
FINITENESS OF FORMAL PUSHFORWARDS
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Abstract. Under mild hypotheses, given a scheme U and an open subset V whose com-
plement has codimension at least two, the pushforward of a torsion-free coherent sheaf on V
is coherent on U . We prove an analog of this result in the context of formal schemes over a
complete discrete valuation ring. We then apply this to obtain a result about gluing formal
functions, where the patches do not cover the entire scheme.

1. Introduction

If j : V → U is an inclusion of an open subscheme of a scheme U , then the map j∗, which
carries sheaves of modules on V to sheaves of modules on U , preserves quasi-coherence but
not necessarily coherence. For example, if U is the affine x-line over a field k, and V is
the complement of the origin, then j∗(OV ) is not coherent because its global sections are
k[x, x−1], which is not finite over O(U) = k[x].

But for a normal connected quasi-projective variety U , if the sheaf if torsion-free and
the complement of V in U has codimension at least two, then coherence is preserved under
pushforward (see Theorem 2.1, where the hypotheses on U are weaker). In this paper, we
prove the following analogous result in the context of formal schemes over a complete discrete
valuation ring T .

Theorem (see Theorem 6.6). Let X be a normal connected quasi-projective T -scheme, and
let f : V ↪→ U be an inclusion of non-empty open subsets of the reduced closed fiber of X
such that the complement of V in U has codimension at least two in U . Write U,V for the
formal completions of X along U, V . If F is a torsion-free coherent sheaf on V, then f̂∗(F )
is a torsion-free coherent sheaf on U.

A motivation for proving this result comes from patching problems for modules. Such
problems arise, for example, in the context of an affine open cover of an affine scheme or
formal scheme, where one gives compatible finite modules over the ring of functions on these
subsets, and asks for a finite module over the ring of global functions that induces the data
compatibly. Patching problems have been useful in obtaining results in Galois theory and
local-global principles; e.g., see [Ha94], [HH10], [HHK09]. Those papers considered projective
curves over complete discrete valuation rings and their function fields. In that situation, the
closed fiber (which is the underlying topological space of the associated formal scheme) can
be covered by just two affine open subsets. As a result, in patching formal modules on open
subsets to obtain a global formal module, one can avoid the difficulty of having to satisfy
cocycle conditions arising from triple overlaps. On the other hand, in higher dimensional
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cases, a quasi-projective variety need not have an open covering by just two affine open
subsets. But on any quasi-projective variety, one can find two affine open subsets such
that the complement of their union has codimension two. As a consequence, the result we
prove here makes it possible to patch finite torsion-free formal modules on those affine open
sets, thereby obtaining a global finite torsion-free module that restricts to the given formal
modules on the affine open sets, without having to satisfy cocycle conditions. Namely, via
Theorem 6.6, we prove in Corollary 8.3 that there is a unique maximum torsion-free solution
to a patching problem of finite torsion-free formal modules defined away from codimension
two, and that the solution is given by intersection. Moreover, in Corollary 8.4 we show that
in the flat (or equivalently, locally free) case, this solution is unique.

Structure of the manuscript: We provide background and context in Section 2, fol-
lowed by two commutative algebra results in Section 3, and general results on formal schemes
and formal patches in Section 4. Using that material, in Section 5 we obtain a key result
(Proposition 5.3) that asserts that the intersection of two finitely generated torsion-free for-
mal modules is also finitely generated under a codimension two hypothesis on the complement
of the union. In Section 6 we first show that for formal schemes, as for schemes, pushforward
preserves quasi-coherence. Afterwards we obtain Theorem 6.6, mentioned above, in which
the key property to prove is finiteness. A version of that result with a stronger conclusion
is proven in Section 7 in the situation in which the modules are assumed to be flat, rather
than just being torsion-free; see Theorem 7.4. Finally, in Section 8, patching problems are
discussed, and Corollaries 8.3 and 8.4 shown.

Acknowledgements: We thank Craig Huneke for helping us with the commutative al-
gebra Lemma 3.1, and Johan de Jong for pointing us to a result in the Stacks Project that
yields Theorem 2.1.

2. Background and context

We begin by fixing some terminology.
Following [EGA4, Partie 2, Proposition 5.1.2] and [EGA4, Partie 1, Chapter 0, Défini-

tion 14.2.1], if X is a scheme then the codimension of a closed subscheme Y ⊆ X is the
infimum codimX(Y ) of the Krull dimensions of the local rings OX,y over y ∈ Y ; this is also
the infimum of the codimensions of the irreducible components of Y . Under this definition,
the codimension of the empty set is infinite. Given closed subschemes Z ⊆ Y ⊆ X, we have
codimX(Z) ≥ codimY (Z) + codimX(Y ).

Given a commutative ring R (not necessarily a domain), recall that an R-module M is
torsion-free if no regular element of R annihilates any non-zero element of M ; or equivalently,
if M → M ⊗R K is injective, where K is the total ring of fractions of R. E.g., see [Vas68,
Section 1]. As in [EGA4, Partie 4, 20.1.5], a sheaf of modules F on a scheme X is torsion-
free if the natural homomorphism F → F ⊗OX

MX is injective; here MX is the sheaf of
meromorphic functions on X. This is equivalent to the condition that F(U) is a torsion-
free OX(U)-module for every affine open subset U of X; thus torsion-freeness is local. By
[EGA4, Partie 4, Proposition 20.1.6], being torsion-free is also equivalent to the condition
that every associated point of F is an associated point of OX . (Recall from [EGA4, Partie 2,
Définition 3.1.1] that a point x of X is an associated point of F if the maximal ideal mx ⊂ OX,x

is an associated prime of the OX,x-module Fx; i.e., is the annihilator of an element of Fx.)
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Rings that one typically encounters tend to be excellent, meaning that several mild but
technical conditions hold. Specifically, a G-ring is a Noetherian ring R such that the map
Rp → R̂p is regular for every prime ideal p of R, where R̂p is the completion of the local ring
Rp. A Noetherian G-ring with the J-2 property (see [Mat80, 32.B]) is called quasi-excellent,
and a quasi-excellent ring that is universally catenary (see [Mat80, 14.B]) is called excellent
(see [Sta25, Definition 07QT].) By [Mat80, Theorem 78]), quasi-excellent rings are Nagata
rings (see the definition at [Mat80, 31.A]). Noetherian complete local rings are excellent, and
excellence is preserved under localizing and under passage to a finitely generated algebra
(see [Mat80, Section 34]). A scheme is excellent if it can be covered by affine open subsets
Ui such that each of the rings OX(Ui) is excellent (see [Liu02, Definition 8.2.35]); these
are automatically locally Noetherian. One similarly defines schemes that are Nagata, are
universally catenary, etc.

If f : V → U is a quasi-compact and quasi-separated morphism of schemes (e.g., an
inclusion of Noetherian schemes), and if F is quasi-coherent on V , then f∗(F) is quasi-
coherent on U (see [Sta25, Lemma 01LC]). For coherent modules, there is the following
result, which is known to the experts, and which is essentially a special case of [EGA4,
Partie 2, Corollaire 5.11.4(ii)] and [Sta25, Lemma 0AWA] (as Johan de Jong pointed out to
us). Note that this theorem holds in particu1lar in the case mentioned in the introduction,
viz., of a normal connected quasi-projective scheme U , since normal (and integral) schemes
are reduced, and since quasi-projective varieties are excellent (by [Mat80, Section 34]).

Theorem 2.1. Let U be a reduced scheme that is excellent (or more generally, Nagata
and universally catenary). Let j : V ↪→ U be the inclusion of an open subset such that the
complement of V in U has codimension at least two in U . Then for any torsion-free coherent
sheaf F on V , the pushforward j∗(F) is a torsion-free coherent sheaf on U .

Proof. As noted above, for F a torsion-free coherent sheaf on V , the associated points of F are
also associated points of OV , or equivalently of V . Note that U is locally Noetherian, being
Nagata. Since V is an affine open subset of the reduced scheme U , both V and its ring of
functions OU(V ) are reduced, by [Sta25, Lemmas 01J1, 01J2]. So by [Sta25, Lemmas 0EMA,
05AR], the associated points of V are those of codimension zero. Thus this holds for the
associated points of F.

By hypothesis, the complement Z of V in U has codimension at least two in U . Also,
by the previous paragraph, for every associated point x of F, the closure {x} of {x} in U
is an irreducible component of U . It then follows that for every associated point x of F,
the codimension of Z ∩ {x} in {x} is at least 2; or equivalently, dim(O{x},z) ≥ 2 for every
z ∈ Z ∩ {x}.

As a consequence, since U is Nagata and universally catenary, we obtain that j∗(F) is
coherent on U , by applying [Sta25, Lemma 0AWA] (or alternatively [EGA4, Partie 2, Corol-
laire 5.11.4(ii)]; see also [Sta25, Proposition 0334]).

Next, we show that j∗(F) is torsion-free on U ; i.e., j∗(F)(O) is a torsion-free OU(O)-module
for every affine open subset O of U . Since the torsion-free property is local, we may assume
that U is the spectrum of a reduced ring R, and prove that j∗(F)(U) is a torsion-free R-
module. Note that by [Sta25, Lemmas 0EMA, 05C3], the set of zero-divisors in R is the
union of the minimal primes of R; or equivalently, the set of elements of R that vanish at
the generic point of some irreducible component of U .
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Now let m be a non-zero element of M := j∗(F)(U) = F(V ) and let r be a regular element
of R. We wish to show that rm ̸= 0. Since m is non-zero in F(V ), there is a non-empty
affine open subset V ′ = Spec(R′) ⊆ V ⊆ U such that the restriction m′ of m from V to V ′

is non-zero in F(V ′). Since r is regular in R (i.e., not a zero-divisor), it does not vanish at
the generic point of any irreducible component of U . Thus the image r′ of r in R′ does not
vanish at the generic point of any irreducible component of V ′ = Spec(R′) (since the latter
set of generic points is contained in the former set). As above, since U is reduced, the ring
of functions R′ on the affine open subset V ′ ⊆ U is reduced. So r′ is a regular element of
R′. But F(V ′) is a torsion-free module over R′ = OV (V

′), since F is a torsion-free sheaf
on V . Hence r′m′ ̸= 0 in F(V ′). Since r′m′ is the image of rm under the restriction map
M = F(V ) → F(V ′), it follows that rm ̸= 0 in M , as needed. □

To illustrate the role of the torsion-free condition on coherent sheaves here (or more gener-
ally, the condition on associated points), let V be the complement of the origin in the affine
x, y-plane U over a field k, and let F = j∗(O/I), where I is the sheaf of ideals on U induced
by the ideal (y) ⊂ k[x, y] = O(U). The pushforward j∗F is not coherent on U , since again
its global sections are k[x, x−1]. Here the complement Z of V in U has codimension two,
but F is not torsion-free, since it is y-torsion, with (y) an associated point. Moreover Z is
of codimension one (not two) in the closure of the associated point (y).

In Section 6, we consider the analogous situation of pushforwards of quasi-coherent and
coherent sheaves of OU-modules on a formal scheme U over a complete discrete valuation
ring T . See Proposition 6.1 for the quasi-coherent sheaf result and Theorem 6.6 for the
coherent sheaf result. In the coherent formal situation, we again assume that the sheaf is
torsion-free, meaning that its sections over each affine open set V of the underlying space
U form a torsion-free module over OU(V ). Without the torsion-free assumption, one can
construct counterexamples similar to the one above, by taking the t-adic completion of the
base change of the above example from k to k[[t]].

The proof for quasi-coherent formal sheaves parallels the proof for quasi-coherent sheaves
on schemes. But the proof for coherent sheaves in the formal situation is more involved
than the proof over schemes. Namely, suppose we are given a torsion-free coherent sheaf
F on a formal scheme U as above, with Un being the n-th thickening of the reduced closed
fiber. It is tempting to try to apply the scheme-theoretic result [Sta25, Lemma 0AWA] (or
[EGA4, Partie 2, Corollaire 5.11.4(ii)]) to the pullback Fn of F to each Un, and to use that a
coherent sheaf on U corresponds to an inverse system of coherent sheaves on the schemes Un

that has surjective transition functions (see [Sta25, Lemma 087W]). But the difficulty is that
Fn need not be torsion-free, and may have new associated points of positive codimension in
Un; and this would prevent the use of the above results. (See also Remark 6.7.) Instead,
in Section 5, we follow a strategy that relies on the commutative algebra lemmas proven in
Section 3; and we build on that in proving Theorem 6.6.

3. Two general lemmas

Before turning to formal schemes, we prove some general results. The proof of the first
lemma was outlined for us by Craig Huneke in the case that I is prime.
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Lemma 3.1. Let R be a G-ring that is a normal domain, let I be a proper ideal in R, and
let M be a finitely generated torsion-free R-module. Let P1, . . . , Ps be the minimal primes
over I.
(a) For every i ≥ 0 there is an n ≥ 0 such that M ∩ P n

1 MP1 ∩ · · · ∩ P n
s MPs ⊆ I iM .

(b) In particular, for every integer c ≥ 0 there is some n ≥ 0 such that if r ∈ R and m ∈ M
satisfy rm ∈ InM then either r ∈ Pj for some j or m ∈ IcM .

