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Abstract. The paper studies Galois groups with a given set of ramified places, in
both the function field and number field cases. In the geometric case, it is shown in
characteristic p that the fundamental group of a curve of genus g with r > 0 points
deleted depends upon the choice of curve and points, and not just on g and r (unlike
in characteristic 0). In the arithmetic case, certain groups are shown to occur over
Q with given ramification, or are shown not to occur, particularly when the only
ramified prime is 2.

Introduction

This paper concerns the problem of finding which groups occur as Galois groups
with prescribed ramification. The problem can appear both in arithmetic and in
geometric settings, and can be interpreted as a problem of finding fundamental
groups. Specifically, given a Dedekind domain D and a finite set S of primes,
we may consider the fundamental group π1(Spec(D) − S), and the related set
πA(Spec(D) − S) of finite quotients of π1. Here πA consists of the finite groups
that can occur as Galois groups over (the fraction field of) D with ramification
only at S. We then wish to understand πA and, if possible, π1, as well as obtaining
information about which subgroups of a given group G ∈ πA can occur as inertia
groups. In this paper, we consider these four situations (which are in turn less and
less well understood):

(i) complex affine curves;
(ii) affine curves over an algebraically closed field of characteristic p;
(iii) affine curves over a finite field;
(iv) open subsets Un = Spec(Z[1/n]) of Spec(Z).

Section 1 considers (i) - (iii). Situation (i) is the most classical, of course, and
in particular π1 is known, by Riemann’s Existence Theorem. But even there, there
is no known explicit version of Riemann’s Existence Theorem, and as a result one
can rarely write down algebraically an extension of C(x) with given group and
ramification. Situation (ii) was until recently wide open, but the recent proof
[Ra], [Ha3] of Abhyankar’s Conjecture [Ab1] has answered the question of what
πA is. In particular, it is now known that πA of an affine curve U of the form
(genus g) − (r points) depends only on the numbers g and r. But the profinite
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group π1 is still very much unknown, and in section 1 we show that π1(U) does not

just depend on g and r (Theorem 1.8). This raises the question of to what extent
π1(U) determines the curve U . In section 1 we give some results concerning this
question, and pose some open problems, as well as deriving other consequences of
Abhyankar’s Conjecture. We also discuss situation (iii), about which less is known.

Section 2 concerns situation (iv), which is the most wide-open of the four. While
much is known about the realization of groups as Galois groups over Q (“inverse
Galois theory”), and about abelian groups as Galois groups with prescribed rami-
fication (class field theory), much less is known about which general finite groups
occur as Galois groups over Q with prescribed ramification. While a full solution is
of course far off in the future, we present some results of the sort that are currently
being sought in connection with situation (iii). Motivated by the analogy with the
geometric situation, we make a conjecture on how the tame fundamental group of
Un = Spec(Z[1/n]) grows with n (Conjecture 2.1), and give some evidence for this
(Theorem 2.6). Concerning the opposite part of π1, viz. the p-part of π1(Up), after
showing that this is cyclic for odd p (Theorem 2.11) we study the more involved case
of p = 2 (where, e.g., the dihedral group D4 is in πA(U2) but not the quaternion
group; cf. 2.12(b), 2.14). We also show (cf. Corollary 2.7) that all groups in πA(U2)
are quasi-2 groups (which is analogous to the result for situations (ii) and (iii) in
the case of the affine line), but that there are also further restrictions, such as the
fact that a non-2 Galois extension ramified only at 2 must have a high index of
wild ramification (Theorem 2.23). In fact, we show that all small groups in πA(U2)
are 2-groups, and we find the smallest non-2-group in πA(U2) (of order 272). In
particular, we show that the four smallest non-abelian simple groups do not lie in
πA(U2) (Example 2.21); this relates to Serre’s Conjecture. In connection with these
results, we also state some open questions and speculations.

I would like to thank Robert Coleman for posing to me the problem of how π1(Un)
grows with n; Hendrik Lenstra for a number of discussions concerning techniques
that can be used in studying π1(Un); and J.-P. Serre for his comments on an earlier
version of this paper. I would also like to thank Ram Abhyankar, Michael Larsen,
Karl Rubin, Alice Silverberg, John Tate, Jaap Top, and Larry Washington for
useful comments and suggestions.

Section 1. Geometric Galois groups

Let k be a field, and consider smooth connected affine curves U over k. Each
such U is of the form X−S, where X is a smooth projective k-curve of some genus
g, and S 6= ∅ consists of finitely many closed points of X . For each U , we wish to
understand π1(U) and πA(U). In particular, we may ask how π1 and πA vary as
U changes – viz. as the choice of S changes, or as the projective curve X varies in
moduli.

The most classical case is that of k = C. In this case, we know by Riemann’s
Existence Theorem (e.g. [Gr, XIII, Cor.2.12]) that πA(U) is the set of finite quo-

tients of the topological fundamental group πtop
1 (U), and that π1(U) is the profinite

completion of πtop
1 (U). Thus if S consists of n points (so n > 0), then πtop

1 (U) is the
group generated by elements a1, . . . , ag, b1, . . . , bg, c1, . . . , cn subject only to the re-
lation that

∏g
j=1[aj , bj]

∏n
i=1 ci = 1, where [a, b] denotes the commutator aba−1b−1.
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This is isomorphic to the free group on 2g + n − 1 generators; so πA(U) consists
of the finite groups having 2g + n − 1 generators, and the algebraic fundamental
group π1(U) is isomorphic to the free profinite group on 2g + n− 1 generators.

IfX is fixed and the n points of S are allowed to vary, then the above fundamental
groups do not change, up to isomorphism. (But there is no canonical isomorphism
between the π1’s of the old and new U ’s, since an isomorphism depends on a choice
of homotopy basis.) More generally, consider the moduli space Mg,n of projective
curves of genus g and n marked points. For each point [(X,S)] of Mg,n, we may
consider π1(U) and πA(U), where U = X − S. Again, these do not depend on the
point of Mg,n, up to isomorphism.

Similarly, one may consider the case where k is a general algebraically closed field
of characteristic 0. For such k, Grothendieck used the technique of specialization
to show [Gr, XIII, Cor.2.12] that the fundamental group of U = X − S is given by
the same expression as in the case of ground field C. So again π1(U) depends only
on the genus of the curve X and the number of points in S – not on the specific
choice of curve X or position of the points S, and not on the field k.

For the rest of this section we consider the situation in characteristic p > 0. For
now, assume that the field k is algebraically closed. Then π1 behaves differently
than over C. In particular, the affine line is no longer simply connected, since
there are Artin-Schreier covers. For example, for each non-zero c ∈ k, there is a
Z/p-Galois cover of the affine x-line given by yp − y = cx. Moreover, these covers
are non-isomorphic (as Z/p-Galois covers of the x-line) for distinct values of c ∈ k.
This points out another difference between characteristics 0 and p: In characteristic
p, coverings have “moduli”; and as a result, the group π1 depends on the choice of
algebraically closed ground field k. Indeed, if one enlarges k, then π1 also becomes
enlarged, in characteristic p.

More generally, by taking towers of Z/p-covers, it is possible to realize every
finite p-group as a Galois group over any affine k-curve. Many other finite groups
also occur in πA, as the following result states. (For a finite group G, the notation
p(G) denotes the (normal) subgroup of G generated by the subgroups of p-power
order.)

Theorem 1.1. Let X be a smooth connected projective curve over k, and let
S ⊂ X consist of n points (n > 0). Then πA(U) = {G | G/p(G) has 2g + n − 1
generators}.

