FINITENESS OF FORMAL PUSHFORWARDS

DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN

ABSTRACT. Under mild hypotheses, given a scheme U and an open subset V' whose com-
plement has codimension at least two, the pushforward of a torsion-free coherent sheaf on V'
is coherent on U. We prove an analog of this result in the context of formal schemes over a
complete discrete valuation ring. We then apply this to obtain a result about gluing formal
functions, where the patches do not cover the entire scheme.

1. INTRODUCTION

If 7: V — U is an inclusion of an open subscheme of a scheme U, then the map j,, which
carries sheaves of modules on V to sheaves of modules on U, preserves quasi-coherence but
not necessarily coherence. For example, if U is the affine x-line over a field k£, and V is
the complement of the origin, then j,(Oy) is not coherent because its global sections are
k|z,z~1], which is not finite over O(U) = k[z].

But for a normal connected quasi-projective variety U, if the sheaf if torsion-free and
the complement of V' in U has codimension at least two, then coherence is preserved under
pushforward (see Theorem where the hypotheses on U are weaker). In this paper, we
prove the following analogous result in the context of formal schemes over a complete discrete
valuation ring 7'

Theorem (see Theorem . Let Z" be a normal connected quasi-projective T-scheme, and
let f:V <= U be an inclusion of non-empty open subsets of the reduced closed fiber of X
such that the complement of V' in U has codimension at least two in U. Write U,*T for the
formal completions of Z" along U, V. If F is a torsion-free coherent sheaf on G, then f.(F)
1S a torsion-free coherent sheaf on il.

A motivation for proving this result comes from patching problems for modules. Such
problems arise, for example, in the context of an affine open cover of an affine scheme or
formal scheme, where one gives compatible finite modules over the ring of functions on these
subsets, and asks for a finite module over the ring of global functions that induces the data
compatibly. Patching problems have been useful in obtaining results in Galois theory and
local-global principles; e.g., see [Ha94|, [HHI10|, [HHKO09|. Those papers considered projective
curves over complete discrete valuation rings and their function fields. In that situation, the
closed fiber (which is the underlying topological space of the associated formal scheme) can
be covered by just two affine open subsets. As a result, in patching formal modules on open
subsets to obtain a global formal module, one can avoid the difficulty of having to satisfy
cocycle conditions arising from triple overlaps. On the other hand, in higher dimensional
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cases, a quasi-projective variety need not have an open covering by just two affine open
subsets. But on any quasi-projective variety, one can find two affine open subsets such
that the complement of their union has codimension two. As a consequence, the result we
prove here makes it possible to patch finite torsion-free formal modules on those affine open
sets, thereby obtaining a global finite torsion-free module that restricts to the given formal
modules on the affine open sets, without having to satisfy cocycle conditions. Namely, via
Theorem [6.6, we prove in Corollary that there is a unique maximum torsion-free solution
to a patching problem of finite torsion-free formal modules defined away from codimension
two, and that the solution is given by intersection. Moreover, in Corollary we show that
in the flat (or equivalently, locally free) case, this solution is unique.

Structure of the manuscript: We provide background and context in Section [2] fol-
lowed by two commutative algebra results in Section [3| and general results on formal schemes
and formal patches in Section Using that material, in Section [5| we obtain a key result
(Proposition that asserts that the intersection of two finitely generated torsion-free for-
mal modules is also finitely generated under a codimension two hypothesis on the complement
of the union. In Section [6] we first show that for formal schemes, as for schemes, pushforward
preserves quasi-coherence. Afterwards we obtain Theorem [6.6] mentioned above, in which
the key property to prove is finiteness. A version of that result with a stronger conclusion
is proven in Section [7| in the situation in which the modules are assumed to be flat, rather
than just being torsion-free; see Theorem Finally, in Section [§, patching problems are
discussed, and Corollaries [8.3] and [8.4] shown.

Acknowledgements: We thank Craig Huneke for helping us with the commutative al-
gebra Lemma [3.1] and Johan de Jong for pointing us to a result in the Stacks Project that
yields Theorem [2.1]

2. BACKGROUND AND CONTEXT

We begin by fixing some terminology.

Following [EGA4, Partie 2, Proposition 5.1.2] and [EGA4] Partie 1, Chapter 0, Défini-
tion 14.2.1], if X is a scheme then the codimension of a closed subscheme Y C X is the
infimum codimx (Y") of the Krull dimensions of the local rings Ox, over y € Y’; this is also
the infimum of the codimensions of the irreducible components of Y. Under this definition,
the codimension of the empty set is infinite. Given closed subschemes Z CY C X, we have
codimy(Z) > codimy (Z) + codimx (V).

Given a commutative ring R (not necessarily a domain), recall that an R-module M is
torsion-free if no regular element of R annihilates any non-zero element of M; or equivalently,
if M - M ®g K is injective, where K is the total ring of fractions of R. E.g., see [Vas6§|,
Section 1|. As in [EGA4| Partie 4, 20.1.5|, a sheaf of modules F on a scheme X is torsion-
free if the natural homomorphism F — J ®o, Mx is injective; here Mx is the sheaf of
meromorphic functions on X. This is equivalent to the condition that F(U) is a torsion-
free Ox(U)-module for every affine open subset U of X; thus torsion-freeness is local. By
[EGA4, Partie 4, Proposition 20.1.6], being torsion-free is also equivalent to the condition
that every associated point of F is an associated point of Ox. (Recall from [EGA4, Partie 2,
Définition 3.1.1] that a point = of X is an associated point of F if the maximal ideal m, C Ox

is an associated prime of the Oy ,-module F,; i.e., is the annihilator of an element of JF,.)
2



Rings that one typically encounters tend to be excellent, meaning that several mild but
technical conditions hold. Specifically, a G-ring is a Noetherian ring R such that the map
R, — R, is regular for every prime ideal p of R, where R, is the completion of the local ring
R,. A Noetherian G-ring with the J-2 property (see [Mat80), 32.B]) is called quasi-excellent,
and a quasi-excellent ring that is universally catenary (see [Mat8(), 14.B|) is called ezcellent
(see [Sta25l Definition 07QT].) By [Mat80, Theorem 78]), quasi-excellent rings are Nagata
rings (see the definition at [Mat80, 31.A]). Noetherian complete local rings are excellent, and
excellence is preserved under localizing and under passage to a finitely generated algebra
(see [Mat80), Section 34|). A scheme is excellent if it can be covered by affine open subsets
U; such that each of the rings Ox(U;) is excellent (see [Liu02, Definition 8.2.35]); these
are automatically locally Noetherian. One similarly defines schemes that are Nagata, are
universally catenary, etc.

If f:V — U is a quasi-compact and quasi-separated morphism of schemes (e.g., an
inclusion of Noetherian schemes), and if F is quasi-coherent on V', then f,(F) is quasi-
coherent on U (see [Sta25, Lemma 01LC|). For coherent modules, there is the following
result, which is known to the experts, and which is essentially a special case of [EGA4,
Partie 2, Corollaire 5.11.4(ii)] and [Sta25, Lemma 0AWA] (as Johan de Jong pointed out to
us). Note that this theorem holds in particullar in the case mentioned in the introduction,
viz., of a normal connected quasi-projective scheme U, since normal (and integral) schemes
are reduced, and since quasi-projective varieties are excellent (by [Mat80, Section 34]).

Theorem 2.1. Let U be a reduced scheme that is excellent (or more generally, Nagata
and universally catenary). Let j : V — U be the inclusion of an open subset such that the
complement of V' in U has codimension at least two in U. Then for any torsion-free coherent
sheaf F on V', the pushforward j.(F) is a torsion-free coherent sheaf on U.

Proof. As noted above, for F a torsion-free coherent sheaf on V', the associated points of F are
also associated points of Oy, or equivalently of V. Note that U is locally Noetherian, being
Nagata. Since V is an affine open subset of the reduced scheme U, both V' and its ring of
functions Oy (V') are reduced, by [Sta25l, Lemmas 01J1, 01J2]. So by [Sta25, Lemmas 0EMA,
05AR], the associated points of V' are those of codimension zero. Thus this holds for the
associated points of F.

By hypothesis, the complement Z of V' in U has codimension at least two in U. Also,
by the previous paragraph, for every associated point x of F, the closure m of {x} in U
is an irreducible component of U. It then follows that for every associated point x of JF,
the codimension of Z N {z} in {z} is at least 2; or equivalently, dim(O; ) > 2 for every
z € ZN{x}.

As a consequence, since U is Nagata and universally catenary, we obtain that j.(F) is
coherent on U, by applying [Sta25, Lemma 0AWA| (or alternatively [EGA4, Partie 2, Corol-
laire 5.11.4(ii)]; see also [Sta25, Proposition 0334]).

Next, we show that j.(F) is torsion-free on U; i.e., 7.(F)(O) is a torsion-free Oy (O)-module
for every affine open subset O of U. Since the torsion-free property is local, we may assume
that U is the spectrum of a reduced ring R, and prove that j.(F)(U) is a torsion-free R-
module. Note that by [Sta25, Lemmas OEMA, 05C3|, the set of zero-divisors in R is the
union of the minimal primes of R; or equivalently, the set of elements of R that vanish at

the generic point of some irreducible component of U.
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Now let m be a non-zero element of M := j,(F)(U) = F(V) and let r be a regular element
of R. We wish to show that rm # 0. Since m is non-zero in F(V'), there is a non-empty
affine open subset V’ = Spec(R') C V' C U such that the restriction m’ of m from V to V'
is non-zero in F(V’). Since r is regular in R (i.e., not a zero-divisor), it does not vanish at
the generic point of any irreducible component of U. Thus the image ' of r» in R’ does not
vanish at the generic point of any irreducible component of V' = Spec(R’) (since the latter
set of generic points is contained in the former set). As above, since U is reduced, the ring
of functions R’ on the affine open subset V' C U is reduced. So r’ is a regular element of
R'. But F(V’) is a torsion-free module over R = Oy (V’), since JF is a torsion-free sheaf
on V. Hence "m’ # 0 in F(V’). Since r'm’ is the image of rm under the restriction map
M =3F(V) — F(V'), it follows that rm # 0 in M, as needed. O

To illustrate the role of the torsion-free condition on coherent sheaves here (or more gener-
ally, the condition on associated points), let V' be the complement of the origin in the affine
x,y-plane U over a field k, and let F = j*(0/J), where J is the sheaf of ideals on U induced
by the ideal (y) C k[z,y] = O(U). The pushforward j.F is not coherent on U, since again
its global sections are k[z,z~!]. Here the complement Z of V in U has codimension two,
but F is not torsion-free, since it is y-torsion, with (y) an associated point. Moreover Z is
of codimension one (not two) in the closure of the associated point (y).

In Section [0, we consider the analogous situation of pushforwards of quasi-coherent and
coherent sheaves of Oy-modules on a formal scheme 4 over a complete discrete valuation
ring 1. See Proposition for the quasi-coherent sheaf result and Theorem for the
coherent sheaf result. In the coherent formal situation, we again assume that the sheaf is
torsion-free, meaning that its sections over each affine open set V' of the underlying space
U form a torsion-free module over Oy(V'). Without the torsion-free assumption, one can
construct counterexamples similar to the one above, by taking the t-adic completion of the
base change of the above example from k to k[[t]].

The proof for quasi-coherent formal sheaves parallels the proof for quasi-coherent sheaves
on schemes. But the proof for coherent sheaves in the formal situation is more involved
than the proof over schemes. Namely, suppose we are given a torsion-free coherent sheaf
Z on a formal scheme 4 as above, with U,, being the n-th thickening of the reduced closed
fiber. It is tempting to try to apply the scheme-theoretic result [Sta25, Lemma 0AWA| (or
IEGA4, Partie 2, Corollaire 5.11.4(ii)]) to the pullback F,, of .# to each U, and to use that a
coherent sheaf on 4 corresponds to an inverse system of coherent sheaves on the schemes U,
that has surjective transition functions (see [Sta2b, Lemma 087W]). But the difficulty is that
F,, need not be torsion-free, and may have new associated points of positive codimension in
Up,; and this would prevent the use of the above results. (See also Remark ) Instead,
in Section [5, we follow a strategy that relies on the commutative algebra lemmas proven in

Section [3} and we build on that in proving Theorem [6.6]

3. TWO GENERAL LEMMAS

Before turning to formal schemes, we prove some general results. The proof of the first
lemma was outlined for us by Craig Huneke in the case that [ is prime.

