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Embedding Problems and Adding Branch Points

David Harbater∗

Abstract: If Y → X is a G-Galois branched cover of
curves over an algebraically closed field k, and if G is a
quotient of a finite group Γ, then Y → X is dominated
by a Γ-Galois branched cover Z → X. This is classical
in characteristic 0, and was proven in characteristic p by
the author [Ha6] and F. Pop [Po1] in conjunction with
the proof of the geometric case of the Shafarevich Conjec-
ture on free absolute Galois groups. The resulting cover
Z → X, though, may acquire additional branch points.
The present paper shows how many new branch points
are needed, and shows that there is some control on the
positions of these branch points and on the inertia groups
of Z → X.

Section 1. Introduction and survey of results.

This paper concerns an aspect of the fine structure of the fundamental group
of an affine curve U over an algebraically closed field k of characteristic p.
In [Ra], [Ha3], it was shown which finite groups G are quotients of π1(U)
— namely, according to Abhyankar’s Conjecture, the set of such G depends
only on the pair (g, n), where g is the genus of the smooth compactification
X of U and n is the number of points in X − U . But the structure of the
profinite group π1(U) remains a mystery, even in the case of the affine line.
Moreover, the group π1(U) (unlike the set πA(U) of its finite quotients) does
not depend just on (g, n) (cf. [Ha4, §1], [Ta, Thm. 3.5]), though it is unclear
how it varies in moduli. In the current paper we study the structure of π1(U)
by investigating how the finite quotients of this group fit together, and how
π1(U) grows as additional points are deleted.

A preliminary result in this direction appeared in [Ha6], [Po1], in connec-
tion with proving the geometric case of the Shafarevich Conjecture. Namely,
it was shown there that the absolute Galois group GK of the function field K
of U is a free profinite group (of rank equal to the cardinality of k). This was
done by showing that every finite embedding problem for K has a proper so-
lution, i.e. that if Γ→→G is a surjection of finite groups, then every unramified
G-Galois cover V → U of affine curves is dominated by a Γ-Galois branched
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cover W → U . In fact, the proof (which used patching techniques in for-
mal or rigid geometry) showed a bit more — viz. it bounded the number of
branch points of W → U . That bound was not sharp, however, and here we
obtain the sharp bound (Theorem 5.4 below).

More precisely, let G = Γ/N , let p(N) be the subgroup of N generated
by its p-subgroups (so that N̄ = N/p(N) is the maximal prime-to-p quotient
of N), and let r be the rank of N̄ (i.e. the minimal number of elements in
any generating set). In [Ha6, Theorem 3.5] it was shown that W → U as
above can be chosen with at most r+ 1 branch points; and it was asked if it
is always possible to choose W → U with at most r branch points. (It is not
in general possible with only r − 1 branch points even in characteristic 0, as
topological considerations show; and that implies the same for characteristic
p.) In [Po1], it was shown that this is always possible in the case that r = 0,
thus answering [Ha6, Question 3.7]. So if N above is a quasi-p group (i.e.
is generated by its p-subgroups, or equivalently if N̄ = 1) then the cover
W → U can be chosen to be unramified.

Here we show that for arbitrary r (not just r = 0), the dominating cover
W → U can be chosen with at most r branch points (where as above, r =
rk(N̄)). In fact, we show a bit more. Namely, for finite group Γ and normal
subgroup N of Γ, we will define the relative rank of N in Γ, denoted rkΓ(N).
This will be a non-negative integer that is ≤ rk(N) (but is often strictly less).
What we will show is that in the above situation, the cover W → U can be
chosen with at most rkΓ̄(N̄) branch points, where Γ̄ = Γ/p(N). By using the
r = 0 case, the proof of this result is reduced to the case that N is of order
prime to p; and there we use methods of patching and lifting. In addition, we
show that there is often control over the positions of the new branch points,
and over the inertia groups of the resulting cover (cf. Props. 3.3, 3.5, 4.1,
5.1).

The results in this paper can be phrased in the language of embedding
problems. This and other group-theoretic notions (along with some notions
about covers) are discussed in Section 2. Then, in Section 3, we use formal
patching to prove the above result in a key special case (when N has order
prime to p, and one of the branch points of Y → X is tame, where Y → X

is the smooth compactification of V → U). In Section 4, we use a lifting
result of Garuti [Ga, Theorem 2] to prove the above result in the case that
rkΓ(N) ≤ 1, again assuming that N has order prime to p. Section 5 combines
the two special cases, and applies Pop’s result [Po1] in the case r = 0, to
prove the full result (Theorem 5.4).
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referee for helpful comments on this manuscript.

Section 2. Notions concerning covers and groups.

In this paper we work over a fixed algebraically closed field k of characteristic
p ≥ 0, and consider covers of k-curves. A cover will be a finite generically
separable morphism Y → X of k-schemes, where X is connected. If G is a
finite group, then a G-Galois cover consists of a cover Y → X together with
a homomorphism ρ : G → Aut(Y/X), such that G acts simply transitively
on any generic geometric fibre of the cover, via ρ. (The top space Y is not
required to be connected. For example, the trivial G-Galois cover of X is a
disjoint union of copies of X indexed by the elements of G, on which G acts
by the regular representation.)

Since k is algebraically closed of characteristic p, there is a primitive mth
root of unity ζm ∈ k for each positive integer m not divisible by p. Here we
may choose the elements ζm to be compatible; i.e. such that ζm′

mm′ = ζm for all
m,m′. From now on, these will be fixed. For any G-Galois cover ψ : Y → X

of smooth connected k-curves and any tame ramification point η lying over
a branch point ξ ∈ X, the corresponding extension of complete local rings is
given by ym = x, for some choice of local parameters x, y. The inertia group
is generated by c : y 7→ ζmy, and the element c ∈ G (which is independent
of the choice of local parameters) is called the canonical generator of the
inertia group at η. (Here and just below, we follow the terminology of [St]
and [HS, §§2,3].) If all the branch points of Y → X are tame, and if the
branch points are given with an ordering, say ξ1, . . . , ξr, then we say that
the cover has description (c1, . . . , cr), where cj is a canonical generator of
inertia at a point over ξj , and where each cj is determined up to (individual)
conjugacy. In the case that k = C and ζm = e2πi/m, the fundamental group
of U = X − {ξ1, . . . , ξr} has presentation

π1(U) = 〈a1, . . . , ag, b1, . . . , bg, c1, . . . , cr |
g∏

i=1

[ai, bi]
r∏

j=1

cj = 1〉, (∗)

where g is the genus of X. Here the G-Galois cover corresponding to a
surjection φ : π1(U) → G has description (φ(c1), . . . , φ(cr)). If p does not
divide the order of G, then this also holds for an arbitrary algebraically
closed field k of characteristic p ≥ 0, via the same presentation (∗) of the
maximal prime-to-p quotient π1(U)p′ of π1(U) [Gr, XIII, Cor. 2.12]. (This
presentation arises via a specialization morphism between k and C, which
should be chosen so that the given roots of unity ζm ∈ k correspond to
e2πi/m ∈ C. Cf. [Gr, XIII] and [GM, Thm. 4.3.2, Lemma 4.1.3].)
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Consider more generally a G-Galois cover Y → X of a semi-stable k-
curve X (i.e. X is connected and its only singularities are nodes). Let Ỹ → X̃

be the pullback of Y → X over the normalization X̃ of X. We say that
Y → X is admissible if for each singular point η ∈ Y , the canonical generators
at the two points η1, η2 ∈ Ỹ over η are inverses in G. A thickening of
Y → X is a G-Galois cover of normal k[[t]]-curves Y ∗ → X∗ whose closed
fibre is Y → X, and whose completion along the smooth locus of X is a
trivial deformation of its closed fibre. If Y → X is an admissible cover,
then such a Y ∗ → X∗ is called an admissible thickening of Y → X if at
the complete local ring at every singular point of Y the cover is given by
the extension k[[t, x1, x2]]/(x1x2 − tm) ↪→ k[[t, y1, y2]]/(y1y2 − t) for some m
prime to p, where xi 7→ ym

i under the inclusion, and where an associated
canonical generator of inertia acts by x 7→ ζmx, y 7→ ζ−1

m y. Observe that in
this situation, the singular points of the closed fibre X are isolated branch
points of Y ∗ → X∗ (and this does not contradict Purity of Branch Locus
since X∗ is not regular and Y ∗ is not flat over X∗). Since these points
are branch points of the irreducible components of Y → X, the process of
constructing an admissible thickening can be regarded as a way of patching
together these components in such a way that some of the branch points
“cancel” on the general fibre (and cf. [HS, Thm. 7]). This observation will
be key to the results of §3 below, and thus to the paper’s main theorem, by
yielding a cover with fewer branch points than would otherwise be expected.