Proof. The radical
√
I of I is the ideal P1 ∩ · · · ∩ Ps, and by [AM69, Proposition 7.14] there

is an integer α such that
√
I
α ⊆ I. Thus for part (a), it suffices to prove the assertion with

I replaced by
√
I. So we will assume that I is the intersection of the prime ideals Pi, and

will proceed by induction on s.
If s = 1, then I is a prime ideal P . First consider the special case that M = R. In this

situation, for each positive integer n, M ∩ P nMP is just the n-th symbolic power P (n) :=

R ∩ P nRP of P . Since R is a normal G-ring, the completion R̂Q of R at each prime ideal
Q ⊂ R is also normal, by [Mat80, 33.I]. Since R̂Q is normal and local, it is a domain, and
its only associated prime is (0). Since this holds for all Q, [Sch85, Theorem 1] asserts that
the P -adic topology on R defined by the ideals P n is equivalent to the P -symbolic topology
defined by the ideals P (n). (Namely, the condition in part (ii) of that theorem holds because
the annihilator ideals Q considered there properly contain P , and the only associated prime
of the complete local ring at Q is (0).) Hence part (a) follows in this special case.

Next, still with s = 1 and I = P , consider a more general finitely generated torsion-free
R-module M . By [Sta25, Lemma 0AUU], M is contained in a finitely generated free R-
module E. By the Artin-Rees lemma (e.g., [Sta25, Lemma 00IN]), there is a positive integer
d such that for every e ≥ d, M ∩ P eE = P e−d(M ∩ P dE) ⊆ P e−dM . Take i ≥ 0. By the
previous paragraph, there exists n ≥ 0 such that R ∩ P nRP ⊆ P i+d. Thus the free module
E satisfies E ∩ P nEP ⊆ P i+dE. Here M ⊆ E and so MP ⊆ EP . Hence

M ∩ P nMP = M ∩ E ∩ P nMP ⊆ M ∩ E ∩ P nEP ⊆ M ∩ P i+dE ⊆ P iM,

at the last step using Artin-Rees with e = i+ d. This proves the case s = 1.
For the inductive step, take I = P1 ∩ · · · ∩ Ps, and assume that the assertion holds for

J := P1 ∩ · · · ∩Ps−1. Here I = Ps ∩ J . We will prove that for every i there is an n such that
M ∩ P n

1 MP1 ∩ · · · ∩ P n
s MPs ⊆ I iM . So take some i ≥ 0. By the inductive hypothesis, there

is an n′ ≥ 0 such that M ∩ P n′
1 MP1 ∩ · · · ∩ P n′

s−1MPs−1 ⊆ J iM . By the above case of s = 1
applied to the finitely generated torsion free module J iM and the ideal Ps, there is some
m ≥ 0 such that J iM ∩ Pm

s J iMPs ⊆ P i
sJ

iM . Since P1, . . . , Ps are the (distinct) minimal
primes over I, no Pj is contained in Ps for j < s. Thus J = P1 ∩ · · · ∩ Ps−1 is also not
contained in Ps, by [AM69, Proposition 1.11(ii)]. Hence JRPs is the unit ideal of RPs , and
J iMPs = MPs . We now have M ∩ P n′

1 MP1 ∩ · · · ∩ P n′
s−1MPs−1 ∩ Pm

s MPs ⊆ J iM ∩ Pm
s MPs =

J iM ∩ Pm
s J iMPs ⊆ P i

sJ
iM = (PsJ)

iM ⊆ (Ps ∩ J)iM = I iM . Let n = max(n′,m). Thus
M ∩ P n

1 MP1 ∩ · · · ∩ P n
s MPs ⊆ M ∩ P n′

1 MP1 ∩ · · · ∩ P n′
s−1MPs−1 ∩ Pm

s MPs ⊆ I iM , and this
concludes the inductive proof of part (a).

For part (b), let n ≥ 0 be associated to the value i = c as in part (a). Suppose r ∈ R and
m ∈ M satisfy rm ∈ InM . Thus rm ∈ P n

j MPj
for all j. If r does not lie in any Pj, then r is

a unit in each RPj
and so m ∈ P n

j MPj
for all j. Hence m ∈ M ∩P n

1 MP1 ∩· · ·∩P n
s MPs ⊆ IcM

by part (a). □
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Lemma 3.2. Let R be a normal G-ring that is complete with respect to a non-zero principal
ideal I = (t), and let M be a non-zero finitely generated torsion-free R-module. Let P1, . . . , Ps

be the minimal primes over I, and for each j = 1, . . . , s and i ≥ 1 write PjRi for the image of
Pj in Ri := R/I i. For each i ≥ 1 also write Mi = M/I iM , and let Qi be the set of elements
q of the Ri-module Mi such that ann(q) is not contained in any of the ideals P1Ri, · · · , PsRi.
Then the following hold.

(a) Qi is an Ri-submodule of Mi, and each q ∈ Qi satisfies ann(q) ̸⊆ P1Ri ∪ · · · ∪ PsRi.
(b) Every associated prime of the Ri-module Ni := Mi/Qi is of the form PjRi with 1 ≤ j ≤ s.
(c) The inverse system {Mi} induces inverse systems {Qi} and {Ni} by restriction and

quotient.
(d) If mi ∈ Mi and tcmi ∈ Qi for some c < i, then the image of mi in Mi−c lies in Qi−c.
(e) There is a positive integer n such that for every i, Qi−1+n → Qi is the zero map.
(f) lim

←
Mi = M , lim

←
Qi = 0, and lim

←
Ni = M .

Proof. Recall that every Noetherian normal ring is a finite product of Noetherian normal
domains; see [Sta25, Lemma 030C]. Hence we may write R ∼= R(1) × · · · × R(s), where each
factor is a Noetherian normal domain; and correspondingly, we have Mi

∼= M
(1)
i ×· · ·×M

(s)
i ,

Qi
∼= Q

(1)
i × · · · × Q

(s)
i , and Ni

∼= N
(1)
i × · · · × N

(s)
i . Here the associated primes of Ni are

the union of the associated primes of N (1)
i , . . . , N

(s)
i . Thus in order to prove the lemma in

general, it suffices to prove it in the special case in which R is a domain, by applying the
special case to each factor. Here, for the proof of part (e), we can take n to be the maximum
of the values n(1), . . . , n(s) corresponding to the factors.

So for the remainder of the proof we assume that R is a domain.
Since each ideal Pj ⊂ R is prime and contains I, it follows that PjRi ⊂ Ri = R/I i is also

prime. Thus if q ∈ Qi then ann(q) is not contained in Πi := P1Ri ∪ · · · ∪ PsRi, by prime
avoidance. Now take q1, q2 ∈ Qi. Since ann(qi) ̸⊆ Πi, there exist elements r1, r2 ∈ Ri ∖ Πi

that annihilate q1, q2 respectively. So r1r2 ∈ Ri is not in Πi and it annihilates q1 + q2. Also,
for any r ∈ Ri, the above element r1 ∈ Ri ∖ Πi annihilates rq1. Hence q1 + q2 and rq1 lie in
Qi. So Qi is an Ri-submodule of Mi, proving (a).

We claim that for every non-zero element m̄ = m+Qi ∈ Ni, with m ∈ Mi, the annihilator
of m̄ is contained in one of the ideals P1Ri, · · · , PsRi ⊂ Ri. Again by prime avoidance, this
is equivalent to the assertion that this annihilator is contained in the above set Πi. To prove
that this containment holds, suppose that m̄ ∈ Ni does not have this property; i.e., there
exists r ∈ Ri that is not in Πi and such that rm ∈ Qi. Thus, as in the previous paragraph,
there exists s ∈ Ri such that srm = 0 ∈ Mi and s is not in Πi. But then sr ∈ Ri is also not
in Πi. So m ∈ Qi and thus m̄ = 0. This proves the claim.

So every associated prime of Ni is contained in some PjRi, j = 1, . . . , s. But each Pj is
a minimal prime over I and hence over I i; thus PjRi is a minimal prime of Ri. Therefore
every associated prime of the Ri-module Ni is among P1Ri, · · · , PsRi, proving (b).

Since (t) ⊆ Pi, the surjection Mi → Mi−1 restricts to a map Qi → Qi−1, and so the
modules Qi form an inverse system. It follows that the maps Qi → Qi−1 yield well-defined
surjections Ni → Ni−1, so that the modules Ni also form an inverse system. This proves (c).

By [Sta25, Lemma 00MA, (3)], we have M = M ⊗R R = M ⊗R lim
←

Ri = lim
←

Mi. This
proves the first part of (f).
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For part (d), by induction we are reduced to the case that c = 1, with i ≥ 2. So suppose
that mi ∈ Mi and tmi ∈ Qi. Let m ∈ M be an element such that mi is the image of m in
Mi. By definition of Qi, there exists ri ∈ R such that ritm ∈ tiM and r̄i ̸∈ P1Ri, . . . , PsRi,
where r̄i ∈ Ri is the image of ri. Thus ri ̸∈ P1, . . . , Ps; and since each Pj contains t, the
image of ri in Ri−1 is not in any PjRi−1. Write ritm = tim′ for some m′ ∈ M . Since M is
torsion-free, and since the non-zero element t is regular (because R is a domain), it follows
that rim = ti−1m′; hence the image of mi in Mi−1 lies in Qi−1. This proves (d) in the case
c = 1, and hence in the general case.

Next, we show that (e) holds for the integer n obtained by setting c = 1 in Lemma 3.1(b).
We first treat the case of (e) where i = 1; i.e., we show that the image of Qn → Q1 is trivial.
Namely, given a non-zero element mn ∈ Qn ⊆ Mn, we may choose m ∈ M lying over mn;
and then there exists r ∈ R such that rm ∈ tnM and r ̸∈ P1, . . . , Ps (as in the previous
paragraph). By the defining property of n, it follows that m ∈ tM . Hence the image of m
in M1 is trivial. But this element is the same as the image of mn in Q1; and so this proves
(e) in the case i = 1.

For a more general value of i in the assertion of (e), suppose for the sake of contradiction
that mn+i−1 ∈ Qn+i−1 ⊆ Mn+i−1 is an element whose image mi ∈ Qi ⊆ Mi is non-zero.
Pick a representative m ∈ M of mn+i−1. Then m ̸∈ tiM . So there is a maximum integer
d ≥ 0 such that m ∈ tdM , and d < i. Thus we may write m = tdm′ for some m′ ∈ M
such that m′ ̸∈ tM . Let m′n+i−1 be the image of m′ in Mn+i−1. Thus tdm′n+i−1 = mn+i−1 ∈
Qn+i−1 ⊆ Mn+i−1; and so the image m′n+i−1−d of m′n+i−1 in Mn+i−1−d lies in Qn+i−1−d, by
part (d). Let m′n ∈ Qn ⊆ Mn and m′1 ∈ Q1 ⊆ M1 be the images of m′n+i−1−d. (Note
that n + i − 1 − d ≥ n ≥ 1.) Thus m′1 is the image of m′n; and m′1 ̸= 0 ∈ M1 = M/tM
because m′ ̸∈ tM . But by the previous paragraph, the image of Qn → Q1 is trivial. This
contradiction proves (e).

Part (e) implies that lim
←

Qi = 0, which is the second part of (f). For the third part of (f),
note that part (e) implies that the inverse system {Qn} satisfies the Mittag-Leffler condition
(see [Sta25, Section 0594]). Since 0 → Qi → Mi → Ni → 0 is exact, it then follows from
[Sta25, Lemma 0598] that 0 → lim

←
Qi → M → lim

←
Ni → 0 is exact. Since lim

←
Qi = 0, the

map M → lim
←

Ni is an isomorphism, as asserted. This completes the proof in the case that
R is a domain, and thus also in the general case. □

4. Formal schemes and patches

Let T be a complete discrete valuation ring with uniformizer t, and let X be an integral
normal T -scheme of finite type having function field F . Let X := X red

s be the reduced
closed fiber of X , where Xs is the fiber of X over the closed point s of Spec(T ). Given an
open subset U ⊂ X , we may consider the t-adic completion ◊�OX (U ) of the ring OX (U ).
Also, given any subset U of X, we may take the subring OX ,U =

⋂
P∈U OX ,P of F consisting

of the rational functions on X that are regular at every point of U ; this is normal since each
local ring OX ,P is. We write ÔX ,U for its t-adic completion.

Consider the formal scheme X = X/X obtained by completing X along X, as in [EGA1,
Section 10.8]. The underlying topological space of the ringed space X is X; and the struc-
ture sheaf OX is the inverse limit of the OX -modules OXn , where Xn is the fiber of X over
Spec(T/(tn)). This inverse limit is defined because the morphisms X → Xn → Xn+1 are
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homeomorphisms by [EGA1, 5.1.2, 5.1.3], and so the underlying spaces may be identified.
Similarly, we may identify the open subsets U ⊆ X with the open subsets U ⊆ X as topolog-
ical spaces (though not as ringed spaces). With U corresponding to U, we will often write
OX(U) for the t-adically complete ring OX(U). Similarly, we may write F (U) for F (U), if
F is a sheaf of OX-modules. Here the structure sheaf of U is the restriction of that of X; and
so for an open subset V ⊆ U , we have OU(V ) = OX(V ).

If U is an affine open subset of X, then the corresponding open subset Un ⊆ Xn is also
affine, by [EGA1, Proposition 5.1.9]. Since the sheaf and presheaf inverse limits of sheaves
coincide, OX(U) = lim

←
OXn(Un); here OXn(Un) = OX(U)/(tn). Similarly, OX(U) = OX(U)/I,

where I is the radical of the ideal tOX(U). In this situation, we will often write R̂U for the
ring OX(U). By part (c) of the next proposition, this generalizes the notation used in [HH10],
[HHK09], and later papers, where R̂U was used for the ring ÔX ,U in the case of a projective
normal T -curve X .

Proposition 4.1. Let T be a complete discrete valuation ring with uniformizer t, let X be
a normal integral T -scheme of finite type, and let X be the formal completion of X along its
reduced closed fiber X. Let U be a non-empty affine open subset of X.
(a) The natural map ÔX ,U → OX(U) is injective.
(b) Suppose that U is an affine open subset of X such that U ∩X = U . Then the natural

maps ◊�OX (U ) → ÔX ,U → OX(U) are isomorphisms.
(c) If X is a normal projective T -curve, then such a U exists, and so the natural map

ÔX ,U → OX(U) is an isomorphism.