4



Lemma 3.1. Let R be a G-ring that is a normal domain, let I be a proper ideal in R, and
let M be a finitely generated torsion-free R-module. Let Py, ..., Ps be the minimal primes
over 1.

(a) For everyi > 0 there is an n > 0 such that M N P"Mp, N--- N P"Mp, C I'M.
(b) In particular, for every integer ¢ > 0 there is some n > 0 such that if r € R and m € M
satisfy rm € I"M then either r € P; for some j or m € I1°M.

Proof. The radical v/T of I is the ideal P, N ---N P,, and by [AMG69, Proposition 7.14] there
is an integer o such that /I C I. Thus for part (a), it suffices to prove the assertion with
I replaced by v/I. So we will assume that I is the intersection of the prime ideals P;, and
will proceed by induction on s.

If s =1, then [ is a prime ideal P. First consider the special case that M = R. In this
situation, for each positive integer n, M N P"Mp is just the nA—th symbolic power P :=
RN P"Rp of P. Since R is a normal G-ring, the completion R of R at each prime ideal
@@ C R is also normal, by [Mat80), 33.1]. Since }A%Q is normal and local, it is a domain, and
its only associated prime is (0). Since this holds for all @, [Sch85, Theorem 1] asserts that
the P-adic topology on R defined by the ideals P" is equivalent to the P-symbolic topology
defined by the ideals P™. (Namely, the condition in part (i) of that theorem holds because
the annihilator ideals () considered there properly contain P, and the only associated prime
of the complete local ring at @ is (0).) Hence part (a) follows in this special case.

Next, still with s =1 and I = P, consider a more general finitely generated torsion-free
R-module M. By [Sta25, Lemma 0AUU]|, M is contained in a finitely generated free R-
module E. By the Artin-Rees lemma (e.g., [Sta25, Lemma 00IN]), there is a positive integer
d such that for every e > d, M N P°E = P*~4(M N P*E) C P*~4M. Take i > 0. By the
previous paragraph, there exists n > 0 such that R N P"Rp C Pi*¢. Thus the free module
E satisfies EN P"Ep C P?E. Here M C E and so Mp C Ep. Hence

MNP"Mp=MNENP"MpC MNENP"Ep C MnNPHE C PM,

at the last step using Artin-Rees with e = ¢ + d. This proves the case s = 1.

For the inductive step, take I = P, N --- N P, and assume that the assertion holds for
J:=PN---NP,_y. Here I = P,NJ. We will prove that for every 7 there is an n such that
MO P!Mp, (N ---NP*Mp, C I'M. So take some i > 0. By the inductive hypothesis, there
is an n’ > 0 such that M N PY Mp N--- N PY Mp_, € J'M. By the above case of s = 1
applied to the finitely generated torsion free module J'M and the ideal P;, there is some
m > 0 such that J'M N P™J'Mp, C P:J'M. Since Py, ..., P, are the (distinct) minimal
primes over I, no P; is contained in F; for j < s. Thus J = P, N---N P,_; is also not
contained in P;, by [AM69, Proposition 1.11(ii)]. Hence JRp, is the unit ideal of Rp,, and
J'Mp, = Mp,. We now have M N PP Mp, N---NP* Mp_, N P"Mp, C J'M N P"Mp, =
JM N P™J'Mp, C PLJM = (PJ)'M C (PN J)'M = I'M. Let n = max(n/,m). Thus
MAOP!Mp, 0N---NP'Mp, CMNOPYMp,0---NPY Mp_, 0N P"Mp, C I'M, and this
concludes the inductive proof of part (a).

For part (b), let n > 0 be associated to the value i = ¢ as in part (a). Suppose r € R and
m € M satisty rm € I"M. Thus rm € P}"Mp, for all j. If r does not lie in any P;, then r is
a unit in each Rp; and som € P]”ij for all j. Hence m € MNP'Mp, N---NP'Mp, C I°M
by part (a). O
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Lemma 3.2. Let R be a normal G-ring that is complete with respect to a non-zero principal
ideal I = (t), and let M be a non-zero finitely generated torsion-free R-module. Let Py, . .., P;
be the minimal primes over I, and for each j =1,...,s andi > 1 write P;R; for the image of
P;in R; = R/I'. For eachi > 1 also write M; = M/I'M, and let Q; be the set of elements
q of the R;-module M; such that ann(q) is not contained in any of the ideals P/ R;, - -+ , PsR;.

Then the following hold.

(a) Q; is an R;-submodule of M;, and each q € Q; satisfies ann(q) € PIR; U---U P,R;.

(b) Every associated prime of the R;-module N; :== M;/Q; is of the form P;R; with1 < j < s.

(c) The inverse system {M;} induces inverse systems {Q;} and {N;} by restriction and
quotient.

(d) If m; € M; and t°m; € Q; for some ¢ < i, then the image of m; in M;_. lies in Q;_.

(e) There is a positive integer n such that for every i, Q;_11n, — Q; is the zero map.

Proof. Recall that every Noetherian normal ring is a finite product of Noetherian normal
domains; see [Sta25, Lemma 030C|. Hence we may write R = R x ... x R® where each
factor is a Noetherian normal domain; and correspondingly, we have M; = Mi(l) X +ee X Mi(s),
Q; = le) X oo X Qgs), and N; = Ni(l) X oo X Ni(s). Here the associated primes of N; are
the union of the associated primes of Nz-(l), e ,Ni(s). Thus in order to prove the lemma in
general, it suffices to prove it in the special case in which R is a domain, by applying the
special case to each factor. Here, for the proof of part (e), we can take n to be the maximum
of the values n™, ... n® corresponding to the factors.

So for the remainder of the proof we assume that R is a domain.

Since each ideal P; C R is prime and contains I, it follows that P;R; C R; = R/I" is also
prime. Thus if ¢ € @; then ann(q) is not contained in II; := P/ R; U --- U P;R;, by prime
avoidance. Now take q1,¢q2 € @;. Since ann(g;) € II;, there exist elements ri,79 € R; N\ 11;
that annihilate q;, ¢o respectively. So riry € R; is not in II; and it annihilates ¢; + ¢o. Also,
for any r € R;, the above element r; € R; ~ II; annihilates rq;. Hence ¢; + ¢2 and rq; lie in
Q;. So Q; is an R;-submodule of M;, proving (a).

We claim that for every non-zero element m = m+Q; € N;, with m € M;, the annihilator
of m is contained in one of the ideals P R;,--- , P;R; C R;. Again by prime avoidance, this
is equivalent to the assertion that this annihilator is contained in the above set II;. To prove
that this containment holds, suppose that m € N; does not have this property; i.e., there
exists r € R; that is not in II; and such that rm € @Q;. Thus, as in the previous paragraph,
there exists s € R; such that srm = 0 € M; and s is not in II;. But then sr € R; is also not
in II;. So m € @; and thus m = 0. This proves the claim.

So every associated prime of N; is contained in some P;R;, j = 1,...,s. But each P; is
a minimal prime over I and hence over I*; thus P;R; is a minimal prime of R;. Therefore
every associated prime of the R;i-module N; is among P\ R;,- -+ , P;R;, proving (b).

Since (t) C P;, the surjection M; — M, ; restricts to a map Q; — @Q;_1, and so the
modules @); form an inverse system. It follows that the maps Q); — @Q;_1 yield well-defined
surjections N; — N;_1, so that the modules N; also form an inverse system. This proves (c).

By [Sta25, Lemma 00MA, (3)], we have M = M ®r R = M ®pg liinRi = liin M;. This
proves the first part of ().
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For part (d), by induction we are reduced to the case that ¢ = 1, with ¢ > 2. So suppose
that m; € M; and tm; € ;. Let m € M be an element such that m; is the image of m in
M;. By definition of @Q;, there exists r; € R such that ritm € t*M and 7; € P\ R;, ..., P,R;,
where 7; € R; is the image of r;. Thus r; € Py,..., Ps; and since each P; contains ¢, the
image of 7; in R;_; is not in any P;R;_;. Write ritm = t'm’ for some m’ € M. Since M is
torsion-free, and since the non-zero element ¢ is regular (because R is a domain), it follows
that r;m = t""!'m’; hence the image of m; in M;_; lies in Q;_;. This proves (d) in the case
¢ =1, and hence in the general case.

Next, we show that (e) holds for the integer n obtained by setting ¢ = 1 in Lemma 3.1{(b).
We first treat the case of (e) where i = 1; i.e., we show that the image of @, — @ is trivial.
Namely, given a non-zero element m,, € Q),, C M,,, we may choose m € M lying over my,,;
and then there exists r € R such that rm € t"M and r & P;,..., Ps (as in the previous
paragraph). By the defining property of n, it follows that m € tM. Hence the image of m
in M, is trivial. But this element is the same as the image of m,, in ¢)1; and so this proves
(e) in the case i = 1.

For a more general value of ¢ in the assertion of (e), suppose for the sake of contradiction
that m, ;1 € Qunii1 € M,,; 1 is an element whose image m; € ); C M, is non-zero.
Pick a representative m € M of m,,;_;. Then m & t*M. So there is a maximum integer
d > 0 such that m € tM, and d < i. Thus we may write m = tim’ for some m’ € M
such that m' & tM. Let m/,_, , be the image of m' in M, ;_1. Thus t*m} ., | = my4;1 €
Qnti—1 © My4i—1; and so the image m)_, ;4 of m;_; ; in M, ; 1_q lies in Qpnyi—1—q4, by
part (d). Let m, € @, C M, and m| € @; € M, be the images of m/_, ; ;. (Note
that n+i—1—d > n > 1.) Thus m/ is the image of m/; and m}| # 0 € My = M/tM
because m' & tM. But by the previous paragraph, the image of @, — @ is trivial. This
contradiction proves (e).

Part (e) implies that li(in Q: = 0, which is the second part of (f). For the third part of (f),

note that part (e) implies that the inverse system {Q,,} satisfies the Mittag-Leffler condition

(see [Sta25l Section 0594]). Since 0 — Q; — M; — N; — 0 is exact, it then follows from

[Sta25, Lemma 0598] that 0 — lim@Q; — M — lim N; — 0 is exact. Since lim @); = 0, the
— — pa

map M — lim NV, is an isomorphism, as asserted. This completes the proof in the case that
&

R is a domain, and thus also in the general case. ([l

4. FORMAL SCHEMES AND PATCHES

Let T be a complete discrete valuation ring with uniformizer ¢, and let 2 be an integral
normal T-scheme of finite type having function field F. Let X := 27 be the reduced
closed fiber of 2", where Z; is the fiber of 2 over the closed point s of Spec(T'). Given an

open subset  C 4, we may consider the t-adic completion O 4 (%) of the ring Oy (% ).
Also, given any subset U of X, we may take the subring O v = (\pcy O ,p of F' consisting
of the rational functions on e%: that are regular at every point of U; this is normal since each
local ring O 4 p is. We write O 4y for its t-adic completion.

Consider the formal scheme X = 27 x obtained by completing 2" along X, as in [EGAT,
Section 10.8]. The underlying topological space of the ringed space X is X; and the struc-
ture sheaf Oy is the inverse limit of the Oy -modules Oy, , where X, is the fiber of 2" over

Spec(T'/(t™)). This inverse limit is defined because the morphisms X — X, — X, are
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homeomorphisms by [EGAT, 5.1.2, 5.1.3|, and so the underlying spaces may be identified.
Similarly, we may identify the open subsets U C X with the open subsets { C X as topolog-
ical spaces (though not as ringed spaces). With U corresponding to i, we will often write
Ox(U) for the t-adically complete ring Ox(Ll). Similarly, we may write .# (U) for .7 (U), if
Z is a sheaf of Ox-modules. Here the structure sheaf of 4 is the restriction of that of X; and
so for an open subset V' C U, we have Oy (V) = Ox(V).