This result was originally conjectured in 1957 by Abhyankar [Ab1]. Equivalently,
he conjectured that a finite group G occurs over U if and only if every prime-to-p
quotient of G occurs over an analogous curve over C (i.e. a curve of the same genus
with the same number of punctures). After partial results by Nori [Ka], Abhyankar
[Ab2], and Serre [Se2], the theorem was proven by Raynaud [Ra] in the case that
U is the affine line. In this case, the result asserts that πA consists of all the finite
quasi-p groups, i.e. the finite groups G such that G = p(G). The more general
case of the theorem was proven by the present author in [Ha3]. Moreover that
paper proved even more, viz. that for a given G that is predicted to lie in πA, the
cover may be chosen so that its smooth completion is wildly ramified only over one
particular point of S. Both [Ra] and [Ha3] rely on patching techniques (rigid or
formal analysis) to construct covers with desired Galois groups.
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Remark. While a full description of the proof of Theorem 1.1 is beyond the
scope of this paper, here is a brief outline. Raynaud’s proof of the case U = A1

[Ra] proceeds by induction, and considers three cases:
(i) G has a non-trivial normal p-subgroup N . Then G/N ∈ πA by induction,

and then G ∈ πA by Serre’s result [Se2].
(ii) A Sylow p-subgroup P of G has the property that G is generated by the

set S of proper quasi-p subgroups of G having a Sylow p-subgroup contained in P .
Then the groups in S are in πA by induction, and a patching argument allows the
corresponding covers to be pasted together to form a G-Galois cover of A1.

(iii) Both (i) and (ii) fail. Then an argument involving semi-stable reduction is
used to construct a G-cover of A1.

The proof in the general case [Ha3] proceeds in two steps:
(a) Using [Ra], the result is shown for P1 − {0,∞}. This is done by patching a

p(G)-Galois cover of A1 (which exists by [Ra]) to a cyclic-by-p cover of P1−{0,∞}
(which is essentially constructed explicitly).

(b) For a more general affine curve U , an appropriate Galois cover of P1−{0,∞}
(given by step (a)) is pasted to a prime-to-p cover of U , to yield a G-Galois cover
of U . �

Corollary 1.2. Let X be a smooth connected projective k-curve of genus g and
let S be a non-empty finite subset of X , say having n points. Let U = X−S. Then
πA(U) depends only on g and n, and not on the choices of X or S. In fact, πA(U)
depends only on the value of 2g + n.

Proof. Immediate from Theorem 1.1. �

Corollary 1.3. Fix g ≥ 0 and n > 0. Then πA of a k-curve of genus g with n
points deleted strictly contains πA of a C-curve of genus g with n points deleted.

Proof. Denote these two affine curves by Uk and UC. If G is in πA(UC), then G
and hence G/p(G) has 2g+ n− 1 generators; so G is in πA(Uk) by 1.1. This shows
containment. For strict containment, choose N > 2g + n− 1, and let G = (Z/p)N .
Then G is in πA(Uk) by 1.1, since G/p(G) is trivial; but G is not in πA(UC). �

Remarks. (a) Corollary 1.3 is somewhat surprising, for the following reason: A
Z/3-Galois cover E → P1

C branched at {0, 1,∞} is an elliptic curve, and its max-
imal unramified elementary abelian p-cover F → E satisfies Gal(F/E) = (Z/p)2.
The composition F → P1

C is Galois, with three-fold ramification over each of its
branch points {0, 1,∞}, and its Galois group G is a semi-direct product of (Z/p)2

with Z/3. But there is no such cover of the projective k-line (i.e. no cover with the
same group, branch locus, and inertia groups), since any such cover would yield a
(Z/p)2-Galois unramified cover of an elliptic curve in characteristic p. But by Corol-
lary 1.3, there must be some other G-Galois cover of P1

k branched at {0, 1,∞}. Note
that such a cover must be wildly ramified somewhere.

(b) Theorem 1.1 and its corollaries do not carry over to the case of projective

curves (i.e. where we allow n = 0). For example, 1.1 and 1.3 fail to hold for genus
1 curves, since (Z/p)2 is not in πA of any elliptic curve over k. Similarly, 1.2 fails
since Z/p fails to lie in πA of a supersingular elliptic curve, although it is in πA
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of an ordinary elliptic curve. A further discussion of the projective analog of these
questions will appear in the forthcoming Ph.D. thesis of Katherine Stevenson. �

In addition to knowing which groups can occur as Galois groups of unramified
covers of an affine curve U = X − S (and hence as Galois groups of branched
covers of X unramified away from S), it would be desirable to know what types
of ramification can occur over each of the points of S. While the strong form
of Theorem 1.1 in [Ha3] provides some information of this sort, the situation is
unknown in general. (Cf. also Remark (a) above.) In the simplest situation, that
of the affine line, it is easy to see that there is a necessary condition for a group to
occur as inertia over infinity:

Proposition 1.4. Let G be a quasi-p group, let Y → P1 be a G-Galois connected
branched cover ramified only over infinity, and let I ⊂ G be an inertia group over
infinity. Then I is a semi-direct product P oC, where C is a cyclic group of order
prime to p and where P is a p-group whose conjugacy class generates G.

Proof. Since k is algebraically closed of characteristic p, every inertia group is
cyclic-by-p. Now for I = P o C an inertia group over infinity, let N ⊂ G be the
subgroup generated by the conjugacy class of P . Then N is a normal subgroup,
and Y/N → P1 is a G/N -Galois connected branched cover, unramified away from
infinity. But since N contains P and its conjugates, this cover is at most tamely
ramified over infinity. But over any algebraically closed field, the projective line has
no non-trivial connected covers that are unramified away from infinity and tamely
ramified over infinity. So G/N is trivial, and thus N = G. �

Abhyankar has recently suggested that the converse of Proposition 1.4 may be
true; i.e. that the conditions on I in the conclusion of 1.4 may imply that I is
an inertia group over infinity of some G-Galois unramified cover of A1 (i.e. of a
branched cover of P1 ramified over infinity). Some evidence for this is the following:

(i) For many quasi-p matrix groups, Abhyankar has shown that the cyclic group
of order p occurs as an inertia group over infinity of some unramified cover of A1.

(ii) By [Ha2, Theorem 2], if I ⊂ G is a p-subgroup occuring as an inertia group
over infinity of a G-Galois cover of A1, and if I ′ ⊂ G is a p-subgroup containing I,
then I ′ also occurs (for some other cover).

(iii) By (ii) and [Ha2, Lemma to Theorem 4], or by [Ra, Cor. 2.2.6], every Sylow
p-subgroup of a quasi-p group G is an inertia group over infinity of some G-Galois
cover of A1.

A related problem is to describe the set πp′ram
A (U) of Galois groups of unrami-

fied Galois covers of U = X − S whose completion has the property that all of its
inertia groups (over the points of S) are of order prime to p. (In characteristic p,

πp′ram
A (U) = πt

A(U), the set of Galois groups of tamely ramified covers; these groups

may have order divisible by p.) With πp′ram
A (U) replacing πA(U), the statement of

Theorem 1.1 becomes false because every group in πp′ram
A (U) has 2g+ n− 1 gener-

ators [Gr, XIII, Cor.2.12], unlike πA(U); the correct replacement for the assertion

is unknown. Remark (a) after Corollary 1.3 shows that the analog of 1.3 for πp′ram
A
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fails. And the analog of Corollary 1.2 for πp′ram
A also fails, as the following example

shows:

Example 1.5. Assume p 6= 2 and let λ ∈ P1. Let E → P1
k be the branched cover

having degree 2 and branched precisely at {0, 1,∞, λ}. Thus E is an elliptic curve,
and if λ is chosen so that E is ordinary then there is a unique unramified Galois
covering morphism E∗ → E of degree p, where E∗ is connected. Thus E∗ → P1

is Galois, and its Galois group G is a semi-direct product of Z/p with Z/2. Thus
G ∈ πt

