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Section 1: Introduction.

Consider the following general problem: Given a smooth affine curve U over an
algebraically closed field k, find the fundamental group π1(U), and its set of (con-
tinuous) finite quotients πA(U). When k = C, U is a Riemann surface, and
π1 can be computed using loops. If U is obtained by deleting S = {ξ0, . . . , ξr}
from a compact Riemann surface X of genus g, we thus obtain classically that
π1 has generators a1, . . . , ag, b1, . . . , bg, c0, . . . , cr subject to the single relation∏g

j=1[aj , bj ]
∏r

i=0 ci = 1. (Here [a, b] = aba−1b−1.) This is isomorphic to the free
group on 2g + r generators, so πA(U) is the set of finite groups with 2g + r gener-
ators. Thus these are the Galois groups of finite unramified Galois covers of U , or
equivalently of finite branched covers of X with branch locus disjoint from U .

Over other algebraically closed fields k, loops do not make sense. But it does
make sense to speak of finite unramified covers of U , and of πA(U). So let U =
X−S, where X is a smooth projective k-curve of genus g ≥ 0, and S = {ξ0, . . . , ξr}
(r ≥ 0); we call this an affine curve of type (g, r). The result over C no longer holds,
if the characteristic of k is p > 0, e.g. because of Artin-Schreier covers of the affine
line. In 1957, Abhyankar [Ab1] posed:
Abhyankar’s Conjecture (“AC”). In characteristic p, if U is an affine curve
of type (g, r), then a finite group G is in πA(U) if and only if every prime-to-p
quotient of G has 2g + r generators.
Equivalently, writing p(G) for the subgroup of G generated by the Sylow p-
subgroups, AC asserts that G ∈ πA(U) if and only if G/p(G) is in πA of a complex
curve of type (g, r).

Here Abhyankar allowed p = 0. Later, Grothendieck showed [Gr2, XIII, Cor.
2.12] that AC holds for p = 0 and that π1 of a curve of type (g, r) is the same over
all algebraically closed fields of characteristic 0. This was proven by specialization
techniques, as was a weak form of AC in the p > 0 case: that the prime-to-p part
of π1 is the same in characteristic p and in characteristic 0, and that the tame
fundamental group πt

1(U) over k is a quotient of π1 of a complex curve of the same
type. (If U = X−S, πt

1(U) is defined via branched covers of X that are unramified
over U and tamely ramified over S.)

Grothendieck’s results imply that the forward implication of AC holds; that
a prime-to-p group G is in πA(U) if and only if it has 2g + r generators; and that
not all groups conjectured to be in πA(U) can arise from branched covers of X
that are tamely ramified over S and unramified elsewhere. This suggests:
Strong Abhyankar Conjecture (“SAC”). In characteristic p, if U = X −
{ξ0, . . . , ξr} with X of genus g and r ≥ 0, and if each prime-to-p quotient of
G lies in πA(U), then G is the Galois group of a Galois étale cover of U whose
smooth completion is tamely ramified over X except possibly at ξ0.
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As a result of recent work of Raynaud and the author, we now have

Theorem. [Ra2 , Ha6] SAC (and hence AC) holds for all affine curves.

Abhyankar’s Conjecture was stated in 1957, but evidence began to accumulate
only about 1980. The case of U = A1 was considered first; there AC says that
πA consists of the quasi-p-groups (i.e. groups with p(G) = G). Nori (cf. [Ka])
and Abhyankar (cf. [Ab2]) showed that various finite groups, especially certain
simple groups, lie in πA(A1). Later Serre [Se1] proved AC over A1 for solvable
quasi-p-groups. Raynaud [Ra2] then showed the full AC for A1 using rigid analytic
patching and semi-stable reduction. The author’s proof of SAC [Ha6] used another
form of patching, involving formal schemes, as well as relying of [Ra2].

The structure of the rest of this paper is as follows: Section 2 describes formal
and rigid patching, and Section 3 sketches the proof of AC. Finally, Section 4
discusses variants and open problems.

Section 2: Formal and rigid patching.

2.1: Formal and rigid geometry. Over the complex numbers, one can construct
covers with desired properties by “cutting and pasting.” In the proof of AC, ana-
logous (formal or rigid) techniques are used to handle curves in characteristic p.
The point is that the Zariski topology is too weak to use in mimicking complex
constructions, since there are no “small” open sets. But the formal and rigid ap-
proaches provide smaller sets that can be cut and pasted usefully. Here we work
over a complete field, e.g. K = k((t)), which in some ways is analogous to C.

