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Abstract: If Y — X is a G-Galois branched cover of
curves over an algebraically closed field k, and if G is a
quotient of a finite group I', then ¥ — X is dominated
by a I'-Galois branched cover Z — X. This is classical
in characteristic 0, and was proven in characteristic p by
the author [Ha6] and F. Pop [Pol] in conjunction with
the proof of the geometric case of the Shafarevich Conjec-
ture on free absolute Galois groups. The resulting cover
Z — X, though, may acquire additional branch points.
The present paper shows how many new branch points
are needed, and shows that there is some control on the

positions of these branch points and on the inertia groups
of 7 — X.

Section 1. Introduction and survey of results.

This paper concerns an aspect of the fine structure of the fundamental group
of an affine curve U over an algebraically closed field £ of characteristic p.
In [Ra], [Ha3], it was shown which finite groups G are quotients of m;(U)
— namely, according to Abhyankar’s Conjecture, the set of such G depends
only on the pair (g,n), where g is the genus of the smooth compactification
X of U and n is the number of points in X — U. But the structure of the
profinite group 71 (U) remains a mystery, even in the case of the affine line.
Moreover, the group 71 (U) (unlike the set m4(U) of its finite quotients) does
not depend just on (g,n) (cf. [Had, §1], [Ta, Thm. 3.5]), though it is unclear
how it varies in moduli. In the current paper we study the structure of 71 (U)
by investigating how the finite quotients of this group fit together, and how
m1(U) grows as additional points are deleted.

A preliminary result in this direction appeared in [Ha6], [Pol], in connec-
tion with proving the geometric case of the Shafarevich Conjecture. Namely,
it was shown there that the absolute Galois group Gi of the function field K
of U is a free profinite group (of rank equal to the cardinality of k). This was
done by showing that every finite embedding problem for K has a proper so-
lution, i.e. that if ' is a surjection of finite groups, then every unramified
G-Galois cover V' — U of affine curves is dominated by a I'-Galois branched
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cover W — U. In fact, the proof (which used patching techniques in for-
mal or rigid geometry) showed a bit more — viz. it bounded the number of
branch points of W — U. That bound was not sharp, however, and here we
obtain the sharp bound (Theorem 5.4 below).

More precisely, let G = T'/N, let p(IN) be the subgroup of N generated
by its p-subgroups (so that N = N/p(IN) is the maximal prime-to-p quotient
of N), and let r be the rank of N (i.e. the minimal number of elements in
any generating set). In [Ha6, Theorem 3.5] it was shown that W — U as
above can be chosen with at most r + 1 branch points; and it was asked if it
is always possible to choose W — U with at most r branch points. (It is not
in general possible with only r — 1 branch points even in characteristic 0, as
topological considerations show; and that implies the same for characteristic
p.) In [Pol], it was shown that this is always possible in the case that r = 0,
thus answering [Ha6, Question 3.7]. So if N above is a quasi-p group (i.e.
is generated by its p-subgroups, or equivalently if N = 1) then the cover
W — U can be chosen to be unramified.

Here we show that for arbitrary r (not just r = 0), the dominating cover
W — U can be chosen with at most r branch points (where as above, r =
rk(N)). In fact, we show a bit more. Namely, for finite group I' and normal
subgroup N of I', we will define the relative rank of N in I, denoted rkp(N).
This will be a non-negative integer that is < rk(IV) (but is often strictly less).
What we will show is that in the above situation, the cover W — U can be
chosen with at most rkp(N) branch points, where I' = T'/p(INV). By using the
r = 0 case, the proof of this result is reduced to the case that N is of order
prime to p; and there we use methods of patching and lifting. In addition, we
show that there is often control over the positions of the new branch points,
and over the inertia groups of the resulting cover (cf. Props. 3.3, 3.5, 4.1,
5.1).

The results in this paper can be phrased in the language of embedding
problems. This and other group-theoretic notions (along with some notions
about covers) are discussed in Section 2. Then, in Section 3, we use formal
patching to prove the above result in a key special case (when N has order
prime to p, and one of the branch points of Y — X is tame, where ¥ — X
is the smooth compactification of V' — U). In Section 4, we use a lifting
result of Garuti [Ga, Theorem 2] to prove the above result in the case that
rkp (V) < 1, again assuming that N has order prime to p. Section 5 combines
the two special cases, and applies Pop’s result [Pol] in the case r = 0, to
prove the full result (Theorem 5.4).
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Section 2. Notions concerning covers and groups.

In this paper we work over a fixed algebraically closed field k of characteristic
p > 0, and consider covers of k-curves. A cover will be a finite generically
separable morphism Y — X of k-schemes, where X is connected. If G is a
finite group, then a G-Galois cover consists of a cover Y — X together with
a homomorphism p : G — Aut(Y/X), such that G acts simply transitively
on any generic geometric fibre of the cover, via p. (The top space Y is not
required to be connected. For example, the trivial G-Galois cover of X is a
disjoint union of copies of X indexed by the elements of GG, on which G acts
by the regular representation.)