Proof. The assertion is trivial if X consists just of the fiber over the closed point of Spec(T ),
and so we may assume that t is a non-zero element of the function field F of X .

Let Xn be the fiber of X over Spec(T/tn), and as above let Un be the affine open subset
of Xn corresponding to U under the homeomorphism X → Xn. Since taking inverse limits
is left exact, in order to prove part (a), it suffices to show injectivity modulo tn for all n.
So take f ∈ ÔX ,U/(t

n) = OX ,U/(t
n) that lies in the kernel of the map to OX(U)/(tn). Let

f̃ ∈ OX ,U ⊆ F be an element that maps to f . Thus the restriction of f̃ to Un is zero. Hence
for every generic point η of Un, the image of f̃ in OX ,η lies in the ideal (tn), and so the
element g := f̃/tn ∈ F lies in OX ,η ⊆ F . Now for every point P ∈ U , if p is a height one
prime of OX ,P , then the localization (OX ,P )p is either of the form OX ,η for some generic
point η of Un as above (if t ∈ p), or else of the form OX ,Q for some codimension one point
Q of X that is not a generic point η and whose closure meets U (if t ̸∈ p). In either case g

lies in (OX ,P )p, in the latter case using that f̃ ∈ OX ,P and that t is a unit in (OX ,P )p. Since
OX ,P is a normal Noetherian domain, it follows from [Eis95, Corollary 11.4] that g ∈ OX ,P

for each P ∈ U . Hence g ∈
⋂

P∈U OX ,P = OX ,U . Thus f̃ = tng ∈ tnOX ,U , and so f = 0,
yielding part (a).

In part (b), since U is an affine open subset of X such that U ∩X = U , we have that
OX (U )/(tn) = OXn(Un); and taking inverse limits yields that the map ◊�OX (U ) → OX(U)
is an isomorphism. The inclusion Un → U induces a map OX (U )/(tn) → OX ,U/(t

n) =

ÔX ,U/(t
n). Since OX (U )/(tn) → OX(U)/(tn) factors through OX (U )/(tn) → OX ,U/(t

n),
by taking inverse limits we find that the isomorphism ◊�OX (U) → OX(U) factors through
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◊�OX (U) → ÔX ,U . Hence the map ÔX ,U → OX(U) is surjective. So by part (a) this map is
an isomorphism, concluding the proof of part (b).

To prove (c) we will show that an affine open subset U ⊆ X as above exists when X
is a normal projective T -curve. First consider the case where U is dense in X, so that
its complement S in X is finite. Since U is affine, this complement meets each irreducible
component of X. By [HHK15, Proposition 3.3], there is a finite morphism φ : X → P1

T

such that S is the inverse image of the point at infinity on the closed fiber P1
k (where k is

the residue field of T ). Thus U is the inverse image of A1
k. We may then take U ⊂ X to be

the inverse image of A1
T . This is affine because the morphism φ is finite and hence an affine

morphism.
For the proof of (c) in the more general case where U is not necessarily dense in X, let J

be the set of irreducible components of X that do not meet U . Since U is non-empty, J does
not contain every irreducible component of X. Thus by [BLR90, Section 6.7, Theorem 1,
Corollary 3, Proposition 4], we may contract the components in J . That is, there is a proper
birational morphism π : X → Y , where Y is a projective normal T -scheme, such that the
components of J each map to a point, and π is an isomorphism elsewhere. Thus U maps
isomorphically onto its image V , which is dense in the reduced closed fiber Y of Y . So by
the above special case, there is an affine open subset V ⊆ Y such that V ∩ Y = V . The
inverse image U = π−1(V ) is isomorphic to V , and so it is an affine open subset of X .
Moreover its intersection with X is U . So U is as asserted. □

Remark 4.2. In Proposition 4.1(c), once we reduce as above to the case that U is dense,
we can construct U as follows (following the proof of the result [HHK15, Proposition 3.3]
that was cited above): At each closed point P ∈ S = X ∖ U , take an element rP in the
maximal ideal of the local ring OX ,P such that rP does not vanish along any component of
the closed fiber passing through P . This defines an effective Cartier divisor on Spec(OX ,P )
whose support passes through P , and which is the restriction of an effective Cartier divisor
DP on X whose support meets X precisely at P . Here D :=

∑
P∈S DP is an effective

Cartier divisor on X whose support meets X precisely at S, and so in particular meets
each irreducible component of X. Hence the restriction D of D is X is ample (by [Liu02,
Chapter 7, Proposition 5.5]), and thus so is D (by [Liu02, Chapter 5, Corollary 3.24]). Hence
some multiple of D is very ample, and so the complement of its support in X is affine. We
may then take U to be that complement.

In the case where X has dimension greater than one over T , even if a given affine open
set U is not of the form U ∩X, one can still cover U by affine open subsets V of that form,
since every point of U has such a neighborhood, by definition of the subspace topology. Here
a finite set of such subsets V suffices, by quasi-compactness. The following lemma studies
the behavior of the corresponding rings.
Lemma 4.3. Let T be a complete discrete valuation ring with uniformizer t, let X be a
normal integral T -scheme of finite type, and let X be the formal completion of X along its
reduced closed fiber X. Let U be an affine open subset of X.
(a) The natural map U → Spec(R̂U) is a bijection on closed points.
(b) If V ⊆ U is an affine open subset, then R̂V is flat over R̂U .
(c) If V1, . . . , Vn ⊆ U are affine open subsets such that

⋃n
i=1 Vi = U , then

∏n
i=1 R̂Vi

is faith-
fully flat over R̂U .
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Proof. Let I be the radical of the ideal tOX(U). Since R̂U/I = OX(U), the natural map
U → Spec(R̂U) induces a bijection between the maximal ideals of OX(U) and the maximal
ideals of R̂U that contain I. But since R̂U is I-adically complete, the ideal I is contained
in the Jacobson radical of R̂U (see [Mat80, Proposition 23.G]), and hence in every maximal
ideal of R̂U . So part (a) follows.

For (b), let Xn be the reduction of X modulo tn, and let Un, Vn be the homeomorphic
images of U, V under X → Xn. Then Vn ⊆ Un is an inclusion of affine open subsets of Xn by
[EGA1, Proposition 5.1.9], and so OXn(Vn) is flat over OXn(Un). Here OX(U)/(tn) = OXn(Un)

and similarly for V and Vn. By [Sta25, Lemma 0912], R̂V = OX(V ) is flat over R̂U = OX(U).
So part (b) holds.

By part (a), every maximal ideal of R̂U is of the form mU,P for some closed point P of
U =

⋃n
i=1 Vi. Here P lies on some Vi, and so mU,P is the contraction of the maximal ideal

mVi,P of R̂Vi
. Thus every maximal ideal of R̂U is the contraction of a maximal ideal of∏n

i=1 R̂Vi
. Also,

∏n
i=1 R̂Vi

is flat over R̂U because each R̂Vi
is, by part (b). Thus by [Bou72,

Proposition I.3.5.9],
∏n

i=1 R̂Vi
is faithfully flat over R̂U ; i.e., part (c) holds. □

Lemma 4.4. Let T be a complete discrete valuation ring with uniformizer t, let X be a
normal integral T -scheme of finite type, and let X be the formal completion of X along its
reduced closed fiber X. Let U be an affine open subset of X.
(a) The ring R̂U is quasi-excellent and normal (and in particular, Noetherian).
(b) If U = U ∩ X for some affine open subset U ⊆ X , then R̂U is an excellent normal

ring.
(c) The ring R̂U is a domain if and only if U is connected.
(d) If U is a disjoint union of affine open subsets Ui, then the natural map R̂U →

∏
i R̂Ui

is
an isomorphism.

Proof. Let I be the radical of tR̂U , and let Un ⊆ Xn be as before. As noted before Propo-
sition 4.1, R̂U = OX(U) = lim

←
OXn(U), with OXn(U) = R̂U/(t

n) and OX(U) = R̂U/I. Since

OX(U) is of finite type over k, it is excellent, and in particular quasi-excellent. Hence R̂U

is quasi-excellent by a theorem of Gabber (see [KuSh21, Theorem 5.1]). This proves the
first part of (a), that R̂U is quasi-excellent (and hence Noetherian). Note also that since
OX(U) = R̂U/I, we can identify U with the closed subset of Spec(R̂U) defined by the ideal I.

Under the hypothesis of part (b), R̂U = ◊�OX (U ), by Proposition 4.1(b). Write U =
Spec(A) ⊆ X . The inclusion ι : U ↪→ U corresponds to a morphism A → OX(U) that
factors through the t-adic completion Â = ◊�OX (U ) of A. That is, ι factors through Spec(R̂U),
corresponding to the natural embedding U → Spec(R̂U). By [Mat80, 34.B], T is excellent;
hence so is OX (U ), being a finitely generated T -algebra. So the t-adic completion R̂U of
OX (U ) is also excellent, by a theorem of Gabber (see [KuSh21, Main Theorem 2]). By
[Mat80, 33.I, 34.A], R̂U is a normal ring, since it is the completion of the excellent normal
ring OX (U ). This proves part (b).

For the last part of (a), concerning normality, recall that any affine open subset U of X is
the union of finitely many open subsets Vi of the form Vi ∩X, with Vi an affine open subset
of X . By part (b), each R̂Vi

is normal; hence so is
∏

i R̂Vi
. Also, by Lemma 4.3(c),

∏
i R̂Vi
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is faithfully flat over R̂U . So by [Sta25, Lemma 030C], R̂U is normal, completing the proof
of part (a).

Since Spec(R̂U) is normal, it is in particular reduced. So Spec(R̂U) is integral if and only
if it is connected. But since every connected component of Spec(R̂U) contains a closed point,
it follows from Lemma 4.3(a) that Spec(R̂U) is connected if and only if U is connected. Thus
part (c) follows.

Part (d) is immediate from the definition of R̂U as OX(U) together with the fact that OX

is a sheaf. □

The next result further relates R̂U to R̂V , where V ⊆ U are affine open subsets of X.

Lemma 4.5. Let T be a complete discrete valuation ring with uniformizer t, and let X be
a normal integral T -scheme of finite type, with reduced closed fiber X. Let V ⊆ U be an
inclusion of non-empty affine open subsets of X.
(a) The contraction of every minimal prime ideal of R̂V is a minimal prime ideal of R̂U .
(b) Every regular element of R̂U has the property that its image is regular in R̂V .
(c) The natural map R̂U → R̂V is injective if and only if V meets each connected component

of U . In particular, it is injective if V is dense in U , or if U is connected.
(d) If the map R̂U → R̂V is injective, it induces a well-defined injection between the total

rings of fractions of R̂U , R̂V .

Proof. Since R̂V is flat over R̂U by Lemma 4.3(b), the going down theorem holds for this ring
extension by [Mat80, Theorem 5.D]. Hence the contraction of every minimal prime ideal of
R̂V is a minimal prime ideal of R̂U .

To prove part (b), we show that an element of R̂U that becomes a zero-divisor in R̂V is
already a zero-divisor in R̂U . By Lemma 4.4(a), the rings R̂V and R̂U are normal and in
particular reduced. Hence by [Sta25, Lemmas 0EMA, 05C3], the set of zero-divisors in R̂V

(resp. R̂U) is the union of the minimal primes of that ring. So if the image r′ ∈ R̂V of some
r ∈ R̂U is a zero-divisor in R̂V , then r′ lies in a minimal prime of R̂V . By part (a), r lies in
a minimal prime of R̂U , and so is a zero-divisor in R̂U , as needed.

In part (c), the second assertion is immediate from the first. For the forward direction of
the first assertion, in the special case that U is connected, R̂U is a domain by Lemma 4.4(c),
and hence every non-zero element r ∈ R̂U is regular. Thus by part (b) above, the image
of r in R̂V is regular and hence non-zero. Thus the map is injective. For the more general
case, let U1, . . . , Un be the connected components of U , and let Vi = Ui ∩ V . Thus each Ui

and Vi is an affine open set, with R̂U
∼=

∏
i R̂Ui

and R̂V
∼=

∏
i R̂Vi

by Lemma 4.4(d). By the
above special case, each R̂Ui

→ R̂Vi
is injective. Hence so is R̂U → R̂V , showing the forward

direction. For the reverse direction, if V does not meet some connected component Uj of U ,
let r ∈ R̂U

∼=
∏

i R̂Ui
be the element given by 1 in R̂Uj

and by 0 in every other R̂Ui
. Then

the image of r in R̂V is 0, and so the map R̂U → R̂V is not injective.
For (d), let SU , SV be the sets of regular elements in R̂U , R̂V . Thus the total rings of

fractions of these rings are KU = S−1U R̂U and KV = S−1V R̂V . By part (b), the injection
R̂U → R̂V restricts to an injection SU → SV . Thus R̂U → R̂V induces a map KU = S−1U R̂U →
S−1V R̂V = KV . This map factors through S−1U R̂V . Here S−1U R̂U → S−1U R̂V is injective because
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localization is exact; and S−1U R̂V → S−1V R̂V is injective because the elements of SV are regular
in R̂V . This proves (d). □

The next lemma controls the behavior of the principal ideal (t) in the rings corresponding
to different patches.

Lemma 4.6. Let T be a complete discrete valuation ring with uniformizer t, and let X be a
normal integral T -scheme of finite type. Let U be an affine open subset of the reduced closed
fiber X of X , and let U ′ ⊆ U be an affine dense open subset. Write R̂ and R̂′ for R̂U and
R̂U ′, respectively. For i ≥ 1, let Ri, R

′
i denote the quotients of R̂, R̂′ by the ideals generated

by ti in the respective rings. Let {P1, . . . , Ps} be the set of minimal primes over tR̂, and
write PjR̂

′, PjRi, PjR
′
i for the extension of Pj to R̂′, Ri, R

′
i, respectively. Then

(a) The minimal primes over tR̂′ are the ideals PjR̂
′ (j = 1, . . . , s).