The formal approach is based on Grothendieck’s formal schemes [Gr1, EGA
I, sect. 10]. The rigid setting, due to Tate [Ta] and Kiehl [Ki], is more intuitive, but
its foundations have not been worked out as thoroughly. The relationship between
these two frameworks has been presented in [Ra1], [Me], [BL] and [BLR].

Consider a curve over K = k((t)). One can speak of metric open discs, and can
attempt to do analytic geometry, in analogy with complex curves. Unfortunately, it
is insufficient to use the naive approach of working with such discs and their rings
of holomorphic functions, because the metric topology is totally disconnected, and
so the geometry obtained would be “flabby.” Instead, the rigid theory introduces a
subtler notion of an affinoid set and its ring of functions. (See also [Ra2, sect. 3].)
This enables cutting and pasting that behaves more as desired.

Meanwhile, in the formal context, we begin with a curve over k, and consider
“thickenings” to R = k[[t]]. If X is a smooth projective k-curve, then such a
thickening is XR = X ×k R, with generic fibre XK . On the other hand if U =
Spec(E) is an affine curve, then a thickening is U∗ = Spec(E[[t]]). This is “smaller”
than UR = U ×k R, which is a Zariski open subset of XR. For example, if X = P1

k

and U = A1
k, then U∗ = Spec(k[x][[t]]) and UR = Spec(k[[t]][x]). Since 1 − xt is

a unit in k[x][[t]] but not in k[[t]][x], the point (1− xt) in UR is missing from U∗.
Geometrically, we can think of UR as a “uniformly thick” tubular neighborhood of
U , whereas U∗ is a neighborhood that “pinches down” near points at infinity. (For
projective curves X, there are no points at infinity, and X∗ = XR.) We can also
consider thickenings of other subschemes of X, e.g. complete local neighborhoods
Spec(ÔX,ξ) of any point ξ of X. In this case we obtain Spec(ÔX,ξ[[t]]).
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For U ⊂ X, the thickening U∗ is a surface whose closed fibre is U . Concerning
the connection to rigid geometry, consider the generic fibre of U∗, obtained by
deleting the closed fibre. This is an affine scheme Spec(A), where A is the ring of
functions of an affinoid subset U of UK . For example, if X = P1

k and U = A1
k,

then U is a disc about the origin. And if X = P1
k and U = A1

k − (x = 0), then U
is a “corona” (annulus) whose complement has two components (one containing
the point (x = 0) and the other containing (x = ∞)). Under this correspondence,
points of U correspond to curves in U∗ not lying in the closed fibre, and two points
of U are “close” if the corresponding curves have a high order of contact.

2.2: Patching. In the proof of Abhyankar’s Conjecture, the main idea is to con-
struct G-Galois covers over k by working inductively on the order of G, and to
paste together Galois covers having smaller group. Given an affine k-curve U , if
G-Galois covers are constructed over the induced K-curve UK (where K = k((t)) ),
then a specialization argument (the “Lefschetz principle”) implies that there is a
G-Galois cover of U . Thus it suffices to work over the complete field K.

Consider the following situation over C, which we wish to mimic in character-
istic p. We have a compact Riemann surface X ; a subset U1 obtained by deleting a
small disc D; a disc U2 that is slightly larger than D; and the overlap U0 = U1∩U2,
which is an annulus. Given a structure (e.g. a vector bundle, a branched cover,
etc.) over U1 and U2 together with an agreement over U0, we wish to patch the
data together to obtain such a structure over X .

Analogs of these discs and annuli exist in the rigid setting. Meanwhile, in
the formal setting, consider a point ξ on a smooth projective k-curve X. Let
U1 = X−{ξ}, U2 = Spec(ÔX,ξ), and U0 = Spec(K̂X,ξ), where K̂X,ξ is the fraction
field of ÔX,ξ. Then the formal analog is given by X∗, U∗

1 , U∗
2 , and U∗

0 . Here, one
can patch structures such as vector bundles or Galois covers. This is by a formal
patching theorem [Ha5, Theorem 1] which is a variant on Grothendieck’s Existence
Theorem [Gr1, EGA III, 5.1.6], and can be regarded as a “formal GAGA”:

Patching Theorem [Ha5, Thm. 1] In the above situation, consider finite projec-
tive modules M1 and M2 over U∗

1 and U∗
2 , together with an isomorphism between

the induced modules over U∗
0 . Then up to isomorphism, there is a unique finite

projective OX -module M inducing M1 and M2, compatibly with the identification
over U∗

0 . Moreover this association corresponds to an equivalence of categories, and
so the result carries over to finite projective algebras, and to covers.