Since k is algebraically closed of characteristic p, there is a primitive mth
root of unity (,, € k for each positive integer m not divisible by p. Here we
may choose the elements (,,, to be compatible; i.e. such that Q;,L”,;L, = (,,, for all
m,m’. From now on, these will be fixed. For any G-Galois cover ¢ : Y — X
of smooth connected k-curves and any tame ramification point n lying over
a branch point £ € X, the corresponding extension of complete local rings is
given by y™ = z, for some choice of local parameters x,y. The inertia group
is generated by ¢ : y — (Y, and the element ¢ € G (which is independent
of the choice of local parameters) is called the canonical generator of the
inertia group at 7. (Here and just below, we follow the terminology of [St]
and [HS, §§2,3].) If all the branch points of Y — X are tame, and if the
branch points are given with an ordering, say &i,...,&,., then we say that
the cover has description (ci,...,c,), where ¢; is a canonical generator of
inertia at a point over &;, and where each ¢, is determined up to (individual)
conjugacy. In the case that k = C and (,,, = €™/, the fundamental group
of U =X —{&,...,& } has presentation

r

g
m(U) =(a1,...,aq,b1,...,bg,c1,...,¢r| H[ai,bi] H c;=1), (%)
i=1 j=1

where g is the genus of X. Here the (G-Galois cover corresponding to a
surjection ¢ : m(U) — G has description (¢(c1),...,¢(c.)). If p does not
divide the order of G, then this also holds for an arbitrary algebraically
closed field k of characteristic p > 0, via the same presentation (x) of the
maximal prime-to-p quotient 71 (U)? of 71 (U) [Gr, XIII, Cor. 2.12]. (This
presentation arises via a specialization morphism between k£ and C, which
should be chosen so that the given roots of unity (,, € k correspond to
e?i/m ¢ C. Cf. [Gr, XIII] and [GM, Thm. 4.3.2, Lemma 4.1.3].)
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Consider more generally a G-Galois cover Y — X of a semi-stable k-
curve X (i.e. X is connected and its only singularities are nodes). Let Y — X
be the pullback of Y — X over the normalization X of X. We say that
Y — X is admissible if for each singular point n € Y, the canonical generators
at the two points 71,72 € Y over n are inverses in G. A thickening of
Y — X is a G-Galois cover of normal k[[t]]-curves Y* — X* whose closed
fibre is Y — X, and whose completion along the smooth locus of X is a
trivial deformation of its closed fibre. If Y — X is an admissible cover,
then such a Y* — X* is called an admissible thickening of ¥ — X if at
the complete local ring at every singular point of Y the cover is given by
the extension k[[t, x1,xs]]/(z122 — t") — kl[[t, y1,v2]]/(y1y2 — t) for some m
prime to p, where z; — y;* under the inclusion, and where an associated
canonical generator of inertia acts by z — (nz, y — ¢, 'y. Observe that in
this situation, the singular points of the closed fibre X are isolated branch
points of Y* — X* (and this does not contradict Purity of Branch Locus
since X* is not regular and Y* is not flat over X*). Since these points
are branch points of the irreducible components of ¥ — X, the process of
constructing an admissible thickening can be regarded as a way of patching
together these components in such a way that some of the branch points
“cancel” on the general fibre (and cf. [HS, Thm. 7]). This observation will
be key to the results of §3 below, and thus to the paper’s main theorem, by
yielding a cover with fewer branch points than would otherwise be expected.

The remainder of this section is devoted to discussing some group-
theoretic notions that will be used in this paper.

If T is any finite group, then (following [FJ]), we define its rank to be
the smallest non-negative integer » = rk(I") such that I" has a generating set
of r elements. (In the literature, this integer is also sometimes denoted by
d(I').) More generally, let E be a subgroup of a finite group I". A subset
S C F will be called a relative generating set for E in T' if for every subset
T C I" such that E UT generates I', the subset S U T also generates I'. We
define the relative rank of E in I' to be the smallest non-negative integer
s = rkp(F) such that there is a relative generating set for F in I" consisting
of s elements. Thus every generating set for E is a relative generating set,
and so 0 < rkp(F) <rk(F). Also, rkp(F) =1k(E) if E=1or E =T, while
rkp(F) = 0 if and only if E is contained in the Frattini subgroup ®(I') of I

A related notion is the following: Let G be a subgroup of a group I'.
A subset T C T' is a supplementary generating set for I' with respect to G
if T"U G generates I'. Suppose that I' is a finite group that is generated
by two subgroups E,G. We then define the relative rank of E C T' with
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respect to G to be the smallest non-negative integer ¢t = rkp(E,G) such
that there is a supplementary generating set T' for I' with respect to G,
with T of cardinality t and T' C E. Note that every relative generating set
for F in I' is a supplementary generating set for I' with respect to G. So
0 <rkp(E,G) <rkp(F) < rk(E).

If p is a prime number, then the quasi-p part of a finite group I' is the
subgroup p(T") C T that is generated by the p-subgroups of I" (or equivalently,
by the Sylow p-subgroups of I'). Thus p(I') is a characteristic subgroup of
I', and in particular is normal. A group I' is defined to be a quasi-p group
if ' = p(I'). Thus for any finite group I', the subgroup p(I') is a quasi-p
group and I'/p(T") is the (unique) maximal quotient of I" whose order is not
divisible by p. (In the other case, viz. p = 0, we set p(I') = 1.)

If II, T, H are groups (not necessarily finite), then an embedding problem
for II consists of a pair of surjective group homomorphisms & = (a : II — H,
f:T'— H). A weak solution to the embedding problem consists of a group
homomorphism g : Il — IT' such that f3 = a. If moreover (3 is surjective,
then it is referred to as a proper solution to the embedding problem. An
embedding problem is finite if I' is finite. The motivation for the notion of
embedding problems comes from Galois theory: If K C L is a Galois field
extension with group H, and if II is the absolute Galois group Gi of K, then
Galois theory yields a corresponding surjection v : Gx—H. Let f: I'—H
be a surjective homomorphism of finite (or profinite) groups. Then a proper
[resp. weak] solution to the embedding problem (a, f) corresponds to a I'-
Galois field extension of K [resp. to a I'-Galois K-algebra] containing the
H-Galois extension L, such that the actions of I' and H are compatible with
the surjection I'—-H. That is, the H-Galois extension L is embedded in a
['-Galois extension via a solution to the embedding problem.