The remainder of this section is devoted to discussing some group-
theoretic notions that will be used in this paper.

If Γ is any finite group, then (following [FJ]), we define its rank to be
the smallest non-negative integer r = rk(Γ) such that Γ has a generating set
of r elements. (In the literature, this integer is also sometimes denoted by
d(Γ).) More generally, let E be a subgroup of a finite group Γ. A subset
S ⊂ E will be called a relative generating set for E in Γ if for every subset
T ⊂ Γ such that E ∪ T generates Γ, the subset S ∪ T also generates Γ. We
define the relative rank of E in Γ to be the smallest non-negative integer
s = rkΓ(E) such that there is a relative generating set for E in Γ consisting
of s elements. Thus every generating set for E is a relative generating set,
and so 0 ≤ rkΓ(E) ≤ rk(E). Also, rkΓ(E) = rk(E) if E = 1 or E = Γ, while
rkΓ(E) = 0 if and only if E is contained in the Frattini subgroup Φ(Γ) of Γ.

A related notion is the following: Let G be a subgroup of a group Γ.
A subset T ⊂ Γ is a supplementary generating set for Γ with respect to G

if T ∪ G generates Γ. Suppose that Γ is a finite group that is generated
by two subgroups E,G. We then define the relative rank of E ⊂ Γ with
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respect to G to be the smallest non-negative integer t = rkΓ(E,G) such
that there is a supplementary generating set T for Γ with respect to G,
with T of cardinality t and T ⊂ E. Note that every relative generating set
for E in Γ is a supplementary generating set for Γ with respect to G. So
0 ≤ rkΓ(E,G) ≤ rkΓ(E) ≤ rk(E).

If p is a prime number, then the quasi-p part of a finite group Γ is the
subgroup p(Γ) ⊂ Γ that is generated by the p-subgroups of Γ (or equivalently,
by the Sylow p-subgroups of Γ). Thus p(Γ) is a characteristic subgroup of
Γ, and in particular is normal. A group Γ is defined to be a quasi-p group
if Γ = p(Γ). Thus for any finite group Γ, the subgroup p(Γ) is a quasi-p
group and Γ/p(Γ) is the (unique) maximal quotient of Γ whose order is not
divisible by p. (In the other case, viz. p = 0, we set p(Γ) = 1.)

If Π,Γ,H are groups (not necessarily finite), then an embedding problem
for Π consists of a pair of surjective group homomorphisms E = (α : Π → H,

f : Γ → H). A weak solution to the embedding problem consists of a group
homomorphism β : Π → Γ such that fβ = α. If moreover β is surjective,
then it is referred to as a proper solution to the embedding problem. An
embedding problem is finite if Γ is finite. The motivation for the notion of
embedding problems comes from Galois theory: If K ⊂ L is a Galois field
extension with group H, and if Π is the absolute Galois group GK of K, then
Galois theory yields a corresponding surjection α : GK→→H. Let f : Γ→→H

be a surjective homomorphism of finite (or profinite) groups. Then a proper
[resp. weak] solution to the embedding problem (α, f) corresponds to a Γ-
Galois field extension of K [resp. to a Γ-Galois K-algebra] containing the
H-Galois extension L, such that the actions of Γ and H are compatible with
the surjection Γ→→H. That is, the H-Galois extension L is embedded in a
Γ-Galois extension via a solution to the embedding problem.

Observe that if φ : Π′→→Π is a surjective homomorphism of groups,
then every embedding problem for Π induces an embedding problem for Π′.
Namely, if E = (α : Π → H, f : Γ → H) is an embedding problem for Π, then
there is an induced embedding problem E ′ = (α′ : Π′ → H, f : Γ → H) for Π′,
where α′ = αφ. Moreover, a weak or proper solution to the given embedding
problem induces such a solution to the new problem. On the other hand,
not every solution to the new problem need come from a solution to the
original problem. These observations will be useful later, when considering
the fundamental groups Π = π1(U) and Π′ = π1(U ′) of two affine curves
U ′ ⊂ U . In that context, solutions to embedding problems for Π correspond
to certain unramified covers of U , whereas solutions to embedding problems
for Π′ are required merely to be unramified over U ′.
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As above, let E = (α : Π → H, f : Γ → H) be an embedding problem
for Π. If the exact sequence 1 → N → Γ → H → 1 is split, where N = ker f ,
then we say that E is a split embedding problem. A split embedding problem
E = (α, f) always has a weak solution, viz. sα : Π → Γ, where s is a
section of Γ → H. Often, finding proper solutions to embedding problems
can be reduced to doing so for split embedding problems — e.g. see [FJ,
§20.4], [Ha3, proofs of Thm. 5.4, Prop. 6.2], [Ha6, proof of Prop. 3.3], and
[Po2, §1B(2)]. For the sake of completeness, we conclude this section with
a precise statement of this reduction, in a form that can be cited later (in
sections 3 and 5 below).

Proposition 2.1. Let E = (α : Π → H, f : Γ → H) be an embedding

problem, and let N = ker f . Suppose that E has a weak solution α0 : Π →
Γ, and let H0 ⊂ Γ be the image of α0. Consider the semi-direct product

Γ0 = N×||H0, with respect to the conjugation action of H0 on N / Γ, and let

f0 : Γ0→→H0 be the natural quotient map. If the split embedding problem

E0 = (α0 : Π → H0, f0 : Γ0 → H0) has a proper solution, then so does E .

Proof. Since α0 is a weak solution to E , we have fα0 = α; or equivalently
µ̄α0 = α, where µ̄ : H0 → H is the restriction of f : Γ→→H to H0. Since f
has kernel N , and since its restriction f |H0 = µ̄ is surjective onto H (because
µ̄α0 = α is), it follows that Γ is generated by N and H0. Let µ : Γ0 → Γ be
the homomorphism defined by taking the identity inclusion on each factor of
Γ0 = N×||H0. (This is a homomorphism since the conjugation action of H0

on N in Γ0 is the same as the conjugation action of H0 on N in Γ.) Then µ
is a surjection since N and H0 generate Γ, and it is straightforward to check
that fµ = µ̄f0. We thus obtain the following commutative diagram (where
as above µ̄α0 = α : Π → H):

Π

α0

∨
1 > N > Γ0

f0
> H0 > 1

id

∨

µ

∨

µ̄

∨
1 > N > Γ

f
> H > 1

So any proper solution β0 : Π→→Γ0 to the split embedding problem E0 = (α0 :
Π → H0, f0 : Γ0 → H0) yields a proper solution β : Π→→Γ to the original
embedding problem E , viz. β = µβ0.
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In particular, the reduction in the above proposition can be always ac-
complished in the case that the group Π is projective (which by definition
[FJ, §20.4] means that every finite embedding problem for Π has a weak
solution). Indeed, in that situation, the given embedding problem E has a
weak solution α0, and so the above hypotheses are satisfied.

Section 3. Results via patching.

This section uses formal patching methods in order to prove the main result
of the paper in a special case. Namely, we consider a finite group Γ and a
quotient G = Γ/N , together with a G-Galois étale cover of smooth affine
k-curves V → U (where, as always, k is algebraically closed of characteristic
p ≥ 0). We consider the smooth completions X,Y of U, V , and assume that
Y → X is tamely ramified at some branch point ξ. We will also assume
that p does not divide the order of N . In this situation, we will show that
there is a Γ-Galois cover W → U dominating V → U , having at most rkΓ(N)
branch points, and with specified inertia groups over those points (Prop. 3.5).
This solves a certain embedding problem (Cor. 3.6). Moreover we will obtain
greater control on the number of branch points of the constructed cover and
on the inertia groups over X − U in the case that the embedding problem
is split (under an additional assumption on normalizers). Cf. Prop. 3.3 and
Cor. 3.4. A more general and more precise version of these results appears
first, in Prop. 3.1 an Cor. 3.2).

