holds by Theorem 4.4. So
the assertion follows from part (a).

Remark. (a) The above proof of Theorem 4.6(b) relies on 4.6(a), hence on Proposition 3.1
and thus Theorem 2.4. But if one is willing to omit 4.6(a), one can prove 4.6(b) using
just a weak form of Theorem 2.4 in which one adds the hypothesis that the commutator
subgroup Π′ is projective. This weak form of 2.4 can be shown using a proof that is
somewhat shorter than the proof of the full theorem, by using projectivity to reduce to
the case that the kernel of a given split embedding problem is a minimal normal subgroup.
In fact, this was an earlier strategy of the author, before obtaining a proof of the full
Theorem 2.4 and hence Theorem 4.6(a); and this approach has now been carried out in
detail by M. Jarden, in correspondence with the author about this paper.

(b) As M. Jarden pointed out to the author, a weaker version of Theorem 4.6(b) —
that Kab is ω-free — can be proven still more briefly without relying on Theorems 4.6(a)
or 2.4, by proceeding as follows: By a theorem of Weissauer ([FJ], Theorem 15.4.6), K =
k((x, y)) is Hilbertian, being the fraction field of the two dimensional Krull domain k[[x, y]].
So its maximal abelian extension Kab is also Hilbertian, by a theorem of Kuyk ([FJ],
Theorem 16.11.3). Thus every finite split embedding problem for Kab with an abelian
kernel has a proper solution, by a theorem of Ikeda ([FJ], Proposition 16.4.5). Since
GKab is projective by Theorem 4.4 above (using that k is separably closed), every finite
embedding problem for Kab is dominated by a finite split embedding problem; and so
solving any finite embedding problem for Kab can be reduced to solving a finite sequence
of finite split embedding problems each of which has a minimal normal subgroup as its
kernel. So it suffices to show that such embedding problems have proper solutions. If
the kernel of such an embedding problem is abelian, then we are done by the theorem
of Ikeda cited above. Otherwise, the kernel of the embedding problem is a product of
finitely many isomorphic non-abelian finite simple groups ([As], Chap. 3, 8.3, 8.2). This
embedding problem for Kab is induced by a finite split embedding problem for some finite
extension K1 of K that is contained in Kab. But K is quasi-free by [HS], Theorem 5.1;
and hence so is K1, by [RSZ]. So there is a proper solution to the embedding problem
for K1; and this induces a proper solution to the embedding problem over Kab because
of linear disjointness, since Kab is abelian over K1 whereas the kernel of the embedding
problem has no non-trivial abelian quotients. So Kab is ω-free.
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