A(U), where U = P1 − {0, 1,∞, λ}. But if now another value of λ is chosen
(say λ′) yielding a supersingular elliptic curve E′ → P1

k, then G cannot lie in
πt

A(U ′), where U ′ = P1 − {0, 1,∞, λ′}. For otherwise, there is a Galois branched
cover E′∗ → P1 with group G, having only tame ramification. By the structure
of G, this cover dominates a degree two cover E′′ → P1 that is unbranched away
from {0, 1,∞, λ′}. Since the characteristic of k is not 2, such a cover has genus at
most 1, with equality if and only if E′′ ∼= E′ (in which case E′′ is supersingular).
Thus E′′ has no connected unramified covers of degree p, and so the Z/p-Galois
cover E′∗ → E′′ is totally ramified somewhere. But E′∗ → E′′ is at most tamely
ramified, since E′∗ → P1 is. This is a contradiction, showing that G /∈ πt

A(U ′),
although G ∈ πt

A(U). �

The above results concerned πA, the set of finite quotients of the algebraic fun-
damental group π1. The profinite group π1 contains more information than the set
πA, and it would be desirable to have analogs for π1. But while negative results
are known – e.g. that π1 is not free – there is no reasonable conjecture describing
what π1 is isomorphic to, even in the case of the affine line. And the analog of the
last part of Corollary 1.2 is false for π1; i.e. the fundamental group of a curve of
genus g with n points deleted does not just depend on 2g + n in characteristic p:

Proposition 1.6. Let U = P1 − S, where S is a set of n+ 2 points (n ≥ 0), and
let U ′ = E − S′, where E is an ordinary elliptic curve and S′ is a set of n points.
Then π1(U) is not isomorphic to π1(U

′).

Proof. Let f ′ : E∗ → E be an unramified connected Z/p-Galois cover of elliptic
curves, which exists since E is ordinary, and let U ′∗ = f ′−1(U ′) ⊂ E∗. Let N ′ ⊂
π1(U

′) be the normal subgroup of index p corresponding to the unramified Galois
cover U ′∗ → U ′. Thus N ′ may be identified with π1(U

′∗). Note that E∗ − U ′∗ =
f ′−1(S′) consists of np points, since there are p points of E∗ over each point of
E. Since E∗ has genus 1, it follows that the prime-to-p part of N ′ is free on
2 · 1 + np− 1 = np+ 1 generators.

Now suppose that there is an isomorphism φ : π1(U) → π1(U
′). Let N =

φ−1(N ′). Thus N is a normal subgroup of index p in π1(U), corresponding to a
connected unramified Z/p-Galois cover U∗ → U . So N may be identified with
π1(U

∗). Let P ∗ be the smooth completion of the affine curve U∗. Thus there is
a Z/p-Galois branched cover f : P ∗ → P1, whose branch locus in contained in S.
Let i be the number of points of S that are actually ramified; each of these i points
is then totally ramified, since p is prime. Here i > 0, since there are no connected
unramified covers of P1 of degree greater than 1. Now f−1(S) = P ∗ − U∗ consists
of exactly i+(n+2− i)p points. Also, if g is the genus of P ∗, then by the Riemann-



GALOIS GROUPS WITH PRESCRIBED RAMIFICATION 7

Hurwitz formula in the wild case we get 2g−2 ≥ −2p+ ip, i.e. 2g ≥ 2+(i−2)p. So
the prime-to p part ofN is free on at least (2+(i−2)p)+(i+(n+2−i)p)−1 = np+i+1
generators. But since N = φ−1(N ′) and φ is an isomorphism, and since i > 0, this
contradicts the fact that the prime-to-p part ofN ′ is free on only 2·1+np−1 = np+1
generators. �

Moreover, the analog for π1 of the first part of 1.2 also fails. That is, for a
fixed choice of g ≥ 0 and a positive integer n, two distinct affine curves of the
form (genus g) − (n points) can have non-isomorphic fundamental groups, as the
following result shows:

Proposition 1.7. Let E be an ordinary elliptic curve, let E′ be a supersingular
elliptic curve, and let n > 0. Let U and U ′ be affine curves obtained by deleting n
points from E and E′ respectively. Then π1(U) and π1(U

′) are non-isomorphic.

Proof. Since E is ordinary there is a connected Z/p-Galois unramified cover f :
E∗ → E. Let U∗ = f−1(U), and let N be the normal subgroup of index p in
π1(U) corresponding to f . Thus N may be identified with π1(U

∗). Since U∗ =
E∗ − f−1(S) and f−1(S) consists of np points, the prime-to-p part of N is free on
2 · 1 + np− 1 = np+ 1 generators.

Now assume that there is an isomorphism φ : π1(U) → π1(U
′), and let N ′ =

φ(N). Also, let U ′∗ → U ′ be the Z/p-Galois connected unramified cover corre-
sponding to N ′; thus N ′ may be indentified with π1(U

′∗). Let E′∗ be the smooth
completion of U ′∗, and let f ′ : E′∗ → E′ be the corresponding branched cover.
Let i be the number of branch points of f ′. Thus i ≤ n, and also i > 0 since the
supersingular elliptic curve E′ has no degree p connected unramified covers. Now
E′∗ − U ′∗ = f ′−1(E′ − U ′) consists of exactly i + (n − i)p points. And by the
Riemann-Hurwitz formula in the wild case, we find that g = genus(E′∗) satisfies
2g − 2 ≥ ip, i.e. 2g ≥ ip + 2. So the prime-to-p part of N ′ is free on at least
(ip+2)+(i+(n− i)p)−1 = np+ i−1 generators. Since i > 0 and N ′ is isomorphic
to N , this is a contradiction. �

Finally, even two affine open subsets of the same projective curve, with the
same number of points deleted, can fail to have isomorphic fundamental groups. In
particular, this can occur for the projective line with four points deleted:

Theorem 1.8. Assume that p 6= 2. Let λ, λ′ ∈ P1 − {0, 1,∞} be points which
respectively have ordinary and supersingular j-invariants. Let U = P1−{0, 1,∞, λ}
and U ′ = P1 − {0, 1,∞, λ′}. Then π1(U) and π1(U

′) are non-isomorphic.

Proof. Let f : P ∗ → P1 be the two-fold cover that is totally ramified over the points
0, 1,∞, λ, let U∗ = P ∗ − f−1({0, 1,∞, λ}), and let N be the normal subgroup
of index 2 in π1(U) corresponding to the unramified cover U∗ → U . Thus P ∗

is an ordinary elliptic curve, P ∗ − U∗ consists of the four ramification points of
f , and N may be identified with π1(U

∗). Assume that there is an isomorphism
φ : π1(U) → π1(U

′), and let N ′ = φ(N). Thus N ′ is a normal subgroup of index 2
in π1(U

′), corresponding to a two-fold unramified cover U ′∗ → U ′, and isomorphic
to π1(U

′∗). Let P ′∗ be the smooth completion of U ′∗, and let f ′ : P ′∗ → P1 be
the corresponding branched cover. Since f ′ is a two-fold cover of the projective line
having at most four branch points, and since p 6= 2, the Hurwitz formula implies
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that the number of branch points of f ′ is either 2 or 4. In the former case P ′∗ has
genus 0, and U ′∗ is isomorphic to P1 − (6 points). And in the latter case, P ′∗ is
a supersingular elliptic curve, and U ′∗ is isomorphic to P ′∗ − (4 points). But φ
restricts to an isomorphism π1(U

∗) → π1(U
′∗). So in the first case this contradicts

Proposition 1.6, and in the second case this contradicts Proposition 1.7. �

Remark. The proofs of 1.6-1.8 actually show more. Namely, for any group G,
let G′ denote the commutator subgroup [G,G]. Then under the hypotheses of 1.6
and 1.7, the quotients π1/π

′′
1 are non-isomorphic; and under the hypotheses of 1.8,

the quotients π1/π
′′′
1 are non-isomorphic. �

The above theorem suggests the following question:

Question 1.9. For U an affine k-curve, to what extent does the profinite group
π1(U) determine U?

A very weak form of Question 1.9, which is nevertheless not known, is this:
Consider two affine curves Ui = Xi −Si (i = 1, 2), where Xi is a smooth projective
k-curve of genus gi and Si has ni elements. If π1(U1) ∼= π1(U2), then must g1 = g2
and n1 = n2? In light of Proposition 1.6, the first case to consider is that of
X1 = P1, n1 = 3, X2 = a supersingular elliptic curve, n2 = 1; we would then wish
to show that the π1’s are not isomorphic.