Patching methods, in formal or rigid geometry, have previously been
used to prove a number of results concerning fundamental groups of varieties,
especially for curves in characteristic p — e.g. [Ha1], [Ha2], [Ra,§§3-5], [St],
[Sa], [Ha6], [Po1], [HS]; see also [Ha5, §2]. The basic idea is to build a simpler,
but possibly degenerate, cover with similar properties, and then to deform
it to a family of covers whose generic member is as desired. In order to
reduce the number of branch points of the cover we construct here, and thus
achieve the desired sharp bound on that number, we will use a construction
involving admissible covers; cf. §2 above and the remark following Proposition
3.3 below.

Below we preserve the terminology of Section 2, and begin with an asser-
tion concerning the problem of modifying a cover so as to expand its Galois
group. (Cf. also [Ha2, Theorem 2] for a related result.) Note that here, and
in the next few results, it suffices to use the value rkΓ(E,G), rather than
having to use the possibly larger value rkΓ(E).

Proposition 3.1. Let Γ be a finite group generated by two subgroups

G,E, where p does not divide |E|, and let r ≥ rkΓ(E,G). Let V → U
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be a G-Galois étale cover of smooth connected affine k-curves with smooth

completion Y → X. Suppose that Y → X is tamely ramified over some

point ξ of B = X − U , and that some inertia group over ξ normalizes E.

Then there is a smooth connected Γ-Galois cover W → U having at most r

branch points.

Moreover, if {e1, . . . , er} ⊂ E is a supplementary generating set for Γ
with respect to G, then the above cover can be chosen so that:

(i) The H-Galois cover W/N → U agrees with V/(N ∩G) → U , where

N is the normal closure of E in Γ and where H = Γ/N = G/(N ∩G).
(ii) There are inertia groups of W → U over the branch points ξ1, . . . , ξr

having canonical generators e1, . . . , er, respectively.

(iii) Each inertia group of Y → X over any point χ ∈ B−{ξ} is also an

inertia group of Z → X over χ, where Z is the smooth completion of W .

Proof. Let R = k[[t]], let X̃ = X ×k R, and let X∗ be the blow-up of X̃ at
the closed point of ξ̄ = ξ×kR. Thus X∗ is a regular two-dimensional scheme
that is projective as an R-curve. Its closed fibre X0 is connected and consists
of two irreducible components: a proper transform that is isomorphic to X,
and an exceptional divisor that is isomorphic to P1

k. These two components
meet at the point on the proper transform corresponding to ξ on X, and to
the point s = 0 on the projective s-line P1

k. (Here we take s = t/x, where
x is a local parameter for X at ξ. Thus the locus of (s = ∞) is the proper
transform of ξ̄.)

Let {e1, . . . , er} ⊂ E be a supplementary generating set for Γ with re-
spect to G, and let σ1, . . . , σr be distinct points of P1

k other than s = 0,∞.
By hypothesis we may choose a point η ∈ Y over ξ ∈ X for which the inertia
group I ⊂ G normalizes E. Let g ∈ G be the canonical generator of the
inertia group I. Thus the subgroup E0 ⊂ Γ generated by E and g is of the
form E0 = E×|| I, and hence its order is not divisible by p. Let E1 ⊂ E0 be
the subgroup generated by e1, . . . , er, g, and let h = (e1 · · · er)−1g. Thus
p also does not divide the order of E1, and g−1e1 · · · erh = 1. As dis-
cussed in §2 above (and cf. [Gr, XIII, Cor. 2.12]), there exists a smooth
connected E1-Galois cover M → P1

k branched at 0, σ1, . . . , σr,∞ with de-
scription (g−1, e1, . . . , er, h). Let µ ∈ M be a point over 0 at which g−1 is a
canonical generator of inertia. Consider the induced (disconnected) Γ-Galois
covers IndΓ

G Y → X and IndΓ
E1
M → P1

k, consisting of disjoint unions of
copies of Y → X and M → P1

k, respectively, indexed by the cosets of G
and of E1 in Γ. We may identify Y and M with the identity components
of the respective induced covers. Identifying the two points γ(η) ∈ IndΓ

G Y

and γ(µ) ∈ IndΓ
E1
M for each γ ∈ Γ, we obtain a Γ-Galois cover Z0 of the
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reducible curve X0. Moreover Z0 is admissible over X0 by construction, and
is connected since G and E1 generate Γ (and cf. also [HS, §4, Prop. 2]). By
[HS,§2, Cor. to Thm. 2], there is a Γ-Galois cover Z∗ → X∗ which is an ad-
missible thickening of Z0 → X0 (viz., in the terminology of [HS], the unique
solution to the corresponding relative thickening problem).

Let Z◦ → X◦ be the fibre of Z∗ → X∗ over the generic point of
Spec k[[t]]. Since X∗ is the blow-up of X̃ = X ×k k[[t]] at the closed point
of ξ̄, there are isomorphisms of K-curves X◦ ≈ X ×k K ≈ X∗ ×R K, where
K = k((t)). Since Z∗ → X∗ is a thickening of Z0 → X0, the cover in par-
ticular restricts to a trivial deformation of the restriction of IndΓ

G Y → X to
X −{ξ}. Hence Z◦ → X◦ is branched at the points of (B−{ξ})×k K, with
the same inertia groups as the corresponding points of B − {ξ} for Y → X;
and it is branched at no other point of X◦ except for those whose closure in
X̃ passes through the point (ξ, (t = 0)). Among points of the latter type,
Z◦ → X◦ is branched precisely at r+1 points σ◦1 , . . . , σ

◦
r ,∞◦ whose closures

σ∗1 , . . . , σ
∗
r ,∞∗ in X∗ pass through the points σ1, . . . , σr,∞. (Note that the

singular point of X0 is an isolated point of the branch locus of Z∗ → X∗, as
discussed in §2; so it does not contribute to the branch locus of Z◦ → X◦.)
Over the point σ◦i , the inertia groups of Z◦ → X◦ are the same as those of
Z∗ → X∗ over σ∗i , and one of them has canonical generator ei. Here the
closure of ∞◦ in X̃ is ξ̄ = ξ ×k R. So under the isomorphism X ×k K ≈ X◦,
the branch locus consists of the r points σ◦i and the points of B ×k K (with
ξ×kK corresponding to the point ∞◦ in X◦). Also, in the special case E = 1,
the cover Z◦ → X◦ is just the base change of Y → X from k to K. Since the
above construction commutes with taking quotients, we deduce for arbitrary
E that the cover Z◦/N → X◦ is the base change of Y/(N ∩G) → X from k

to K.
Thus Z◦ → X◦ ≈ X ×k K is a smooth connected Γ-Galois cover whose

restriction W ◦ → U◦ := U ×k K has the desired properties for W , but over
K instead of over k. Being of finite type, this cover descends to a smooth
connected Γ-Galois cover ZA → XA := X ×k A over some finitely generated
k-algebra A ⊂ K, whose restriction to UA := U ×k A has the corresponding
properties over A. Here SpecA is an absolutely irreducible variety, since
A ⊂ K and k is algebraically closed. By [Ha2, Prop. 5] (or [FJ, Props. 8.8,
9.29]) we conclude that the specialization Zν → X of ZA → XA at a k-point
ν ∈ SpecA restricts to a G-Galois cover W := Zν ×X U → U having the
desired properties.

Using the notion of embedding problems (cf. §2), we may rephrase
Proposition 3.1 in more group-theoretic terms. In particular, we have the
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following corollary. In this connection, we recall that an inclusion U ′ ↪→ U

of affine curves induces a surjection π1(U ′)→→π1(U).

Corollary 3.2. Let X be a smooth connected projective k-curve, let U ⊂ X

be a dense affine open subset, and let ξ ∈ X − U . Let Π = π1(U) and let

Π∗ be the quotient of Π corresponding to covers whose smooth completions

are tamely ramified over ξ. Let E = (α : Π∗ → H, f : Γ → H) be a finite

embedding problem for Π∗, and let β be a weak solution to E . Suppose

that Γ is generated by G,E ⊂ Γ, where E is a subgroup of ker(f) with p

not dividing |E|. Suppose also that the normalizer of E in Γ contains β(I),
where I ⊂ Π∗ is an inertia group over ξ. Let r ≥ rkΓ(E,G). Then there is

an open subset U ′ ⊂ U such that U − U ′ has cardinality r and the induced

embedding problem E ′ for Π′ = π1(U ′) has a proper solution.