Observe that if ¢ : II'—II is a surjective homomorphism of groups,
then every embedding problem for IT induces an embedding problem for IT'.
Namely, if € = (a: I — H, f : ' — H) is an embedding problem for II, then
there is an induced embedding problem &' = (o/ : 1" — H, f : ' — H) for I,
where o = a¢. Moreover, a weak or proper solution to the given embedding
problem induces such a solution to the new problem. On the other hand,
not every solution to the new problem need come from a solution to the
original problem. These observations will be useful later, when considering
the fundamental groups II = 71 (U) and II' = m(U’) of two affine curves
U’ C U. In that context, solutions to embedding problems for II correspond
to certain unramified covers of U, whereas solutions to embedding problems
for II' are required merely to be unramified over U’.
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As above, let £ = (o : I — H,f : ' — H) be an embedding problem
for II. If the exact sequence 1 - N — I' — H — 1 is split, where N = ker f,
then we say that £ is a split embedding problem. A split embedding problem
€ = (a, f) always has a weak solution, viz. sa : II — T', where s is a
section of I' — H. Often, finding proper solutions to embedding problems
can be reduced to doing so for split embedding problems — e.g. see [FJ,
§20.4], [Ha3, proofs of Thm. 5.4, Prop. 6.2], [Ha6, proof of Prop. 3.3|, and
[Po2, §1B(2)]. For the sake of completeness, we conclude this section with
a precise statement of this reduction, in a form that can be cited later (in
sections 3 and 5 below).

Proposition 2.1. Let € = (o : I — H,f : I' — H) be an embedding
problem, and let N = ker f. Suppose that £ has a weak solution aq : II —
I', and let Hy C I' be the image of og. Consider the semi-direct product
'y = Nx Hy, with respect to the conjugation action of Hy on N <T', and let
fo : To—Hy be the natural quotient map. If the split embedding problem
& = (ap : I — Hy, fo: Tg — Hy) has a proper solution, then so does £.

Proof. Since «y is a weak solution to £, we have fay = «; or equivalently
oy = a, where i : Hy — H is the restriction of f : I'—»H to Hy. Since f
has kernel N, and since its restriction f|gy, = f is surjective onto H (because
ficig = v is), it follows that I is generated by N and Hy. Let p: I'o — T" be
the homomorphism defined by taking the identity inclusion on each factor of
'y = Nx Hy. (This is a homomorphism since the conjugation action of Hy
on N in I'y is the same as the conjugation action of Hy on N in I'.) Then p
is a surjection since N and H, generate I', and it is straightforward to check
that fu = fifo. We thus obtain the following commutative diagram (where
as above fiag = a: I — H):

11
o%;)
fo
1 N Ty Hy ———>1
id JZ T
1 N T H—>1

So any proper solution 3y : II—I'( to the split embedding problem & = (ay :
IT — Hy, fo : Ty — Hy) yields a proper solution § : II—I" to the original
embedding problem &, viz. § = ufy. O
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In particular, the reduction in the above proposition can be always ac-
complished in the case that the group II is projective (which by definition
[FJ, §20.4] means that every finite embedding problem for II has a weak
solution). Indeed, in that situation, the given embedding problem £ has a
weak solution ag, and so the above hypotheses are satisfied.

Section 3. Results via patching.

This section uses formal patching methods in order to prove the main result
of the paper in a special case. Namely, we consider a finite group I' and a
quotient G = T'/N, together with a G-Galois étale cover of smooth affine
k-curves V' — U (where, as always, k is algebraically closed of characteristic
p > 0). We consider the smooth completions X,Y of U, V', and assume that
Y — X is tamely ramified at some branch point £&. We will also assume
that p does not divide the order of N. In this situation, we will show that
there is a I'-Galois cover W — U dominating V' — U, having at most rkp(N)
branch points, and with specified inertia groups over those points (Prop. 3.5).
This solves a certain embedding problem (Cor. 3.6). Moreover we will obtain
greater control on the number of branch points of the constructed cover and
on the inertia groups over X — U in the case that the embedding problem
is split (under an additional assumption on normalizers). Cf. Prop. 3.3 and
Cor. 3.4. A more general and more precise version of these results appears
first, in Prop. 3.1 an Cor. 3.2).

Patching methods, in formal or rigid geometry, have previously been
used to prove a number of results concerning fundamental groups of varieties,
especially for curves in characteristic p — e.g. [Hal], [Ha2], [Ra,§§3-5], [St],
[Sal], [Ha6], [Pol], [HS]; see also [Hab, §2]. The basic idea is to build a simpler,
but possibly degenerate, cover with similar properties, and then to deform
it to a family of covers whose generic member is as desired. In order to
reduce the number of branch points of the cover we construct here, and thus
achieve the desired sharp bound on that number, we will use a construction
involving admissible covers; cf. §2 above and the remark following Proposition
3.3 below.

Below we preserve the terminology of Section 2, and begin with an asser-
tion concerning the problem of modifying a cover so as to expand its Galois
group. (Cf. also [Ha2, Theorem 2| for a related result.) Note that here, and
in the next few results, it suffices to use the value rkp(F,G), rather than
having to use the possibly larger value rkp(F).