Alternatively, if we instead fix values for g and n, then the first case to consider
is that of U = P1 − S, where S consists of four points. By the triple transitivity
of Aut(P1), we may assume that S is of the form {0, 1,∞, λ}, and the question is
then to what extent π1(U) determines j(λ). The following result shows two cases
in which different values of j can correspond to isomorphic π1’s:

Proposition 1.10. Let λ, λ′ ∈ P1−{0, 1,∞}, and let j, j′ ∈ k be the corresponding
j-invariants. Also, let U = P1 − {0, 1,∞, λ} and U ′ = P1 − {0, 1,∞, λ′}. Then
π1(U) ∼= π1(U

′) provided that either:

(a) j, j′ are algebraic over Fp and lie in the same orbit under Frobenius; or
(b) j, j′ are both transendental over Fp.

Proof. In each case, it suffices to show that there is an Fp-isomorphism U → U ′,
since this would pull back the tower of covers of U ′ to the tower of covers of U .
Now the k-isomorphism classes of U and U ′ are determined by j and j′, and any
field automorphism of k induces an Fp-automorphism of P1. So it suffices to show
that there is a field automorphism of k taking j to j′.

In (a), we have that j, j′ ∈ Fp. We are supposing that F i(j) = j′, for some i,

where F : Fp → Fp is the Frobenius automorphism. Since k is algebraically closed,
there is an extension of F i to an automorphism of k, also taking j to j′.

In (b) there is a field isomorphism Fp(j) → Fp(j
′) taking j to j′. Again this

extends to an automorphism of k, taking j to j′. �

This proposition suggests the following more precise form of Question 1.9:

Question 1.11. (a) Does the converse of 1.10 hold? That is, if U and U ′ are as
in 1.10 and if π1(U) ∼= π1(U

′) holds, must (a) or (b) hold?
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(b) If k = Fp, then more generally for any two affine k-curves U and U ′, does
π1(U) ∼= π1(U

′) imply that U and U ′ are Fp-isomorphic?

Next, we turn to the case in which k is taken to be a finite field of characteristic
p, and we consider fundamental groups of geometrically connected affine curves U
over k. That is, we consider π1(U) and πA(U), arising from connected unramified

Galois covers of U . Since U is geometrically connected, the k-scheme U = U ×k k
is connected, and there is a split exact sequence

1 → π1(U) → π1(U) → Gal(k/k) → 1.

Since Gal(k/k) is a cyclic profinite group generated by the Frobenius automorphism
F , to give a splitting is to give the image of F . And once this lifting of F to π1(U)
is given, there is an action of F on π1(U). This action thus determines the group
π1(U) as an extension of Gal(k/k) by π1(U), and hence it determines πA(U). But
this action of Frobenius is not currently understood. The previous discussion in
the algebraically closed case, however, suggests the following

Question 1.12. Let U,U ′ be geometrically connected affine k-curves. Let φ :
π1(U) → Gal(k/k) and φ′ : π1(U

′) → Gal(k/k) be as in the exact sequence above.
If there is an isomorphism α : π1(U) → π1(U

′) such that α ◦ φ′ = φ, must U ∼= U ′

as k-schemes?

The analog of this for affine open subsets of the projective line over a number

field was proven by Nakamura, in [Na].
Another issue in this situation is that connected covers of U need not be geomet-

rically connected. Indeed, a Galois cover U∗ → U will be geometrically connected
if and only if it is regular; i.e. if and only if k is algebraically closed in the function
field of U∗. Thus there is a subset πreg

A (U) ⊂ πA(U) corresponding to Galois groups
of regular covers. We would like to understand πreg

A (U).
If U is a geometrically connected affine k-curve and U∗ → U is a G-Galois

unramified cover, then we may extend constants to the algebraic closure k of k, and

obtain a G-Galois cover U
∗ → U of connected k-curves. Thus πreg

A (U) ⊂ πA(U),
and the latter set is understood by the algebraically closed case. Now given a

connected G-Galois cover U
∗ → U , Frobenius acts on the cover, in the sense of

inducing a G-Galois cover U
∗F → U by letting F act on the coefficients of the

equations defining U
∗

as a cover and also on the Galois automorphisms. By [De],

the G-Galois cover U
∗ → U is induced by a G-Galois cover U∗ → U if and only if

U
∗F → U is isomorphic, as a G-Galois cover, to U

∗ → U . (The corresponding fact
is false in the case of covers over number fields, because the field of moduli of a
G-Galois cover need not in general be a field of definition; cf. [CH, Example 2.6].)

And so a finite group G lies in πreg
A (U) if and only if some G-Galois cover U

∗ → U
satisfies the above property. But again, the difficulty in using this criterion to find
πreg

A (U) explicitly is that the action of Frobenius on π1(U) is not understood.
Recently, Abhyankar has obtained many quasi-p groups as Galois groups of ex-

plicit unramified covers of the affine line over Fp. Motivated by this, he has asked
the following
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Question 1.13. If p is a prime and G is a finite quasi-p group, must G lie in
πA(A1

Fp
)?

But the patching methods used in [Ra] and [Ha3] to prove Abhyankar’s conjec-
ture over algebraically closed fields do not seem applicable to this situation, due to
difficulties involved with specialization.

Section 2. Arithmetic Galois groups

This section considers the problem of finding π1 and πA in the unequal charac-
teristic case – specifically, for a “curve” of the form Un = Spec(Z[ 1

n ]), where n is a
square-free positive integer. It was suggested by I.R. Shafarevich [Sh, sect. 3] that
π1(Un) is topologically finitely generated for each n, and R. Coleman has asked
how πA and π1 grow with n. Presumably every finite group lies in πA(Un) for some
sufficiently large n.

By the analogy between number fields and function fields, we might expect
πA(Un) to behave similarly to πA(U), where U is an open subset of the affine
line over Fp. In that situation, a square-free polynomial f of degree d has norm
pd and defines a set of d geometric points. For such an f , if U ⊂ A1

Fp
is the set

where f 6= 0, then the tame part of πreg
A (U) is contained in πt

A(U), whose elements
are each generated by d elements. In the arithmetic situation, Un ⊂ Spec(Z) is the
non-vanishing set of a square-free positive integer n, of norm n. So we make the
following conjecture:

Conjecture 2.1. There is a constant C such that for every positive square-
free integer n, every group in πt

A(Un) has a generating set with at most logn + C
elements.

That is, if K is a Galois extension of Q having Galois group G and only tame
ramification, and if n is the product of the distinct primes dividing the discriminant,
then the number of generators of G is conjectured to be at most logn+O(1). More
groups would thus be allowed as n increases. This conjecture is consistent with the
expectation, suggested at this conference by B. Birch, that every finite group is the
Galois group of a tamely ramified extension of Q.

In this section we particularly consider the case where n = p is prime. If G is
the Galois group of an extension K of Q ramified only over p, and if N ⊂ G is the
(normal) subgroup generated by the Sylow p-subgroups of the inertia groups, then
N is a quasi-p group, and L = KN is a tamely ramified Galois extension of Q with
group G/N ramified only over p. Since N ⊂ p(G) (where, as in section 1, p(G)
denotes the quasi-p part of G), we obtain

Proposition 2.2. If Conjecture 2.1 holds, and if G ∈ πA(Up) for some prime
number p, then G/p(G) is generated by at most log p+C elements (where C is as
in 2.1).

We begin with two examples of Galois extensions K of Q that are ramified only
at a single prime:
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Examples 2.3. (a) If a prime number p is chosen so that the class number
h(Q(ζp)) > 1 then the Hilbert class field K of Q(ζp) is ramified only at p. For
example we may take p to be 23, with class number 3, showing that the non-trivial
semi-direct product Z/3 o (Z/23)∗ is in πA(U23).