If U is an affine open subset of X, then the corresponding open subset U, C X, is also
affine, by [EGAI, Proposition 5.1.9]. Since the sheaf and presheaf inverse limits of sheaves
coincide, Ox(U) = liin Ox,, (Uy,); here Oy, (U,) = O0x(U)/(t"). Similarly, Ox(U) = 0x(U)/I,

where [ is the radical of the ideal tOx(U). In this situation, we will often write Ry for the
ring Ox(U). By part (c) of the next propos1t10n this generahzes the notation used in [HH10],
[HHKQ9], and later papers, where RU was used for the ring 0) 2 v in the case of a projective
normal T-curve 2 .

Proposition 4.1. Let T be a complete discrete valuation ring with uniformizer t, let 2~ be

a normal integral T-scheme of finite type, and let X be the formal completion of Z~ along its

reduced closed fiber X. Let U be a non-empty affine open subset of X.

(a) The natural map 65“] — 0x(U) is injective.

(b) Suppose that % is an affine open subset of & such that % N X = U. Then the natural
maps O (%) — 6315’[] — Ox(U) are isomorphisms.

(c) If 2 is a normal projective T-curve, then such a % exists, and so the natural map
Og.v — 0x(U) is an isomorphism.

Proof. The assertion is trivial if 2~ consists just of the fiber over the closed point of Spec(7T'),
and so we may assume that ¢ is a non-zero element of the function field F' of 2.

Let X, be the fiber of 2" over Spec(T'/t"), and as above let U,, be the affine open subset
of X,, corresponding to U under the homeomorphism X — X,. Since taking inverse limits
is left exact, in order to prove part (a), it suffices to show injectivity modulo ¢" for all n.
So take f € ﬁm/(tn) = 04 v/(t") that lies in the kernel of the map to Ox(U)/(t"). Let
f € 09 v C F be an element that maps to f. Thus the restriction of f to U, is zero. Hence
for every generic point n of U,, the image of fv in Oy, lies in the ideal (¢"), and so the
element g := f/t" € F lies in Oy, C F. Now for every point P € U, if p is a height one
prime of Q4 p, then the localization (Og p), is either of the form Oy, for some generic
point n of U,, as above (if t € p), or else of the form O 4 ¢ for some codimension one point
Q@ of 2 that is not a generic point 1 and whose closure meets U (if ¢ ¢ p). In either case g
lies in (O p),, in the latter case using that f € Oy p and that ¢ is a unit in (O p),. Since
O p is a normal Noetherian domain, it follows from [Eig95, Corollary 11.4] that g € Oy p
for each P € U. Hence g € (pey O2p = Oz . Thus f =1"g € 1"Oy y, and so [ = 0,
yielding part (a).

In part (b), since % is an affine open subset of 2" such that N X = U, we have that
O (Z)/(t") = Ox, (U,); and taking inverse limits yields that the map Oy (%) — Ox(U)
is an isomorphism. The inclusion U, — % induces a map Oy (%)/(t") — Ogu/({t") =
GZU/(t”) Since Qg (% )/(t") — Ox(U)/(t") factors through Q4 (%)/(t") = O v/(t"),

by taking inverse limits we find that the isomorphism 04 (U) — Ox(U) factors through
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Ox(U) — 6%7[]. Hence the map 6%,[] — 0x(U) is surjective. So by part (a) this map is
an isomorphism, concluding the proof of part (b).

To prove (c) we will show that an affine open subset % C 2" as above exists when 2~
is a normal projective T-curve. First consider the case where U is dense in X, so that
its complement S in X is finite. Since U is affine, this complement meets each irreducible
component of X. By [HHKIH, Proposition 3.3], there is a finite morphism ¢ : 2~ — PL
such that S is the inverse image of the point at infinity on the closed fiber P; (where k is
the residue field of T'). Thus U is the inverse image of A}. We may then take % C 2 to be
the inverse image of AL. This is affine because the morphism ¢ is finite and hence an affine
morphism.

For the proof of (c) in the more general case where U is not necessarily dense in X, let J
be the set of irreducible components of X that do not meet U. Since U is non-empty, J does
not contain every irreducible component of X. Thus by [BLR90, Section 6.7, Theorem 1,
Corollary 3, Proposition 4|, we may contract the components in J. That is, there is a proper
birational morphism 7 : 2~ — %, where % is a projective normal T-scheme, such that the
components of J each map to a point, and 7 is an isomorphism elsewhere. Thus U maps
isomorphically onto its image V', which is dense in the reduced closed fiber Y of #". So by
the above special case, there is an affine open subset ¥ C % such that ¥ NY = V. The
inverse image % = 7 '(¥) is isomorphic to ¥, and so it is an affine open subset of 2 .
Moreover its intersection with X is U. So % is as asserted. U

Remark 4.2. In Proposition (c), once we reduce as above to the case that U is dense,
we can construct % as follows (following the proof of the result [HHK15], Proposition 3.3]
that was cited above): At each closed point P € S = X \ U, take an element rp in the
maximal ideal of the local ring O 4 p such that rp does not vanish along any component of
the closed fiber passing through P. This defines an effective Cartier divisor on Spec(O4 p)
whose support passes through P, and which is the restriction of an effective Cartier divisor
Pp on 2" whose support meets X precisely at P. Here 2 := Y, o Zp is an effective
Cartier divisor on 2  whose support meets X precisely at S, and so in particular meets
each irreducible component of X. Hence the restriction D of & is X is ample (by [Liu02,
Chapter 7, Proposition 5.5]), and thus so is Z (by [Liu02, Chapter 5, Corollary 3.24]). Hence
some multiple of & is very ample, and so the complement of its support in 2" is affine. We
may then take % to be that complement.

In the case where 2" has dimension greater than one over 7', even if a given affine open
set U is not of the form % N X, one can still cover U by affine open subsets V' of that form,
since every point of U has such a neighborhood, by definition of the subspace topology. Here
a finite set of such subsets V' suffices, by quasi-compactness. The following lemma studies
the behavior of the corresponding rings.

Lemma 4.3. Let T be a complete discrete valuation ring with uniformizer t, let Z be a
normal integral T-scheme of finite type, and let X be the formal completion of 2 along its
reduced closed fiber X. Let U be an affine open subset of X.

(a) The natural map U — Spec(Ry) is a bijection on closed points.

(b) If V-C U is an affine open subset, then }A%V s flat over }A%U.

(¢) If Vi, ..., V,, C U are affine open subsets such that |J;_, Vi = U, then [[}_, Ry, is faith-

fully flat over Ry .
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Proof. Let I be the radical of the ideal tOx(U). Since Ry/I = Ox(U), the natural map
U— Spec(RU) induces a bijection between the maximal ideals of Ox(U) and the maximal
ideals of RU that contain I. But since RU is I-adically complete, the ideal I is contained
in the Jacobson radical of Ry (see [Mat&0, Proposition 23.G]), and hence in every maximal
ideal of Ry. So part (a) follows.

For (b), let X,, be the reduction of X modulo ¢", and let U,,V,, be the homeomorphic
images of U, V under X — X,,. Then V,, C U, is an inclusion of affine open subsets of X, by
IEGAT] Proposition 5.1.9], and so O, (V},) is flat over Ox, (U,,). Here Ox(U)/(t") = Ox, (Uy)
and similarly for V and V,,. By [Sta25, Lemma 0912], Ry = Ox(V) is flat over Ry = 0x(U).
So part (b) holds.

By part (a), every maximal ideal of Ry is of the form my p for some closed point P of
U= U?Zl V;. Here P lies on some V;, and so my.p is the contraction of the maximal ideal
my; p of }A%V Thus every maximal ideal of RU is the contraction of a maximal ideal of
I, Ry,. Also, 1T, Ry, is flat over Ry because each Ry, is, by part (b). Thus by [Bou72),
Proposition 1.3.5.9], [T\, Ry, is faithfully flat over Ry; i.e., part (c) holds. O

Lemma 4.4. Let T be a complete discrete valuation ring with uniformizer t, let Z be a
normal integral T-scheme of finite type, and let X be the formal completion of 2 along its
reduced closed fiber X. Let U be an affine open subset of X.

(a) The ring Ry is quasi-excellent and normal (and in particular, Noetherian).

(b) If U = % N X for some affine open subset %4 C Z, then }A%U is an excellent normal
ring.

(c) The ring Ry is a domain if and only if U is connected.

(d) If U is a disjoint union of affine open subsets U;, then the natural map Ry — I ﬁUi is
an 1somorphism.

Proof. Let £ be the radical of t]??U, and let U, C X, beAaS before. As noted be/fore Propo-
sition H, Ry = 0x(U) = lim Oy, (U), with Ox, (U) = Ry/(t") and Ox(U) = Ry/I. Since
<—

Ox(U) is of finite type over k, it is excellent, and in particular quasi-excellent. Hence ]%U
is quasi-excellent by a theorem of Gabber (see [KuSh21, Theorem 5.1]). This proves the

first part of (a), that Ry is quasi-excellent (and hence Noetherian). Note also that since
Ox(U) = Ry /I, we can identify U with the closed subset of Spec(ﬁU) defined by the ideal I.

Under the hypothesis of part (b), Ry = O, (%), by Proposition (b) Write % =
Spec(A) € 2. The inclusion ¢ : U < % corresponds to a morphism A — Ox(U) that
factors through the t-adic completion A = 0, (%) of A. That is, ¢ factors through Spec(ﬁU),
corresponding to the natural embedding U — Spec(ﬁU). By [Mat80), 34.B], T" is excellent;
hence so is O 4 (%), being a finitely generated T-algebra. So the t-adic completion EU of
O2 (%) is also excellent, by a theorem of Gabber (see [KuSh21, Main Theorem 2|). By
[Mat80, 33.1, 34.A], ﬁU is a normal ring, since it is the completion of the excellent normal
ring Oy (% ). This proves part (b).

For the last part of (a), concerning normality, recall that any affine open subset U of X is
the union of finitely many open subsets V; of the form ”// N X, with ¥} an affine open subset

of 2. By part (b), each Ry, is normal; hence so is 1L Ry,. Also, by Lemma ( ), 1L Ry,
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is faithfully flat over Ry. So by [Sta25 Lemma 030C], Ry is normal, completing the proof
of part (a).

Since Spec(}A%U) is normal, it is in particular reduced. So Spec(}A%U) is integral if and only
if it is connected. But since every connected component of Spec(ﬁU) contains a closed point,

it follows from Lemma (a) that Spec(Ry) is connected if and only if U is connected. Thus
part (c) follows.

Part (d) is immediate from the definition of ﬁU as Ox(U) together with the fact that Ox
is a sheaf. O

The next result further relates fiU to fiv, where V' C U are affine open subsets of X.

Lemma 4.5. Let T be a complete discrete valuation ring with uniformizer t, and let Z  be
a normal integral T-scheme of finite type, with reduced closed fiber X. Let V. C U be an
inclusion of non-empty affine open subsets of X.

(a) The contraction of every mzmmal prime ideal of RV 1s @ mintmal prime zdeal of RU

(b) Every regular element of RU has the property that its image is reqular in RV

(¢) The natural map RU — RV 18 injective if and only if V' meets each connected component
of U. In partzcular it is injective if Vois dense in U, or if U is connected.

(d) If the map RU — RV 15 m]ectwe it induces a well-defined injection between the total
rings of fractions of RU, RV

Proof. Since Ry is flat over Ry by Lemma (b) the going down theorem holds for this ring
extension by [Mat80, Theorem 5. D] Hence the contraction of every minimal prime ideal of

RV is a minimal prime ideal of RU

To prove part (b), we show that an element of EU that becomes a zero-divisor in EV is
already a zero-divisor in Ry. By Lemma ( ), the rings Ry and Ry are normal and in
partlcular reduced. Hence by [Sta25, Lemmas 0EMA, 05C3|, the set of zero-divisors in RV
(resp. Ry) is the union of the minimal primes of that ring. So if the image r’ € Ry of some
r e RU is a zero- d1v1sor in RV, then 7’ lies in a mlnlmal prime of RV By part (a), r lies in

a minimal prime of RU, and so is a zero-divisor in RU, as needed.
In part (c), the second assertion is immediate from the first. For the forward direction of

the first assertion, in the special case that U is connected, EU is a domain by Lemma (c),
and hence every non-zero element r € ]/%\U is regular. Thus by part (b) above, the image
of r in EV is regular and hence non-zero. Thus the map is injective. For the more general
case, let Uy, ...,U, be the connected components of U, and let V; = U; N'V. Thus each U,
and V; is an affine open set, with Ry = IL Ry, and Ry = IL Ry, by Lemma (d) By the
above special case, each ﬁUi — EV is injective. Hence so is ﬁU — ﬁv, showing the forward
direction. For the reverse direction, if V' does not meet some connected component Uj of U,
let r € Ry = I RU be the element given by 1in RU and by 0 in every other RU Then
the image of r in RV is 0, and so the map RU — RV is not_injective.