This is proven by reducing to a local analog for modules over discrete valuation
ringsO (where projective modules are free). SetK = frac(O) and K̂ = frac(Ô). The
problem is to patch together free modules over Ô[[t]] and K[[t]] with agreement over
K̂[[t]], and to obtain a free O[[t]]-module inducing the given modules together with
the identification. This is done by factoring the transition matrix M ∈ GLN (K̂[[t]])
as a product of change-of-basis matrices in GLN (Ô[[t]]) and GLN (K[[t]]).

As an application of this patching theorem, we consider the following result,
which permits the inductive construction of covers of curves. First we introduce
a bit of terminology: Pick roots of unity {ζn | char(k) does not divide n} ⊂ k
such that ζn′

nn′ = ζn. Given a G-Galois cover of curves Y → X, let η ∈ Y be a
ramification point lying over ξ ∈ X, with local uniformizers y ∈ ÔY,η and x ∈ ÔX,ξ
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satisfying yn = x. We call g ∈ G the inertial generator at η if g(y) = ζny. (If k = C,
this can be interpreted via the lifting to Y of counterclockwise loops around ξ.)
Corollary. Let H1,H2 be subgroups generating a finite group G; Y → X a con-
nected H1-Galois cover of k-curves with branch locus B ⊂ X; and W → P1 a
connected H2-Galois cover with m branch points. Let g ∈ G be the inertial gen-
erator at a tame point η ∈ Y over ξ ∈ B, and suppose that g−1 is the inertial
generator at a tame point ω ∈ W over one of the m branch points. Then there is
a connected G-Galois cover Z → X that is branched at B and m− 2 other points,
and whose inertia groups over B − {ξ} are the conjugates of those of Y → X.

To prove this result over k = C, we induce each of the given covers up to G, by
taking a disjoint union of copies of the cover, indexed by the cosets of Hi in G.
We then cut out small discs around ξ ∈ X and µ ∈ P1, where ω lies over µ. The
two disconnected G-Galois covers agree over the boundaries of the excised discs
(because the two boundary orientations are opposite, and the inertial generators
are g, g−1); by pasting along the boundaries we obtain the desired cover Z → X.
Here, the base is still isomorphic to X, and the pasting can be done so that one
of the new branch points coming from W → P1 is now positioned at ξ.

For k of characteristic p, using formal geometry, consider the union X ′ of X
and P1 crossing transversally (identifying ξ ∈ X with µ ∈ P1). By blowing up the
point (ξ, 0) on X∗ = X×k k[[t]] and pulling back by t 7→ tn (where n = ord(g) ), we
obtain an irreducible k[[t]]-thickening X ′∗ of X ′ with generic fibre Xk((t)), and given
near the singular point by xu = tn. By choosing a finite morphism X ′∗ → P1

k[[t]]

and working over P1, we can apply the above formal patching theorem [Ha5,
Thm. 1]. So there is a G-Galois cover of X ′∗ consisting of copies of thickenings of
Y and W away from the node (first altering W to move a branch point to ∞),
and copies of Spec

(
k[[y, w, t]]/(yn − x,wn − u, yw − t)

)
near the node. The generic

fibre is a k((t))-cover with the desired properties. (Its connectivity follows from
that of the closed fibre, which uses G = H1H2.) Now apply the Lefschetz principle
to obtain such a cover over k.

Section 3: Proof of Abhyankar’s Conjecture.
3.1: Outline of the proof of AC. Let k be an algebraically closed field of charac-
teristic p. In 1990, Serre proved the following result:
Theorem. [Se1, Thm. 1] Let 1 → N → G → H → 1 be an exact sequence of
finite groups, with G quasi-p and N solvable. If H ∈ πA(A1

k) then so is G.