Proof. Let N be the normal closure of E in Γ. Since E ⊂ ker(f), it follows
that N ⊂ ker(f), and H is a quotient of the group H1 := Γ/N = G/(N ∩G).
Let f1 : Γ→→H1 and f0 : G→→H1 be the natural quotient maps, and let
α1 = f0β : Π∗→→H1. Replacing E = (α : Π∗ → H, f : Γ → H) by the
embedding problem E1 = (α1 : Π∗ → H1, f1 : Γ → H1), we may assume that
H = H1, that f |G = f0, and that α = f0β.

Now β is a proper solution to the embedding problem E0 = (α : Π∗ → H,

f0 : G → H), where f0 = f |G : G → H. Under the Galois correspondence,
the surjection β : Π∗→→G corresponds to a connected étale G-Galois cover
V → U whose smooth completion Y → X is tamely ramified over ξ, and such
that some inertia group over ξ normalizes E. By Proposition 3.1, there is a
smooth connected Γ-Galois cover W → U having at most r branch points,
such that there is an isomorphism of H-Galois covers W/N ≈ V/(N ∩G) of
U . (Here, as above, N is the normal closure of E in Γ, and H = Γ/N =
G/(N ∩ G).) So over the complement U ′ ⊂ U of the r-point branch locus
of W → U , we obtain a Γ-Galois étale cover W ′ → U ′ corresponding to a
proper solution to the embedding problem E ′.

Remarks. (a) The above corollary does not rely on the full statement of
Proposition 3.1, since neither (ii) nor (iii) there are used. But if Π′ is replaced
by a suitably refined quotient Π′∗ (containing additional information about
inertia groups), then a corresponding result can be proven, with the aid
of (ii) and (iii) of 3.1, about embedding problems for Π′∗; and this would
correspond to the full content of 3.1.

(b) In the other direction, it would be desirable to state a version of
Corollary 3.2 just for Π, rather than for Π∗, and without assumptions on
normalizers. Correspondingly, it would be desirable to state a version of
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Proposition 3.1 without the assumptions on tameness or normalizers. (The
proof of 3.1 at least shows that it is possible to weaken the assumption that an
inertia group I over ξ normalizes E, by instead assuming that E, I generate
a prime-to-p subgroup of Γ.)

(c) The proofs of the above results, and those that follow in this section,
require the base field k to be algebraically (or at least separably) closed,
because of the use of [Gr, XIII, Cor. 2.12] in the proof of Proposition 3.1. In
particular, the condition that k be large (cf. [Po2]) does not suffice, at least
for the proofs here. See also Remark (b) at the end of Section 4 below.

In particular, in the split embedding problem situation, the above results
give rise to the following proposition and corollary:

Proposition 3.3. Let Γ be a finite group of the form N×||G, where p does

not divide the order of N , and let {n1, . . . , nr} ⊂ N be a supplementary

generating set for Γ with respect to G. Let V → U be a G-Galois étale cover

of smooth connected affine k-curves whose smooth completion Y → X is

tamely ramified over some point ξ of B = X − U . Then there is a smooth

connected Γ-Galois cover W → U branched only at r points ξ1, . . . , ξr, with

smooth completion Z → X, such that: W/N ≈ V as G-Galois covers of U ;

the element ni is the canonical generator of an inertia group of W → U over

ξi; Z → X is tamely ramified over ξ; and each inertia group of Y → X over

any point χ ∈ B − {ξ} is also an inertia group of Z → X over χ.

Proof. Since N is normal in Γ, any inertia group of Y → X over ξ must
normalize N . So Proposition 3.1 applies, with E = N , and with the H of
Proposition 3.1 being the same group as G here. This yields the result (with
tameness over ξ following since Z/N = Y and p does not divide the order of
N).

Remark. In the special case that the cover Y → X has trivial inertia
groups over ξ (so that the given tamely ramified point is not actually a true
branch point), the assertion of Proposition 3.3 is closely related to [Ha6,
Theorem 3.5] (by taking the point ξ0 of [Ha6, Theorem 3.5] to be ξ above),
and the proofs are also related. But in the general case, the assertion of
[Ha6, Theorem 3.5] is weaker than Proposition 3.3 above, since it requires an
extra branch point (beyond the r points in Prop. 3.3). The difference is that
in the result above, admissible covers can be used to avoid adding the extra
branch point, provided that we have a tameness assumption. (The result in
[Ha6] also uses a weaker notion of rank.)

Corollary 3.4. Let X be a smooth connected projective k-curve, let U ⊂ X

be a dense affine open subset, and let ξ ∈ X − U . Let Π = π1(U) and let
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Π∗ be the quotient of Π corresponding to covers whose smooth completions

are tamely ramified over ξ. Consider a finite split embedding problem E =
(α : Π∗ → G, f : Γ → G) for Π∗, such that p does not divide the order of

N = ker(f). Let r ≥ rkΓ(N, ι(G)), where ι : G → Γ is a section of f . Then

there is an open subset U ′ ⊂ U such that U − U ′ has cardinality r and the

induced embedding problem E ′ for Π′ = π1(U ′) has a proper solution.

Proof. Identifying G with its image under ι, we may identify Γ with the
semidirect product N×||G. By the assumption on rank, there is a supple-
mentary generating set {n1, . . . , nr} ⊂ N for Γ with respect to G. Also, the
homomorphism α : Π∗→→G corresponds to a G-Galois connected étale cover
of affine k-curves whose smooth completion Y → X is tamely ramified over
ξ. So the hypotheses of Proposition 3.3 are satisfied, yielding a Γ-Galois
cover W → U that is étale over some U ′ ⊂ U with U − U ′ of cardinality r.
This cover corresponds to a homomorphism Π′→→Γ that is a solution to the
induced embedding problem E ′.

Remarks. (a) The proper solution to E ′ in 3.4 is automatically a proper
solution to the induced embedding problem for Π′∗, the quotient of Π′ corre-
sponding to covers of U ′ whose smooth completions are tamely ramified over
ξ. As in 3.3, this is because p does not divide the order of N .

(b) Corollary 3.4 can also be deduced directly from Corollary 3.2, by
taking H = G, N = E, and β = ια.

As discussed in Section 2, results about split embedding problems for a
group Π can sometimes be extended to results about arbitrary embedding
problems for Π, e.g. in situations in which the group Π is projective. By [Se2,
Proposition 1], the fundamental group of an affine k-curve has cohomological
dimension ≤ 1; and hence it is a projective group [Se1, I.5.9, Prop. 45].
Using this projectivity, we obtain the following variant of Proposition 3.3
that applies even in the non-split case. It does, however, provide a bit less
control on the number of punctures needed (and cf. Remark (c) after the
proof of Corollary 3.6 below).

Proposition 3.5. Let Γ be a finite group, let N be a normal subgroup of

order prime to p, and let G = Γ/N . Let {n1, . . . , nr} ⊂ N be a relative gen-

erating set for N in Γ. Let V → U be a G-Galois étale cover of smooth con-

nected affine k-curves whose smooth completion Y → X is tamely ramified

over some point ξ of B = X−U . Then there is a smooth connected Γ-Galois

cover W → U branched only at r points ξ1, . . . , ξr, such that W/N ≈ V as

G-Galois covers of U ; ni is the canonical generator of an inertia group over

ξi; and the smooth completion of W → U is tamely ramified over ξ.
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Proof. The fundamental group Π := π1(U) is a projective group, since
cd(Π) ≤ 1 [Se2, Prop. 1]). So the surjective homomorphism Π→→G corre-
sponding to V → U lifts to a homomorphism Π → Γ, say with image G0.
Let V0 → U be the G0-Galois cover corresponding to this lift. Thus we have
an unramified N∩G0-Galois cover V0 → V . Let Y0 be the smooth completion
of V0. Then p does not divide the degree of Y0 → Y , since that degree divides
|N |. Since Y → X is tame over ξ, it follows that so is Y0 → X. Moreover
any inertia group of Y0 → X over ξ must normalize N , since N is normal in
Γ.

Since G0→→G = Γ/N , the group Γ is generated by N and G0. Hence Γ
is generated by n1, . . . , nr and G0; i.e. {n1, . . . , nr} ⊂ N is a supplementary
generating set for Γ with respect to G0. So by Proposition 3.1, there is a
Γ-Galois cover W → U having at most r branch points ξ1, . . . , ξr such that
the G-Galois cover W/N → U agrees with V0/(N ∩G0) → U , and such that
ni is the canonical generator of an inertia group of W → U over ξi. Since
V0/(N ∩ G0) is isomorphic to V as a G-Galois cover of U , and since p does
not divide the order of N , it follows that W → U is as desired.