For (d), let Sy, Sy be the sets of regular elements in RU,RV Thus the total rings of
fractions of these rings are Ky = S RU and Kv =S, RV By part (b), the 1nJect10n
RU — RV restricts to an injection Sy — Sy. Thus RU — RV induces a L map Ky =5, RU —

SleV = K. This map factors through SU RV. Here SU RU — SU RV is injective because
11



localization is exact; and S, lﬁv — Sy lﬁy is injective because the elements of Sy are regular
in Ry. This proves (d). O

The next lemma controls the behavior of the principal ideal () in the rings corresponding
to different patches.

Lemma 4.6. Let T be a complete discrete valuation ring with uniformizer t, and let 2 be a
normal integral T-scheme of finite type. Let U be an affine open subset of the reduced closed
fiber X of 2, and let U’ C U be an affine dense open subset. Write R and R’ for RU and
RU/ respectively. For i > 1, let R;, R, denote the quotients ofR R by the ideals genemted
by t' in the respective rings. Let {Py,..., P} be the set of minimal primes over tR, and
write P]ﬁ’, P;R;. P;R; for the extension of P; to 1?2’, R;, R, respectively. Then

(a) The minimal primes over tR' are the ideals Pj}A%’ (G=1,...,s)

(b) P;R; is the contraction of P;R; to R;.

(¢) The ideal J; C R; defining the complement of Spec(R.) in Spec(R;) has the property
that J; R; is the unit ideal. Moreover, it is generated by (finitely many) elements that

are not in |J P;R;.
j=1

Proof. The natural map R — R'is an inclusion, by Lemma (C) The irreducible com-
ponents of the reduced closed fiber of Spec(R) are the integral schemes Y, := Spec(R/P;)

for j =1,...,s. The irreducible components of the reduced closed fiber of Spec(ﬁ’ ) are the
intersections Y} = U'NY; C U, each of which is non-empty because U’ is dense in U. Here

Y/ is the closed subset of Spec(ﬁ’) defined by the ideal Pjﬁ’, for j =1,...,s. So these are

the minimal primes of R’ over tR', showing (a).

Fix j. Since Y is a dense open subset of the integral scheme Y}, the natural map Ox(Y;) —
Ox(Y]) is an inclusion of subrings of the function field of Y (or equivalently of Y}). But
Ox(Y;) = R/P; = (R/t'R)/(P;/t'R) = R;/P;R;, and similarly Ox(Y]) = R}/P;R.. So the
map R;/P;R; — R;/P; R is an inclusion, for all . Hence ker(R; — R;/P;R}), which is the
contraction of P;R} to R;, is equal to ker(R; — R;/P;R;) = P;R;; showing (b).

The first part of (cf) is immediate because J;R; defines the empty subscheme of Spec(R}).
To prove the second part of , first choose any finite set of generators {si,...,sqs} C R; of

Ji. We will modify these generators so that none of them lie in |J PjR;.
j=1

Since the ideals P; are minimal over tﬁ, no P; contains any Py, for k& # j. By [AMG69,
Proposition 1.11(ii)], P; does not contain (,_; Fy; i.e., there exists p; € R such that p; is not
contained in P; but is contained in every other Fj,. Hence its image p; € R; is not contained
in P;R; (using that ¢ € P;) but is contained in P, R; for every other k.

Since U’ is dense in U, the ideal J; is not contained in any of the ideals P;R; (each of
which defines an irreducible component of U; := Spec(R;) and hence of U = U*d). By
prime avoidance (see [AM69, Proposition 1.11(i)]), J; is not contained in J; P;R;; i.e., there
exists ry € J; that is not in any P;R;,. For h = 1,...,d, let S, = {j|sn € P;R;}, and let
rn, = Sp + desh rop;. Then 7, does not lie in any P Rl, and the ideal J; is generated by

ro,71,---,7q. This proves the second part of (( . 0
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5. MODULES ON PATCHES

In this section, we build on the previous results to obtain Proposition [5.3] a key step in
the proof of our main theorem.

Lemma 5.1. Let T be a complete local domain and let & be a normal integral T-scheme
of finite type. Let U be a non-empty affine open subset of the reduced closed fiber X of 2,
and let V' be an affine dense open subset of U. Then for every finitely generated torsion-free
}T?U—module M, the natural map vy - M — M Dz, fiv 18 1njective.

Proof. Let Uy, ..., U be the connected components of U. So Ry = IL EUZ. by Lemma (d);
and each EUZ. is a Noetherian normal domain by Lemma (a,c). Since M is a finitely gen-
erated torsion-free fiU—module, it follows that M = [[, M;, where M, is a finitely generated
torsion-free ﬁU -module for each i. For every 4, the intersection V; := V NU; is an affine open
dense subset of U;; and V is their d18301nt union. Thus RV =1L RV, and . decomposes as
a product of maps ty; : M; = M, ®5 R, RV So by considering each pair RU, RV, we are

reduced to the case where U is Connected and RU is a Noetherlan domain.

Let Ky, Ky be the total rings of fractions of RU and RV, thus Ky is the fraction field
of RU. Since V' is dense in U, we have a natural injection Ky — Ky by Lemma (c,d),
and so Ky is a Ky-module. The composition M — M Dz, P:V — M Dz, P:V Dz, Ky =
M Rz, Ky, also factors as M — M Rz, Ky - M Rz, Ky ®g, Ky = M Rx, K. Here
the map M — M ®z, Ku is injective because M is torsion-free over ]?EU; and the map
M D%, Ky — M D7, Ky ®g, Ky is injective since M D%, K7 is flat over the field K. So
the composition of these maps is injective. But the above two compositions are equal, hence
the map M — M Or, ﬁv is injective. U

Lemma 5.2. Let K be a complete discretely valued field with valuation ring T and uni-
formizert. Let 2" be a normal integral T-scheme of finite type, and let U be an affine open
subset of the reduced closed fiber X of Z . Consider an affine open subset U' C U that is
dense in U. Write R and }A% for }A%U and }A%U/ respectively. Let M be a finitely generated
E-module, let M' = M ®5 R’ and let R;, M;, Q;, N; (resp., R:, M!, Q. N!) be the rings and
modules given by Lemma,for these two modules, with respect to the ideal tR (resp., tﬁ’).
Then the natural map R; — R} induces a commutative diagram

EoE b

0 > Q) > M > N/ > 0

with exact rows.

Proof. First note that R and R’ are quasi-excellent normal rings by Lemma ( ), and in
particular they are G-rings. So Lemma[3.2]does in fact provide us with the data Rl, M;, Q;, N,
and R}, M/, Q;, N/ as in the above assertion. Moreover, R — R’ by Lemma ( ).
For each 1, RZ = R/L”R = O(U;) and R, = R’/tZR/ = O(U}), where U;, U] are the homeo-
morphic images of U, U’ C X in the mod ¢ reduction X; of 2". Since U! = Spec(R}) is an
13



open subset of U; = Spec(R;), the ring R is flat over R;. Thus the exact sequence
0—Q; — M;— N; —0
from Lemma 3.2 yields an exact sequence
0— Q;®g, R, - M; ®g, R, = N; ®g, R, =0

as in the top row in the diagram above. Similarly, the bottom row is exact by Lemma [3.2]
Using the definition of M’, we have isomorphisms

M; ®p, R, = M @5 R; ®p, R, > M @z R, ~5 M ®5 R @5 R, 5 M' ©5 R, > M..

Let Py, ..., Ps denote the minimal primes over the ideal (¢) in R. Thus the minimal primes
over tR' are the ideals Pjﬁi’ , by Lemma @) For any element m € M; that lies in @,
the annihilator of m in R; is not contained in P;R; for any j, by definition of );. Thus by
Lemma (]ED, this annihilator is also not contained in P;R; for any j. Hence the image of
the inclusion @Q); ®g, R; = M; ®p, R; is contained in @}. This gives the left hand vertical
arrow (); ®p, R, — @}, which is then injective; and it also gives the right hand vertical arrow
N; ®g, R, — N/ such that the diagram commutes. We claim that the map Q; ®g, R, — Q) is
surjective, and hence an isomorphism. Since the middle vertical arrow is an isomorphism as
observed above, this claim will imply that the right hand vertical arrow is an isomorphism,
and thus will finish the proof.

We begin with the case in which U’ is a basic open subset of U; i.e., it is the complement
of the zero set of some clement f € Ox(U). We may lift f to some f € Ry = Ox(U).
Since U’ is dense in U, the element f (and similarly, f) does not vanish at the generic point
of any irreducible component of U. Fixing i, we write f for the image of fv in R;. Thus
R = R;[f7!], and for j =1,...,s the element f does not lie in the ideal P;R;.

Let m" € Q, C M! = M, ®g, R}; we wish to show that m’ is in the image of the map
Q; g, R, — Q.. Smce m' e Q, there exists ' € R, with r'm’ = 0 € M], such that " does
not lie in any of the primes P;R;. For j =1,...,s, we have f & P;R;; and the image f' € R,
of f is a unit in R}, say with inverse g.

The homomorphism R; — R. = R;[f~!] = S™!R; induces the homomorphism M; — M/ =
M; ®g, R, = S™'M;, where S C R; is the multiplicative set generated by f. We may write
' =r/f*e STIR; and m' = m/f* € ST'M;, for some r € R;, some m € M;, and some
a,b> 0. Thus the image of m € M, in M/ is (f')’m’. Since f’ € R} is a unit and since 7’ lies
in no P;R;, the element (f")%" =r/1 € R} also lies in no P;R}. The element r € R; maps to
r/1=(f")"" € Rj, hence it lies in no PjR; C R;.

Now rm/fott = = 0 € M/, and so by definition of localization we have f°rm =0 €
M; for some ¢ > 0. But freR; hes in no P;R;, since this is true for the elements f,r € R;
and since P;R; is prime. Thus m € @;, and m ® ¢* € Q; ®g, R, C M; ®g, R;. The image of
m® g¢®in Q) C M/ is (f')°¢"m’ = m’, proving the claim in this case.

For the general case, let J; C R; be the ideal defining the complement of Spec(R;) in
Spec(R;) as in Lemma ; and let fi,..., fq be generators of J; given by that lemma,
with no f lying in P;R; for any j. For h = 1,...,d, the element f; vanishes along the
complement of Spec(R}) in Spec(R;); and so for every r € R, there is some non-negative
integer ¢ such that f¢r € R;. Thus R; C R, C Ry; = R;[f; '], and so Ry; = Ri[f,']. The
ring Ry, ; is flat over R}, being a localization; hence the product ring [], Ry, is also flat over
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R;. Moreover Uy,; := Spec(Ry ;) is a basic open subset of U; = Spec(R;) that is contained in
U] = Spec(R;), and such that |J, Uy, = U;. Thus Spec([[, R), which is the disjoint union
of the open sets Uy ;, maps surjectively to U] = Spec(R}). Hence [[, Ry is faithfully flat
over R}, by [Mat80, 4D, Theorem 3].

Let My,; = M; ®p, Ry = M] ®r: R, and let Q) ; be the submodule of M, ; given as in
Lemma . By the above special case, the maps Q; ®g, Rn; — Qp; and Q] Qp Rpi — Qhn.i
are isomorphisms. Let @7 be the image of the injective map @Q; ®g, R, — Q.. Then
Qi ®Ri Rhﬂ' = (Qz ®Ri R;) ®R; R}u‘, and so the image of Q;’ ®R; R}M' — Qh,i is Qh,i' Thus for
each h, the quotient R,-module Q;/QY becomes trivial upon tensoring with Ry ;. So Q;/Q/
also becomes trivial upon tensoring with the faithfully flat R;-module [[, Ry ;. Hence Q;/QY
is already trivial; i.e., Q7 = @) and so the map Q; ®g, R. — @ is indeed surjective, as
claimed. ([l

Proposition 5.3. Let T' be a complete discrete valuation ring with uniformizer t, and let
Z be a normal integral T-scheme of finite type. Let Uy, Uy, Us, U be affine open subsets of
the reduced closed fiber X of 2, with Uy, Uy C U dense, and with Uy = Uy N Us, such that
the complement of W := Uy U Uy in U has codimension at least two. Let M, be a finitely
generated torsion-free EUe—module fore =0,1,2. For e = 1,2, consider the natural map
te + M, — M, ®§Ue }A%UO, and let o : M, ®§U6 EUO — My be an isomorphism. Then agt.
is injective for e = 1,2, and the intersection M := oyt (My) N agta(My) € My is a finitely
generated torsion-free ﬁy—module.