(b) PjRi is the contraction of PjR
′
i to Ri.

(c) The ideal Ji ⊂ Ri defining the complement of Spec(R′i) in Spec(Ri) has the property
that JiR′i is the unit ideal. Moreover, it is generated by (finitely many) elements that

are not in
s⋃

j=1

PjRi.

Proof. The natural map R̂ → R̂′ is an inclusion, by Lemma 4.5(c). The irreducible com-
ponents of the reduced closed fiber of Spec(R̂) are the integral schemes Yj := Spec(R̂/Pj)

for j = 1, . . . , s. The irreducible components of the reduced closed fiber of Spec(R̂′) are the
intersections Y ′j = U ′ ∩ Yj ⊆ U ′, each of which is non-empty because U ′ is dense in U . Here
Y ′j is the closed subset of Spec(R̂′) defined by the ideal PjR̂

′, for j = 1, . . . , s. So these are
the minimal primes of R̂′ over tR̂′, showing (a).

Fix j. Since Y ′j is a dense open subset of the integral scheme Yj, the natural map OX(Yj) →
OX(Y

′
j ) is an inclusion of subrings of the function field of Yj (or equivalently of Y ′j ). But

OX(Yj) = R̂/Pj = (R̂/tiR̂)/(Pj/t
iR̂) = Ri/PjRi, and similarly OX(Y

′
j ) = R′i/PjR

′
i. So the

map Ri/PjRi → R′i/PjR
′
i is an inclusion, for all i. Hence ker(Ri → R′i/PjR

′
i), which is the

contraction of PjR
′
i to Ri, is equal to ker(Ri → Ri/PjRi) = PjRi; showing (b).

The first part of (c) is immediate because JiR
′
i defines the empty subscheme of Spec(R′i).

To prove the second part of (c), first choose any finite set of generators {s1, . . . , sd} ⊂ Ri of

Ji. We will modify these generators so that none of them lie in
s⋃

j=1

PjRi.

Since the ideals Pj are minimal over tR̂, no Pj contains any Pk for k ̸= j. By [AM69,
Proposition 1.11(ii)], Pj does not contain

⋂
k ̸=j Pk; i.e., there exists ρj ∈ R̂ such that ρj is not

contained in Pj but is contained in every other Pk. Hence its image ρ̄j ∈ Ri is not contained
in PjRi (using that t ∈ Pj) but is contained in PkRi for every other k.

Since U ′ is dense in U , the ideal Ji is not contained in any of the ideals PjRi (each of
which defines an irreducible component of Ui := Spec(Ri) and hence of U = U red

i ). By
prime avoidance (see [AM69, Proposition 1.11(i)]), Ji is not contained in

⋃
j PjRi; i.e., there

exists r0 ∈ Ji that is not in any PjRi. For h = 1, . . . , d, let Sh = {j | sh ∈ PjRi}, and let
rh = sh +

∑
j∈Sh

r0ρ̄j. Then rh does not lie in any PjRi, and the ideal Ji is generated by
r0, r1, . . . , rd. This proves the second part of (c). □
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5. Modules on patches

In this section, we build on the previous results to obtain Proposition 5.3, a key step in
the proof of our main theorem.

Lemma 5.1. Let T be a complete local domain and let X be a normal integral T -scheme
of finite type. Let U be a non-empty affine open subset of the reduced closed fiber X of X ,
and let V be an affine dense open subset of U . Then for every finitely generated torsion-free
R̂U -module M , the natural map ιV : M → M ⊗“RU

R̂V is injective.

Proof. Let U1, . . . , Us be the connected components of U . So R̂U =
∏

i R̂Ui
by Lemma 4.4(d);

and each R̂Ui
is a Noetherian normal domain by Lemma 4.4(a,c). Since M is a finitely gen-

erated torsion-free R̂U -module, it follows that M =
∏

i Mi, where Mi is a finitely generated
torsion-free R̂Ui

-module for each i. For every i, the intersection Vi := V ∩Ui is an affine open
dense subset of Ui; and V is their disjoint union. Thus R̂V =

∏
i R̂Vi

, and ιV decomposes as
a product of maps ιV,i : Mi → Mi ⊗“RUi

R̂Vi
. So by considering each pair R̂Ui

, R̂Vi
, we are

reduced to the case where U is connected and R̂U is a Noetherian domain.
Let KU , KV be the total rings of fractions of R̂U and R̂V ; thus KU is the fraction field

of R̂U . Since V is dense in U , we have a natural injection KU ↪→ KV by Lemma 4.5(c,d);
and so KV is a KU -module. The composition M → M ⊗“RU

R̂V → M ⊗“RU
R̂V ⊗“RV

KV =
M ⊗“RU

KV also factors as M → M ⊗“RU
KU → M ⊗“RU

KU ⊗KU
KV = M ⊗“RU

KV . Here
the map M → M ⊗“RU

KU is injective because M is torsion-free over R̂U ; and the map
M ⊗“RU

KU → M ⊗“RU
KU ⊗KU

KV is injective since M ⊗“RU
KU is flat over the field KU . So

the composition of these maps is injective. But the above two compositions are equal, hence
the map M → M ⊗“RU

R̂V is injective. □

Lemma 5.2. Let K be a complete discretely valued field with valuation ring T and uni-
formizer t. Let X be a normal integral T -scheme of finite type, and let U be an affine open
subset of the reduced closed fiber X of X . Consider an affine open subset U ′ ⊆ U that is
dense in U . Write R̂ and R̂′ for R̂U and R̂U ′, respectively. Let M be a finitely generated
R̂-module, let M ′ = M ⊗“R R̂′, and let Ri,Mi, Qi, Ni (resp., R′i,M ′

i , Q
′
i, N

′
i) be the rings and

modules given by Lemma 3.2 for these two modules, with respect to the ideal tR̂ (resp., tR̂′).
Then the natural map Ri → R′i induces a commutative diagram

0 Qi ⊗Ri
R′i Mi ⊗Ri

R′i Ni ⊗Ri
R′i 0

0 Q′i M ′
i N ′i 0

∼= ∼= ∼=

with exact rows.

Proof. First note that R̂ and R̂′ are quasi-excellent normal rings by Lemma 4.4(a), and in
particular they are G-rings. So Lemma 3.2 does in fact provide us with the data Ri,Mi, Qi, Ni

and R′i,M
′
i , Q

′
i, N

′
i as in the above assertion. Moreover, R̂ ↪→ R′ by Lemma 4.5(c).

For each i, Ri = R̂/tiR̂ = O(Ui) and R′i = R̂′/tiR̂′ = O(U ′i), where Ui, U
′
i are the homeo-

morphic images of U,U ′ ⊆ X in the mod ti reduction Xi of X . Since U ′i = Spec(R′i) is an
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open subset of Ui = Spec(Ri), the ring R′i is flat over Ri. Thus the exact sequence

0 → Qi → Mi → Ni → 0

from Lemma 3.2 yields an exact sequence

0 → Qi ⊗Ri
R′i → Mi ⊗Ri

R′i → Ni ⊗Ri
R′i → 0

as in the top row in the diagram above. Similarly, the bottom row is exact by Lemma 3.2.
Using the definition of M ′, we have isomorphisms

Mi ⊗Ri
R′i

∼−→ M ⊗“R Ri ⊗Ri
R′i

∼−→ M ⊗“R R′i
∼−→ M ⊗“R R̂′ ⊗“R′ R

′
i
∼−→ M ′ ⊗“R′ R

′
i
∼−→ M ′

i .

Let P1, . . . , Ps denote the minimal primes over the ideal (t) in R̂. Thus the minimal primes
over tR̂′ are the ideals PjR̂

′, by Lemma 4.6(a). For any element m ∈ Mi that lies in Qi,
the annihilator of m in Ri is not contained in PjRi for any j, by definition of Qi. Thus by
Lemma 4.6(b), this annihilator is also not contained in PjR

′
i for any j. Hence the image of

the inclusion Qi ⊗Ri
R′i → Mi ⊗Ri

R′i is contained in Q′i. This gives the left hand vertical
arrow Qi⊗Ri

R′i → Q′i, which is then injective; and it also gives the right hand vertical arrow
Ni⊗Ri

R′i → N ′i such that the diagram commutes. We claim that the map Qi⊗Ri
R′i → Q′i is

surjective, and hence an isomorphism. Since the middle vertical arrow is an isomorphism as
observed above, this claim will imply that the right hand vertical arrow is an isomorphism,
and thus will finish the proof.

We begin with the case in which U ′ is a basic open subset of U ; i.e., it is the complement
of the zero set of some element f̄ ∈ OX(U). We may lift f̄ to some f̃ ∈ R̂U = OX(U).
Since U ′ is dense in U , the element f̃ (and similarly, f̄) does not vanish at the generic point
of any irreducible component of U . Fixing i, we write f for the image of f̃ in Ri. Thus
R′i = Ri[f

−1], and for j = 1, . . . , s the element f does not lie in the ideal PjRi.
Let m′ ∈ Q′i ⊆ M ′

i = Mi ⊗Ri
R′i; we wish to show that m′ is in the image of the map

Qi ⊗Ri
R′i → Q′i. Since m′ ∈ Q′i, there exists r′ ∈ R′i with r′m′ = 0 ∈ M ′

i , such that r′ does
not lie in any of the primes PjR

′
i. For j = 1, . . . , s, we have f ̸∈ PjRi; and the image f ′ ∈ R′i

of f is a unit in R′i, say with inverse g.
The homomorphism Ri → R′i = Ri[f

−1] = S−1Ri induces the homomorphism Mi → M ′
i =

Mi ⊗Ri
R′i = S−1Mi, where S ⊂ Ri is the multiplicative set generated by f . We may write

r′ = r/fa ∈ S−1Ri and m′ = m/f b ∈ S−1Mi, for some r ∈ Ri, some m ∈ Mi, and some
a, b ≥ 0. Thus the image of m ∈ Mi in M ′

i is (f ′)bm′. Since f ′ ∈ R′i is a unit and since r′ lies
in no PjR

′
i, the element (f ′)ar′ = r/1 ∈ R′i also lies in no PjR

′
i. The element r ∈ Ri maps to

r/1 = (f ′)ar′ ∈ R′i, hence it lies in no PjRi ⊂ Ri.
Now rm/fa+b = r′m′ = 0 ∈ M ′

i , and so by definition of localization we have f crm = 0 ∈
Mi for some c ≥ 0. But f cr ∈ Ri lies in no PjRi, since this is true for the elements f, r ∈ Ri

and since PjRi is prime. Thus m ∈ Qi, and m⊗ gb ∈ Qi ⊗Ri
R′i ⊆ Mi ⊗Ri

R′i. The image of
m⊗ gb in Q′i ⊆ M ′

i is (f ′)bgbm′ = m′, proving the claim in this case.
For the general case, let Ji ⊂ Ri be the ideal defining the complement of Spec(R′i) in

Spec(Ri) as in Lemma 4.6(c); and let f1, . . . , fd be generators of Ji given by that lemma,
with no fh lying in PjRi for any j. For h = 1, . . . , d, the element fh vanishes along the
complement of Spec(R′i) in Spec(Ri); and so for every r ∈ R′i there is some non-negative
integer c such that f c

hr ∈ Ri. Thus Ri ⊆ R′i ⊆ Rh,i := Ri[f
−1
h ], and so Rh,i = R′i[f

−1
h ]. The

ring Rh,i is flat over R′i, being a localization; hence the product ring
∏

h Rh,i is also flat over
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R′i. Moreover Uh,i := Spec(Rh,i) is a basic open subset of Ui = Spec(Ri) that is contained in
U ′i = Spec(R′i), and such that

⋃
h Uh,i = U ′i . Thus Spec(

∏
hRh,i), which is the disjoint union

of the open sets Uh,i, maps surjectively to U ′i = Spec(R′i). Hence
∏

h Rh,i is faithfully flat
over R′i, by [Mat80, 4D, Theorem 3].

Let Mh,i = Mi ⊗Ri
Rh,i = M ′

i ⊗R′
i
Rh,i, and let Qh,i be the submodule of Mh,i given as in

Lemma 3.2. By the above special case, the maps Qi ⊗Ri
Rh,i → Qh,i and Q′i ⊗R′

i
Rh,i → Qh,i

are isomorphisms. Let Q′′i be the image of the injective map Qi ⊗Ri
R′i → Q′i. Then

Qi ⊗Ri
Rh,i = (Qi ⊗Ri

R′i)⊗R′
i
Rh,i, and so the image of Q′′i ⊗R′

i
Rh,i → Qh,i is Qh,i. Thus for

each h, the quotient R′i-module Q′i/Q
′′
i becomes trivial upon tensoring with Rh,i. So Q′i/Q

′′
i

also becomes trivial upon tensoring with the faithfully flat R′i-module
∏

h Rh,i. Hence Q′i/Q
′′
i

is already trivial; i.e., Q′′i = Q′i and so the map Qi ⊗Ri
R′i → Q′i is indeed surjective, as

claimed. □

Proposition 5.3. Let T be a complete discrete valuation ring with uniformizer t, and let
X be a normal integral T -scheme of finite type. Let U0, U1, U2, U be affine open subsets of
the reduced closed fiber X of X , with U1, U2 ⊆ U dense, and with U0 = U1 ∩ U2, such that
the complement of W := U1 ∪ U2 in U has codimension at least two. Let Me be a finitely
generated torsion-free R̂Ue-module for e = 0, 1, 2. For e = 1, 2, consider the natural map
ιe : Me → Me ⊗“RUe

R̂U0, and let αe : Me ⊗“RUe
R̂U0 → M0 be an isomorphism. Then αeιe

is injective for e = 1, 2, and the intersection M := α1ι1(M1) ∩ α2ι2(M2) ⊆ M0 is a finitely
generated torsion-free R̂U -module.