Taking H = 1, we obtain Abhyankar’s Conjecture for solvable groups over A1. For
the proof, induction reduces to the case of N an elementary abelian l-group on
which H acts irreducibly. Since cd(A1) = 1 [Se1, Prop. 1], we may replace H by a
subgroup of G, and so assume that the exact sequence is split. The proof proceeds
cohomologically. The most difficult case is that of l 6= p. There, the given H-Galois
cover might not be dominated by any G-Galois cover of A1 (i.e. the corresponding
embedding problem over A1 might have no solution). Instead the H-Galois cover
may have to be altered, before obtaining a G-Galois cover dominating it.

Using Serre’s result, together with rigid patching and semi-stable reduction,
Raynaud [Ra2] proved Abhyankar’s Conjecture over A1, in 1992. That is, he
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showed that if G is a finite quasi-p-group, then G is a Galois group over A1.
The proof proceeds inductively on the order of G. For P a Sylow p-subgroup of
G, let G(P ) be the subgroup of G generated by all the proper quasi-p-subgroups
H ⊂ G such that P contains a Sylow p-subgroup of H. There are three cases: (i)
G has a non-trivial normal p-subgroup; (ii) G(P ) = G for some P ; (iii) Otherwise.

Case (i) follows from Serre’s result and the inductive hypothesis, since p-
groups are solvable. Case (ii) uses rigid patching methods; cf. section 3.2 below.
Case (iii) uses semi-stable reduction in mixed characteristic; cf. section 3.3.

Using Raynaud’s result and formal patching, the author proved the general
case of AC, including the stronger form SAC. This is discussed in section 3.4.

3.2: Proof of AC for A1 in case (ii). As discussed in section 2 above, it suffices
to construct a G-Galois cover of the K-line, where K = k((t)). Let G1, . . . , Gr

be the proper quasi-p-subgroups of G having Sylow p-subgroups contained in P .
By the inductive hypothesis, each Gi is the Galois group of a cover Xi → A1.
Pulling back by a cover of the form yn = x and using Abhyankar’s Lemma, we
may assume that these Gi-Galois covers have p-groups Qi ⊂ P among the inertia
groups over infinity. The restriction of Xi to a corona Ci centered at infinity is a
disjoint union of copies of some Qi-Galois cover Ui → Ci.

Choose r+1 points σ1, . . . , σr,∞ ∈ P1
K together with copies of the r coronas

Ci centered at the points σi. Also let C = P1
K − {σ1, . . . , σr,∞}. These points

and coronas can be chosen so that the union C =
⋃

i Ci is disjoint and extends
to a disjoint union on the corresponding discs, and so that (C, C) is a Runge pair
— i.e. so that P1

K − C contains a point in each component of the complement of
C. Possibly after replacing K by a finite separable extension, there is a P -Galois
cover Y → C whose restriction to each Ci is a disjoint union of copies of Ui → Ci.
(This is shown [Ra2, Cor. 4.2.6] using cohomology and induction on the order of
the p-group P .) Now induce up to G, pasting each Xi to Y over Ci. This yields a
G-Galois cover, which is connected because we are in case (ii).

This case of the proof can also be shown using formal patching. See [Ha8,
Application 2.2] for a discussion of this.

3.3: Proof of AC for A1 in case (iii). Since G is a quasi-p-group, there is a G-
Galois cover YK → P1

K with p-power inertia groups, over a field K of characteristic
0. Here K can be chosen to be the fraction field of a complete discrete valuation
ring R with residue field k. For suitable K and R, there is an R-model Y → X of
this cover with semi-stable reduction and fibre Yk → Xk, such that Xk is a tree
of P1

k’s; the inertia group Is at each component s of Yk is a p-group; and Is is
non-trivial unless s lies over a terminal component of the tree Xk.

Since Xk is a tree of P1
k’s, there is a natural partial order on the compo-

nents, with the “base component” o′ minimal and terminal components maximal.
A partially ordered tree A of components of Yk is constructed above it, with some
o over o′ minimal. It is chosen so that Go = G, where for each component s of A,
Gs ⊂ G is the subgroup generated by {p(Dt) | t in A, t ≥ s} (where Dt is the
decomposition group at t and where p(·) is as in section 1).