Proof. For short, write ﬁe = EUE for e = 0,1,2. Since Uy, U; are each dense in U, the
intersection Uy = U; N U, is dense in Uy, U;. So we may apply Lemma and obtain that
each ¢, is injective. Since «, is an isomorphism, the composition a.c. is injective. Because
of this injectivity, we may identify M, with its _image under et : M, — My for e = 1,2,
and thus regard M, as contained in M. Here RU, M are respectively contained in Re, M.,
and every regular element of RU is regular over R by Lemma (b) Thus M is torsion-free
over RU, since M, is torsion-free over R

With respect to the above identifications, the goal of the proof is then to show that
M := M; N M, is finitely generated over EU.

For e = 0,1,2 and ¢ > 1, write R.; = R /t’ﬁ The irreducible components of the
reduced closed fiber of Spec(RU) are Spec(Ry /P; ;) for j =1,...,s, where P, ..., P; are the
minimal primes over tRU For e = 0,1, 2, the minimal prlmes over tR are the ideals P; R
for j =1,...,s, by Lemma ( ). By Lemma ( ), each R.isa quasi-excellent t-adically
complete normal ring, and hence a G-ring. So Lemma applies, with }Aie, M., Pjﬁe playing
the roles of R, M, P; there. Let M. ;, Q.:, Ne; be the modules given in Lemma in that
situation. Thus M. ; and its quotient IV, ; are finitely generated modules over R.; and over

ﬁe, and lim M., = lim N.; = M., for e = 1,2. Also by that lemma, for e = 0,1,2 and
— —
© > 1, the associated primes of N, ; are among PR, ;, ..., PsR. ;. Here the support of P, R, ;
is dense in the corresponding irreducible component of Spec(Ry/(t%)).
Since Uy is dense in U, for e = 1,2, we may apply Lemma to Uy C U,, and obtain
isomorphisms of finite modules N.; ®g,, Ro; = Noi. By [Sta25l Lemma 00AM], these

modules and isomorphisms define a coherent sheaf .#; of Oyp,-modules on W;, where we
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write W; := Spec(Ry;) U Spec(Ra;) € Spec(Ry /(). Since the complement of W in U
has codimension at least two, the same holds for the complement of W; in Spec(Ry /(t)).
Thus each point z of that latter complement has codimension at least two in each irreducible
component of Spec(Ry /(t')) on which it lies, and in particular in the closed subset defined
by any of the associated primes of N, ; (each of which is of the form P;R, ;, corresponding to

one of these irreducible components). Since Ry /(t) is of finite type over T it is excellent.
So [Sta2b, Lemma 0AWA] (or equivalently, [EGA4l Partie 2, Corollaire 5.11.4(ii)]) applies
and shows that (f;)..4; is coherent over Spec(Ry /(t')), where f; : W; — Spec(Ry/(t")) is

the natural inclusion. Its module of global sections, which is Nj := Ny; Xy, Na;, is thus

finite over Ry /(7).

For every ¢ > 1, let M] = M ; X, My;. For every i > 1, the maps M = M; N M, —
M, — M,.; = M./t'M, for e = 0, 1, 2 together induce a map M — M that descends to a map
M/t'M — M/. We claim that this latter map is injective. To see this, let m € M/t'M lie in
the kernel, and pick a representative m € M for m. For e = 1,2, we may view m € M,, and
the image of m in M,; = M,/t'M, is trivial. Hence there exist m, € M, such that m = t'm/,
in M,, for e = 1,2. The elements t'm/, for e = 1,2, have the same image in Mp; and thus
the element m} — m), € My is t"-torsion. But M, is torsion free, and so m} = mb € M.
That is, the two elements m/ € M, define an element m’ € M. But t'm’ = m € M, since
the two sides have the same image t'm} in M, and since M — M, is injective. So m € t'M,
and thus m € M/t'M is trivial, as needed to prove the claim.

Say h >4 > 11is an integer. Then the mod ¢* reduction maps M, , — M., for e =0,1,2,
together define a map M; — M. With respect to the injections M/t"M — M, and
M /t'M — M, this restricts to the surjection M/t"M — M /t'M given by reduction modulo
t'. Hence the image of M; — M contains M /t*M, viewed as a submodule of M.

For every i > 1, write Q; = Q1; Xq,, Q2. For e =0,1,2, we have a short exact sequence
0 = Qei = M.; - N.; — 0. Since taking fiber products is left exact, we obtain a left
exact sequence 0 — Qi — M; — Nj for each 7, where as above N;j = Ny; Xy, , No;. Thus
N; := M!/Q) is a submodule of the finitely generated Ry /(t!)-module N/: and so N; is also
finitely generated over Ry /(t"), since Ry /(t") is Noetherian.

We want to show that M is a finitely generated Ry-module. By [Sta25, Lemma 087W], it
suffices to show that M /t'M is a finitely generated Ry /(t")-module for all i. For e =0,1,2,
let n. be the integer given in Lemma [3.2)(e) for the modules {Q.;}. Let n = max(ng,ny, ny).
Thus Qeci—14n — Qe is trivial for e = 0, 1,2, and so the map M, ; 14, — M., restricts to
the trivial map on Q¢ ;—14n. Hence the restriction of M, ;. — M to Q;_,,,, is also trivial.
Thus the map M;_,,, — M, induces a map N; 14, — M; that has the same image. This
image is finitely generated because N;_ 1., is. But as noted above (taking h =i —1+n), the
image of M/_,,, — M/ contains M/t'M. Thus M/t'M is finitely generated over ﬁy/(ti),
completing the proof. 0

6. FORMAL PUSHFORWARDS

Recall that if (Z, 0yz) is any ringed space, and M is a module over R :=I'(Z,0y), then
there is a functorially associated quasi-coherent sheaf F); on Z whose presentation is induced
by that of M; see [Sta25, Lemma 01BH, Definition 01BI|. In the case of a Noetherian affine

formal scheme X = Spf(A) and a finite A-module M, the sheaf F); on X is the formal sheaf
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M?* associated to the coherent sheaf of modules M on the scheme Spec(A); see [EGAT,
Section 10.10.1]. This sheaf M* is coherent as an Ox-module and it satisfies I'(X, M2) = M,
by [EGAI, Propositions 10.10.5, 10.10.2(i)]. Moreover, every coherent Ox-module is uniquely
of the form M*, by [EGAT] Proposition 10.10.5].

Consider a normal integral scheme 2~ of finite type over a complete discrete valuation
ring T', with reduced closed fiber X, and let V' C U be open subsets of X. Since X C 2 has
the subspace topology, there exist (not necessarily affine) open subsets ¥ C % of 2" meeting
X at V,U. The inclusion map g : ¥ < % restricts to the inclusion g : V < U; and it also
pulls back to compatible inclusions g, : V,, < U,, on the reductions of ¥, % modulo (") for
all n > 1. As in [EGAT] 10.9.1], the morphisms g, together yield a morphism g : U —
between the induced formal schemes U = 7}y and 4 = %);;. Note that g, and hence g are
independent of the choice of ¥ and %, and depend just on the inclusion g : V' — U (and
on the T-scheme Z7).

The proof of the following result parallels that of [Hts77, Proposition I1.5.8(¢c)| and [Sta25,
Lemma 01LC]|, which make the corresponding assertion in the context of schemes.

Proposition 6.1. Let X,9) be locally Noetherian formal schemes, and let A be a quasi-
coherent Ox-module. If f : X — Q) is a quasi-compact and quasi-separated morphism, then
fi(A) is a quasi-coherent Og-module. This holds in particular if f : X — Q) is a morphism
that defines an open inclusion of the underlying topological spaces.

Proof. The assertion is local on %), so we are reduced to the case that ) is an affine formal
scheme; i.e., of the form Spf(FE). Thus X, %) are quasi-compact. Since X is locally Noetherian,
every point of X has a fundamental system of quasi-compact neighborhoods. Hence by [Sta25],
Lemma 01BK], for every point x of X there is an open affine neighborhood 1, = Spf(A,)
of x such that .#|y, is the sheaf of Oy -modules associated to some A,-module. Since X is
quasi-compact, there is a finite set {x1, ..., z,} of points of X such that X is the union of the
open subsets ; := .. By [Sta25, Lemma 01KO], for every pair 4, j the intersection $; N,
is a finite union of affine open subsets il;;,, since f is quasi-separated. Write f; = fly, and
fije = flu,,,, and also write .#; = .|y, and Mijo = M |y,,. For any open subset U C ),

fotl (D) = (D))
= %(U(f*l( ) N))

= ker @/f ) N LU;) %@/// )ﬂuijf))
1,7,0
= ker @fz,*( z %@fmf* ZJZ ))
] 4,5,0
= ker @fz* %@fug* ’LJZ )
4,5,0

where the maps in the third to fifth lines of the display are given by taking differences on
the overlaps. Thus we have an exact sequence of formal sheaves

O_>f %@fz* %@fzﬂ* z]E

ijl
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Since .# is a quasi-coherent Ox-module, .#;, #;j, are quasi-coherent sheaves of modules
over Oy, and Oy, respectively. Recall that 9 = Spf(£). By construction, {; = Spf(A4;)
and 46;;, = Spf(A;j,) for some rings A;, A;jo; and #; and #;j, are the sheaves of modules
associated to some modules M; and M;;, over A; and A;j, respectively. So f;.(A4;) is
the sheaf associated to (M;)g, the E-module obtained from M; by restricting scalars to F.
Similarly, fije«(#;j0) is the sheaf associated to (M;jo)p. Thus f;.(A;) and fije.(A;j0) are
quasi-coherent; hence so are (P, fi.(#4;) and €, ; , fije«(Aije), by [Sta25, Lemma 01BF]. So
f«(A) is the kernel of a morphism between quasi-coherent sheaves on a locally Noetherian
formal scheme, and thus is itself quasi-coherent by [AJL99, Corollary 3.1.6(a)]. This proves
the assertion.

Finally, to check that the quasi-compact and quasi-separated conditions hold when f gives
an open inclusion of underlying topological spaces, note that those two properties are local
and depend only on the underlying spaces. Since f is locally affine, those properties hold by
[Sta25, Lemma 01S7]. O

Proposition 6.2. Let T' be a complete discrete valuation ring with uniformizer t, and let
Z be a normal integral T-scheme of finite type, with reduced closed fiber X and formal
completion X. Let g : V — U be an inclusion of open subsets of X, with inclusion g : 0 — U
of the associated formal open subschemes of X.

(a) If A is a coherent (resp. torsion-free) Oy-module, then g*(.#) has the same property
on ‘Y.

(b) If U and V' are affine, and A is a coherent Oy-module, then there is a natural isomor-
phism M (V) — M (U) @z, Ry.

(c) If N is a torsion-free Og-module, then g.(A") is a torsion-free Oy-module.

Proof. Part (a) is immediate from the fact that the properties of being coherent and torsion-
free are each local.

For part (b), write & = Spf(R) and U = Spf(S). Then .# (L) is the unique finitely
generated R-module M such that .# = M*. By |[EGAI, Proposition 10.10.8|, there is a
canonical isomorphism §*(.#) = g*(M*) — (M @z S)?. Hence the composition .# () =
T(A)(B) = (M @ S)2V) = M @r S = M (U) Qo) Ox(V) defines an isomorphism
M) — #(U) ®%, Ry, where as before we identify the underlying spaces of i, 0 with
those of U, V.