Proposition 3.1. Let I' be a finite group generated by two subgroups
G, E, where p does not divide |E|, and let r > rkp(E,G). Let V. — U



be a G-Galois étale cover of smooth connected affine k-curves with smooth
completion Y — X. Suppose that Y — X is tamely ramified over some
point £ of B = X — U, and that some inertia group over £ normalizes E.
Then there is a smooth connected I'-Galois cover W — U having at most r
branch points.

Moreover, if {e1,...,e.} C E is a supplementary generating set for T'
with respect to G, then the above cover can be chosen so that:

(i) The H-Galois cover W/N — U agrees with V/(N N G) — U, where
N is the normal closure of E in I' and where H =T'/N = G/(N N G).

(ii) There are inertia groups of W — U over the branch points &1, ..., &,
having canonical generators eq, ..., e,, respectively.

(iii) Each inertia group of Y — X over any point x € B —{{} is also an
inertia group of Z — X over x, where Z is the smooth completion of W

Proof. Let R = k[[t]], let X = X x R, and let X* be the blow-up of X at
the closed point of &€ = € x;, R. Thus X* is a regular two-dimensional scheme
that is projective as an R-curve. Its closed fibre X is connected and consists
of two irreducible components: a proper transform that is isomorphic to X,
and an exceptional divisor that is isomorphic to P,lc. These two components
meet at the point on the proper transform corresponding to & on X, and to
the point s = 0 on the projective s-line Pi. (Here we take s = t/x, where
x is a local parameter for X at £. Thus the locus of (s = co) is the proper
transform of &.)

Let {e1,...,e,.} C E be a supplementary generating set for I' with re-
spect to G, and let o1,...,0, be distinct points of P} other than s = 0, cc.
By hypothesis we may choose a point n € Y over £ € X for which the inertia
group I C G normalizes E. Let g € G be the canonical generator of the
inertia group I. Thus the subgroup Fy C I' generated by F and g is of the
form Fy = Ex I, and hence its order is not divisible by p. Let Ey C Ey be
the subgroup generated by ei,...,e., g, and let h = (e;---e,)"tg. Thus
p also does not divide the order of E;, and g le;---e,h = 1. As dis-
cussed in §2 above (and cf. [Gr, XIII, Cor. 2.12]), there exists a smooth
connected FE1-Galois cover M — P,lc branched at 0,04,...,0,, 00 with de-

scription (g1, e1,...,e.,h). Let 4 € M be a point over 0 at which g—!

is a
canonical generator of inertia. Consider the induced (disconnected) I'-Galois
covers Inde — X and Indg1 M — P}, consisting of disjoint unions of
copies of Y — X and M — P,lc, respectively, indexed by the cosets of G
and of F; in I'. We may identify Y and M with the identity components
of the respective induced covers. Identifying the two points v(n) € Indg Y

and y(u) € Indg1 M for each v € T', we obtain a I'-Galois cover Zj of the



reducible curve Xy. Moreover Z is admissible over Xy by construction, and
is connected since G and E; generate I' (and cf. also [HS, §4, Prop. 2]). By
[HS,§2, Cor. to Thm. 2], there is a I'-Galois cover Z* — X* which is an ad-
missible thickening of Zy — Xy (viz., in the terminology of [HS], the unique
solution to the corresponding relative thickening problem).

Let Z° — X° be the fibre of Z* — X* over the generic point of
Spec k[[t]]. Since X* is the blow-up of X = X x;, k[[t]] at the closed point
of €, there are isomorphisms of K-curves X° ~ X x;, K ~ X* x K, where
K = k((t)). Since Z* — X* is a thickening of Zy — X, the cover in par-
ticular restricts to a trivial deformation of the restriction of Indg Y — X to
X —{¢}. Hence Z° — X° is branched at the points of (B — {£}) xj K, with
the same inertia groups as the corresponding points of B — {¢} for Y — X;
and it is branched at no other point of X° except for those whose closure in
X passes through the point (£, (t = 0)). Among points of the latter type,
Z° — X° is branched precisely at »+ 1 points o7, ..., 0,,00° whose closures
0},...,05,00% in X* pass through the points o1,...,0,,00. (Note that the
singular point of X is an isolated point of the branch locus of Z* — X* as
discussed in §2; so it does not contribute to the branch locus of Z° — X°.)
Over the point o7, the inertia groups of Z° — X° are the same as those of
Z* — X* over o7, and one of them has canonical generator e;. Here the
closure of 00® in X is € = £ X R. So under the isomorphism X xj, K ~ X°,
the branch locus consists of the r points oy and the points of B xj K (with
& X K corresponding to the point co® in X°). Also, in the special case £ = 1,
the cover Z° — X° is just the base change of Y — X from k to K. Since the
above construction commutes with taking quotients, we deduce for arbitrary
E that the cover Z°/N — X° is the base change of Y/(NNG) — X from k
to K.

Thus Z° — X° ~ X X, K is a smooth connected I'-Galois cover whose
restriction W° — U° := U xj K has the desired properties for W, but over
K instead of over k. Being of finite type, this cover descends to a smooth
connected I'-Galois cover Z4 — X 4 := X X A over some finitely generated
k-algebra A C K, whose restriction to U4 := U X A has the corresponding
properties over A. Here Spec A is an absolutely irreducible variety, since
A C K and k is algebraically closed. By [Ha2, Prop. 5] (or [FJ, Props. 8.8,
9.29]) we conclude that the specialization Z,, — X of Z4 — X4 at a k-point
v € Spec A restricts to a G-Galois cover W := Z, xx U — U having the
desired properties. O

Using the notion of embedding problems (cf. §2), we may rephrase
Proposition 3.1 in more group-theoretic terms. In particular, we have the
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following corollary. In this connection, we recall that an inclusion U’ «— U
of affine curves induces a surjection w1 (U’)—mq (U).