Proof. For short, write R̂e = R̂Ue for e = 0, 1, 2. Since U1, U2 are each dense in U , the
intersection U0 = U1 ∩ U2 is dense in U1, U2. So we may apply Lemma 5.1 and obtain that
each ιe is injective. Since αe is an isomorphism, the composition αeιe is injective. Because
of this injectivity, we may identify Me with its image under αeιe : Me → M0 for e = 1, 2,
and thus regard Me as contained in M0. Here R̂U ,M are respectively contained in R̂e,Me,
and every regular element of R̂U is regular over R̂e by Lemma 4.5(b). Thus M is torsion-free
over R̂U , since Me is torsion-free over R̂e.

With respect to the above identifications, the goal of the proof is then to show that
M := M1 ∩M2 is finitely generated over R̂U .

For e = 0, 1, 2 and i ≥ 1, write Re,i = R̂e/t
iR̂e. The irreducible components of the

reduced closed fiber of Spec(R̂U) are Spec(R̂U/Pj) for j = 1, . . . , s, where P1, . . . , Ps are the
minimal primes over tR̂U . For e = 0, 1, 2, the minimal primes over tR̂e are the ideals PjR̂e

for j = 1, . . . , s, by Lemma 4.6(a). By Lemma 4.4(a), each R̂e is a quasi-excellent t-adically
complete normal ring, and hence a G-ring. So Lemma 3.2 applies, with R̂e,Me, PjR̂e playing
the roles of R,M,Pj there. Let Me,i, Qe,i, Ne,i be the modules given in Lemma 3.2 in that
situation. Thus Me,i and its quotient Ne,i are finitely generated modules over Re,i and over
R̂e, and lim

←
Me,i = lim

←
Ne,i = Me, for e = 1, 2. Also by that lemma, for e = 0, 1, 2 and

i ≥ 1, the associated primes of Ne,i are among P1Re,i, . . . , PsRe,i. Here the support of PjRe,i

is dense in the corresponding irreducible component of Spec(R̂U/(t
i)).

Since U0 is dense in Ue for e = 1, 2, we may apply Lemma 5.2 to U0 ⊆ Ue, and obtain
isomorphisms of finite modules Ne,i ⊗Re,i

R0,i = N0,i. By [Sta25, Lemma 00AM], these
modules and isomorphisms define a coherent sheaf Ni of OWi

-modules on Wi, where we
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write Wi := Spec(R1,i) ∪ Spec(R2,i) ⊆ Spec(R̂U/(t
i)). Since the complement of W in U

has codimension at least two, the same holds for the complement of Wi in Spec(R̂U/(t
i)).

Thus each point z of that latter complement has codimension at least two in each irreducible
component of Spec(R̂U/(t

i)) on which it lies, and in particular in the closed subset defined
by any of the associated primes of Ne,i (each of which is of the form PjRe,i, corresponding to
one of these irreducible components). Since R̂U/(t

i) is of finite type over T , it is excellent.
So [Sta25, Lemma 0AWA] (or equivalently, [EGA4, Partie 2, Corollaire 5.11.4(ii)]) applies
and shows that (fi)∗Ni is coherent over Spec(R̂U/(t

i)), where fi : Wi → Spec(R̂U/(t
i)) is

the natural inclusion. Its module of global sections, which is N ′i := N1,i ×N0,i
N2,i, is thus

finite over R̂U/(t
i).

For every i ≥ 1, let M ′
i = M1,i ×M0,i

M2,i. For every i ≥ 1, the maps M = M1 ∩ M2 →
Me → Me,i = Me/t

iMe for e = 0, 1, 2 together induce a map M → M ′
i that descends to a map

M/tiM → M ′
i . We claim that this latter map is injective. To see this, let m ∈ M/tiM lie in

the kernel, and pick a representative ‹m ∈ M for m. For e = 1, 2, we may view ‹m ∈ Me, and
the image of m in Me,i = Me/t

iMe is trivial. Hence there exist m′e ∈ Me such that ‹m = tim′e
in Me, for e = 1, 2. The elements tim′e, for e = 1, 2, have the same image in M0; and thus
the element m′1 − m′2 ∈ M0 is ti-torsion. But M0 is torsion free, and so m′1 = m′2 ∈ M0.
That is, the two elements m′e ∈ Me define an element m′ ∈ M . But tim′ = ‹m ∈ M , since
the two sides have the same image tim′1 in M1 and since M → M1 is injective. So ‹m ∈ tiM ,
and thus m ∈ M/tiM is trivial, as needed to prove the claim.

Say h ≥ i ≥ 1 is an integer. Then the mod ti reduction maps Me,h → Me,i, for e = 0, 1, 2,
together define a map M ′

h → M ′
i . With respect to the injections M/thM → M ′

h and
M/tiM → M ′

i , this restricts to the surjection M/thM → M/tiM given by reduction modulo
ti. Hence the image of M ′

h → M ′
i contains M/tiM , viewed as a submodule of M ′

i .
For every i ≥ 1, write Q′i = Q1,i ×Q0,i

Q2,i. For e = 0, 1, 2, we have a short exact sequence
0 → Qe,i → Me,i → Ne,i → 0. Since taking fiber products is left exact, we obtain a left
exact sequence 0 → Q′i → M ′

i → N ′i for each i, where as above N ′i = N1,i ×N0,i
N2,i. Thus

Ni := M ′
i/Q

′
i is a submodule of the finitely generated R̂U/(t

i)-module N ′i ; and so Ni is also
finitely generated over R̂U/(t

i), since R̂U/(t
i) is Noetherian.

We want to show that M is a finitely generated R̂U -module. By [Sta25, Lemma 087W], it
suffices to show that M/tiM is a finitely generated R̂U/(t

i)-module for all i. For e = 0, 1, 2,
let ne be the integer given in Lemma 3.2(e) for the modules {Qe,i}. Let n = max(n0, n1, n2).
Thus Qe,i−1+n → Qe,i is trivial for e = 0, 1, 2, and so the map Me,i−1+n → Me,i restricts to
the trivial map on Qe,i−1+n. Hence the restriction of M ′

i−1+n → M ′
i to Q′i−1+n is also trivial.

Thus the map M ′
i−1+n → M ′

i induces a map Ni−1+n → M ′
i that has the same image. This

image is finitely generated because Ni−1+n is. But as noted above (taking h = i−1+n), the
image of M ′

i−1+n → M ′
i contains M/tiM . Thus M/tiM is finitely generated over R̂U/(t

i),
completing the proof. □

6. Formal pushforwards

Recall that if (Z,OZ) is any ringed space, and M is a module over R := Γ(Z,OZ), then
there is a functorially associated quasi-coherent sheaf FM on Z whose presentation is induced
by that of M ; see [Sta25, Lemma 01BH, Definition 01BI]. In the case of a Noetherian affine
formal scheme X = Spf(A) and a finite A-module M , the sheaf FM on X is the formal sheaf
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M∆ associated to the coherent sheaf of modules M̃ on the scheme Spec(A); see [EGA1,
Section 10.10.1]. This sheaf M∆ is coherent as an OX-module and it satisfies Γ(X,M∆) = M ,
by [EGA1, Propositions 10.10.5, 10.10.2(i)]. Moreover, every coherent OX-module is uniquely
of the form M∆, by [EGA1, Proposition 10.10.5].

Consider a normal integral scheme X of finite type over a complete discrete valuation
ring T , with reduced closed fiber X, and let V ⊆ U be open subsets of X. Since X ⊆ X has
the subspace topology, there exist (not necessarily affine) open subsets V ⊆ U of X meeting
X at V, U . The inclusion map g : V ↪→ U restricts to the inclusion g : V ↪→ U ; and it also
pulls back to compatible inclusions gn : Vn ↪→ Un on the reductions of V ,U modulo (tn) for
all n ≥ 1. As in [EGA1, 10.9.1], the morphisms gn together yield a morphism ĝ : V → U
between the induced formal schemes V = V/V and U = U/U . Note that gn and hence ĝ are
independent of the choice of V and U , and depend just on the inclusion g : V ↪→ U (and
on the T -scheme X ).

The proof of the following result parallels that of [Hts77, Proposition II.5.8(c)] and [Sta25,
Lemma 01LC], which make the corresponding assertion in the context of schemes.

Proposition 6.1. Let X,Y be locally Noetherian formal schemes, and let M be a quasi-
coherent OX-module. If f : X → Y is a quasi-compact and quasi-separated morphism, then
f∗(M ) is a quasi-coherent OY-module. This holds in particular if f : X → Y is a morphism
that defines an open inclusion of the underlying topological spaces.

Proof. The assertion is local on Y, so we are reduced to the case that Y is an affine formal
scheme; i.e., of the form Spf(E). Thus X,Y are quasi-compact. Since X is locally Noetherian,
every point of X has a fundamental system of quasi-compact neighborhoods. Hence by [Sta25,
Lemma 01BK], for every point x of X there is an open affine neighborhood Ux = Spf(Ax)
of x such that M |Ux is the sheaf of OUx-modules associated to some Ax-module. Since X is
quasi-compact, there is a finite set {x1, . . . , xn} of points of X such that X is the union of the
open subsets Ui := Uxi

. By [Sta25, Lemma 01KO], for every pair i, j the intersection Ui ∩Uj

is a finite union of affine open subsets Uijℓ, since f is quasi-separated. Write fi = f |Ui
and

fijℓ = f |Uijℓ
, and also write Mi = M |Ui

and Mijℓ = M |Uijℓ
. For any open subset V ⊆ Y,

f∗M (V) = M (f−1(V))

= M
(⋃

i

(f−1(V) ∩ Ui)
)

= ker
(⊕

i

M (f−1(V) ∩ Ui) →
⊕
i,j,ℓ

M (f−1(V) ∩ Uijℓ)
)

= ker
(⊕

i

fi,∗(Mi)(V) →
⊕
i,j,ℓ

fijℓ,∗(Mijℓ)(V)
)

= ker
(⊕

i

fi,∗(Mi) →
⊕
i,j,ℓ

fijℓ,∗(Mijℓ)
)
(V),

where the maps in the third to fifth lines of the display are given by taking differences on
the overlaps. Thus we have an exact sequence of formal sheaves

0 → f∗(M ) →
⊕
i

fi,∗(Mi) →
⊕
ijℓ

fijℓ,∗(Mijℓ).
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Since M is a quasi-coherent OX-module, Mi,Mijℓ are quasi-coherent sheaves of modules
over OUi

and OUijℓ
, respectively. Recall that Y = Spf(E). By construction, Ui = Spf(Ai)

and Uijℓ = Spf(Aijℓ) for some rings Ai, Aijℓ; and Mi and Mijℓ are the sheaves of modules
associated to some modules Mi and Mijℓ over Ai and Aijℓ, respectively. So fi,∗(Mi) is
the sheaf associated to (Mi)E, the E-module obtained from Mi by restricting scalars to E.
Similarly, fijℓ,∗(Mijℓ) is the sheaf associated to (Mijℓ)E. Thus fi,∗(Mi) and fijℓ,∗(Mijℓ) are
quasi-coherent; hence so are

⊕
i fi,∗(Mi) and

⊕
i,j,ℓ fijℓ,∗(Mijℓ), by [Sta25, Lemma 01BF]. So

f∗(M ) is the kernel of a morphism between quasi-coherent sheaves on a locally Noetherian
formal scheme, and thus is itself quasi-coherent by [AJL99, Corollary 3.1.6(a)]. This proves
the assertion.

Finally, to check that the quasi-compact and quasi-separated conditions hold when f gives
an open inclusion of underlying topological spaces, note that those two properties are local
and depend only on the underlying spaces. Since f is locally affine, those properties hold by
[Sta25, Lemma 01S7]. □

Proposition 6.2. Let T be a complete discrete valuation ring with uniformizer t, and let
X be a normal integral T -scheme of finite type, with reduced closed fiber X and formal
completion X. Let g : V → U be an inclusion of open subsets of X, with inclusion ĝ : V → U
of the associated formal open subschemes of X.

(a) If M is a coherent (resp. torsion-free) OU-module, then ĝ∗(M ) has the same property
on V.

(b) If U and V are affine, and M is a coherent OU-module, then there is a natural isomor-
phism M (V )

∼−→ M (U)⊗“RU
R̂V .

(c) If N is a torsion-free OV-module, then ĝ∗(N ) is a torsion-free OU-module.

Proof. Part (a) is immediate from the fact that the properties of being coherent and torsion-
free are each local.

For part (b), write U = Spf(R) and V = Spf(S). Then M (U) is the unique finitely
generated R-module M such that M = M∆. By [EGA1, Proposition 10.10.8], there is a
canonical isomorphism ĝ∗(M ) = ĝ∗(M∆)

∼−→ (M ⊗R S)∆. Hence the composition M (V) =
ĝ∗(M )(V) → (M ⊗R S)∆(V) = M ⊗R S = M (U) ⊗OX(U) OX(V) defines an isomorphism
M (V )

∼−→ M (U) ⊗“RU
R̂V , where as before we identify the underlying spaces of U,V with

those of U, V .
For part (c), we prove the contrapositive. If ĝ∗(N ) is not torsion-free, then there is an

affine open subset U ′ ⊆ U such that ĝ∗(N )(U ′) has torsion as a module over OU(U
′) = R̂U ′ .