For part (c), we prove the contrapositive. If g.(.#") is not torsion-free, then there is an
affine open subset U’ C U such that §,(.#)(U’) has torsion as a module over Oy(U’) = Ry
That is, there exists a non-zero element m € g.(A4")(U') = A (U'NV) and a regular element
r € Ry such that rm = 0 € A (U' NV). Since m # 0, there is an affine open subset
V' C U'NV such that the image m’ € 4 (V') of m is non-zero. Let 1’ € Ry be the image
of 7 € Ryr. Thus r'm’ =0 € A (V') since rm = 0; and 7 is regular in Ry~ by Lemma (b)
applied to the inclusion V' C U’ of affine open sets. Hence A4/ (V’) is not a torsion-free
module over ﬁvl = Og(V’), and so .4 is not a torsion-free Oy-module. O

Although Proposition (a) holds both for the properties of being torsion-free and co-

herent, Proposition [6.2(c) does not carry over in general to the coherent property (e.g., if
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U is affine and V' C U is the complement of a principal divisor). But as we show in Theo-
rem below, coherence is preserved under pushforward if the complement of V' in U has
codimension at least two. First, we obtain the following special case of Theorem

Lemma 6.3. Let 27, Uy, Uy, U, U, W be as in Proposition[5.3, let X be the formal completion
of X', and let g : W — U be the inclusion of the formal open subschemes of X that are
associated to W, U. Let N be a torsion-free coherent sheaf on the formal scheme 20 that is
associated to W. Then g.(A) is a torsion-free coherent sheaf on L.

Proof. By Proposition , M = g.(AN) is quasi-coherent on the formal scheme . So by
[Sta25l, Lemma 01BK], for every point P of U there is an open neighborhood V' of P such that
A |y is isomorphic to the Oy-module associated to some I'(V, Og)-module My, where U is
the formal scheme associated to V. After shrinking V', we may assume that it is an affine open
subset of U containing P. For e = 0,1,2, let V, = VNU,. Then A (V,) C A (V}) fore = 1,2
by Lemma 5.1} and My = # (V) = G.(A) (V) = (A |viow) (V) = A (Vi) N A (V3). Since
N is coherent and since V, is affine, .#(V,) is a finite module over Oy(V.) = Ry,. Now
Vi, Vs are dense in V| since Uy, Us are assumed dense in U. So we may apply Propositioll
to Vo, V1, Vo, V', and conclude that My is a finitely generated torsion-free module over Ry =
Og(V). Thus .#|y = M is coherent over Oy, by [EGAT], Proposition 10.10.5]. Since this
holds in a neighborhood of an arbitrary point P of U, it follows that .# is coherent over 4.
It is also torsion-free, by Proposition [6.2)(c). O

Lemma 6.4. Let V' be a quasi-projective variety over a field.

(a) There are affine dense open subsets Uy, Uy, Uy C V' with Uy = Uy N Us, such that the
complement of Uy UUsy in V' has codimension at least two.

(b) If V is connected, then we may choose Uy, Uy, Uy in (a) such that for every connected
open subset O C V' the intersection O N U, is connected for e = 0,1,2. In particular,
Uo, Uy, Uy are connected in this case.

Proof. 1t suffices to prove the lemma under the hypothesis that V' is connected (i.e., proving
part (b)), since part (a) then follows by considering the connected components of V.

Let Vi,...,V, be the irreducible components of V', with generic points ny,...,n,. For
© # j, consider the irreducible components V; ;, of V; NV}, and write n, ;, for the generic
point of V; ;.

We first give a criterion for a non-empty open subset O C V to be connected. Given O, let
So € {1,...,n} be the set of indices i such that n; € O (or equivalently, ONV; is non-empty).
Thus the closure of O is the union of the irreducible components V; for i € Sp. So O is
connected if and only if for every pair i, j € Sp, there exists a chain of indices g, ..., 7, € So
with 49 = ¢ and ¢, = j, such that for every h = 0,...,r — 1 the set O contains n;, ;, , , for
some /.

In particular, if an open subset O C V' contains each n; (for i = 1,...,n) and each of the
points 7; ;, (for all ¢, ,¢), then O is connected and dense in V.

We now construct the open sets U, asserted in the lemma. Since V' is a quasi-projective
variety over a field, by [Liu02, Proposition 3.3.36(b)| there exists an affine open subset
U, C V that contains each 7; and each 7; ; . Thus U, is a connected affine dense open subset
of V', by the above criterion; and so the complement Z of U; in V' has codimension at least

one in V. Similarly, there exists an affine open subset U, C V' that contains each 7;, each
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1i..k, and the generic points of each irreducible component of Z. Thus U, is also a connected
dense affine open subset of V. Hence so is Uy := U; N U, which contains each of the points
M, Mijk- The intersection Uy N Z is dense in Z, since U, contains the generic points of Z.
Thus the complement Y of Uy N Z in Z has codimension at least one in Z. Hence Y, which
is also the complement of U; U U, in V, has codimension at least two in V| as asserted.
Finally, let O C V be an arbitrary (non-empty) connected open subset; let O, = O N U,
for e = 0,1,2; and let the set Sp be as in the third paragraph of this proof. Thus for every
pair 7,7 € Sp, there is a chain of indices in Sy connecting ¢ to j as above. Since U, contains
all the points n; and 7, , it follows that Sp, = Sp for e = 0,1,2. Thus O, also satisfies the
above chain criterion, and hence it is connected. [l

Lemma 6.5. Let T be a complete discrete valuation ring with residue field k, and let 2 be a
quasi-projective normal integral T-scheme with reduced closed fiber X and formal completion
X. Let f:V — U be an inclusion of open subsets of X such that V' is dense in U, and write
U, U for the formal open subschemes of X associated to V,U. Let F be a torsion -free coherent
sheaf on . Then F is a subsheaf off F* (F) wvia the natural morphism F — f f (7).

Proof For every open subset U" C U, we have a restriction map % (U') - Z({U' NV) =
f f*( #)(U"), and these are compatible as U’ varies. These maps define a morphism .# —
f f (:Z). Since injectivity of sheaves is local, in order to show that .%# is a subsheaf of
f (.#) via this morphism, it suffices to show that if U’ is affine then .Z(U’) — F(U'NV)
is injective. Let V' be an affine dense open subset of V. By Proposition (b)7 the natural
map Z(U' NV') - F(U) Rz, Ry is an isomorphism. Since U’ N V' is dense in U,
Lemman 1| then yields that the map .# (U’) — . (U'NV’) is injective. But this map factors
through #(U') — % (U’ NV); and so that map is injective as well. Thus the torsion-free
coherent sheaf .Z is a subsheaf of f, f*(.F), as asserted. O

We now come to our main theorem, which generalizes Lemma [6.3] and provides an analog
for formal schemes of the assertion in Theorem 2.11

Theorem 6.6. Let T be a complete discrete valuation ring and let X be a quasi-projective
normal integral T-scheme with reduced closed fiber X and formal completion X. Let U be
a non-empty open subset of X, and let V be an open subset of U whose complement in U
has codimension at least two. Let f :V — U be the inclusion map, and write 4,0 for the
formal open subschemes of X associated to U,V . Let ¥ be a torsion-free coherent sheaf on
0. Then f;(ff) s a torsion-free coherent sheaf on .

Proof. Let k be the residue field of T. Since 2" is quasi-projective over T', the k-scheme
V' is quasi-projective over k. By Lemma (a), we may choose affine open dense subsets
Uy, U; C V such that the complement of W := U; U U, in V' has codimension at least two.
Hence the complement of W in U also has codimension at least two. Let g : W — V be the
inclusion map. By Proposition (a), pullbacks with respect to open inclusions preserve the
property of being a torsion-free coherent sheaf; so g*(.#) is a torsion-free coherent sheaf on
the formal scheme 20 associated to /. By Lemma applied to g*(.#) and the inclusion

fg: W — U, we have that (f g)*g (F) is a torsmn—free coherent sheaf on 4l.
By Lemma Z is a subsheaf of g,g* (%) on Y. Thus 1. ) is a subsheaf of f.3.7 g (F) =
( fg)*g (7). Also, f (.#) is quasi-coherent by Proposmon . Since ( fg)*g (.#) is coherent



on the locally Noetherian formal scheme 4, it follows from [AJL99, Corollary 3.1.6(c)| that
its quasi-coherent subsheaf f,(.%) is coherent. It is also torsion-free, being a subsheaf of the

torsion-free sheaf (?\g)*?(ﬁ ) (or by Proposition (c)) O

Remark 6.7. The proof of Theorem relies in particular on Lemma [6.3] whose proof uses
the technical results in Section [fland therefore also builds on those in SectionBl As mentioned
at the end of Section [2] it would be tempting to try to prove Theorem more directly by
using Theorem [2.T]or the ingredients used in its proof; viz., by applying such assertions about
schemes to the reductions of the given sheaf modulo powers of the uniformizer of 7. The
difficulty with that approach is that these reductions need not be torsion-free. For example,
take T = k[[t]] for some field k and take 2" = AL. Let U be the closed fiber A}, so that

Ry = k[z][[t]]. Let M be the torsion-free Ry -module with two generators m,n and the single
relation om — tn = 0. In the reduction M; of M modulo t*, the element #*~'m is z-torsion,
and z is regular. So M; is not torsion-free, and (z,t") is a non-minimal associated prime of
M; (being the annihilator of t*~'m), with support of codimension one in X; = A7, /()" Hence

one cannot apply [Sta25l Lemma 0AWA| (or [EGA4] Partie 2, Corollaire 5.11.4(ii)]) to M.
Note also that as in Theorem [2.1], the torsion-free hypothesis cannot simply be dropped; see
the discussion after that assertion.

Corollary 6.8. In the situation of Theorem up to isomorphism, ﬁ(ﬁ) 15 the mazimum
torsion-free coherent sheaf on 3 whose restriction to ¥ is F; i.e., every other such sheaf is

a subsheaf of j?(f)

Proof By Theorem . f (%) is a torsion-free coherent sheaf on . Also, the restriction
FI(F) of f.(F) to W is Z, since V is an open subset of U. Suppose that ¢ is also
a torsion-free coherent sheaf on 4 whose restriction to U is .#. Thus f*(¥) = .#. By

Lemma 6.5, ¥ C .J*(%) = J.(7). O

Remark 6.9. In Theorem and Corollary [6.8 it would suffice to assume that 2" is a
normal integral T-scheme and that V' is quasi-projective over k, rather than requiring 2" to
be quasi-projective over T', because the proofs use only the weaker assumption.

7. THE FLAT CASE

Proposition says in particular that EUI OEUQ is a finitely generated torsion-free module

over Ry, in the situation of affine dense open subsets where the complement of U; U U, has
codimension at least two. In fact, more is true:

Proposition 7.1. Let T be a complete discrete valuation ring, and let Z be a normal
integral T'-scheme of finite type. Let Uy, Uy, Uy, U be connected affine open subsets of the
reduced closed fiber X of 2", with Uy, Uy C U dense, and with Uy = U; N Us, such that the
complement of W := Uy U U, in U has codimension at least two. Then RU1 N RU2 = RU,
where the intersection takes place in EUO.

Proof. Observe that RU — RUO is aneCtIVQ fore=1,2 by Lemma ¢), because Uy is dense
in Ue. Viewing Ry, as a subring of RUO, we let A = Ry, N RU2 C Ry,. By Lemma (c),

RU, RUI, RUQ, RUO are domains; hence so is their subring A. We wish to show that A = Ry.
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Let ¢ be a uniformizer of T. For n > 1, and for ¢ = 0, 1,2, Spec(Ry, /(")) has the same
underlying topological space as U.. So Spec(Ry,/(t")) is a Zariski dense open subset of
Spec(ﬁUi/(t")) for i = 1,2; and the map ﬁUZ/(t") — EUO/(t”) is injective. We may thus
form the intersection A, := Ry, /(") N Ry, /(t") in Ry, /(t"). We claim that the natural map

n o AJt"A — A, is injective. To see this, let a € ker(a,,), and pick a representative ac A
for a. Thus we may view a € Ry, for i = 1,2; and the image of @ in Ry, /(t) is trivial.
Hence there exist b; € RU such that a = t"b; in RU, for: =1,2. The elements t"b;, for

= 1,2, have the same image in RUO, and thus the element b, — by € RUO is t"-torsion. But
RUO is a domain, and so by = by € RUO That is, the two elements b; € RU define an element

b e A. But t"b = a, since they have the same image in RU1 and since A is a subring of RUl.
So a € t"A, and a is trivial in A/t"A, as claimed.