Corollary 3.2. Let X be a smooth connected projective k-curve, let U C X
be a dense affine open subset, and let £ € X —U. Let Il = m1(U) and let
IT* be the quotient of II corresponding to covers whose smooth completions
are tamely ramified over {. Let £ = (a : II* — H, f : ' — H) be a finite
embedding problem for IT*, and let 3 be a weak solution to £. Suppose
that T' is generated by G,E C T', where E is a subgroup of ker(f) with p
not dividing |E|. Suppose also that the normalizer of E in I' contains (1),
where I C II* is an inertia group over . Let r > rkp(E, G). Then there is
an open subset U’ C U such that U — U’ has cardinality r and the induced
embedding problem &' for 11" = 71 (U’) has a proper solution.

Proof. Let N be the normal closure of E in I'. Since E C ker(f), it follows
that N C ker(f), and H is a quotient of the group Hy :=T'/N = G/(NNG).
Let f; : '—+H; and fy : G—H; be the natural quotient maps, and let
ay = foff : I*—>H;. Replacing &€ = (a : II* — H,f : ' — H) by the
embedding problem & = («; : [I* — Hy, f1 : I' — Hp), we may assume that
H = Hi, that f|g = fo, and that a = f0.

Now £ is a proper solution to the embedding problem & = (a : I[T* — H,
fo: G — H), where fy = flg : G — H. Under the Galois correspondence,
the surjection 3 : II*—G corresponds to a connected étale G-Galois cover
V' — U whose smooth completion Y — X is tamely ramified over £, and such
that some inertia group over £ normalizes E. By Proposition 3.1, there is a
smooth connected I'-Galois cover W — U having at most r branch points,
such that there is an isomorphism of H-Galois covers W/N ~ V/(N N G) of
U. (Here, as above, N is the normal closure of F in I', and H = I'/N =
G/(N NnG).) So over the complement U’ C U of the r-point branch locus
of W — U, we obtain a I'-Galois étale cover W’ — U’ corresponding to a
proper solution to the embedding problem &’. O

Remarks. (a) The above corollary does not rely on the full statement of
Proposition 3.1, since neither (ii) nor (iii) there are used. But if I’ is replaced
by a suitably refined quotient II'* (containing additional information about
inertia groups), then a corresponding result can be proven, with the aid
of (ii) and (iii) of 3.1, about embedding problems for II'"; and this would
correspond to the full content of 3.1.

(b) In the other direction, it would be desirable to state a version of
Corollary 3.2 just for II, rather than for II*, and without assumptions on
normalizers. Correspondingly, it would be desirable to state a version of
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Proposition 3.1 without the assumptions on tameness or normalizers. (The
proof of 3.1 at least shows that it is possible to weaken the assumption that an
inertia group I over £ normalizes F/, by instead assuming that E, I generate
a prime-to-p subgroup of T.)

(c) The proofs of the above results, and those that follow in this section,
require the base field k to be algebraically (or at least separably) closed,
because of the use of [Gr, XIII, Cor. 2.12] in the proof of Proposition 3.1. In
particular, the condition that k be large (cf. [Po2]) does not suffice, at least
for the proofs here. See also Remark (b) at the end of Section 4 below.

In particular, in the split embedding problem situation, the above results
give rise to the following proposition and corollary:

Proposition 3.3. Let I' be a finite group of the form N x G, where p does
not divide the order of N, and let {ny,...,n.} C N be a supplementary
generating set for I' with respect to G. Let V' — U be a G-Galois étale cover
of smooth connected affine k-curves whose smooth completion ¥ — X is
tamely ramified over some point £ of B = X — U. Then there is a smooth
connected I'-Galois cover W — U branched only at r points &1, ..., &, with
smooth completion Z — X, such that: W/N ~ V as G-Galois covers of U;
the element n; is the canonical generator of an inertia group of W — U over
&; Z — X is tamely ramified over &; and each inertia group of Y — X over
any point x € B — {&} is also an inertia group of Z — X over Y.

Proof. Since N is normal in I', any inertia group of ¥ — X over ¢ must
normalize N. So Proposition 3.1 applies, with £ = N, and with the H of
Proposition 3.1 being the same group as G here. This yields the result (with
tameness over £ following since Z/N =Y and p does not divide the order of
N). O

Remark. In the special case that the cover Y — X has trivial inertia
groups over & (so that the given tamely ramified point is not actually a true
branch point), the assertion of Proposition 3.3 is closely related to [Ha6,
Theorem 3.5] (by taking the point £ of [Ha6, Theorem 3.5] to be £ above),
and the proofs are also related. But in the general case, the assertion of
[Ha6, Theorem 3.5] is weaker than Proposition 3.3 above, since it requires an
extra branch point (beyond the r points in Prop. 3.3). The difference is that
in the result above, admissible covers can be used to avoid adding the extra
branch point, provided that we have a tameness assumption. (The result in
[Ha6] also uses a weaker notion of rank.)