That is, there exists a non-zero element m ∈ ĝ∗(N )(U ′) = N (U ′∩V ) and a regular element
r ∈ R̂U ′ such that rm = 0 ∈ N (U ′ ∩ V ). Since m ̸= 0, there is an affine open subset
V ′ ⊆ U ′ ∩ V such that the image m′ ∈ N (V ′) of m is non-zero. Let r′ ∈ R̂V ′ be the image
of r ∈ R̂U ′ . Thus r′m′ = 0 ∈ N (V ′) since rm = 0; and r′ is regular in R̂V ′ by Lemma 4.5(b)
applied to the inclusion V ′ ⊆ U ′ of affine open sets. Hence N (V ′) is not a torsion-free
module over R̂V ′ = OV(V

′), and so N is not a torsion-free OV-module. □

Although Proposition 6.2(a) holds both for the properties of being torsion-free and co-
herent, Proposition 6.2(c) does not carry over in general to the coherent property (e.g., if
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U is affine and V ⊂ U is the complement of a principal divisor). But as we show in Theo-
rem 6.6 below, coherence is preserved under pushforward if the complement of V in U has
codimension at least two. First, we obtain the following special case of Theorem 6.6.

Lemma 6.3. Let X , U0, U1, U2, U,W be as in Proposition 5.3, let X be the formal completion
of X , and let ĝ : W → U be the inclusion of the formal open subschemes of X that are
associated to W,U . Let N be a torsion-free coherent sheaf on the formal scheme W that is
associated to W . Then ĝ∗(N ) is a torsion-free coherent sheaf on U.

Proof. By Proposition 6.1, M := ĝ∗(N ) is quasi-coherent on the formal scheme U. So by
[Sta25, Lemma 01BK], for every point P of U there is an open neighborhood V of P such that
M |V is isomorphic to the OV-module associated to some Γ(V,OV)-module MV , where V is
the formal scheme associated to V . After shrinking V , we may assume that it is an affine open
subset of U containing P . For e = 0, 1, 2, let Ve = V ∩Ue. Then N (Ve) ⊆ N (V0) for e = 1, 2
by Lemma 5.1, and MV = M (V ) = ĝ∗(N )(V ) = ĝ∗(N |V1∪V2)(V ) = N (V1)∩N (V2). Since
N is coherent and since Ve is affine, N (Ve) is a finite module over OU(Ve) = R̂Ve . Now
V1, V2 are dense in V , since U1, U2 are assumed dense in U . So we may apply Proposition 5.3
to V0, V1, V2, V , and conclude that MV is a finitely generated torsion-free module over R̂V =
OV(V ). Thus M |V = M∆

V is coherent over OV, by [EGA1, Proposition 10.10.5]. Since this
holds in a neighborhood of an arbitrary point P of U , it follows that M is coherent over U.
It is also torsion-free, by Proposition 6.2(c). □

Lemma 6.4. Let V be a quasi-projective variety over a field.
(a) There are affine dense open subsets U0, U1, U2 ⊆ V with U0 = U1 ∩ U2, such that the

complement of U1 ∪ U2 in V has codimension at least two.
(b) If V is connected, then we may choose U0, U1, U2 in (a) such that for every connected

open subset O ⊆ V the intersection O ∩ Ue is connected for e = 0, 1, 2. In particular,
U0, U1, U2 are connected in this case.

Proof. It suffices to prove the lemma under the hypothesis that V is connected (i.e., proving
part (b)), since part (a) then follows by considering the connected components of V .

Let V1, . . . , Vn be the irreducible components of V , with generic points η1, . . . , ηn. For
i ̸= j, consider the irreducible components Vi,j,ℓ of Vi ∩ Vj, and write ηi,j,ℓ for the generic
point of Vi,j,ℓ.

We first give a criterion for a non-empty open subset O ⊆ V to be connected. Given O, let
SO ⊆ {1, . . . , n} be the set of indices i such that ηi ∈ O (or equivalently, O∩Vi is non-empty).
Thus the closure of O is the union of the irreducible components Vi for i ∈ SO. So O is
connected if and only if for every pair i, j ∈ SO, there exists a chain of indices i0, . . . , ir ∈ SO

with i0 = i and ir = j, such that for every h = 0, . . . , r − 1 the set O contains ηih,ih+1,ℓ for
some ℓ.

In particular, if an open subset O ⊆ V contains each ηi (for i = 1, . . . , n) and each of the
points ηi,j,ℓ (for all i, j, ℓ), then O is connected and dense in V .

We now construct the open sets Ue asserted in the lemma. Since V is a quasi-projective
variety over a field, by [Liu02, Proposition 3.3.36(b)] there exists an affine open subset
U1 ⊆ V that contains each ηi and each ηi,j,k. Thus U1 is a connected affine dense open subset
of V , by the above criterion; and so the complement Z of U1 in V has codimension at least
one in V . Similarly, there exists an affine open subset U2 ⊆ V that contains each ηi, each
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ηi,j,k, and the generic points of each irreducible component of Z. Thus U2 is also a connected
dense affine open subset of V . Hence so is U0 := U1 ∩ U2, which contains each of the points
ηi, ηi,j,k. The intersection U2 ∩ Z is dense in Z, since U2 contains the generic points of Z.
Thus the complement Y of U2 ∩ Z in Z has codimension at least one in Z. Hence Y , which
is also the complement of U1 ∪ U2 in V , has codimension at least two in V , as asserted.

Finally, let O ⊆ V be an arbitrary (non-empty) connected open subset; let Oe = O ∩ Ue

for e = 0, 1, 2; and let the set SO be as in the third paragraph of this proof. Thus for every
pair i, j ∈ SO, there is a chain of indices in SO connecting i to j as above. Since Ue contains
all the points ηi and ηi,j,ℓ, it follows that SOe = SO for e = 0, 1, 2. Thus Oe also satisfies the
above chain criterion, and hence it is connected. □

Lemma 6.5. Let T be a complete discrete valuation ring with residue field k, and let X be a
quasi-projective normal integral T -scheme with reduced closed fiber X and formal completion
X. Let f : V → U be an inclusion of open subsets of X such that V is dense in U , and write
V,U for the formal open subschemes of X associated to V, U . Let F be a torsion-free coherent
sheaf on U. Then F is a subsheaf of f̂∗f̂ ∗(F ) via the natural morphism F → f̂∗f̂

∗(F ).

Proof. For every open subset U ′ ⊆ U , we have a restriction map F (U ′) → F (U ′ ∩ V ) =

f̂∗f̂
∗(F )(U ′), and these are compatible as U ′ varies. These maps define a morphism F →

f̂∗f̂
∗(F ). Since injectivity of sheaves is local, in order to show that F is a subsheaf of

f̂∗f̂
∗(F ) via this morphism, it suffices to show that if U ′ is affine then F (U ′) → F (U ′ ∩ V )

is injective. Let V ′ be an affine dense open subset of V . By Proposition 6.2(b), the natural
map F (U ′ ∩ V ′) → F (U ′) ⊗“RU′

R̂U ′∩V ′ is an isomorphism. Since U ′ ∩ V ′ is dense in U ′,
Lemma 5.1 then yields that the map F (U ′) → F (U ′∩V ′) is injective. But this map factors
through F (U ′) → F (U ′ ∩ V ); and so that map is injective as well. Thus the torsion-free
coherent sheaf F is a subsheaf of f̂∗f̂ ∗(F ), as asserted. □

We now come to our main theorem, which generalizes Lemma 6.3, and provides an analog
for formal schemes of the assertion in Theorem 2.1.

Theorem 6.6. Let T be a complete discrete valuation ring and let X be a quasi-projective
normal integral T -scheme with reduced closed fiber X and formal completion X. Let U be
a non-empty open subset of X, and let V be an open subset of U whose complement in U
has codimension at least two. Let f : V → U be the inclusion map, and write U,V for the
formal open subschemes of X associated to U, V . Let F be a torsion-free coherent sheaf on
V. Then f̂∗(F ) is a torsion-free coherent sheaf on U.

Proof. Let k be the residue field of T . Since X is quasi-projective over T , the k-scheme
V is quasi-projective over k. By Lemma 6.4(a), we may choose affine open dense subsets
U1, U2 ⊆ V such that the complement of W := U1 ∪ U2 in V has codimension at least two.
Hence the complement of W in U also has codimension at least two. Let g : W → V be the
inclusion map. By Proposition 6.2(a), pullbacks with respect to open inclusions preserve the
property of being a torsion-free coherent sheaf; so ĝ∗(F ) is a torsion-free coherent sheaf on
the formal scheme W associated to W . By Lemma 6.3 applied to ĝ∗(F ) and the inclusion
fg : W → U , we have that (f̂ g)∗ĝ

∗(F ) is a torsion-free coherent sheaf on U.
By Lemma 6.5, F is a subsheaf of ĝ∗ĝ∗(F ) on V. Thus f̂∗(F ) is a subsheaf of f̂∗ĝ∗ĝ∗(F ) =

(f̂ g)∗ĝ
∗(F ). Also, f̂∗(F ) is quasi-coherent by Proposition 6.1. Since (f̂ g)∗ĝ

∗(F ) is coherent
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on the locally Noetherian formal scheme U, it follows from [AJL99, Corollary 3.1.6(c)] that
its quasi-coherent subsheaf f̂∗(F ) is coherent. It is also torsion-free, being a subsheaf of the
torsion-free sheaf (f̂ g)∗ĝ∗(F ) (or by Proposition 6.2(c)). □

Remark 6.7. The proof of Theorem 6.6 relies in particular on Lemma 6.3, whose proof uses
the technical results in Section 5 and therefore also builds on those in Section 3. As mentioned
at the end of Section 2, it would be tempting to try to prove Theorem 6.6 more directly by
using Theorem 2.1 or the ingredients used in its proof; viz., by applying such assertions about
schemes to the reductions of the given sheaf modulo powers of the uniformizer of T . The
difficulty with that approach is that these reductions need not be torsion-free. For example,
take T = k[[t]] for some field k and take X = A1

T . Let U be the closed fiber A1
k, so that

R̂U = k[x][[t]]. Let M be the torsion-free R̂U -module with two generators m,n and the single
relation xm− tn = 0. In the reduction Mi of M modulo ti, the element ti−1m is x-torsion,
and x is regular. So Mi is not torsion-free, and (x, ti) is a non-minimal associated prime of
Mi (being the annihilator of ti−1m), with support of codimension one in Xi = A1

T/(ti). Hence
one cannot apply [Sta25, Lemma 0AWA] (or [EGA4, Partie 2, Corollaire 5.11.4(ii)]) to Mi.
Note also that as in Theorem 2.1, the torsion-free hypothesis cannot simply be dropped; see
the discussion after that assertion.

Corollary 6.8. In the situation of Theorem 6.6, up to isomorphism, f̂∗(F ) is the maximum
torsion-free coherent sheaf on U whose restriction to V is F ; i.e., every other such sheaf is
a subsheaf of f̂∗(F ).

Proof. By Theorem 6.6, f̂∗(F ) is a torsion-free coherent sheaf on U. Also, the restriction
f̂ ∗f̂∗(F ) of f̂∗(F ) to V is F , since V is an open subset of U . Suppose that G is also
a torsion-free coherent sheaf on U whose restriction to V is F . Thus f̂ ∗(G ) = F . By
Lemma 6.5, G ⊆ f̂∗f̂

∗(G ) = f̂∗(F ). □

Remark 6.9. In Theorem 6.6 and Corollary 6.8, it would suffice to assume that X is a
normal integral T -scheme and that V is quasi-projective over k, rather than requiring X to
be quasi-projective over T , because the proofs use only the weaker assumption.

7. The flat case

Proposition 5.3 says in particular that R̂U1∩R̂U2 is a finitely generated torsion-free module
over R̂U , in the situation of affine dense open subsets where the complement of U1 ∪ U2 has
codimension at least two. In fact, more is true:

Proposition 7.1. Let T be a complete discrete valuation ring, and let X be a normal
integral T -scheme of finite type. Let U0, U1, U2, U be connected affine open subsets of the
reduced closed fiber X of X , with U1, U2 ⊆ U dense, and with U0 = U1 ∩ U2, such that the
complement of W := U1 ∪ U2 in U has codimension at least two. Then R̂U1 ∩ R̂U2 = R̂U ,
where the intersection takes place in R̂U0.

Proof. Observe that R̂Ue → R̂U0 is injective for e = 1, 2 by Lemma 4.5(c), because U0 is dense
in Ue. Viewing R̂Ue as a subring of R̂U0 , we let A = R̂U1 ∩ R̂U2 ⊆ R̂U0 . By Lemma 4.4(c),
R̂U , R̂U1 , R̂U2 , R̂U0 are domains; hence so is their subring A. We wish to show that A = R̂U .
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Let t be a uniformizer of T . For n ≥ 1, and for e = 0, 1, 2, Spec(R̂Ue/(t
n)) has the same

underlying topological space as Ue. So Spec(R̂U0/(t
n)) is a Zariski dense open subset of

Spec(R̂Ui
/(tn)) for i = 1, 2; and the map R̂Ui

/(tn) → R̂U0/(t
n) is injective. We may thus

form the intersection An := R̂U1/(t
n)∩ R̂U2/(t

n) in R̂U0/(t
n). We claim that the natural map

αn : A/tnA → An is injective. To see this, let a ∈ ker(αn), and pick a representative ã ∈ A

for a. Thus we may view ã ∈ R̂Ui
for i = 1, 2; and the image of ã in R̂Ui

/(tn) is trivial.
Hence there exist bi ∈ R̂Ui

such that ã = tnbi in R̂Ui
, for i = 1, 2. The elements tnbi, for

i = 1, 2, have the same image in R̂U0 ; and thus the element b1 − b2 ∈ R̂U0 is tn-torsion. But
R̂U0 is a domain, and so b1 = b2 ∈ R̂U0 . That is, the two elements bi ∈ R̂Ui

define an element
b ∈ A. But tnb = ã, since they have the same image in R̂U1 and since A is a subring of R̂U1 .
So ã ∈ tnA, and a is trivial in A/tnA, as claimed.