Corollary 3.6. The assertion of Corollary 3.4 carries over to finite embed-

ding problems that are not necessarily split, provided that one instead takes

r ≥ rkΓ(N).

Proof. Since r ≥ rkΓ(N), there is a relative generating set {n1, . . . , nr} ⊂ N

for N in Γ. The proof then proceeds parallel to that of Corollary 3.4, but
using Proposition 3.5 instead of Proposition 3.3.

Remarks. (a) Remark (a) after Corollary 3.4 carries over as well to Corol-
lary 3.6.

(b) Corollary 3.6 can also be proven by applying Proposition 2.1 to
Corollary 3.4. This uses that Π is projective; that rkΓ(N) ≥ rkΓ(N,G0)
(where G0 is as in the proof of 3.5); and that the G0-cover Y0 → X is tamely
ramified over ξ (as in the proof of 3.5).

(c) As mentioned above, 3.3 and 3.4 apply only to split embedding prob-
lems, whereas 3.5 and 3.6 apply more generally to embedding problems that
need not be split. But in the process of reducing to the split case, we obtain
weaker conclusions in 3.5 and 3.6 than in 3.3 and 3.4 (though under more
general hypotheses). Specifically, different notions of generators and rank
are used in the two pairs of results, and the notion of rank in 3.5 and 3.6
will typically be larger (when both make sense). The need for these variant
notions here is due to the fact that one does not in advance know the group
G0 ⊂ Γ that arises in the proof of 3.5 (and indirectly, in 3.6), in the process of
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reducing to the split case. Another way in which the generalized hypothesis
leads to a weaker conclusion here is that one no longer has the same control
on the inertia groups over B−{ξ} in the situation of 3.5 that one had in 3.3.
This is because the map G0 → G in 3.5 need not be an isomorphism, and
because one does not know a priori which choice of G0 ⊂ Γ over G will be
needed in the construction.

(d) In the results in this section of the paper, it would be desirable to
prove that the positions of the new r branch points can be specified in ad-
vance. In a related situation, such a result with control on the additional
branch locus appears in Section 4 below. But there, unfortunately, connec-
tivity cannot always be guaranteed.

Section 4. Results via lifting.

In this section another special case of the main theorem in proven, by means
of lifting to characteristic 0. As before in Proposition 3.5, we have a finite
group Γ and a quotient G = Γ/N , and a G-Galois étale cover of smooth
affine k-curves V → U . And as before, the problem is to show that there is a
Γ-Galois cover W → U dominating V → U , having at most rkΓ(N) branch
points with specified inertia there, under the assumption that N has order
prime to p. But unlike the situation of the previous section, we need not
make any tameness assumption here on the smooth completion of V → U .
What is shown here (Prop. 4.1) is that if the relative rank rkΓ(N) is at most 1
(or if p = 0), then such a connected W exists, and moreover that the position
of the extra branch point can be given in advance. (On the other hand if
rkΓ(N) > 1 and p > 0, then we still obtain a W with specified branch locus
and inertia, but conceivably it might not be connected.) Thus if rkΓ(N) ≤ 1
or p = 0 then we can obtain a proper solution to the corresponding embedding
problem (Cor. 4.2).

The method of lifting and specializing to characteristic 0, in order to
study fundamental groups in characteristic p, was used by Grothendieck (cf.
[Gr], [GM]) in the situation of the tame fundamental group — with the
strongest conclusions obtained on the maximal prime-to-p quotient of π1.
The idea is to work with a mixed characteristic complete discrete valuation
ring R, whose residue field is the given algebraically closed field k of charac-
teristic p. By using the knowledge of π1 in characteristic 0, one can construct
a cover over the general fibre; close this up over R; and then specialize to
the closed fibre to obtain a cover over k. The main difficulty in extending
this method to more general covers is that the restriction to the closed fibre
may be inseparable over the generic point or it may have wild ramification
there. Nevertheless, in [Ra, §6], Raynaud was able to use this method, in
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conjunction with a careful analysis of ramification along the closed fibre of
a semistable model, in order to construct covers of the affine line in char-
acteristic p in a key case (and thereby complete the proof of Abhyankar’s
Conjecture for A1).

In addition to the problem of specializing characteristic 0 covers to char-
acteristic p, there is also the problem of lifting a given characteristic p cover
to characteristic 0. Again, this was done by Grothendieck in the tame case
([Gr], [GM]). In the wild case, this is not in general possible, since some
characteristic p curves violate the Hurwitz bound on the number of auto-
morphisms that a curve of genus g can have. But M. Garuti has proven
a modified lifting result, which will be sufficient for our purposes. Namely,
he has shown [Ga, Thm. 2] that if we are given a G-Galois cover Y → X

over k, and if a lift X∗ of X to R as above is given, then (possibly after
enlarging R) there is a normal G-Galois cover Y ∗ → X∗ over R whose closed
fiber Y ∗

k → X is closely related to Y → X. Specifically, Y ∗
k is an irreducible

curve whose only singularities are cusps over wildly ramified branch points
of Y → X, and Y is the normalization of Y ∗

k .
Using Garuti’s result to lift, followed by a construction in characteris-

tic 0 and then descent to characteristic p, we obtain the following version
(Proposition 4.1) of the main theorem of the paper. Note that in the proof,
after constructing a Γ-Galois cover W ∗ in characteristic 0, we do not in gen-
eral know that its closed fibre W ∗

k is irreducible. So instead we will choose
a suitable irreducible component W of W ∗

k , which will be Γ′-Galois for some
Γ′ ⊂ Γ. But if rkΓ(N) ≤ 1 then W ∗

k will in fact be irreducible, and so we
will have Γ′ = Γ in this special case.

We state the result in a slightly more general form, in which we specify
in advance the extra inertial elements n1, . . . , nr, but do not require them to
constitute a relative generating set for N . In this generality we still obtain
a Γ-Galois cover with the desired properties except for connectivity (and so
the Galois group of a connected component will be a subgroup of Γ). But
when the ni form a relative generating set, and r ≤ 1 or p = 0, then we do
obtain connectivity (cf. part (c) below).

Proposition 4.1. Let Γ be a finite group, let N be a normal subgroup of

order not divisible by p, and let G = Γ/N . Let S = {n1, . . . , nr} be a finite

subset of N , with r ≥ 0. Let V → U be a G-Galois étale cover of smooth

connected affine k-curves, and let ξ1, . . . , ξr ∈ U be distinct points.

a) Then there is a subgroup Γ′ ⊂ Γ and a smooth connected Γ′-Galois cover

W → U branched only at ξ1, . . . , ξr, such that Γ = NΓ′ and n1 ∈ Γ′ (if

r ≥ 1); W/(N ∩ Γ′) is isomorphic to V as a G-Galois cover of U ; and the
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canonical generator of each inertia group over ξi is conjugate to ni in Γ, with

ni being equal to the canonical generator of some inertia group over ξi if

r = 1 or p = 0.

b) If r ≤ 1 or p = 0 then we may also require that S ⊂ Γ′.

c) If S is a relative generating set for N in Γ, and if either r ≤ 1 or p = 0,

then we may take Γ′ = Γ.

Proof. Let Y → X be the smooth completion of V → U . Let B = X − U ,
which is a non-empty finite set of |B| points. Let B′ = {ξ1, . . . , ξr}, which is
a subset of U ; and let U ′ = U −B′. There are two cases to consider:

Case A: p = 0.
(a), (b): Let g be the genus of X and let n = |B|. Thus n ≥ 1. By

[Gr, XIII, Cor. 2.12], the fundamental group π1(U) is generated by elements
a1, . . . , ag, b1, . . . , bg, c1, . . . , cn subject to the presentation (∗) of §2 above.
Similarly, π1(U ′) is generated by elements ã1, . . . , ãg, b̃1, . . . , b̃g, c̃1, . . . , c̃n+r

subject to the analogous presentation (∗)′. The natural map π1(U ′)→→π1(U)
takes ãi 7→ ai, b̃i 7→ bi, c̃j 7→ cj for 1 ≤ j ≤ n, and c̃j 7→ 1 for n < j ≤ n+ r.