Let s in A be maximal such that Gs = G. If Is 6= 1 then a group theory
argument (using that we are not in case (i)) shows Gs ⊂ G(P ) for some P —
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contradicting Gs = G, since we are not in case (ii). So actually Is = 1, and s is
a terminal component, with Ds = G. Its image s′ in Xk is a copy of P1

k. Since s
is a terminal component of the tree A, s′ meets the rest of the graph at only one
point. Deleting this point yields a G-Galois cover of the affine line.

3.4: Proof of SAC for general affine curves. This proof relies on AC for A1 (which
in that case is equivalent to SAC). The key step is to show the result for A1−{0}.
Once that is done, the general case can be shown as follows: Under the hypotheses
of SAC, let Q = p(G) and F = G/Q. By [Gr2, XIII, Cor. 2.12], there is an F -Galois
cover U → X branched only at {ξ0, . . . , ξr}. Let C be an inertia group over ξ0,
with inertial generator g ∈ G (cf. 2.2). By group theory, we may assume that the
exact sequence 1 → Q → G → F → 1 splits and that E = Q · C is a semi-direct
product. Using the case of SAC for A1 − {0}, we obtain an E-Galois cover of
A1 − {0} that is tamely ramified over 0, with C an inertia group there and (after
pulling back by some x 7→ xj) inertial generator g−1. Since E and F generate G,
the result follows from the corollary to the patching theorem in section 2.2 above.

To prove SAC for A1 − {0}, let Q = p(G), let C = G/Q, and let P be a
Sylow p-subgroup of G. Thus C is cyclic of order n prime to p. By group theory we
reduce to the case that 1 → Q → G → C → 1 splits and H = P ·C is a semi-direct
product. By AC for A1, there is a Q-Galois cover W → A1 = Spec(k[x]). By
enlarging inertia (e.g. by [Ha5, Theorem 2]), we may assume that P is an inertia
group over (x = ∞). By [Ha1, Cor. 2.4], there is a P -Galois cover Y → A1 that
agrees locally with W → A1 over Spec

(
k((x−1))

)
. Using the moduli space of P -

covers of the affine line [Ha1], one may construct a P -Galois cover Z → P1×P1 of
(x, t)-space that is étale over A1 ×A1 and totally ramified elsewhere; whose fibre
over A1×(t = 1) agrees with Y → A1; and whose composition with (x, t) 7→ (x, tn)
is H-Galois [Ha6, Prop. 4.1] over (x, s)-space P1 ×P1 (where s = tn).

For a suitable blow-up T of (x, s)-space, there is a covering morphism from T
to (u, v)-space P1×P1 whose fibre over (v = 0) consists of two lines X1 (over s = 1)
and X2 (over x = ∞) crossing at a point τ . The restriction T ∗ → P1×Spec

(
k[[v]]

)
has general fibre isomorphic to the s-line over K = k((v)). Pulling back the above
H-Galois cover of (x, s)-space to T ∗ and normalizing, we obtain an H-Galois cover
B∗ → T ∗. Its fibre over X ′

1 = X1−{τ} is isomorphic to the disconnected H-Galois
cover IndH

P Y → A1 induced by Y → A1. The generic fibre B∗o → T ∗o is branched
precisely at (s = 0) and (s = ∞), with inertia groups C and H respectively [Ha6,
Prop. 5.1]. So the cover is unramified over X ′

1, and the fibre over the thickening
X ′∗

1 (cf. section 2.1) is IndH
P Y ∗.

Since the covers W → A1 and Y → A1 agree locally over Spec
(
k((x−1))

)
,

their thickenings W ∗ and Y ∗ agree locally over Spec
(
k((x−1))

)∗; hence so do W ∗

and B∗ (over Spec(K̂X1,τ )∗). Since the base space T ∗ is fibred over P1
k[[v]], we may

apply the formal patching theorem in section 2 [Ha2, Thm. 1] to IndG
HB∗ and

IndG
QW ∗, in order to cut out copies of Y ∗ from B∗ and paste in copies of W ∗.

This yields an irreducible G-Galois cover of T ∗. Its general fibre is an irreducible
G-Galois cover of the s-line P1

K that is branched only at (s = 0) and (s = ∞),
with inertia groups C and H respectively. This solves the problem over K, and
using the Lefschetz principle we obtain SAC for A1

k − {0}.
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The above proof used formal patching, but it is also possible to prove SAC
for A1

k − {0} using rigid methods. Namely, Raynaud has observed that his result
on Runge pairs discussed in section 3.2 above [Ra2, Cor. 4.2.6] can be generalized
in a way that can yield the rigid analog of the above construction. See the Remark
after [Ha6, Prop. 5.2] for a further discussion of this.