By Proposition 5.3, A is finite over R̂U as an extension of normal domains, say of generic
degree d ≥ 1. So tensoring the ring extension R̂U ⊆ A with the fraction field KU of R̂U , we
obtain a finite field extension KU ⊆ A ⊗“RU

KU = frac(A) of degree d. It remains to show
that d = 1, since then R̂U ⊆ A is a finite extension of normal domains having the same
fraction field, and this inclusion is then an equality as desired.

Let A′ := A ⊗“RU
R̂U1 . By [Sta25, Lemma 00MA, (3)], A′ = A ⊗“RU

lim
←

R̂U1/(t
n) =

lim
←

A′/tnA′. Now A′/tnA′ = A/tnA⊗“RU/(tn) R̂U1/(t
n). But A/tnA ⊆ An via the injection αn.

Also, Spec(R̂U1/(t
n)) is an affine open subset of Spec(R̂U/(t

n)) by [EGA1, Proposition 5.1.9],
and so R̂U1/(t

n) is flat over R̂U/(t
n). We thus obtain an inclusion

A′/tnA′ = A/tnA⊗“RU/(tn) R̂U1/(t
n) ⊆ An ⊗“RU/(tn) R̂U1/(t

n).

Let Wn := Spec(R̂U1/(t
n)) ∪ Spec(R̂U2/(t

n)) ⊆ Spec(R̂U/(t
n)) and write fn : Wn →

Spec(R̂U/(t
n)) for the natural inclusion. Thus (fn)∗(OWn) is a quasi-coherent sheaf on

Spec(R̂U/(t
n)), and its module of global sections is

OWn(Spec(R̂U1/(t
n)) ∩ OWn(Spec(R̂U2/(t

n)) = R̂U1/(t
n) ∩ R̂U2/(t

n) = An.

Hence An ⊗“RU/(tn) R̂U1/(t
n) = Γ(Spec(R̂U1/(t

n)), (fn)∗(OWn)) = Γ(Spec(R̂U1/(t
n)),OWn) =

R̂U1/(t
n). That is, we have an inclusion A′/tnA′ ⊆ R̂U1/(t

n). Since taking inverse limits is
left exact, it follows that A′ ⊆ R̂U1 . Thus A ⊗“RU

KU1 = A′ ⊗“RU1
KU1 ⊆ KU1 , where KU1 is

the fraction field of R̂U1 .
Hence Kd

U1
= Kd

U ⊗KU
KU1 = (A ⊗“RU

KU) ⊗KU
KU1 = A ⊗“RU

KU1 ⊆ KU1 , as KU1-vector
spaces. Thus d = 1, completing the proof. □

Remark 7.2. (a) If the normality assumption is dropped from the hypotheses of the propo-
sition, then the conclusion need not hold. For example, suppose that X is an affine
integral T -variety with closed fiber X = U , with U0, U1, U2 as before, such that X is
normal at the points of W = U1 ∪ U2 but not at all the points of U . Then R̂U1 , R̂U2 are
normal, and hence so is their intersection. But R̂U is not normal, and hence is strictly
smaller than R̂U1 ∩ R̂U2 .

(b) Suppose that X is a normal integral projective T -variety such that the reduced closed
fiber X is a union of two copies of P2

k meeting at a single point P . Let U ⊆ X be
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the union of two copies of A2
k meeting at P , and let U1, U2 respectively be the union

of the complements of the x-axes (resp., y-axes) in the two copies of A2
k. Then R̂U1 =

k[x, y, y−1][[t]]⊕2 and R̂U2 = k[x, x−1, y][[t]]⊕2. So R̂U1 ∩ R̂U2 = k[x, y][[t]]⊕2, which is
strictly larger than R̂U , the difference being that the spectrum of the former consists
of two disjoint copies of a thickened A2

k. This would not contradict the assertion of
Proposition 7.1, because in this situation the connectivity hypothesis of the proposition
does not hold.

Recall that by Proposition 6.5, given an inclusion f : V → U of open subsets of the
reduced closed fiber of a quasi-projective normal integral T -scheme, with V dense in U , if
F is a torsion-free coherent sheaf on the formal scheme U associated to U , then F is a
subsheaf of f̂∗f̂ ∗(F ). In the context of Proposition 7.1 (with W = V ), this containment is
an equality in the case that F = OX. But in general for a torsion-free coherent sheaf F , the
containment F ⊆ f̂∗f̂

∗(F ) need not be an equality, as the following example shows, even in
the situation of Proposition 7.1, where the complement of V in U has codimension at least
two.

Example 7.3. Let k be a field, let T = k[[t]], and let X = P2
T , the projective x, y-plane

over T , with closed fiber X = P2
k. Let U = A2

k ⊂ X and let V ⊂ U be the complement of
the origin, with inclusion morphism f : V → U . Thus V = U1 ∪ U2, where U1, U2 ⊂ U are
the complements in U of the x- and y-axes, respectively. Let U,V,Ui be the formal schemes
associated to U, V, Ui. Thus U = Spf(k[x, y][[t]]). Let I be the ideal (x, y) ⊂ k[x, y][[t]],
and let F = I∆ be the coherent formal OU-module associated to I (see the beginning of
Section 6). Note that F is torsion-free, but not flat (since it is not locally free). The pullback
f̂ ∗(F ) to V is the structure sheaf on V, and its pushforward f̂∗f̂

∗(F ) is the structure sheaf
on U. Thus F ⊆ f̂∗f̂

∗(F ) is a strict containment.

In contrast to Example 7.3, suppose that the coherent formal sheaf F in Lemma 6.5 is
assumed to be flat (or equivalently, locally free), and not just torsion-free. If V is connected,
then the containment F ⊆ f̂∗f̂

∗(F ) is an equality, as the following result shows.

Theorem 7.4. Let T be a complete discrete valuation ring with residue field k, and let X be a
quasi-projective normal integral T -scheme with reduced closed fiber X and formal completion
X. Let f : V ↪→ U be an inclusion of connected open subsets of X such that the complement
of V in U has codimension at least two, and write V,U for the formal open subschemes of
X associated to V, U . Let F be a flat coherent sheaf on U. Then f̂∗f̂

∗(F ) = F .

Proof. We first consider the special case in which V = U1∪U2, where U1, U2 and U0 := U1∩U2

are connected affine dense open subsets of V with the property that the intersection of each
Ue with every non-empty connected open subset of V is connected. To prove the assertion in
this case, it suffices to show that for every non-empty connected affine open subset O ⊂ U ,
the map F (O) → F (O ∩ V ) = F (O1 ∪ O2) is an isomorphism, where Oe = O ∩ Ue for
e = 1, 2. Here each Oe is also a connected affine open set, because we are in this special case
and because O,Ue are affine. Let f̂e : Oe → O be the inclusion map between the formal
schemes Oe,O associated to Oe, O, and let M = F (O). Thus M is the finitely generated flat
R̂O-module such that F |O = M∆ (see the beginning of Section 6); and we have an induced
isomorphism F (Oe)

∼→M ⊗“RO
R̂Oe , by Proposition 6.2(b).
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Let O0 = O ∩ U0 = O1 ∩ O2. The connected affine open subsets O,O0, O1, O2 satisfy the
hypotheses of Proposition 7.1, because U,U0, U1, U2 do, and because Oe = O ∩ Ue. That
proposition then implies that R̂O = R̂O1 ∩ R̂O2 ⊆ R̂O0 . Thus we have a short exact sequence
0 → R̂O → R̂O1×R̂O2 → R̂O0 of R̂O-modules, where the maps are respectively given by diag-
onal inclusion and difference. Tensoring with the flat R̂O-module M , we obtain a left exact
sequence 0 → M → F (O1)×F (O2) → F (O0), using the isomorphism F (Oe)

∼→M⊗“RO
R̂Oe

given in the previous paragraph. Since M = F (O), and since F (O1∪O2) is the intersection
of F (O1) and F (O2) in F (O0), we conclude that F (O) → F (O1 ∪O2) is an isomorphism,
completing the proof in this special case.

For the general case, by Lemma 6.4(b) there is an open subset W ⊆ V of the form U1∪U2

where each Ue is an affine dense open subset of V ; where the set O ∩ Ue is connected for
every connected open subset O ⊆ V and each e = 0, 1, 2 (with U0 := U1 ∩ U2); and where
the complement V ∖W of W in V has codimension at least two in V . Thus the closure Z of
V ∖W in U has codimension at least two in U . Hence the complement of W in U also has
codimension at least two in U , since this complement is the union of Z with the complement
of V in U (which has codimension at least two by hypothesis).

Let g : W ↪→ V be the inclusion map. By the above special case applied to the sheaf F
on U and the inclusion gf : W ↪→ U , we have that (f̂ ĝ)∗(f̂ ĝ)∗(F ) = F . The sheaf f̂ ∗(F ) is
torsion-free and coherent, by Proposition 6.2(a). So we can apply the above special case to
the sheaf f̂ ∗(F ) on V and the inclusion g : W ↪→ V , obtaining f̂ ∗(F ) = ĝ∗ĝ

∗f̂ ∗(F ). Hence
f̂∗f̂

∗(F ) = f̂∗ĝ∗ĝ
∗f̂ ∗(F ) = (f̂ ĝ)∗(f̂ ĝ)

∗(F ) = F , as asserted. □

Remark 7.5. Concerning the necessity of the connectivity hypothesis in Theorem 7.4, con-
sider the situation in Remark 7.2(b), and let V = U1 ∪ U2 there, with inclusion morphism
f : V → U . Then the complement of V in U (viz., the point P ) has codimension at least two
in U , and V is disconnected. Let U,V be the formal completions of U, V , with inclusion map
f̂ : V → U. Then f̂∗f̂

∗(OU) is strictly bigger than OU, since the former sheaf is “doubled” at
the point P (corresponding to the strict containment R̂U ⊂ R̂U1 ∩ R̂U2 in Remark 7.2(b)).

Let f : V ↪→ U be an inclusion of connected open subsets of the reduced closed fiber
X ⊂ X as in Theorem 7.4, where the complement of V in U has codimension at least two.
If G is a flat coherent sheaf on the formal scheme V associated to V , the pushforward f̂∗(G )
is a torsion-free coherent sheaf on U by Theorem 6.6, and we can ask whether it is flat. But
in fact, flatness for such formal pushforwards need not hold in dimension at least three, even
in the regular case, and similarly in the context of schemes (rather than formal schemes). In
particular, there is the following example.

Example 7.6. (a) We first consider the scheme case. In [OSS11, Example 1.1.13], the
authors give an example of a coherent sheaf F on X = P3

C that is reflexive (i.e., agrees
with its double dual F∨∨) but is not locally free (so not flat), though it is locally free
away from a certain closed point x0. Let V be the complement of x0 in X, and let
G = F |V . Thus G is locally free. Write f : V → X for the inclusion map, so that
G = f ∗F . Since F is reflexive, and since the complement of V has codimension at least
two (in fact, three), it follows from [Hts80, Proposition 1.6] that F ∼= f∗G. Thus G is a
flat coherent sheaf on V , but f∗G is not flat.

24



(b) We use the above example to produce an example in the case of formal schemes. Preserv-
ing the above notation, take X = P3

C[[t]], and consider the coherent sheaf F := π∗(F )

on X , where π : X → X = P3
C is the morphism induced by the inclusion C → C[[t]].

Observe first that F is a reflexive sheaf on X ; this follows from the fact that if M,N are
modules over a ring R with M finitely presented, and if S is a flat R-algebra, then the
natural map S ⊗R M∨ → (S ⊗R M)∨ is an isomorphism (see [Eis95, Proposition 2.10]).
Note also that F is not locally free, since if it were then it would still be locally free
(hence flat) modulo (t). Moreover the restriction G of F to V := V ×C C[[t]] is locally
free on V , since the pullback of a free module is free. Let X be the formal scheme as-
sociated to X , let V be the formal subscheme of X associated to V ⊂ X, and let F̂ , “G
be the induced formal coherent sheaves on X,V. Then “G = f̂ ∗(F̂ ) is flat because it is
the completion of the finitely generated flat OX -module G ; and F̂ is not flat because it
is not locally free (since its closed fiber is not locally free).

By Lemma 6.5, F̂ is a subsheaf of f̂∗f̂ ∗(F̂ ). To show that “G is an example of a flat
formal coherent sheaf on V whose pushforward f̂∗( “G ) to X is not flat, it remains to prove
that F̂ = f̂∗f̂

∗(F̂ ) = f̂∗( “G ). To do this, it suffices to show that for every affine open
subset U of X, we have F̂ (U) = f̂∗f̂

∗F̂ (U). This is trivial if x0 ̸∈ U ; so we assume
x0 ∈ U , and write U ′ = U ∩ V = f−1(U), the complement of x0 in U . The restriction
map F̂ (U) → F̂ (U ′) is given by the inclusion F̂ (U) ⊆ f̂∗f̂

∗F̂ (U) = F̂ (U ′); and our
goal is now to show that this is an isomorphism.