By Proposition E A is finite over RU as an_extension of normal domains, say of generic

degree d > 1. So tensoring the ring extension RU C A with the fraction field Ky of RU, we
obtain a finite field extension Ky C A ®gz Ky = frac(A) of degree d. It remains to show

that d = 1, since then EU C A is a finite extension of normal domains having the same
fraction field, and this  inclusion is then an equality as desired. R
Let A" :== A®p Ry, By [Sta25, Lemma 00MA, (3)], A" = A ®g, hin Ry, /(t") =
lim A'Jt" A Now AJt" A" = AJt"A®g ) B, /(7). But A/t"A C A, via the injection .
Also Spec(RUl/(t")) is an affine open subset of Spec(ﬁU/(t")) by [EGAIT] Proposition 5.1.9],
and so Ry, /(t") is flat over Ry/ (t™). We thus obtain an inclusion
A'JthA = AJt"A SR, /() Ry, /(t") C A, R, /() Ry, /(t").

Let W, := Spec(Ry, /(t")) U Spec(Ry, /(t")) C Spec(Ry/(t")) and write f, : W, —
Spec(Ry/(t")) for the natural inclusion. Thus (f,).(Ow,) is a quasi-coherent sheaf on
Spec(Ry /(t")

Ow, (Spec(Rus, /(")) N Ow, (Spec(Rus /(")) = Ry /(") O B /(") = An.
Hence Ay ®% )y RUI/(tn) = T'(Spec(Ruy, /(t")), (f)«(Ow,)) = T(Spec(Ry, /(t")), Ow.) =
Ry, /(t"). That is, we have an inclusion A’/t"A’ C Ry, /(t"). Since taking inverse limits is
left exact, it follows that A" C Ry,. Thus A Rz, Ku, = A Rz, Ku, € Ku,, where Ky, is
1

the fraction field of ﬁUl.
Hence Kgl = g@KU KU1 = (A ®§U KU) ®KU KU1 =A ®§U KU1 g KUU as KUl—vector
spaces. Thus d = 1, completing the proof. O

), and its module of global sections is

Remark 7.2. (a) If the normality assumption is dropped from the hypotheses of the propo-
sition, then the conclusion need not hold. For example, suppose that 2 is an affine
integral T-variety with closed fiber X = U, with Uy, Uy, Uy as before, such that 2 is
normal at the points of W = U; U Uy but not at all the points of U. Then RU17 RU2 are
normal, and hence so is their intersection. But RU is not normal, and hence is strictly
smaller than EUI N ﬁUz.

(b) Suppose that 2" is a normal integral projective T-variety such that the reduced closed

fiber X is a union of two copies of P? meeting at a single point P. Let U C X be
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the union of two copies of A? meeting at P, and let Uy, U, respectively be the union
of the complements of the z-axes (resp., y-axes) in the two copies of AZ. Then EUI =
ke, y,y [[1]%2 and Ry, = klz, 24 y][[t]]%% So Ry, N Ry, = klz, y][[t]¥2, which is
strictly larger than ]?ZU, the difference being that the spectrum of the former consists
of two disjoint copies of a thickened A?. This would not contradict the assertion of
Proposition [7.1], because in this situation the connectivity hypothesis of the proposition
does not hold.

Recall that by Proposition [6.5] given an inclusion f : V' — U of open subsets of the
reduced closed fiber of a quasi-projective normal integral T-scheme, with V' dense in U, if
F is a torsion-free coherent sheaf on the formal scheme i associated to U, then .# is a
subsheaf of ﬁf*(ﬁ ). In the context of Proposition (with W = V), this containment is
an equality in the case that # = O%. But in general for a torsion-free coherent sheaf .%, the
containment .# C f f (:Z) need not be an equality, as the following example shows, even in
the situation of Proposition [7.1], where the complement of V in U has codimension at least
two.

Example 7.3. Let k be a field, let T = k[[t]], and let 2" = P%, the projective x,y-plane
over T, with closed fiber X = P%. Let U = A2 C X and let V C U be the complement of
the origin, with inclusion morphism f : V — U. Thus V = U; U U,, where U;,Us; C U are
the complements in U of the x- and y-axes, respectively. Let 4,0, 4; be the formal schemes
associated to U, V,U;. Thus {4 = Spf(k[x,y][[t]]). Let I be the ideal (x,y) C klz,y][[t]],
and let .# = I® be the coherent formal Oy-module associated to I (see the beginning of
Sectlon@ Note that .# is torsion-free, but not flat (since it is not locally free). The pullback
7 (.F) to YU is the structure sheaf on U, and its pushforward ff (F) is the structure sheaf

on Y. Thus F C f f (%) is a strict containment.

In contrast to Example [7.3] suppose that the coherent formal sheaf .# in Lemma is
assumed to be flat (or equivalently, locally free), and not just torsion-free. If V' is connected,

then the containment .% C f, f*(%) is an equality, as the following result shows.

Theorem 7.4. Let T be a complete discrete valuation ring with residue field k, and let 2~ be a
quasi-projective normal integral T-scheme with reduced closed fiber X and formal completion
X. Let f:V <= U be an inclusion of connected open subsets of X such that the complement
of V in U has codimension at least two, and write 0,3 for the formal open subschemes of

X associated to V,U. Let . be a flat coherent sheaf on . Then ﬁf*(ﬁ) = 7.

Proof. We first consider the special case in which V' = U;UU,, where Uy, Uy and Uy := U1NU,
are connected affine dense open subsets of V' with the property that the intersection of each
U, with every non-empty connected open subset of V' is connected. To prove the assertion in
this case, it suffices to show that for every non-empty connected affine open subset O C U,
the map #(0) - Z(ONV) = F(0, U Oy) is an isomorphism, where O, = O N U, for
e = 1,2. Here each O, is also a connAected affine open set, because we are in this special case
and because O, U, are affine. Let f. : O, — O be the inclusion map between the formal
schemes 9., 9O associated to O, O, and let M = .%(0O). Thus M is the finitely generated flat
Ro-module such that .% |o = M2 (see the beginning of Section @); and we have an induced
isomorphism % (O,) = M ®%, Ro,, by Proposition (b)
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Let Og = ONUy = O1 N O,. The connected affine open subsets O, Og, O, Oy satisfy the
hypotheses of Proposition [7.1] - because U, Uo, Uy, Uy do, and because O, = O N U,. That
proposition then 1mphes that RO = Rol N R02 - ROO Thus we have a short exact sequence
0— RO — Ro1 X R02 — ROO of RO modules, where the € maps are respectively given by diag-
onal inclusion and difference. Tensoring with the flat Ro module M, we obtain a left exact
sequence 0 — M — .7 (0,) x.Z(03) — .F(0y), using the isomorphism .% (0,) — M®gz Ro.
given in the previous paragraph. Since M = .%(0), and since .# (0O; UQOy) is the intersection
of Z#(0;) and .7 (03) in .Z (Oy), we conclude that . (O) — .7 (0O, U O,) is an isomorphism,
completing the proof in this special case.

For the general case, by Lemma (b) there is an open subset W C V of the form U; U U,
where each U, is an affine dense open subset of V; where the set O N U, is connected for
every connected open subset O C V and each e = 0, 1,2 (with Uy := U; N Us); and where
the complement V ~. W of W in V' has codimension at least two in V. Thus the closure Z of
V'~ W in U has codimension at least two in U. Hence the complement of W in U also has
codimension at least two in U, since this complement is the union of Z with the complement
of V in U (which has codimension at least two by hypothesis).

Let g : W — V be the inclusion map. By the above spemal case applied to the sheaf F
on Y and the inclusion gf : W < U, we have that (f4).(fg)"(F) = .Z. The sheaf [*(.F) is
torsion-free and coherent, by Proposmon ( ). So we can apply the above special case to

the sheaf f ( Z#) on ¥ and the inclusion g : W < V' obtaining f (7F) = E*?f*(ﬁ) Hence
LTHN(F) = 3.3 T (F) = (]9).([9)*(F) = F, as asserted. 0

Remark 7.5. Concerning the necessity of the connectivity hypothesis in Theorem [7.4] con-
sider the situation in Remark [7.2(b), and let V = U; U U, there, with inclusion morphism
f:V — U. Then the complement of V in U (viz., the point P) has codimension at least two
in U, and V' is disconnected. Let 4,0 be the formal completions of U, V', with inclusion map
f 0 — 4. Then f f (Oy) is strictly bigger than Oy, since the former sheaf is “doubled” at

the point P (corresponding to the strict containment Ry C RU1 N RU2 in Remark .

Let f : V < U be an inclusion of connected open subsets of the reduced closed fiber
X C & as in Theorem [7.4] where the complement of V' in U has codimension at least two.
If ¢4 is a flat coherent sheaf on the formal scheme U associated to V', the pushforward f,(¥)
is a torsion-free coherent sheaf on {4 by Theorem [6.6] and we can ask whether it is flat. But
in fact, flatness for such formal pushforwards need not hold in dimension at least three, even
in the regular case, and similarly in the context of schemes (rather than formal schemes). In
particular, there is the following example.

Example 7.6. (a) We first consider the scheme case. In [OSS11, Example 1.1.13|, the
authors give an example of a coherent sheaf F' on X = P that is reflexive (i.e., agrees
with its double dual FVV) but is not locally free (so not flat), though it is locally free
away from a certain closed point zy. Let V' be the complement of zy in X, and let
G = F|y. Thus G is locally free. Write f : V — X for the inclusion map, so that
G = f*F. Since F' is reflexive, and since the complement of V' has codimension at least
two (in fact, three), it follows from [Hts80, Proposition 1.6] that F' = f.G. Thus G is a

flat coherent sheaf on V', but f.G is not flat.
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(b) We use the above example to produce an example in the case of formal schemes. Preserv-
ing the above notation, take 2 = Pé[[t”, and consider the coherent sheaf .7 := 7*(F')
on 2, where 7 : 2 — X = P is the morphism induced by the inclusion C — C[[¢]].
Observe first that .7 is a reflexive sheaf on 27; this follows from the fact that if M, N are
modules over a ring R with M finitely presented, and if S is a flat R-algebra, then the
natural map S @z MY — (S ®g M)V is an isomorphism (see [Eis95, Proposition 2.10]).
Note also that .# is not locally free, since if it were then it would still be locally free
(hence flat) modulo (). Moreover the restriction ¢ of .Z to ¥ =V x¢ C[[t]] is locally
free on ¥, since the pullback of a free module is free. Let X be the formal scheme as-
sociated to 2, let U be the formal subscheme of X associated to V' C X, and let F.9
be the induced formal coherent sheaves on X,*U. Then ¥ = f*(ﬁ ) is flat because it is
the completion of the finitely generated flat O o--module ¢; and 7 is not flat because it
is not locally free (since its closed fiber is not locally free).

By Lemma 7 is a subsheaf of f f (/\) To show that ¢ is an example of a flat
formal Coherent sheaf on U whose pushforward f (%) to X is not flat, it remains to prove
that # = f.f*(F) = f*(g) To do this, it suffices to show that for every affine open

subset U of X, we have J( ) = f. f J( ). This is trivial if zy ¢ U; so we assume
zo € U, and write U' = U NV = f~ L(U), the complement of zg in U. The restriction
map (U) — J(U’) is given by the inclusion .# ( ) C L f( ) = {;:(U’); and our
goal is now to show that this is an isomorphism.

To do this, first note that the inclusion Ox(4) < Ox(4') is an isomorphism, by

applying Theorem |7 n to the sheaf Ou = Ox|y. Since U is affine and 7 is a coher-

ent formal sheaf, the restriction J|U is of the form M?* for some finitely generated
Ox(H)-module M (by [EGAI Propositions 10.10.5, 10.10.2(i)]); and so the natural map

F(U) — F(U) via reduction modulo (¢ ( ) is surjective. But F/(U) = F(U'), since F' = f,G
by part (a (a ) Thus the reduction map 7 (U’) — F(U’) modulo (t) is surjective, using that
( ) C L J( )= (U’) So /(U)+() (U’) = (U’) Also, the module /(U’)
is finitely generated over Ox(U') = Ox(Ll), and the ideal (¢) is contained in the radical of
Ox(H). So 0 by a version of Nakayama’s Lemma (see [Mat80 Corollary to Lemma 1. M),
é:(U) = ( "= i f( ), as desired. So indeed .# = f.f 7, and & provides the

asserted example.