(b) (following ideas of Ken Ribet in his talk at this conference) Let N be a prime
such that the genus of J = J0(N) is at least 1, and take p to be a prime not dividing
the numerator of N−1

12 . The action of GQ = Gal(Q/Q) on the torsion points of J
yields a representation ρ : GQ → GL(2, k) for some finite field k of characteristic
p, and the image A of ρ is {g ∈ GL(2, k) | det(g) ∈ F∗

p}. So A is a quotient of
GQ, and taking p = N we get a corresponding Galois extension of Q with Galois
group A. This extension is unramified away from p, since ρ is (because J has good
reduction outside p). �

Note that in these examples the prime p must be sufficiently large, and this may
reflect the fact that according to 2.1 and 2.2 there should be “more” extensions
ramified only over a fixed large prime than there are ramified only over a fixed
small prime.

For any group G, let G′ be the commutator subgroup of G; let Gab = G/G′ be
the abelianization of G; and let Gsolv be the maximal solvable quotient of G.

By class field theory, the abelianized fundamental group of Un is given by
π1(Un)ab ∼=

∏

p|n Z∗
p
∼=

∏

p|n[(Z/p)∗ × Zp]. Similarly, the abelianized tame fun-

damental group is given by πt
1(Un)ab =

∏

p|n(Z/p)∗, and hence the number of

generators of this group is equal to the number of distinct odd primes dividing n.

Remark. In the geometric situation, Theorem 1.8 produced two affine curves
of the form P1 − (4 points) whose π1’s were non-isomorphic, even modulo π′′′

1 (cf.
the remark after that result). In the arithmetic situation, much more is true: by
the comments above, a square-free positive integer n is determined by π1(Un)ab =
π1(Un)/π1(Un)′. But this is less surprising, since no two n’s can have the same
norm, and so intuitively different Un’s have different numbers of “missing points.”

A key difference between the arithmetic and geometric cases concerns the re-
lationship between the discriminant ∆ and the index of ramification e. In the
geometric case, fixing the degree N and bounding the values of e does not bound
|∆|, when there is wild ramification. Thus, in characteristic p, there are branched
covers of P1

k of degree p, unramified except at a single point, having arbitrarily
large discriminant and hence arbitrarily large genus (e.g. the covers yp − y = x−n,
with n prime to p). But in the arithmetic case, for a given degree N , knowing the
values of e bounds the discriminant. By combining this upper bound on |∆| with
a lower bound (e.g. Odlyzko’s bounds), it is often possible to show that G is not in
πA(Un).

Specifically, if K ⊂ L is a totally ramified extension of p-adic fields having
ramification index e, and if p is the prime of OK over p, then

vp(∆L/K) ≤ e− 1 + evp(e).

(This can be seen by writing OL = OK [x]/(f(x)) and then evaluating vq(f ′(πL)),
where q is the prime of OL over p and πL is the uniformizer of OL. See [Se1, p. 568,
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Proposition 3].) So for a global finite extension Q ⊂ L, with ramification indices ei

and residue degrees fi over p, we have

(∗) vp(∆L/Q) ≤
∑

i

fi

(

ei − 1 + eivp(ei)
)

.

In particular, if L is ramified only over a single prime p and [L : Q] = n, then

|∆L/Q| 1
n ≤ p1+ 1

n

P

(eifivp(ei)−fi); so if L is Galois over Q with ramification indices
equal to e then

(∗∗) |∆L/Q| 1
n ≤ p1+vp(e)− 1

e .

(Compare [Se1, p. 570, Proposition 6].)
Using this, we obtain evidence for Conjecture 2.1 (Theorem 2.6 below). First we

need two lemmas:

Lemma 2.4. Let p be prime.
(a) If the class number hp = h(Q(ζp)) is equal to 1, then πt

1(Up)
solv is cyclic of

order p− 1.
(b) If hp > 1, then πt

1(Up)
solv is not cyclic.

Proof. (a) Let G ∈ πt
A(Up)

solv and let K be a G-Galois extension of Q that is un-
ramified except at p, where it is tamely ramified. We wish to show that K ⊂ Q(ζp).

The fixed field KG′

under the commutator subgroup G′ is an abelian extension of
Q ramified only at p, where it is tamely ramified; so KG′ ⊂ Q(ζp).

Now any non-trivial unramified abelian extension L of KG′

is linearly disjoint
from Q(ζp) over KG′

, since the latter extension is totally ramified. Thus L(ζp) is
a non-trivial abelian unramified extension of Q(ζp); a contradiction, showing that

h(KG′

) = 1. So the abelian extensionKG′ ⊂ KG′′

has no unramified subextensions,

and hence is totally ramified. Thus the G/G′′-Galois extension Q ⊂ KG′′

is totally,
and tamely, ramified over p. So its inertia group, viz. G/G′′, is cyclic, and in
particular abelian. Thus G′′ contains G′, and hence G′′ = G′. But G′ is solvable;
so G′ is trivial and K = KG′ ⊂ Q(ζp).

(b) Let K be the Hilbert class field of Q(ζp). Thus K is Galois over Q; let G be
the Galois group. If G is cyclic, then Q ⊂ K is an abelian extension ramified only
at p, where it is tamely ramified. Thus K ⊂ Q(ζp), and hence K = Q(ζp). This
contradicts the assumption that hp = 1, showing that G is non-cyclic. Hence the
group πt

1(Up)
solv is also non-cyclic. �

Lemma 2.5. Let G be a non-solvable group of order ≤ 500, such that every proper
quotient of G is abelian. Let g ∈ G and let e be the order of g. Then one of the
following holds:

(i) G ∼= A5, e ≤ 5;
(ii) G ∼= S5, e ≤ 6;
(iii) G ∼= PSL(2, 7), e ≤ 7;
(iv) 1 → PSL(2, 7) → G→ Z/2 → 1 is exact, e ≤ 14;
(v) G ∼= A6, e ≤ 5.
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Proof. Let N be a minimal non-trivial normal subgroup of G. Thus N is of the
form Hν , for some simple group H and some integer ν ≥ 1. Let G = G/N . So G is
abelian. Since G is not solvable and G is solvable, it follows that N and hence H is
non-abelian. Thus |H | ≥ 60. Since |G| ≤ 500, we have that ν = 1 and so N = H .

Since n ≤ 500, we have that |H | ≤ 500, and therefore H is isomorphic either
to the alternating group A5 of order 60; to the simple group SL(3, 2) ∼= PSL(2, 7)
of order 168; or to the alternating group A6 of order 360. The maximal order of
an element in A5 and A6 is 5 (corresponding to a five-cycle), and in PSL(2, 7) it
is 7 (corresponding to the upper triangular matrix with entries on and above the
diagonal equal to 1). Since |G| ≤ 500, we have that |G| = 1 if H ∼= A6, and |G| ≤ 2
if H ∼= PSL(2, 7). If G ∼= S5 then the maximal order of an element is 6 (the product
of a two-cycle and a three-cycle). And if H ∼= PSL(2, 7) and G ∼= Z/2, then any
g ∈ G satisfies g2 ∈ H and so g14 = 1. So it remains to show that if H ∼= A5 and
G is non-trivial, then G ∼= S5.

So take H = A5 and assume G = G/H is non-trivial, and let ρ : G→ Out(A5) ∼=
Z/2 be the homomorphism induced by the given extension. We claim that ρ is an
isomorphism. If not, then since G is non-trivial, we have that ker(ρ) is non-trivial.
Let g 6= 1 be in ker(ρ), and let g ∈ G lie over g. Also, let E ⊂ G be the subgroup
generated by g, and let E ⊂ G be the inverse image of E. Thus g ∈ E, and E is
generated by g and H . Since G is abelian, E is normal in G, and hence E is normal
in G. By the choice of g, conjugation of H by g is an inner automorphism of H , say
by h ∈ H . Thus gh−1 ∈ G acts trivially on H by conjugation, i.e. gh−1 commutes
with the elements of H , and in particular with h. Thus g commutes with h, and
so gh−1 commutes with g. Since E is generated by g and H , we have that gh−1

lies in the center Z of E. But gh−1 6= 1 (because its image in G is g 6= 1), and so
Z 6= 1. Since Z is a characteristic subgroup of N , and since N is normal in G, it
follows that Z is a non-trivial normal subgroup of G. But Z is abelian, and so G/Z
is (like G) non-solvable and hence non-abelian. This contradicts the hypothesis on
G, proving the claim that ρ is an isomorphism.