To do this, first note that the inclusion OX(U) ↪→ OX(U
′) is an isomorphism, by

applying Theorem 7.4 to the sheaf OU = OX|U . Since U is affine and F̂ is a coher-
ent formal sheaf, the restriction F̂ |U is of the form M∆ for some finitely generated
OX(U)-module M (by [EGA1, Propositions 10.10.5, 10.10.2(i)]); and so the natural map
F̂ (U) → F (U) via reduction modulo (t) is surjective. But F (U) = F (U ′), since F ∼= f∗G

by part (a). Thus the reduction map F̂ (U ′) → F (U ′) modulo (t) is surjective, using that
F̂ (U) ⊆ f̂∗f̂

∗F̂ (U) = F̂ (U ′). So F̂ (U) + (t)F̂ (U ′) = F̂ (U ′). Also, the module F̂ (U ′)
is finitely generated over OX(U

′) = OX(U), and the ideal (t) is contained in the radical of
OX(U

′). So by a version of Nakayama’s Lemma (see [Mat80, Corollary to Lemma 1.M]),
F̂ (U) = F̂ (U ′) = f̂∗f̂

∗F̂ (U), as desired. So indeed F̂ = f̂∗f̂
∗F̂ , and “G provides the

asserted example.

But as we now show, if we restrict attention to the dimension two case, then there is a
flatness assertion for pushforwards, in both the scheme and formal scheme situations.

Proposition 7.7. (a) Let X be an excellent (e.g., quasi-projective) regular scheme of di-
mension two, and let V ⊆ X be an open subset whose complement has codimension two
in X. Write f : V → X for the inclusion map. If G is a flat coherent sheaf on V , then
f∗(G) is a flat coherent sheaf on X.

(b) Let T be a complete discrete valuation ring, and let X be a two-dimensional regular
quasi-projective flat T -scheme with reduced closed fiber X and formal completion X. Let
f : V ↪→ U be an inclusion of open subsets of X such that the complement of V in U
has codimension two, and write V,U for the formal open subschemes of X associated to
V, U . Let G be a flat coherent sheaf on V. Then f̂∗(G ) is a flat coherent sheaf on U.
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Proof. In part (a), F := f∗(G) is a torsion-free coherent sheaf on X by Theorem 2.1, since
G is a torsion-free coherent sheaf on V . Also, F is flat over V since G is; and so it remains
to check flatness at the (isolated) points of X in the complement of V . Since flatness is
local, we may assume that X is the spectrum of a two-dimensional regular local ring, and
that V is the complement of the closed point P . Here V ⊂ X is the only strict inclusion
U ′ ⊂ U of open subsets of X such that the complement of U ′ in U has codimension two.
Moreover f∗(F |V ) = f∗f

∗F = f∗f
∗f∗(G) = f∗(G) = F , since f ∗f∗(G) = G. So by [Hts80,

Proposition 1.6], F is reflexive. Since X is regular of dimension two, it then follows from
[Hts80, Corollary 1.4] that F is flat.

For part (b), Theorem 6.6 says that F := f̂∗(G ) is a torsion-free coherent sheaf on U. We
wish to show that it is flat. Take a closed point P ∈ U ; we will show that F is free on an
open neighborhood of P in U. Let G,F be the restrictions of G ,F to the reduced closed
fiber X. Thus G is flat on V , and F = f∗(G). By part (a), F is flat, and hence free on an
affine open neighborhood W of P in U , say of rank n. After shrinking W , we may assume
that there is an affine open neighborhood W = Spec(R) of P in X that meets X in W .
Since OX ,P is a regular local ring, it is a UFD, and every height one prime is principal. So
after shrinking W again, we may assume that the closed subscheme W ⊂ W is defined by a
principal ideal I = (s) for some element s ∈ R; and this element is regular because X is flat
over T . Let W be the formal open subscheme of X associated to W . Thus OX(W ) = OX(W)

is the I-adic completion R̂ of R. Also, OX(W ) = R̄ := R/I = R̂/IR̂ is reduced, since X is.
By the freeness of F on W , we may choose an isomorphism R̄n → F (W ) = F (W)/IF (W).

Let ā1, . . . , ān be the images of the standard basis elements of R̄n, and choose lifts a1, . . . , an
of the elements āi to F (W). We thus obtain a lift of the above isomorphism to a homo-
morphism R̂n → F (W), taking the standard basis elements of R̂n to the lifts ai. We claim
that this map is injective. To see this, take some non-zero element (r1, . . . , rn) ∈ R̂n in the
kernel. Since F is torsion-free, we may divide the elements ri by any common factor that is
a power of s, and still have an element in the kernel. So we may assume that some ri is not
divisible by s. But then the image (r̄1, . . . , r̄n) ∈ R̄n of (r1, . . . , rn) is non-zero but is in the
kernel of the isomorphism R̄n → F (W ). This is a contradiction, proving the claim.

Thus the image of R̂n → F (W) is a free R-submodule N of F (W) with the property that
N + IF (W) = F (W). Since IR̂ is contained in the radical of R̂ and F (W) is a finitely
generated R̂-module, N = F (W) by [Mat80, Corollary to Lemma 1.M]. Thus F (W) is free,
as desired. □

8. Patching problems

Given a ring R and overrings R0, R1, R2 ⊇ R with R1, R2 ⊆ R0 and R = R1 ∩ R2 ⊆ R0,
a patching problem for these rings consists of finitely generated Re-modules Me for e =
0, 1, 2, together with isomorphisms αe : Me ⊗“Re

R0 → M0 for e = 1, 2. A solution to the
patching problem consists of a finitely generated R-module M together with isomorphisms
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γe : M ⊗R Re → Me, for e = 1, 2, such that the diagram

(M ⊗R R1)⊗R1 R0
γ1⊗id // M1 ⊗R1 R0

α1

∼=

%%
M ⊗R R0

∼=
66

∼= ((

M0

(M ⊗R R2)⊗R2 R0
γ2⊗id // M2 ⊗R2 R0

α2

∼=

99

commutes. That is, the R-module M induces the modules Me, for e = 1, 2, compatibly with
the maps αe.

For example, let U = Spec(R) be an affine scheme with affine dense open subsets Ue =
Spec(Re) for e = 0, 1, 2, such that U0 = U1 ∩ U2 and U = U1 ∪ U2. Thus R = R1 ∩R2 ⊆ R0.
In this situation, every patching problem for the rings R,R0, R1, R2 has a solution, by Zariski
patching (gluing) of coherent sheaves and the correspondence between coherent sheaves on
an affine scheme Spec(A) and finitely presented A-modules (e.g., see [Sta25, Lemmas 00AN,
01I9(1), 01IA]).

An analogous statement holds for formal schemes. Namely, let X be a formal scheme with
reduced closed fiber X, and let U,U0, U1, U2 be affine dense open subsets of X such that
U0 = U1 ∩ U2 and U = U1 ∪ U2. Let U,Ue be the formal schemes associated to U,Ue (i.e.,
the restrictions of X to those subsets). As before, we write R̂U = OX(U) and R̂Ue = OX(Ue)

for e = 0, 1, 2. Then R̂U = R̂U1 ∩ R̂U2 ⊆ R̂U0 since OX is a sheaf; and every patching
problem for the rings R̂U , R̂U0 , R̂U1 , R̂U2 has a solution. To see this, recall that by [EGA1,
Proposition 10.10.5], every coherent sheaf on U is of the form M∆ for some finitely generated
R̂U -module, and similarly for each Ue. Since the underlying space U of U is the union of the
underlying spaces of U1,U2, with intersection being the underlying space of U0, a coherent
sheaf on U is given by finitely generated modules over R̂U1 , R̂U2 together with an agreement
over R̂U0 . Hence every patching problem for the rings R̂U , R̂U0 , R̂U1 , R̂U2 has a solution.
Moreover, in these two situations (schemes and formal schemes), the solution is unique up to
isomorphism, because there is an equivalence of categories between patching problems and
finitely generated modules over the base ring (R or R̂U , respectively).

The next result shows that if we restrict to torsion-free coherent formal sheaves, then
patching problems have solutions even if U1∪U2 is strictly contained in U , with complement
having codimension at least two.

Recall the situation of Proposition 5.3: We have a complete discrete valuation ring T
with uniformizer t, and a normal integral T -scheme X of finite type. We consider affine
open subsets U0, U1, U2, U of the reduced closed fiber X of X , with Ue a dense subset of
U for e = 1, 2, and with U0 = U1 ∩ U2, such that the complement of W := U1 ∪ U2 in
U has codimension at least two. In this situation, we still have R̂U = R̂U1 ∩ R̂U2 ⊆ R̂U0 ,
by Proposition 7.1. Let Me be a finitely generated torsion-free R̂Ue-module for e = 0, 1, 2.
For e = 1, 2, we consider the natural map ιe : Me → Me ⊗“RUe

R̂U0 , which is injective by

Lemma 5.1; and we let αe : Me ⊗“RUe
R̂U0 → M0 be an isomorphism. Then αeιe : Me → M0

is injective, mapping Me isomorphically onto its image in M0. As in Proposition 5.3, the
intersection M := α1ι1(M1)∩α2ι2(M2) ⊆ M0 is a finitely generated torsion-free R̂U -module.
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Proposition 8.1. In the above situation, for e = 1, 2 let γe : M ⊗“RU
R̂Ue → Me be the map

induced by M ↪→ αeιe(Me) ∼= Me. Then γe is an isomorphism for e = 1, 2. Moreover the
finitely generated torsion-free module R̂U -module M , together with the maps γe, defines a
solution to the patching problem given by Me, αe.

Proof. Let U, Ue be the formal schemes associated to U , Ue (for e = 0, 1, 2), with inclusions
f̂e : Ue → U. Let M∆

e be the coherent formal sheaf on Ue associated to Me. The isomorphisms
αe induce isomorphisms M∆

e ⊗OUe
OU0 → M∆

0 , and so by [Sta25, Lemma 00AM] we may glue
the sheaves M∆

e to obtain a sheaf of modules N on the formal scheme W associated to
W := U1 ∪ U2. Here N (Ue) = αeιe(Me) ∼= Me, where the isomorphism follows from the
injectivity of αeιe shown in Proposition 5.3. Moreover N is coherent, since this is a local
condition and since M∆

e is coherent. Let f̂ : W → U be the natural inclusion, and let
M = f̂∗(N ). Then M is a coherent OU-module by Lemma 6.3.

Since U is affine, M is the formal sheaf associated to some finite R̂U -module M ′, by
[EGA1, Proposition 10.10.5]. Thus

M ′ = M (U) = N (W ) = N (U1) ∩ N (U2) = α1ι1(M1) ∩ α2ι2(M2) = M,

and so M = M ′∆ = M∆. By Proposition 6.2(b), we have a natural isomorphism between
M (Ue) and M (U) ⊗“RU

R̂Ue . Since M (Ue) = N (Ue) = M∆
e (Ue) = Me and M (U) = M ,

we conclude that the natural map M ⊗“RU
R̂Ue = M (U) ⊗“RU

R̂Ue → αeιe(Me) ∼= Me is an
isomorphism. This proves the first assertion.

For the second assertion, observe that via the sheaf M , and for e = 1, 2, the inclusions U0 ⊆
Ue ⊆ U induce the module homomorphisms αe and γe. Here the compositions αe ◦ (γe ⊗ id),
for e = 1, 2, are both the homomorphism similarly induced by the inclusion U0 ⊆ U . Thus
M , together with α1, α2, defines a solution to the given patching problem. □

In the above situation, though, the solution to the given patching problem need not be
unique, as the next example shows.

Example 8.2. In the notation of Example 7.3, let U0 = U1 ∩ U2, and let Me = R̂e for
e = 0, 1, 2, with associated isomorphism αe : Me ⊗“Re

R0 → M0 for e = 1, 2. Then both
M = R̂U = k[x, y][[t]] and the ideal I = (x, y) ⊂ R̂U are solutions to the patching problem,
with I strictly contained in M . Here I is torsion-free but not flat; whereas M , which is the
module given in Proposition 5.3, is flat.

As in this example, it is true more generally that the solution given in Proposition 8.1 is
the maximum torsion-free solution:

Corollary 8.3. In the situation of Propositions 5.3 and 8.1, suppose that X is quasi-
projective over T . Then the module M , together with the maps γe for e = 1, 2, defines the
maximum torsion-free solution to the patching problem given by the maps α1, α2 in Proposi-
tion 5.3.

Proof. As in the proof of Proposition 8.1, the isomorphisms αe and coherent formal sheaves
M∆

e define a coherent formal sheaf N on the formal scheme W associated to W . Here N
and M := M∆ are torsion-free since M is. Moreover ĝ∗(N ) = M and ĝ∗(M ) = N by
the definition of M . Under the correspondence M 7→ M∆ between finitely generated R̂U -
modules and coherent sheaves over the associated formal scheme U, a solution to the given
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module patching problem corresponds to a coherent sheaf F on U whose restriction to W is
N . Here the solution M corresponds to the sheaf M . Now given any torsion-free solution
to the embedding problem, the corresponding sheaf F on U is also torsion-free. Since F
restricts to N on W, and since X is quasi-projective, it follows from Corollary 6.8 that
F ⊆ ĝ∗(N ) = M , proving that M is maximum. □

Note that maximality can fail without the torsion-free hypothesis. For example, any
torsion R̂U -module that is supported on the complement of W in U ⊂ Spec(R̂U) is a solution
to the trivial patching problem (i.e., the one defined by the zero modules over the rings R̂Ue).
In the flat case there is the following stronger assertion.

Corollary 8.4. In Proposition 8.1, if X is quasi-projective over T and M is a flat R̂U -
module, then up to isomorphism M defines the unique flat solution to the patching problem
given by α1, α2.

Proof. We identify Me with its isomorphic image αeιe(Me) ⊆ M0. By Proposition 8.1, the
module M = M1 ∩M2 and the maps γe define a solution to the patching problem. Suppose
that M ′ is also a solution, and that M ′ is also flat. Let F be the formal coherent OU-
module (M ′)∆, and let f : U1 ∪ U2 ↪→ U be the natural inclusion map. By Theorem 7.4,
M ′ = F (U) = f̂∗f̂

∗F (U) = M1 ∩M2 = M . □
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