Section 4: Complements and open problems.
4.1: Structure of π1. Abhyankar’s Conjecture describes πA of an affine curve of
type (g, r) in characteristic p, and in particular shows that it depends only on the
integers (g, r). But the fundamental group π1 of an affine curve in characteristic p
remains unknown, even for the affine line. Moreover π1 depends on the cardinality
of the field k, since covers in characteristic p can have “moduli” (e.g. consider the
family yp− y = tx of p-cyclic covers of the affine x-line, parametrized by the t-line
with (t = 0) removed.) And even for a fixed algebraically closed field k, π1 does
not simply depend on the type (g, r). Indeed, even two affine curves of the form
P1 − {0, 1,∞, λ} can have non-isomorphic π1’s [Ha7, Theorem 1.8].

Also, for U = X−{ξ0, . . . , ξr} and G ∈ πA(U), it is unknown which subgroups
Gi ⊂ G can be inertia groups over ξi of G-Galois branched covers of X that are
étale over U . For U = A1, it is known that the inertia group can be taken to be a
p-group (by Abhyankar’s Lemma), and in general it is known that if a p-subgroup
can be an inertia group then so can every larger p-subgroup [Ha5, Thm. 2]. Hence
the Sylow p-subgroups can be inertia over infinity for covers of A1. There is also
an obvious necessary condition on a subgroup of a quasi-p-group to arise as inertia
over infinity [Ha7, Prop. 1.4]. But it is unclear if this is sufficient.

4.2: Anabelian conjecture. The discussion in 4.1 suggests the following problem:
For given values of g, r ≥ 0, consider the moduli space Mg,r+1 of smooth k-curves
of genus g with r + 1 points deleted. Is there a dense open subset of Mg,r+1 on
which π1 of the corresponding affine curves is constant? Or, at the other extreme,
does π1(U) essentially determine the curve U? In particular, if π1(X1) ≈ π1(X2),
where Xi is a curve of genus gi with ri > 0 points deleted, then must g1 = g2 and
r1 = r2? Also, must X1 and X2 be isomorphic over the prime field? If k is the
algebraic closure of a finite field, a more precise version of this question is given
by Grothendieck’s “anabelian conjecture,” which here says:
Conjecture. [Gr3] Is an affine curve X over Fq determined up to Fq-isomorphism
by π1(X) together with the surjective homomorphism π1(X) → Gal(Fq/Fq)?
An analogous result of Nakamura [Nm] provides support for this: Two open subsets
of P1

Q are isomorphic if and only if their fundamental groups are isomorphic as
Gal(Q/Q)-modules. Also, birational versions of the conjecture have been proven
by Uchida [Uc] and Pop [Po1], and a birational version for number fields (rather
than for function fields of curves, as above) is due to Neukirch [Ne].

4.3: Projective case. Although there is no conjecture describing πA of a projective
curve X of genus g > 1, Grothendieck [Gr2, XIII, Cor. 2.12] showed that π1(X)
is some (unknown) quotient of π1 of a complex curve of genus g, and he gave an
explicit presentation of the maximal prime-to-p quotient of π1(X). Thus π1(X) is
finitely generated, and so is determined by πA(X) [FJ, Proposition 15.4].
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For a given genus g ≥ 1, curves with unequal p-rank (Hasse-Witt invariant)
have distinct π1’s; while for g ≥ 2, even the genus and p-rank do not determine
π1 (or πA) [Kt], [Nj1]. Also, Nakajima [Nj2] has found a necessary condition for
a group G to lie in πA(g) = {G ∈ πA(X) | genus(X) = g}, viz. that the ideal
{
∑

γ∈G aγ · γ |
∑

aγ = 0} ⊂ k[G] has g generators.
Recently, formal and rigid patching methods (as in sections 2 and 3) have been

used to obtain more information about πA(g). In their 1994 theses, K. Stevenson
[St] and M. Säıdi [Sa] have found quotients of π1 that are “bigger” than the
profinite group on g generators. In particular, πA(g′) ⊃ πA(g) whenever g′ ≥ g;
and πA(g) contains all finite groups that have g generators (e.g. all finite simple
groups, if g ≥ 2), among others.