Thus ρ : G → Out(A5) ∼= Z/2 is an isomorphism. Let g be the involution in
G and let g ∈ G lie over g. Thus the conjugation action of g on H = A5 is not
an inner automorphism. But Aut(A5) = S5, and so this conjugation action agrees
with conjugation on A5 by some odd permutation τ in S5. Here τ = σh, where
σ ∈ S5 is a transposition and h ∈ H = A5. Replacing the lift g of g by gh−1, we
are reduced to the case that g has order 2 and it acts on A5 the same way as the
transposition σ. So there is an isomorphism G → S5 which is the identity on A5

and takes g to σ. �

Theorem 2.6. (a) If p < 23 is prime, then πt
1(Up) is cyclic of order p− 1.

(b) The group πt
1(U23) is not cyclic.

Proof. (a) Since p ≤ 19, the class number h(Q(ζp)) = 1. So if 2.6 fails, then
2.4(a) implies that there is a non-solvable finite quotient of πt

1(Up). Let G be such
a quotient of smallest possible order n, and let K be a corresponding G-Galois
extension of Q ramified only over p, where it is tamely ramified of index e. For
any non-trivial normal subgroup of N ⊂ G, the minimality of G implies that G/N
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is solvable. So by 2.4(a), G/N is cyclic of order r dividing p− 1. This shows that
every proper quotient of G is abelian.

In particular, let N0 ⊂ G be minimal among the non-trivial normal subgroups of
G. The minimality of N0 implies that N0 is of the form Hν , for some simple group
H and some integer ν ≥ 1. Here H is non-abelian since G is not solvable. Write
∆ = ∆K/Q.

We claim that n = |G| < 500. Namely, since K is tamely ramified over p with
ramification index e < n, and unramified elsewhere, by the inequality (**) above

we have that |∆| 1
n < 191− 1

n . But by [Od, p. 380, 1.11], |∆| 1
n ≥ 21.8 · e−70/n. So

21.8 · e−70/n < 191− 1
n , and so

n <
70 − log(19)

log(21.8/19)
< 500.

Since the ramification is tame, the ramification index e is equal to the order of
some element in G. Since n = |G| < 500, and since every proper quotient of G is
abelian, by Lemma 2.5 we are in one of the following five cases:

(i) n = 60, e ≤ 5;
(ii) n = 120, e ≤ 10;
(iii) n = 168, e ≤ 7;
(iv) n = 2 · 168 = 336, e ≤ 14;
(v) n = 360, e ≤ 5.

In each case, inequality (**) shows that |∆| 1
n ≤ 191− 1

e , and [Od, Table 1, pp.

400-401] provides a lower bound for |∆| 1
n . These upper and lower bounds (rounding

up, in the case of the upper bounds) are respectively 10.55 and 12.23; 14.16 and
14.38; 12.48 and 15.12; 15.40 and 17.51; 10.55 and 17.94. In each case this is a
contradiction.

(b) Since the class number of Q(ζ23) is 3, by 2.4(b) we have that πt
1(U23)

solv is
not cyclic. Hence πt

1(U23) is also not cyclic. �

As in section 1, for any finite group G and any prime p, we denote by p(G) the
subgroup of G generated by the p-subgroups of G, and we say that G is a quasi-p
group if p(G) = G.

Corollary 2.7. If p < 23 is prime, and G is in πA(Up), then G/p(G) is cyclic of
order dividing p− 1.

Proof. Let K be a G-Galois extension of Q ramified only at p. Then the subfield
Kp(G) is aG/p(G)-Galois extension of Q ramified only at p, and it is tamely ramified
over p since |G/p(G)| is prime to p. So we are done by 2.6(a). �

In particular, every group in πA(U2) is a quasi-2 group.

Remark. J.-P. Serre has observed to the author that π1(U11) is not solvable. In
particular, it has a quotient isomorphic to GL(2, 11), provided by the 11-division
points of the elliptic curve of conductor 11 (or equivalently, by the Ramanujan func-
tion representation modulo 11). Moreover, the same argument using the Ramanu-
jan function shows that π1(Up) is not solvable for larger primes p (using modular
forms other than delta for p = 23 and p = 691).
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Proposition 2.8. Let p and q be (possibly equal) prime numbers, let G be a
p-group, and let Q ⊂ K be a G-Galois extension ramified only at q.

(a) The extension Q ⊂ K is totally ramified over q.
(b) The class number of K is prime to p.

Proof. (a) If not, let I be an inertia group over q. Then I is a proper subgroup of G.
But any proper subgroup of a p-group is contained in a proper normal subgroup.
So I lies in a proper normal subgroup N ⊂ G. Thus the fixed field KN is unramifed
over Q with group G/N 6= 1, and this is impossible.

(b) Let C be the class group of K, let C′ = C/N be the maximal quotient of
C of p-power order, let L be the Hilbert class field of K, and let L′ = LN . Then
the extension Q ⊂ L′ is a Galois extension of p-power order, and thus by (a) it
is totally ramified over q. Hence so is K ⊂ L′. But K ⊂ L′ is a subextension of
K ⊂ L, and so is unramified. Hence the extension K ⊂ L′ is trivial, and so its
Galois group C′ is also trivial. Thus N = C. So the class number of K, which is
equal to |C|, is prime to p. �

Proposition 2.9. Under the hypotheses of 2.8, suppose additionally that every
proper subfield K ′ of K that is Galois over Q has class number 1. Assume that the
class group C of K is non-trivial.

(a) There is an injective group homomorphism ρ : G → Aut(C), arising from
the action of G on C = Gal(L/K), where L is the Hilbert class field of K.

(b) If G is non-abelian, then C is not cyclic.

Proof. (a) Let Γ = Gal(L/Q). Thus we have the exact sequence 1 → C → Γ →
G → 1, and by 2.8(b) the kernel and cokernel have relatively prime order. Thus
this sequence splits and we may regard G ⊂ Γ. Let ρ : G→ Aut(C) correspond to
the induced conjugation action of G on C, and let N = ker(ρ) ⊂ G ⊂ Γ. We wish
to show that N is trivial.

So assume not. Then N is a non-trivial normal subgroup of G, and the elements
of N commute with all the elements of C. So N is normal in Γ. Let G′ = G/N ,
Γ′ = Γ/N , K ′ = KN and L′ = LN . Then the extension Q ⊂ K ′ is G′-Galois, and
Q ⊂ L′ is Γ′-Galois. Hence the extension K ′ ⊂ L′ is C-Galois. Since N 6= 1, the
field K ′ is strictly contained in K; so by hypothesis, the class number of K ′ is 1.
Thus the abelian extension K ′ ⊂ L′ is totally ramified. Also, K ′ ⊂ K is totally
ramified over q since Q ⊂ K is, by 2.8(a). Now the degree of the Galois extension
K ′ ⊂ K is a power of p, whereas [L′ : K ′] = |C| is prime to p by 2.8(b). So the
fields K and L′ are linearly disjoint over K ′, and thus the compositum KL′ = L is
totally ramified over K. But L is unramified over K. So L = K and C is trivial, a
contradiction.

(b) If C is cyclic, then Aut(C) is abelian. Since G is non-abelian, this contradicts
the conclusion of (a). �

Corollary 2.10. Under the hypotheses of 2.9, if p = 2 and G is non-abelian, then
the class number of K is at least 9.