The G-Galois étale cover V → U corresponds to a surjective group
homomorphism φ : π1(U) → G. Let αi = φ(ai) and βi = φ(bi) for 1 ≤ i ≤ g,
and let γj = φ(cj) for 1 < j ≤ n. For each such i and j choose elements
α̃i, β̃i, γ̃j ∈ Γ over αi, βi, γj ∈ G. Also, let γ̃n+j = nj ∈ N for 1 ≤ j ≤ r.
Then there is a unique homomorphism φ̃ : π1(U ′) → Γ given by φ̃(ãi) = α̃i,
φ̃(b̃i) = β̃i, and φ̃(c̃j) = γ̃j for 1 < j ≤ n + r. (The image of c̃1 is uniquely
determined by the single relation (∗)′ for π1(U ′) and by the requirement that
φ̃ be a homomorphism.) Let Γ′ be the image of φ̃. Thus S ⊂ Γ′. Also, φ̃ lifts
the surjection φ, and so NΓ′ = Γ. Thus φ̃ corresponds to a connected Γ′-
Galois étale cover W → U that dominates V → U . The smooth completion
Z → X of W → U has description (φ̃(c̃1), . . . , φ̃(c̃n+r)) (cf. §2 above). In
particular, nj = φ̃(c̃n+j) ∈ N is a canonical generator of inertia above ξj for
1 ≤ j ≤ r. This cover is thus as desired, for parts (a) and (b).

(c): By part (b), Γ′ contains S. But S is assumed to be a relative
generating set for N . Since NΓ′ = Γ it follows that Γ′ = Γ.

Case B: p > 0.
(a): Let R be a complete discrete valuation ring of mixed characteristic

and residue field k (e.g. the Witt ring over k). By [Gr, III, Cor. 7.4], there is
a smooth complete R-curve X∗ whose closed fibre is X. By [Ga, Thm. 2], it
follows that after replacing R by a finite extension (and X∗ by its pullback
to that extension), there is an irreducible G-Galois cover Y ∗ → X∗ of proper
R-curves with Y ∗ normal, such that Y is the normalization of the closed fibre
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Y ∗
k of Y ∗, and such that Y ∗

k is everywhere unibranched, with the morphism
Y → Y ∗

k being an isomorphism away from the wildly ramified points of Y .
(Here the residue field of the enlarged R is still k, since k is algebraically
closed.)

Suppose that R ⊂ T is a finite extension of complete discrete valuation
rings, and let Y ∗

T → X∗
T be the normalized pullback of Y ∗ → X∗ from R

to T . Thus Y ∗
T is the normalization of Y ∗ ×X∗ X∗

T . Now the closed fibre
of Y ∗ → X∗ is generically étale, but the closed fibre of X∗

T → X∗ is totally
ramified. So the irreducible schemes Y ∗ and X∗

T dominate no common non-
trivial covers of X∗. But Y ∗ and X∗

T are normal; so the intersection of
their function fields is that of X∗. Also, since Y ∗ is Galois over X∗, the
corresponding extension of function fields is also Galois. So by [FJ, p. 110],
the function fields of Y and X∗

T are linearly disjoint over that of X∗. Thus
Y ∗ ×X∗ X∗

T is irreducible and hence so is Y ∗
T . The conclusion is that the

generic fibre Y ◦ of Y ∗ is geometrically irreducible.

Since X∗ is regular and Y ∗ is normal, Purity of Branch Locus applies to
Y ∗ → X∗ [Na, 41.1]; and since the closed fibre is generically étale, it follows
that the branch locus B∗ defines a cover of SpecR. Also, since X∗ → SpecR
is smooth, it follows from [Gr, III, Thm. 3.1] that there are R-points ξ∗i of X∗

that lift the k-points ξi of X = X∗
k . The ξ∗i have pairwise disjoint support,

since the points ξi are distinct and since R is a complete local ring. Let B′∗

be the union of the loci of the ξ∗i , and write U∗ = X∗−B∗, U ′∗ = U∗−B′∗,
V ∗ = Y ∗ ×X∗ U∗, and V ′∗ = V ∗ ×U∗ U ′∗.

Let K be the fraction field of R, and let K̄ be the algebraic closure of K.
Let X̄◦ = X∗ ×R K̄; B̄◦ = B∗ ×R K̄; Ū◦ = X̄◦ − B̄◦; and V̄ ◦ = V ∗ ×U∗ Ū◦.
Similarly, write B̄′◦ = B′∗ ×R K̄; Ū ′◦ = Ū◦ − B̄′◦; and V̄ ′◦ = V̄ ◦ ×Ū◦ Ū ′◦.
Thus V̄ ◦ → Ū◦ and V̄ ′◦ → Ū ′◦ are G-Galois étale covers which are connected
(since Y ◦ is geometrically irreducible). Also, B̄′◦ consists of r distinct K̄-
points ξ̄◦1 , . . . , ξ̄

◦
r specializing respectively to the k-points ξ1, . . . , ξr — viz.

ξ̄◦i = ξ∗i ×R K̄. By Hensel’s Lemma, the compatible system of roots of unity
{ζn} in k lifts uniquely to such a system in K, and so in K̄. With respect
to this system, we may consider the canonical generators of inertia of covers
defined over K or K̄.

By Case A over the characteristic 0 field K̄, there is a subgroup Γ0 ⊂ Γ
containing n1, . . . , nr such that NΓ0 = Γ, together with a smooth connected
Γ0-Galois cover W̄ ◦ → Ū◦ of K̄-curves that dominates V̄ ◦ → Ū◦ and whose
canonical generators of inertia at points ω̄◦i over ξ̄◦i are equal to ni. Let
N0 = N ∩ Γ0, so that Γ0/N0 ≈ G. For some subfield K̃ ⊂ K̄ that is finite
over K, this cover descends to a connected Γ0-Galois cover of K̃-curves with
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the corresponding properties (and so in particular it dominates the induced
G-Galois cover Ṽ ◦ → Ũ◦ of K̃-curves). Replacing K by K̃, and R by its
integral closure in K̃, we may assume that there is a smooth connected Γ0-
Galois cover W ◦ → U◦ that dominates V ◦ → U◦ and is étale away from the
general fibre B′◦ of B′∗; and that there is a K-point ω◦i on W ◦ over ξ◦i at
which the canonical generator of inertia is ni.

Let W ∗ be the normalization of U∗ in W ◦, and let W ′∗ = W ∗ ×U∗ U ′∗.
Thus W ∗ → U∗ is Γ0-Galois and W ∗/N0 ≈ V ∗ as G-Galois covers of U∗, and
similarly for W ′∗ → U ′∗. Moreover W ′∗ → U ′∗ is étale except possibly on the
closed fibre. Since p does not divide the order of N0 ⊂ N , any ramification
of W ′∗ → V ′∗ along the closed fibre is tame. So applying Abhyankar’s
Lemma, and after replacing K by a finite separable extension (and R by
its normalization in this extension), we may assume that W ′∗ → V ′∗ is étale
along the general point of the closed fibre. Since V ′∗ → U ′∗ is étale, it follows
that the Γ0-Galois cover W ′∗ → U ′∗ is étale along the general point of the
closed fibre, as well as away from the closed fibre. But U ′∗ is regular and
W ′∗ is normal. So Purity of Branch Locus implies that W ′∗ → U ′∗ is étale.
Hence the closed fibre W ∗

k → U∗
k of W ∗ → U∗ is étale over U ′.

Let ω∗i be the closure of ω◦i in W ∗ and let ωi be the closed point of ω∗i .
Thus ω∗i is an R-point of W ∗ over ξ∗i , and ωi is a k-point of W ∗

k over ξ.

Claim: The k-curve W ∗
k is smooth at the point ωi, and the inertia group Ii

there is cyclic with canonical generator ni.