Corollary 3.4. Let X be a smooth connected projective k-curve, let U C X
be a dense affine open subset, and let £ € X —U. Let II = m1(U) and let
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IT* be the quotient of II corresponding to covers whose smooth completions
are tamely ramified over £. Consider a finite split embedding problem £ =
(o : II* - G, f : T' — Q) for II*, such that p does not divide the order of
N = ker(f). Let r > rkp(N,«(G)), where ¢ : G — T is a section of f. Then
there is an open subset U’ C U such that U — U’ has cardinality r and the
induced embedding problem &' for TI' = w1 (U’) has a proper solution.

Proof. ldentifying GG with its image under ¢, we may identify I" with the
semidirect product NxG. By the assumption on rank, there is a supple-
mentary generating set {nq,...,n,.} C N for T" with respect to G. Also, the
homomorphism « : I[T*—G corresponds to a G-Galois connected étale cover
of affine k-curves whose smooth completion Y — X is tamely ramified over
&, So the hypotheses of Proposition 3.3 are satisfied, yielding a I'-Galois
cover W — U that is étale over some U’ C U with U — U’ of cardinality 7.
This cover corresponds to a homomorphism IT'—T" that is a solution to the
induced embedding problem &’. O

Remarks. (a) The proper solution to £ in 3.4 is automatically a proper
solution to the induced embedding problem for II'*, the quotient of II" corre-
sponding to covers of U’ whose smooth completions are tamely ramified over
&. As in 3.3, this is because p does not divide the order of N.

(b) Corollary 3.4 can also be deduced directly from Corollary 3.2, by
taking H = G, N = E, and 3 = 1a.

As discussed in Section 2, results about split embedding problems for a
group II can sometimes be extended to results about arbitrary embedding
problems for II, e.g. in situations in which the group II is projective. By [Se2,
Proposition 1], the fundamental group of an affine k-curve has cohomological
dimension < 1; and hence it is a projective group [Sel, 1.5.9, Prop. 45].
Using this projectivity, we obtain the following variant of Proposition 3.3
that applies even in the non-split case. It does, however, provide a bit less
control on the number of punctures needed (and cf. Remark (c) after the
proof of Corollary 3.6 below).

Proposition 3.5. Let I' be a finite group, let N be a normal subgroup of
order prime to p, and let G =T'/N. Let {ny,...,n,.} C N be a relative gen-
erating set for N inI'. Let V. — U be a G-Galois étale cover of smooth con-
nected affine k-curves whose smooth completion Y — X is tamely ramified
over some point £ of B = X —U. Then there is a smooth connected I'-Galois
cover W — U branched only at r points &1, ...,&., such that W/N =~V as
G-Galois covers of U; n; is the canonical generator of an inertia group over
&;; and the smooth completion of W — U is tamely ramified over £.
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Proof. The fundamental group II := m(U) is a projective group, since
cd(IT) < 1 [Se2, Prop. 1]). So the surjective homomorphism II-—G corre-
sponding to V' — U lifts to a homomorphism II — T', say with image Gj.
Let Vi — U be the Go-Galois cover corresponding to this lift. Thus we have
an unramified NNGy-Galois cover Vy — V. Let Y be the smooth completion
of V. Then p does not divide the degree of Y; — Y, since that degree divides
|N|. Since Y — X is tame over &, it follows that so is Yy — X. Moreover
any inertia group of Yy — X over £ must normalize IV, since N is normal in
Ir.

Since Go—G = T'/N, the group I is generated by N and Gy. Hence T’
is generated by ni,...,n, and Go; i.e. {n1,...,n,.} C N is a supplementary
generating set for I' with respect to Gy. So by Proposition 3.1, there is a
I'-Galois cover W — U having at most r branch points &1, ..., &, such that
the G-Galois cover W/N — U agrees with Vy/(N N Gy) — U, and such that
n; is the canonical generator of an inertia group of W — U over ;. Since
Vo/(IN N Gyp) is isomorphic to V' as a G-Galois cover of U, and since p does
not divide the order of IV, it follows that W — U is as desired. O

Corollary 3.6. The assertion of Corollary 3.4 carries over to finite embed-
ding problems that are not necessarily split, provided that one instead takes
r> I'kp(N )

Proof. Since r > rkp(N), there is a relative generating set {n1,...,n,} C N
for N in I'. The proof then proceeds parallel to that of Corollary 3.4, but
using Proposition 3.5 instead of Proposition 3.3. O

Remarks. (a) Remark (a) after Corollary 3.4 carries over as well to Corol-
lary 3.6.

(b) Corollary 3.6 can also be proven by applying Proposition 2.1 to
Corollary 3.4. This uses that IT is projective; that rkp(N) > rkp(N, Gp)
(where Gy is as in the proof of 3.5); and that the Gy-cover Yy — X is tamely
ramified over ¢ (as in the proof of 3.5).

(c) As mentioned above, 3.3 and 3.4 apply only to split embedding prob-
lems, whereas 3.5 and 3.6 apply more generally to embedding problems that
need not be split. But in the process of reducing to the split case, we obtain
weaker conclusions in 3.5 and 3.6 than in 3.3 and 3.4 (though under more
general hypotheses). Specifically, different notions of generators and rank
are used in the two pairs of results, and the notion of rank in 3.5 and 3.6
will typically be larger (when both make sense). The need for these variant
notions here is due to the fact that one does not in advance know the group
Go C T that arises in the proof of 3.5 (and indirectly, in 3.6), in the process of
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reducing to the split case. Another way in which the generalized hypothesis
leads to a weaker conclusion here is that one no longer has the same control
on the inertia groups over B — {{} in the situation of 3.5 that one had in 3.3.
This is because the map Gog — G in 3.5 need not be an isomorphism, and
because one does not know a priort which choice of Gog C T' over G will be
needed in the construction.