Proof. Let C be the class group of K. Then |C| is odd by 2.8(b), and C is non-cyclic
by 2.9(b). Thus the abelian group C is a product of at least two cyclic groups, each
of order at least 3. So |C| ≥ 9. �
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If p is an odd prime, and Q ⊂ K is a G-Galois extension ramified only at p,
with G an abelian p-group, then G = Z/pn−1 for some n. For the prime 2, the
corresponding assertion holds provided one restricts attention to totally real fields.
In fact, these assertions remain true even without assuming that G is abelian.
Namely, if we write πtr

1 (U2) for the quotient of π1(U2) corresponding to totally real
extensions, and write πp

1(Up) [resp. (πtr
1 )p(U2)] for the maximal p-quotient of π1(Up)

[resp. of πtr
1 (U2)], we have the following easy result:

Theorem 2.11. (a) If p is an odd prime, then πp
1(Up) ∼= Zp. Equivalently, a finite

p-group G is in πA(Up) if and only if G is cyclic.

(b) (πtr
1 )2(U2) ∼= Z2. Equivalently, a finite 2-group G is in πtr

A(U2) if and only if
G is cyclic.

Proof. Let Π = πA(Up) if p is odd, and let Π = πtr
A(U2) if p = 2. It suffices to

show that if G ∈ Π then G is cyclic. Now for G ∈ Π, the abelianization Gab is
also in Π. So by the comment before the theorem, Gab is cyclic of p-power order.
But Gab = G/G′, where G′ is the commutator, and G′ is contained in the Frattini
subgroup F of G. So G/F is cyclic. By the Burnside Basis Theorem, so is G. �

From now on we restrict attention to the case of U2, and study the set πA(U2).
While 2.11(b) does not determine precisely which 2-groups are in πA(U2), it does
provide a necessary condition for a 2-group to lie in πA(U2):

Proposition 2.12. Let G be a non-trivial 2-group in πA(U2).
(a) Then G contains an involution i such that the normal subgroup N ⊂ G

generated by i has the property that G/N is cyclic.
(b) The normal subgroup H of G generated by the involutions of G has the

property that G/H is cyclic.

Proof. Part (b) is immediate from (a). For (a), assume that G ∈ πA(U2), and let
Q ⊂ K be a corresponding G-Galois extension ramified only over 2. Let g ∈ G
be the image of complex conjugation, under Gal(Q/Q) → Gal(K/Q) = G. If g
is trivial, then K is a real Galois extension of Q, and hence is totally real; so G
is cyclic by Proposition 2.11(b), and we may choose i to be the unique involution
in G. So now assume that g is non-trivial, take i = g, and let N be the normal
subgroup generated by i (i.e. the subgroup of G generated by i and its conjugates).
Thus KN is totally real, and so is cyclic over Q with group G/N . �

Question 2.13. Is condition (a) of Proposition 2.12 necessary and sufficient for
a finite 2-group G to lie in πA(U2)?

Using 2.12, various 2-groups can be shown not to lie in πA(U2). For example,
the quaternion group Q of order 8 is not in πA(U2), since the only involution is −1,
and so it does not satisfy (b) of Proposition 2.12. On the other hand, we have:

Example 2.14. The dihedral group D4 = 〈σ, τ | σ4 = 1, τ2 = 1, τσ = σ−1τ〉 is in

πA(U2). Namely, writing u = 1 −
√

2 for the fundamental unit in Q(ζ8), we have
that D4 = Gal(Kν/Q), ν = 1, 2, where K1 = Q

(

ζ8,
√
u
)

and K2 = Q
(

ζ8,
√
ζ8u

)

=

Q
(

ζ8,
4
√

2
)

. The discriminants of these fields satisfy |∆|1/8 ≤ 8. Moreover these
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are the only two D4-Galois extensions of Q ramified only at 2, and each has class
number 1.

To see this, one notes that any D4-Galois extension of Q ramified only at 2
must be a degree 2 Kummer extension of Q(ζ8), ramified only at the prime over
2. Hence such an extension is of the form Q(ζ8,

√
α), where α = ζi

8u
jπk, where

π = 1 − ζ8 generates the prime of Q(ζ8) over 2, and where i, j, k each equal 0
or 1. Examining the possibilities and ruling out the non-Galois extensions and the
abelian extensions of Q, one obtains precisely the above two fields, each of which
has Galois group D4.

To see that the class number hν of Kν is 1, note that otherwise Corollary 2.10
implies that hν ≥ 9. So Kν has an unramified abelian extension L of degree
≥ 9, which is Galois over Q. Now since Kν is obtained by adjoining the square
root of a unit to Q(ζ8), we have that the discriminant ∆Kν

= ∆Kν/Q satisfies

|∆|1/8 ≤ 8. Hence the discriminant ∆L of L over Q satisfies |∆L|1/[L:Q] ≤ 8. But
[L : Q] ≥ 8 · 9 = 72, and for extensions of degree N ≥ 72, Odlyzko’s lower bound
on |∆|1/N [Od, p. 401, Table 1] is 12.84. This is a contradiction. �

By the above, we obtain

Proposition 2.15. The 2-groups of order ≤ 8 in πA(U2) are precisely the groups
1, Z/2, Z/2 × Z/2, Z/4, Z/8, Z/4 × Z/2, and the dihedral group D4. Moreover,
all of the corresponding field extensions of Q have class number 1.

Proof. By Example 2.14, the dihedral group D4 is in πA(U2), and the two corre-
sponding field extensions K1 and K2 each have class number 1. Also, as noted
after Proposition 2.12, the quaternion group Q does not occur in πA(U2). Since the
abelian groups in πA(U2) are precisely the groups of the form Z/2n or Z/2n ×Z/2
for n ≥ 0, corresponding the the quotients of Gal

(

Q(ζ2n+1)/Q
)

, the abelian groups
that occur are those listed. Each of the corresponding fields is thus a subfield of
Q(ζ32), which has class number 1. If a subfield K ⊂ Q(ζ32) has a class number
bigger than 1, then by 2.8(b) there is a non-trivial unramified Galois extension
K ⊂ L having odd degree. Thus L and Q(ζ32) are linearly disjoint over K, and so
the compositum L(ζ32) is a non-trivial unramified extension of Q(ζ32). This is a
contradiction. �

In degree 16, a more delicate use of Odlyzko’s bounds is required, as in the
following example (which is needed in Theorem 2.25 below):

Example 2.16. There are precisely two groups of order 16 lying in πA(U2) that
have D4 as a quotient, viz. D8 and the group E = 〈s, t | s8 = 1, t2 = 1, tst−1 =
s3〉. Moreover each of these groups corresponds to exactly two non-isomorphic
extensions of Q ramified only at 2, one of which dominates K1 and the other of
which dominates K2 (where the fields Kν are as in Example 2.14). These four fields
L satisfy |∆L|1/16 ≤ 16, and they have class number 1.

To see this, we begin as in Example 2.14. Namely, any such field L is a de-
gree 4 Kummer extension of Q(ζ8), ramified only at the prime over 2. Hence

it is of the form Q(ζ8, 4
√
α), with α = ζi

8u
jπk, where u = 1 −

√
2, π = 1 − ζ8

and 0 ≤ i, j, k ≤ 3. Ruling out the non-Galois extensions, one is left with the
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fields L1 = Q
(

ζ8, 4
√
u
)

= K1(
√
u1), where u1 =

√
u ∈ K1, and having Ga-

lois group E over Q; L2 = Q
(

ζ8,
4
√
iu

)

= K1(
√
ζ8u1), with group D8 over Q;

L3 = Q
(

ζ8,
4
√

ζ8uπ2
)

= Q(ζ8,
8
√

2
)

containing K2, with group E over Q; and

L4 = Q
(

ζ8,
4

√

ζ−1
8 uπ2

)

containing K2, with group D8 over Q.