To prove the claim, we first apply [GM, Corollary 2.3.6] over the com-
plete local ring of X∗ at ξi ∈ X ⊂ X∗. In our situation, that result says that
the restriction of the tame Ii-Galois cover Spec ÔW∗,ωi

→ Spec ÔU∗,ξi
over

its closed fibre is also tame (in the sense of [GM, Def. 2.2.2]). In particular,
this restriction Spec ÔW∗

k
,ωi → Spec ÔU,ξi is normal, and the inertia group

Ii is a cyclic group. Thus the k-curve W ∗
k is regular at ωi, and hence smooth

there (since k is perfect). Moreover Ii is abelian, and ni ∈ Ii (since ni is
in the inertia group of W ◦ at ω◦i ), so 〈ni〉 is a normal subgroup of Ii. The
intermediate cover Spec ÔW∗,ωi

/〈ni〉 → Spec ÔU∗,ξi
is then a normal Ii/〈ni〉-

Galois cover which is unramified except at the closed point (where it is totally
ramified). By Purity of Branch Locus it follows that this intermediate cover
is trivial, and so Ii = 〈ni〉. That is, the inertia group of W ∗ → U∗ at ωi

is generated by ni. (This conclusion can also be reached by reasoning as in
the proof of [Fu, Theorem 3.3, Case 1], instead of using [GM].) So ÔW∗,ωi

is of the form ÔU,ξi
[f1/mi

i ], where fi is a local uniformizer along ξ∗i , where
mi is the order of ni. Since ni is the canonical generator of W ◦ at ω◦i , it
follows that the generator ni ∈ Ii acts on the overring by f1/mi

i 7→ ζmi
f

1/mi

i .
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Restricting to the closed fibre, we find that ni is the canonical generator of
W ∗

k → U at ωi. This proves the claim.

Now W ∗
k → U is Galois, étale over U ′ = U − {ξ1, . . . , ξn}, and smooth

at the point ωi over ξi. So W ∗
k is smooth. Hence there is a unique irre-

ducible component W of W ∗
k that contains ω1. Let Γ′ ⊂ Γ0 be the decom-

position group of the generic point of W . Thus W → U is a Γ′-Galois
smooth connected cover that is branched only at {ξ1, . . . , ξn}. Also, by
the claim, the canonical generator of inertia at any point of W ∗

k over ξi
is conjugate to ni in Γ0; and in particular this is true for the points of W
over ξi. Moreover the inertia group at ω1 ∈ W has canonical generator n1,
and so we have that n1 ∈ Γ′. And since V is irreducible, the composition
W ↪→W ∗

k →W ∗
k /N0 ≈ V (which is a morphism of covers of U) is surjective

on points. Thus W/(N0∩Γ′) ≈ V as G-Galois covers of U . This implies that
N0Γ′/N0 ≈ Γ′/(N0 ∩ Γ′) ≈ G ≈ Γ0/N0; but N0,Γ′ ⊂ Γ0. So N0Γ′ = Γ0 and
thus NΓ′ = NΓ0 = Γ. Thus W has the desired properties.

(b): This is automatic: If r = 0 then S is empty; and if r = 1 then
S = {n1}, and n1 ∈ Γ′ by (a).

(c): The same proof works as in Case A(c).

Reinterpreting the above result in terms of embedding problems, we
obtain:

Corollary 4.2. Let X be a smooth connected projective k-curve, let U ⊂ X

be a dense affine open subset, and let Π = π1(U). Let E = (α : Π → G,

f : Γ → G) be a finite embedding problem for Π, such that p does not divide

the order of N = ker(f). Let U ′ ⊂ U such that U − U ′ has cardinality

r ≥ rkΓ(N). If p = 0 or r ≤ 1, then the induced embedding problem E ′ for

Π′ = π1(U ′) has a proper solution.

Proof. The surjection α : Π→→G corresponds to a connected G-Galois étale
cover V → U . By Proposition 4.1, there is a smooth connected Γ-Galois
cover W → U branched only at the r points of B′ = U − U ′, and which
dominates V → U . Its restriction W ′ → U ′ is étale, and dominates the
restriction V ′ → U ′. Hence it corresponds to a proper solution to the induced
embedding problem E ′ for Π′ = π1(U ′).

Remarks. (a) It would be desirable to extend Proposition 4.1(c) to the case
that r > 1 with p > 0. While the main theorem of the paper (Theorem
5.4) does give a connected Γ-Galois cover W → U that dominates a given
G-Galois étale cover V → U and has r additional branch points (even if
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r > 1), it does not allow control over the positions of those branch points
(except for the first).

The difficulty in extending the proof of 4.1(c) to r > 1, p > 0 is this: In
the proof of Case B of 4.1, if S is a relative generating set for N in Γ, then the
cover W ∗ → U∗ is irreducible and Γ-Galois (using (c) in the characteristic
0 version); but it is unclear whether its closed fibre W ∗

k is also irreducible,
if r > 1. It would suffice to show that Z∗

k → X is unibranched at its wildly
ramified points, where Z∗

k is the closed fibre of the normalization Z∗ of X∗

in W ∗. One approach to this would be to use Purity of Branch Locus over
Y ∗; but for this, one wants Y ∗ to be regular. This raises the question of
whether Garuti’s result [Ga, Thm. 2] can be strengthened to show that Y ∗

can always be chosen to be regular.
(b) The proofs of the above results require the base field k to be alge-

braically closed, because of the use of [Ga, Thm. 2] in Proposition 4.1.

Section 5. The main result.

This section contains the main result of this paper, that a given Γ/N -
Galois étale cover V → U of an affine k-curve is dominated by a Γ-Galois
cover of U that is branched at rkΓ̄(N̄) points of U , where Γ̄, N̄ are the
reductions of Γ, N modulo p(N). In the case that the order of N is prime
to p (so that Γ̄ = Γ and N̄ = N), we prove this essentially by combining the
special cases in which it has already been shown: the case that the smooth
completion of V → U has a tamely ramified branch point (cf. §3), and the
case where rkΓ(N) ≤ 1 (cf. §4). This is done in Proposition 5.1. Afterwards,
this result is combined with a result of F. Pop (cf. Thm. 5.2 and Cor. 5.3
below) to prove the general case (Theorem 5.4). This is then interpreted in
terms of embedding problems (Corollary 5.5).

Proposition 5.1. Let Γ be a finite group, let N be a normal subgroup

whose order is not divisible by p, and let G = Γ/N . Let {n1, . . . , nr} ⊂ N

be a relative generating set for N in Γ, with r ≥ 0. Let V → U be a

G-Galois étale cover of smooth connected affine k-curves. Then there is a

smooth connected Γ-Galois cover W → U branched only at r distinct points

ξ1, . . . , ξr ∈ U , such that W/N is isomorphic to V as a G-Galois cover of U ,

and ni is a canonical generator of inertia over ξi for 1 < i ≤ r. Moreover we

may specify the position of ξ1 in advance, if r > 0.

Proof. If r ≤ 1 then this assertion is contained in the statement of Proposition
4.1. So we may assume r > 1.

Let ξ1 ∈ U be any point. We may apply Proposition 4.1 with S = {n1}.
Doing so yields a subgroup G̃ ⊂ Γ and a smooth connected G̃-Galois cover
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Ṽ → U branched only at ξ1, such that Γ = NG̃ and n1 ∈ G̃; Ṽ /(N ∩ G̃) is
isomorphic to V as a G-Galois cover of U ; and n1 is the canonical generator
of an inertia group over ξ1.

Let X be the smooth completion of U , let U ′ = U − {ξ1}, let Ṽ ′ be
the restriction of Ṽ to U ′, and let Ỹ be the normalization of X in Ṽ ′ (or
equivalently, in Ṽ ). Thus Ỹ → X is a G̃-Galois cover that is tamely ramified
over the point ξ1 ∈ B′ := X −U ′. Moreover n1 is the canonical generator of
some inertia group over ξ1, and this inertia group normalizes N since N is
normal. In addition, Γ = NG̃, and so the relative generating set {n1, . . . , nr}
for N is in particular a supplementary generating set for Γ with respect to
G̃. Since n1 ∈ G̃, it follows that {n2, . . . , nr} is a supplementary generating
set for Γ with respect to G̃.

So we may apply Proposition 3.1 (with G̃,N, r − 1, Ṽ ′ → U ′, n2, . . . , nr

playing the roles of G,E, r, V → U, e1, . . . , er there). As a result, we obtain
a smooth connected Γ-Galois cover W ′ → U ′ having at most r − 1 branch
points ξ2, . . . , ξr ∈ U ′, satisfying the three conditions (i)-(iii) there. That is,
the G-Galois cover W ′/N → U ′ agrees with Ṽ ′/(N ∩ G̃) → U ′; there are
inertia groups of W ′ → U ′ over the branch points ξ2, . . . , ξr having canonical
generators n2, . . . , nr respectively; and the inertia groups of Ỹ → X, over
each point of B′−{ξ1} = X −U , are also inertia groups of Z → X over that
point, where Z is the smooth completion of W ′. Let W be the normalization
of U in W ′. Thus W → U is a smooth connected Γ-Galois cover branched
only at ξ1, . . . , ξr, with ni a canonical generator of inertia over ξi for each
i > 1. As a G-Galois cover of U , the intermediate cover W/N is isomorphic
to Ṽ /(N ∩ G̃) and hence to V .