(d) In the results in this section of the paper, it would be desirable to
prove that the positions of the new r branch points can be specified in ad-
vance. In a related situation, such a result with control on the additional
branch locus appears in Section 4 below. But there, unfortunately, connec-
tivity cannot always be guaranteed.

Section 4. Results via lifting.

In this section another special case of the main theorem in proven, by means
of lifting to characteristic 0. As before in Proposition 3.5, we have a finite
group I'" and a quotient G = I'/N, and a G-Galois étale cover of smooth
affine k-curves V' — U. And as before, the problem is to show that there is a
[-Galois cover W — U dominating V' — U, having at most rkp (V) branch
points with specified inertia there, under the assumption that N has order
prime to p. But unlike the situation of the previous section, we need not
make any tameness assumption here on the smooth completion of V' — U.
What is shown here (Prop. 4.1) is that if the relative rank rkp (V) is at most 1
(or if p = 0), then such a connected W exists, and moreover that the position
of the extra branch point can be given in advance. (On the other hand if
rkp(IN) > 1 and p > 0, then we still obtain a W with specified branch locus
and inertia, but conceivably it might not be connected.) Thus if rkp(N) <1
or p = 0 then we can obtain a proper solution to the corresponding embedding
problem (Cor. 4.2).

The method of lifting and specializing to characteristic 0, in order to
study fundamental groups in characteristic p, was used by Grothendieck (cf.
[Gr], [GM]) in the situation of the tame fundamental group — with the
strongest conclusions obtained on the maximal prime-to-p quotient of ;.
The idea is to work with a mixed characteristic complete discrete valuation
ring R, whose residue field is the given algebraically closed field k of charac-
teristic p. By using the knowledge of 71 in characteristic 0, one can construct
a cover over the general fibre; close this up over R; and then specialize to
the closed fibre to obtain a cover over k. The main difficulty in extending
this method to more general covers is that the restriction to the closed fibre
may be inseparable over the generic point or it may have wild ramification
there. Nevertheless, in [Ra, §6], Raynaud was able to use this method, in
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conjunction with a careful analysis of ramification along the closed fibre of
a semistable model, in order to construct covers of the affine line in char-
acteristic p in a key case (and thereby complete the proof of Abhyankar’s
Conjecture for Al).

In addition to the problem of specializing characteristic 0 covers to char-
acteristic p, there is also the problem of lifting a given characteristic p cover
to characteristic 0. Again, this was done by Grothendieck in the tame case
([Gr], [GM]). In the wild case, this is not in general possible, since some
characteristic p curves violate the Hurwitz bound on the number of auto-
morphisms that a curve of genus g can have. But M. Garuti has proven
a modified lifting result, which will be sufficient for our purposes. Namely,
he has shown [Ga, Thm. 2] that if we are given a G-Galois cover Y — X
over k, and if a lift X* of X to R as above is given, then (possibly after
enlarging R) there is a normal G-Galois cover Y* — X* over R whose closed
fiber Y;' — X is closely related to Y — X. Specifically, Y} is an irreducible
curve whose only singularities are cusps over wildly ramified branch points
of Y — X, and Y is the normalization of Y} .

Using Garuti’s result to lift, followed by a construction in characteris-
tic 0 and then descent to characteristic p, we obtain the following version
(Proposition 4.1) of the main theorem of the paper. Note that in the proof,
after constructing a I'-Galois cover W* in characteristic 0, we do not in gen-
eral know that its closed fibre W;' is irreducible. So instead we will choose
a suitable irreducible component W of W}¥, which will be I""-Galois for some
I c I'. But if rkp(N) < 1 then W} will in fact be irreducible, and so we
will have IV = T" in this special case.

We state the result in a slightly more general form, in which we specify
in advance the extra inertial elements nq, ..., n,, but do not require them to
constitute a relative generating set for N. In this generality we still obtain
a I'-Galois cover with the desired properties except for connectivity (and so
the Galois group of a connected component will be a subgroup of I'). But
when the n; form a relative generating set, and » < 1 or p = 0, then we do
obtain connectivity (cf. part (c) below).

Proposition 4.1. Let I' be a finite group, let N be a normal subgroup of
order not divisible by p, and let G =T'/N. Let S = {nq,...,n,} be a finite
subset of N, with r > 0. Let V — U be a G-Galois étale cover of smooth
connected affine k-curves, and let &1, ...,&,. € U be distinct points.

a) Then there is a subgroup IV C T' and a smooth connected I''-Galois cover
W — U branched only at &,...,&,, such that I' = NIV and ny € TV (if
r > 1); W/(N NI) is isomorphic to V' as a G-Galois cover of U; and the
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canonical generator of each inertia group over &; is conjugate ton; in I, with
n; being equal to the canonical generator of some inertia group over &; if
r=1orp=0.

b) If r <1 or p = 0 then we may also require that S C T".

c) If S is a relative generating set for N in ', and if either r < 1 or p = 0,
then we may takeI'" =T.

Proof. Let Y — X be the smooth completion of V.— U. Let B = X — U,
which is a non-empty finite set of |B| points. Let B’ = {;,...,&,}, which is
a subset of U; and let U' = U — B’. There are two cases to consider:

Case A: p=0.