4.4: Embedding problems. Given a finite group G, a quotient map G → H, and an
H-Galois unramified cover of k-curves Y → X, we can ask if there is a G-Galois
unramified cover Z → X inducing Y → X. It is necessary that G ∈ πA(X), but
this is not sufficient; cf. the proof of Serre’s result on AC for solvable groups (see
section 3.1 above) in the split case with N an elementary abelian l-group, l 6= p.

On the other hand, if we instead permit branched covers, then this embedding
problem can always be solved [Ha8], [Po3] using a patching construction (in fact,
with some control on the additional branching). Moreover, for each such embedding
problem, the cardinality of the set of solutions is equal to that of the base field k.
As a result, the absolute Galois group of the function field of X is a free profinite
group. This proves the function field version of a conjecture of Shafarevich: If K is
a global field, then the absolute Galois group of its maximal cyclotomic extension
is free profinite. This conjecture remains open in the number field case.

4.5: Other base fields. Let Φ be the class of fields K such that every finite group
is the Galois group of a (geometrically irreducible) Galois branched cover of P1

K .
It is classical that C ∈ Φ. By [Gr2, XIII, Cor. 2.12] and Abhyankar’s Conjecture,
every algebraically closed field is in Φ. Earlier [Ha2], this was shown (with less
control on branching) by formal patching. Similarly [Ha3], the author showed that
if R is the completion (or henselization) of a domain at a non-zero maximal ideal,
then K = frac(R) is in Φ. In particular, Qp and the algebraic p-adic field lie in Φ,
as do k((t)) and the algebraic Laurent series field (for any field k).

Many other fields lie in Φ, including the fields Qtr of totally real [DF] and
Qtp of totally p-adic [De] algebraic numbers, as well as PAC fields (see [FV] in
the characteristic 0 case). More generally, k ∈ Φ (and even a stronger condition
holds, concerning embedding problems [Po2, Thm. 1.5]) if k is existentially closed
in k((t)), or equivalently if every geometrically irreducible k-variety with a k((t))-
point has a k-point. (PAC fields are trivially existentially closed; Qtr and Qtp

are by [GPR,1.4] and [Po2, Lemma 1.8].) The reason is that k((t)) ∈ Φ, so there
is a domain A ⊂ k((t)) of finite type over k and a G-Galois cover Z → P1

A

whose k-fibres Z0 → P1
k are irreducible. Since A ⊂ k((t)), the k-variety Spec(A)

is geometrically irreducible, and taking a k-point yields that k ∈ Φ.
Combining model theory with the above fact that PAC fields lie in Φ yields

the following conclusion (observed by Jarden, Fried-Völklein, and Pop): If G is
a finite group, then G is the Galois group of a branched cover of P1

F for all but
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finitely many finite fields F . But it remains unknown whether finite fields lie in Φ.
Similarly, it is unknown if number fields lie in Φ. But by “rigidity,” Matzat,

Belyi, Thompson, Feit, Fried, Malle, Völklein et al. have realized many finite groups
as Galois groups over P1

Q and hence over Q. See [Se2, Chap. 8] for more details.
Another approach to the problem over Q [Ha4] used formal patching to find,

for G any finite group, G-Galois (ramified) extensions of domains over Z[[t]] and
Z{t} := {f ∈ Z[[t]] | f converges on |t| < 1}. (These rings are analogous to k[x][[t]]
and k[[t]][x].) Such a G-Galois extension of Z{t} induces G-Galois extensions of
Zr+[[t]] := {f ∈ Z[[t]] | f holomorphic on |t| ≤ r} for all 0 < r < 1, and these
descend to a compatible system of G-Galois extensions of the subrings Zr+[[t]]h of
algebraic power series. It is tempting to expect that these extensions are induced
by a G-Galois extension of Z{t}h, the ring of algebraic power series in Z{t}. Since
Z{t}h is a subring of Q(t), this would imply that Q ∈ Φ. Unfortunately not all
such systems of extensions descend to Z{t}h, but it would suffice to have at least
one such system descend for each G. Cf. [Ha4].

Given the fields that are known to be in Φ, and the expectation that number
fields and finite fields are in Φ, the following conjecture seems reasonable:
Conjecture. Every field lies in Φ. Hence every finite group is a Galois group over
every field of the form K(x), and also over every Hilbertian field.
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