Remarks. (a) Unlike Proposition 4.1, the above result yields a connected
Γ-Galois cover over the given G-Galois cover even if there are two or more
elements in the relative generating set, in characteristic p > 0. But on the
other hand, in 5.1 we lose control of the positions of the branch points other
than ξ1, and of the inertia group over ξ1. Similarly, unlike the results of §3,
the above result does not require that the smooth completion Y → X of
V → U have a tamely ramified branch point. But on the other hand, in 5.1
we have less control over inertia groups, and do not have a version that is
analogous to 3.1 using the smaller number rk(E,G) of new branch points.

(b) In the proof of the above result, it is tempting to try to invoke
Proposition 4.1 repeatedly on successive ni’s, rather than to use Proposition
3.1 (and thus to control the positions of all of the branch points, though
losing control over the inertia groups). The strategy would be to take the
subgroup G̃ ⊂ Γ containing n1 and surjecting onto G, given by the use of
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Prop. 4.1 as above; to take the minimal G̃-invariant subgroup N1 ⊂ N that
contains n2; and then to form the semi-direct product Γ′ = N1×|| G̃ with
respect to the conjugation action of G̃ on N1 in Γ. Applying 4.1 again would
yield a subgroup G̃′ ⊂ Γ′ that contains (n2, 1) and surjects onto G̃ under the
second projection; and then one could take the image of G̃′ in Γ under the
multiplication homomorphism µ : Γ′ → Γ given by (n, g) 7→ ng. This image
µ(G̃′) ⊂ Γ would then contain n2 and surject onto G, and one might hope to
repeat the process. But unfortunately, µ(G̃′) need no longer contain n1. For
example, suppose that we are given p > 3; N = S3; G = 〈g〉, cyclic of order
p; and Γ = N ×G; with n1 = (12) and n2 = (13) being (relative) generators
of N . Then we could have G̃ = 〈(12), g〉 ⊂ Γ (viewing N,G as subgroups of
Γ); N1 = N ; Γ′ = N×|| G̃; G̃′ = 〈((13), 1), ((12), (12)), (1, g)〉 ⊂ N×|| G̃ = Γ′;
and µ(G̃′) = 〈(13), g〉 ⊂ Γ, which is strictly smaller than Γ = N × G and
does not contain the first generator n1 = (12) of N .

Finally, we combine the above proposition with a result of F. Pop, to
obtain our main theorem (Theorem 5.4 below). In this theorem, unlike the
previous results in this paper, we permit the order of the kernel N to be
divisible by p. The following is a rephrasing of Pop’s result [Po1, Theorem B]:

Theorem 5.2. [Po1, Thm. B] Let Γ = Q×||G where Q is a quasi-p group;

let Y → X be a smooth connected G-Galois cover of k-curves; and let ξ ∈ X
(possibly a branch point of Y → X). Then there is a smooth connected

Γ-Galois cover Z → X dominating Y → X, such that Z → Y is branched

only at points of Y over ξ, and the inertia groups of Z → Y over those points

are the Sylow p-subgroups of Q.

Although this result is stated just for the split case, it implies a result
in the more general case of group extensions by a quasi-p kernel. Namely,
as the following corollary states, if U is a smooth connected affine k-curve
and E = (α, f) is a finite embedding problem for π1(U) with ker(f) a quasi-p
group, then E has a proper solution.

Corollary 5.3. Let Q be a normal quasi-p subgroup of a finite group Γ, and

let G = Γ/Q. Let V → U be a connected G-Galois étale cover of smooth

affine k-curves. Then there is a connected Γ-Galois étale cover W → U

dominating V → U .

Proof. By [Se2, Prop. 1], the group Π = π1(U) has cohomological dimension 1
and hence is a projective group. TheG-Galois étale cover V → U corresponds
to a surjection α : Π → G, and there is a natural quotient map f : Γ → G.
Thus E = (f : Γ → G,α : Π → G) is an embedding problem for the
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projective group Π, and so it has a weak solution α0 : Π → Γ, say with
image G0. Let Γ0 = Q×||G0, where the semi-direct product is taken with
respect to the conjugation action of G0 on Q/Γ, and let f0 : Γ0→→G0 be the
natural quotient map.

The surjection α0 : Π → G0 corresponds to a connected G0-Galois
étale cover V0 → U , say with smooth completion Y0 → X. Theorem 5.2
now applies to the group Γ0, the G0-Galois cover Y0 → X, and a point
ξ ∈ B := X − U . So there is a smooth connected Γ0-Galois cover Z0 → X

dominating Y0 → X such that Z0 → Y0 is branched only at points over ξ.
Thus Z0 → X is étale over U , and corresponds to a surjection β0 : Π → Γ0.

Now fβ0 = α0 since Z0 → X dominates Y0 → X. So β0 is a proper
solution to the split embedding problem E0 = (α0 : Π → G0, f0 : Γ0 → G0).
Thus by Proposition 2.1, the original embedding problem E = (f : Γ → G,

α : Π → G) has a proper solution β : Π → Γ. Here fβ = α. The map
β corresponds to a connected Γ-Galois étale cover W → U , and this cover
dominates V → U because fβ = α.

Combining the above with Proposition 5.1 yields the main theorem of
the paper:

Theorem 5.4. Let N be a normal subgroup of a finite group Γ, and let

G = Γ/N . Let N̄ = N/p(N) and Γ̄ = Γ/p(N), and let r = rkΓ̄(N̄). Let

V → U be a G-Galois étale cover of smooth connected affine k-curves. Then

there is a smooth connected Γ-Galois cover W → U branched only at r

distinct points ξ1, . . . , ξr ∈ U , such that W/N is isomorphic to V as a G-

Galois cover of U . Moreover we may specify the position of ξ1 in advance, if

r > 0.

Proof. First observe here that p(N) is a characteristic subgroup of N , and
so is a normal subgroup of Γ. Hence Γ̄ = Γ/p(N) is well defined.

Pick ξ1 ∈ U . Since r = rkΓ̄(N̄), there is a relative generating set
{n̄1, . . . , n̄r} ⊂ N̄ for N̄ in Γ̄. Also, Γ̄/N̄ = (Γ/p(N))/(N/p(N)) ≈ Γ/N = G.
So by Proposition 5.1, there are distinct points ξ2, . . . , ξr ∈ U − {ξ1} to-
gether with a smooth connected Γ̄-Galois cover W̄ → U branched only at
S = {ξ1, . . . , ξr} such that W̄/N̄ is isomorphic to V as a G-Galois cover
of U . Let U ′ = U − S and let W̄ ′ be the inverse image of U ′ in W̄ . We
may now apply Corollary 5.3 with Q = p(N), and with W̄ ′ → U ′ playing
the role of V → U there. As a result, we obtain a connected Γ-Galois étale
cover W ′ → U ′ dominating W̄ ′ → U ′. The normalization W → U of U in
W ′ → U ′ is then as desired.

Remark. In the situation of Theorem 5.4 above, if the short exact sequence
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1 → p(N) → Γ → Γ̄ → 1 is split, then in the proof we can apply Pop’s Theo-
rem (5.2 above) rather than Corollary 5.3. Doing so gives more information
about inertia. In particular, suppose we are given an integer r ≥ rkΓ̄(N̄)
and a relative generating set {n1, . . . , nr} ⊂ N for N in Γ. Then in the split
situation we may choose the Γ-Galois cover W → U so that the branching
over ξ2, . . . , ξr is tame, and so that ni is the canonical generator of inertia at
some point over ξi for each i > 1.

Reinterpreting the above result in terms of embedding problems, we
immediately obtain:

Corollary 5.5. Let U be a smooth connected affine k-curve, let Π = π1(U),
and let E = (α : Π → G, f : Γ → G) be a finite embedding problem for Π. Let

N = ker(f) and let r = rkΓ̄(N̄). Then for some set S ⊂ U of cardinality r,

the induced embedding problem E ′ for Π′ = π1(U −S) has a proper solution.

Moreover, if r > 0, then one of the points of S can be chosen in advance.
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