But as we now show, if we restrict attention to the dimension two case, then there is a
flatness assertion for pushforwards, in both the scheme and formal scheme situations.

Proposition 7.7. (a) Let X be an excellent (e.g., quasi-projective) reqular scheme of di-
mension two, and let V C X be an open subset whose complement has codimension two
in X. Write f : V — X for the inclusion map. If G is a flat coherent sheaf on V', then
f+(G) is a flat coherent sheaf on X.

(b) Let T be a complete discrete valuation ring, and let 2 be a two-dimensional reqular
quasi-projective flat T'-scheme with reduced closed fiber X and formal completion X. Let
f V= U be an inclusion of open subsets of X such that the complement of V in U
has codimension two, and write 0,34 for the form/ql open subschemes of X associated to

V,U. Let 94 be a flat coherent sheaf on 8. Then f.(¥) is a flat coherent sheaf on 4.
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Proof. In part (a), F' := f.(G) is a torsion-free coherent sheaf on X by Theorem [2.1] since
G is a torsion-free coherent sheaf on V. Also, F' is flat over V since G is; and so it remains
to check flatness at the (isolated) points of X in the complement of V. Since flatness is
local, we may assume that X is the spectrum of a two-dimensional regular local ring, and
that V is the complement of the closed point P. Here V' C X is the only strict inclusion
U’ € U of open subsets of X such that the complement of U’ in U has codimension two.
Moreover f.(Flv) = fuf'F = fof*f.(G) = f«(G) = F, since f*f.(G) = G. So by |[Hts80,
Proposition 1.6], F' is reflexive. Since X is regular of dimension two, it then follows from
[Hts80, Corollary 1.4] that F' is flat.

For part (b), Theorem |6.6says that .# = ﬁ(g ) is a torsion-free coherent sheaf on 4. We
wish to show that it is flat. Take a closed point P € U; we will show that .# is free on an
open neighborhood of P in 4. Let G, F' be the restrictions of ¢4,.7 to the reduced closed
fiber X. Thus G is flat on V', and F' = f.(G). By part (a), F' is flat, and hence free on an
affine open neighborhood W of P in U, say of rank n. After shrinking W, we may assume
that there is an affine open neighborhood # = Spec(R) of P in 2 that meets X in W.
Since O 4 p is a regular local ring, it is a UFD, and every height one prime is principal. So
after shrinking W again, we may assume that the closed subscheme W C # is defined by a
principal ideal I = (s) for some element s € R; and this element is regular because 2" is flat
over T. Let 20 be the formal open subscheme of X associated to W. Thus Ox(W) = 0x(20)
is the I-adic completion R of R. Also, Ox(W) = R := R/I = R/IR is reduced, since X is.

By the freeness of ' on W, we may choose an isomorphism R"* — F(W) = % (20)/1.7 (20).
Let @i, ..., a, be the images of the standard basis elements of R", and choose lifts a1, . .., a,
of the elements a; to .#(20). We thus obtain a lift of the above isomorphism to a homo-
morphism R* — F (20), taking the standard basis elements of R" to the lifts a;. We claim
that this map is injective. To see this, take some non-zero element (rq,...,7,) € R" in the
kernel. Since .Z is torsion-free, we may divide the elements r; by any common factor that is
a power of s, and still have an element in the kernel. So we may assume that some 7; is not
divisible by s. But then the image (71,...,7,) € R" of (r1,...,r,) is non-zero but is in the
kernel of the isomorphism R" — F(W). This is a contradiction, proving the claim.

Thus the image of R" — .Z (20) is a free R-submodule N of . (20) with the property that

N + 1.7 () = #(2). Since IR is contained in the radical of R and F(20) is a finitely

generated R-module, N = .%(20) by [Mat80, Corollary to Lemma 1.M]. Thus .# (20) is free,
as desired. 0

8. PATCHING PROBLEMS

Given a ring R and overrings Ry, Ri, R O R with R, Ry C Ry and R = R; N Ry C Ry,

a patching problem for these rings consists of finitely generated R.-modules M, for e =

0,1,2, together with isomorphisms a. : M. @z Ro — Mo for e = 1,2. A solution to the

patching problem consists of a finitely generated R-module M together with isomorphisms
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Ve : M @ R, — M., for e = 1,2, such that the diagram

®id
(M ®g Ry) ®r, Ry === M; ®g, Ro

o o

M ®pr Ry M

(M ®p Ry) ®©r, Ro == My @, Ro
commutes. That is, the R-module M induces the modules M., for e = 1, 2, compatibly with
the maps a..

For example, let U = Spec(R) be an affine scheme with affine dense open subsets U, =
Spec(R,) for e =0, 1,2, such that Uy = Uy NU; and U = U; UU,. Thus R = R; N Ry C Ry.
In this situation, every patching problem for the rings R, Ry, R;, Ro has a solution, by Zariski
patching (gluing) of coherent sheaves and the correspondence between coherent sheaves on
an affine scheme Spec(A) and finitely presented A-modules (e.g., see [Sta25, Lemmas 00AN,
0119(1), 01IA]).

An analogous statement holds for formal schemes. Namely, let X be a formal scheme with
reduced closed fiber X, and let U, Uy, Uy, Us be affine dense open subsets of X such that
Uy =U;NU; and U = Uy UU,. Let 4,4, be the formal schemes associated to U, U, (i.e.,
the restrictions of X to those subsets). As before, we write Ry = Ox(U) and Ry, = 0x(U,)
for e = 0,1,2. Then RU = RU1 N RU2 - RUO since Oy is a sheaf; and every patching
problem for the rings RU, RUO, RUI, RU2 has a solution. To see this, recall that by [EGAT
Proposition 10.10.5], every coherent sheaf on il is of the form M* for some finitely generated
EU—module, and similarly for each il.. Since the underlying space U of 4l is the union of the
underlying spaces of ty, &y, with intersection being the underlying space of tly, a coherent
sheaf on il is given by finitely generated modules over RU1 , RU2 together with an agreement
over RUO Hence every patching problem for the rings RU, RUO, RUl, RU2 has a solution.
Moreover, in these two situations (schemes and formal schemes), the solution is unique up to
isomorphism, because there is an equivalence of categories between patching problems and
finitely generated modules over the base ring (R or }/%U, respectively).

The next result shows that if we restrict to torsion-free coherent formal sheaves, then
patching problems have solutions even if U; U U, is strictly contained in U, with complement
having codimension at least two.

Recall the situation of Proposition We have a complete discrete valuation ring 7'
with uniformizer ¢, and a normal integral T-scheme 2~ of finite type. We consider affine
open subsets Uy, Uy, Us, U of the reduced closed fiber X of 2", with U, a dense subset of
U for e = 1,2, and with Uy = U; N U,, such that the complement of W :=UUU; in
U has codimension at least two. In this situation, we still have RU = RU1 N RU2 C RUO,
by Proposition n Let M, be a finitely generated torsion-free RU -module for e = 0,1, 2.
For e = 1,2, we consider the natural map ¢, : M, - M, ®+5 R, RUO, which is injective by

Lemma and we let o, : M, Dz, RUO — My be an isomorphlsm Then aet. : M, — My,
is injective, mapping M, 1som0rphlcally onto its image in My. As in Proposition [5.3 (.3 the

intersection M := aqu1(My) Nagie(Ms) C M, is a finitely generated torsion-free Ry-module.
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Proposition 8.1. In the above situation, for e = 1,2 let v, : M Ox, EUE — M, be the map
induced by M — ete(M,) = M,. Then v, is an isomorphism for e = 1,2. Moreover the
finitely generated torsion-free module EU-module M, together with the maps 7., defines a
solution to the patching problem given by M., a..

Proof. Let i, L, be the formal schemes associated to U, U, (for e = 0, 1,2), with inclusions
fe U, — U Let M eA be the coherent formal sheaf on 4, associated to M,. The isomorphisms
. induce isomorphisms M Roy, Ogyy — M§*, and so by [Sta25, Lemma 00AM| we may glue
the sheaves M2 to obtain a sheaf of modules .#" on the formal scheme 20 associated to
W = Uy UU,. Here A4 (U,) = aete(M,) = M., where the isomorphism follows from the
injectivity of a.t. shown in Proposition [5.3] Moreover .4 is coherent, since this is a local
condition and since M2 is coherent. Let f : 20 — 4 be the natural inclusion, and let
M = [,(N). Then .# is a coherent Oy-module by Lemma .

Since U is affine, .# is the formal sheaf associated to some finite ﬁy—module M', by
[EGAT] Proposition 10.10.5]. Thus

M/ = %(U) = e/V(W) = JV(Ul) N JV(UQ) = Cklbl(Ml) N OéQLQ(MQ) = M,
and so 4 = M'™ = MA. By Proposition (b), we have a natural isomorphism between
A (U.) and A (U) @5, Ry,. Since A (Ue) = N (Ue) = ME(U.) = M, and .4 (U) = M,
we conclude that the natural map M ®z Ry, = #(U) Rz, Ry, — aete(M,) = M, is an
isomorphism. This proves the first assertion.
For the second assertion, observe that via the sheaf .#, and for e = 1, 2, the inclusions Uy C
U, C U induce the module homomorphisms «, and «.. Here the compositions . o (7, ® id),

for e = 1,2, are both the homomorphism similarly induced by the inclusion Uy C U. Thus
M, together with aq, as, defines a solution to the given patching problem. 0

In the above situation, though, the solution to the given patching problem need not be
unique, as the next example shows.

Example 8.2. In the notation of Example , let Uy = Uy NU,, and let M, = R, for
e = 0,1,2, with associated isomorphism o, : M, ®z Ro — Mo for e = 1,2. Then both
M = Ry = klz,y][[t]] and the ideal I = (z,y) C Ry are solutions to the patching problem,
with [ strictly contained in M. Here [ is torsion-free but not flat; whereas M, which is the
module given in Proposition [5.3] is flat.

As in this example, it is true more generally that the solution given in Proposition [8.1] is
the maximum torsion-free solution:

Corollary 8.3. In the situation of Propositions and suppose that Z is quasi-
projective over T'. Then the module M, together with the maps ~. for e = 1,2, defines the

mazimum torsion-free solution to the patching problem given by the maps aq, s in Proposi-
tion[2.3.

Proof. As in the proof of Proposition [8.1] the isomorphisms a, and coherent formal sheaves
M? define a coherent formal sheaf .4 on the formal scheme 20 associated to W. Here .4
and .# := M* are torsion-free since M is. Moreover §,(A4) = .# and §*(#) = AN by
the definition of M. Under the correspondence M +— M* between finitely generated EU—

modules and coherent sheaves over the associated formal scheme &I, a solution to the given
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module patching problem corresponds to a coherent sheaf .% on 4 whose restriction to 20 is
A . Here the solution M corresponds to the sheaf .#Z. Now given any torsion-free solution
to the embedding problem, the corresponding sheaf .# on 4 is also torsion-free. Since .7
restricts to 4 on 2, and since 2" is quasi-projective, it follows from Corollary that
F C g.(AN) = A, proving that M is maximum. O

Note that maximality can fail without the torsion-free hypothesis. For example, any
torsion Ry-module that is supported on the complement of W in U C Spec(Ry) is a solution

to the trivial patching problem (i.e., the one defined by the zero modules over the rings EU)
In the flat case there is the following stronger assertion.

Corollary 8.4. In Proposition if 2 is quasi-projective over T and M is a flat }A%U—
module, then up to isomorphism M defines the unique flat solution to the patching problem
gien by aq, as.

Proof. We identify M, with its isomorphic image aet.(M.) € My. By Proposition , the
module M = M; N M, and the maps 7. define a solution to the patching problem. Suppose
that M’ is also a solution, and that M’ is also flat. Let .# be the formal coherent Og-
module (M")?, and let f : U; U U, < U be the natural inclusion map. By Theorem ,

M =ZF({U) = f.f*F(U)=MnNM =M. O
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