(a), (b): Let g be the genus of X and let n = |B|. Thus n > 1. By
[Gr, XIII, Cor. 2.12], the fundamental group 71 (U) is generated by elements
ai,...,aq,b1,...,bg,c1,...,cy subject to the presentation (k) of §2 above.
Similarly, m (U’) is generated by elements aq,...,dq, bi,..., l~)g, Cly- vy Cntr
subject to the analogous presentation (x)’. The natural map 71 (U’)—»m (U)
takes a; — a;, Bib—>bi,éjr—>cj for1<j<n,and ¢j—1forn<j<n+r.

The G-Galois étale cover V' — U corresponds to a surjective group
homomorphism ¢ : 71 (U) — G. Let a; = ¢(a;) and 5; = ¢(b;) for 1 <i < g,
and let v; = ¢(c;) for 1 < j < n. For each such ¢ and j choose elements
al,ﬁl,fyj € I' over «;, 84,7 € G. Also, let 4,45 =n; € N for1 < j <.
Then there is a unique homomorphism ¢ : 1 (U’) — I given by ¢(a;) = du,
o(b;) = i, and gb(cj) =74; for 1 < j < n+r. (The image of ¢; is uniquely
determined by the single relation ()’ for w1 (U’) and by the requirement that
¢ be a homomorphism.) Let I be the i image of ¢. Thus S C I". Also, ¢ lifts
the surjection ¢, and so NIV = I". Thus qﬁ corresponds to a connected I"-
Galois étale cover W — U that dominates V' — U. The smooth completion
Z — X of W — U has description (¢(é1), ..., (¢nyr)) (cf. §2 above). In
particular, n; = ¢~>(En+j) € N is a canonical generator of inertia above §; for
1 < j <r. This cover is thus as desired, for parts (a) and (b).

(¢): By part (b), IV contains S. But S is assumed to be a relative
generating set for N. Since NIV =T it follows that IV =T

Case B: p > 0.

(a): Let R be a complete discrete valuation ring of mixed characteristic
and residue field & (e.g. the Witt ring over k). By [Gr, III, Cor. 7.4], there is
a smooth complete R-curve X* whose closed fibre is X. By [Ga, Thm. 2], it
follows that after replacing R by a finite extension (and X* by its pullback
to that extension), there is an irreducible G-Galois cover Y* — X* of proper
R-curves with Y* normal, such that Y is the normalization of the closed fibre
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Y of Y*, and such that Y," is everywhere unibranched, with the morphism
Y — Y} being an isomorphism away from the wildly ramified points of Y.
(Here the residue field of the enlarged R is still k, since k is algebraically
closed.)

Suppose that R C T is a finite extension of complete discrete valuation
rings, and let Y7 — X7 be the normalized pullback of Y* — X* from R
to T. Thus Y7 is the normalization of Y* X x+ X7. Now the closed fibre
of Y* — X* is generically étale, but the closed fibre of X7 — X™ is totally
ramified. So the irreducible schemes Y* and X} dominate no common non-
trivial covers of X*. But Y* and X7 are normal; so the intersection of
their function fields is that of X*. Also, since Y* is Galois over X*, the
corresponding extension of function fields is also Galois. So by [FJ, p. 110],
the function fields of ¥ and X7 are linearly disjoint over that of X*. Thus
Y* xx« X7 is irreducible and hence so is Y . The conclusion is that the
generic fibre Y° of Y* is geometrically irreducible.

Since X* is regular and Y™ is normal, Purity of Branch Locus applies to
Y* — X* [Na, 41.1]; and since the closed fibre is generically étale, it follows
that the branch locus B* defines a cover of Spec R. Also, since X* — Spec R
is smooth, it follows from [Gr, III, Thm. 3.1] that there are R-points & of X*
that lift the k-points §; of X = X. The & have pairwise disjoint support,
since the points &; are distinct and since R is a complete local ring. Let B’
be the union of the loci of the £, and write U* = X* — B*, U™ = U* — B'*,
V*=Y"* xx« U*, and V"* = V* xy. U™,

Let K be the fraction field of R, and let K be the algebraic closure of K.
Let X° = X*xpK; B°=B*xp K;U°=X°—DB° and V° = V* xy- U°.
Similarly, write B’ = B"”* xzg K; U"° = U° — B’°; and V'° = V° x g, U"°.
Thus V° — U° and V'° — U’° are G-Galois étale covers which are connected
(since Y° is geometrically irreducible). Also, B’® consists of 7 distinct K-
points £9,...,£° specializing respectively to the k-points &1,...,&, — viz.
£2 = & xr K. By Hensel’s Lemma, the compatible system of roots of unity
{¢,} in k lifts uniquely to such a system in K, and so in K. With respect
to this system, we may consider the canonical generators of inertia of covers
defined over K or K.

By Case A over the characteristic 0 field K, there is a subgroup I'y C T
containing nq, ..., n, such that NI'g = I', together with a smooth connected
[o-Galois cover W° — U° of K-curves that dominates V° — U° and whose
canonical generators of inertia at points w; over 55 are equal to n;. Let
Ny = N NTy, so that I'y/Ny =~ G. For some subfield K C K that is finite
over K, this cover descends to a connected I'g-Galois cover of K-curves with
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the corresponding properties (and so in particular it dominates the induced
G-Galois cover V° — U° of K -curves). Replacing K by K, and R by its
integral closure in K, we may assume that there is a smooth connected I'y-
Galois cover W° — U° that dominates V° — U° and is étale away from the
general fibre B’ of B’*; and that there is a K-p