Now L1 and L2 are each obtained from K1 by adjoining the square root of a
unit. Also, letting v = π/ω2 ∈ K2, where ω = 1 −√

ζ8u ∈ K2 generates the prime
of K2 over 2, we have that v is a unit. Writing u2 =

√
ζ8u ∈ K2, we have that

L3 = K2(
√
u2v) and L4 = K2(

√

ζ−1
8 u2v), each of which is obtained from K2 by

adjoining the square root of a unit. So for 1 ≤ ν ≤ 4, the discriminant ∆Lν
over Q

satisfies |∆Lν
|1/16 ≤ 16, and any unramified extension H of Lν with n = [H : Q]

satisfies |∆H |1/n ≤ 16.
Now if the class number h(Lν) is greater than 1, then the class group C of Lν is

non-cyclic, by Proposition 2.9 (using Proposition 2.15 to verify the hypotheses of
2.9) and odd (by 2.8). So either C ∼= (Z/3)2 or else |C| ≥ 25. In the latter case,
Lν has an abelian unramified extension that is Galois over Q with degree at least
16 · 25 = 400. But Odlyzko’s lower bound for extensions Q ⊂ H of degree n ≥ 240
[Od, Table 1, p.401] is |∆H |1/n ≥ 16.28. This is a contradiction. Thus C ∼= (Z/3)2.

LetH be the Hilbert class field of Lν. ThusH is Galois over Q, say with group Γ.
Writing G = Gal(Kν/Q), there is an exact sequence 1 → C → Γ → G → 1, which
splits since C is odd andG is a 2-group. By 2.9(a), the induced map ρ : G→ Aut(C)
is injective. But Aut(C) ∼= GL(2, 3), and the highest power of 2 dividing |GL(2, 3)|
is 16, so ρ must be an isomorphism from G to a Sylow 2-subgroup of GL(2, 3). Now
there is an injection ρ : E → GL(2, 3), given by

s 7→
(

1 −1
1 1

)

, t 7→
(

0 1
1 0

)

,

and this is an isomorphism onto a Sylow 2-subgroup S of GL(2, 3). So there is no
embedding of D8 into GL(2, 3), and thus L2 and L4 have class number 1.

It remains to show that Lν has class number 1 for ν = 1, 3. So assume otherwise.
Then by the above, Γ must be isomorphic to the semidirect product of N = (Z/3)2

with E, where E acts on (Z/3)2 via the above injection. Thus n = |Γ| = 144.
Let ℘ be the unique prime of Lν over 2. We claim that ℘ splits completely in

H , into nine primes of norm 2. To see this, let P be a prime of H over ℘, let D
be the decomposition group at P , and let I be the inertia group at P . Then I is
a Sylow 2-subgroup of Γ, and after altering the choice of P we may assume that
I = E (which we regard as a subgroup of Γ, with conjugation action given via the
isomorphism E→̃S). Now I is normal in D, and to prove the claim it suffices to
show that D = I, or equivalently that D ∩N = 1. So let d ∈ D ∩N . Since s ∈ E,
the normality of I = E in D implies that dsd−1 ∈ E; so the commutator [d, s] ∈ E.
But [d, s] = d(sd−1s−1) ∈ N since d ∈ N and N is normal in Γ. Since E ∩N = 1 in
Γ, we have that [d, s] = 1. But conjugation by s (i.e. multiplication by the matrix
ρ(s)) cyclically permutes the non-identity elements of N . Thus d = 1. This proves
the claim.

According to Odlyzko’s lower bound [Wa, p.221], if real numbers σ, σ̃ > 1 are
chosen subject to two inequalities, andH/Q is any totally complex Galois extension
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of degree n, then

log(|∆H |) ≥ n(log(2π) − ψ(σ)) +
n

2
(2σ − 1)ψ′(σ̃) + 2Z(σ) + (2σ − 1)Z1(σ̃)

− 2

σ
− 2

σ − 1
− 2σ − 1

σ̃2
− 2σ − 1

(σ̃ − 1)2
.

Here ψ(s) = Γ′(s)/Γ(s), Z(s) = −ζ′H(s)/ζH(s), and Z1(s) = −Z ′(s). Thus for real
s > 1,

Z(s) =
∑

P

logNP
NPs − 1

, Z1(s) =
∑

P

(logNP)2NPs

(NPs − 1)2
.

Since all of the terms in the two above summations are positive, the inequality
remains true if only those primes over 2 are included. In our situation, there are
nine such primes, each of norm 2. So we have that Z(σ) ≥ 9(log 2)/(2σ − 1)

and Z1(σ̃) ≥ 9(log 2)2 · 2σ̃/(2σ̃ − 1)2. Taking σ = 1.145 and σ̃ = 5
6 + 1

6

√
12σ2 − 5

(which satisfy the two required inequalities), we thus obtain that log|∆H | ≥ 404.53
and so |∆H |1/144 ≥ 16.59. But |∆H |1/144 ≤ 16. This is a contradiction, proving
that indeed the class number of Lν is 1. �

Remarks. (a) If one is willing to assume the Generalized Riemann Hypothesis,
then the computations of the above example can be significantly shortened. Namely,
by Corollary 2.10 and Proposition 2.15, if the class number of Lν is greater than
1, then it is at least 9. In that case, Lν has an abelian unramified extension H
that is Galois over Q with degree n ≥ 16 · 9 = 144. As before, |∆H |1/n ≤ 16. But
under GRH, Odlyzko’s lower bound for extensions Q ⊂ H of degree n ≥ 140 (even
without any information about splittings of primes) is |∆H |1/n ≥ 16.67. This is a
contradiction.

(b) J.-P. Serre observed that Odlyzko’s method can be systematized and im-
proved by use of Weil’s “explicit formulas.” This yields better lower bounds for the
discriminant, either with or without assuming GRH. For example, the bound 16.28
in the above example can be replaced by 18.81. See [Se1, pp. 240-243 and p. 710]
for further details and references.

By Corollary 2.7, every group in πA(U2) is a quasi-2 group. This can also be
seen more directly. Namely, if G ∈ πA(U2), then G/p(G) is of odd order, and so
is solvable. Thus if G/p(G) is non-trivial, then it has a non-trivial abelian odd
quotient, corresponding to a non-trivial abelian odd extension of Q ramified only
at 2. This is impossible, since such an extension would have to lie in some Q(ζ2n).
So actually G/p(G) is trivial, and thus G is a quasi-2-group.

Strengthening this argument, we obtain the following result (where K0 = Q is
the case just considered):

Proposition 2.17. Let K be a Galois extension of Q ramified only over 2, and let
Q ⊂ K0 be an intermediate Galois extension whose degree is a power of 2. Then
either

(i) Gal(K/K0) is a quasi-2-group; or
(ii) there is a non-trivial abelian unramified extension K0 ⊂ L of odd degree

such that L ⊂ K and L is Galois over Q.
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Proof. Let G = Gal(K/Q) and let N = Gal(K/K0). The quasi-2 part p(N) of N is
normal in G, since it is characteristic in the normal subgroup N ⊂ G. Replacing G
and N by G/p(N) and N/p(N) respectively, we may assume that N has odd order,
and hence is solvable. In this situation, it suffices to prove that if K0 6= K (i.e. if
(i) fails) then the extension K0 ⊂ K is not totally ramified. For then (ii) holds,
with L taken to be the maximal abelian unramified subextension of K0 ⊂ K.

So assume otherwise, i.e. that K0 ⊂ K is non-trivial, and is totally ramified.
Now the extension Q ⊂ K0 is unramified away from 2 and is Galois of 2-power
degree; hence it is totally ramified over 2. Thus Q ⊂ K is totally ramified over
2, with inertia group G. But then G = P o C, where the normal subgroup P is
a 2-group and C is cyclic of order prime to 2. Here C is non-trivial, since G is
not a 2-group (because |N | = [K : K0] is odd and greater than 1). So the field of
invariants KP is a non-trivial C-Galois extension of Q ramified only over 2, which
is impossible since C is abelian and odd. �

As a consequence of 2.17, various quasi-2-groups can be shown not to lie in
πA(U2). In particular, we have:

Example 2.18. For any positive integer n, let G be the dihedral groupDn of order
2n. Then G is a quasi-2 group, and Gab ∼= Z/2 or (Z/2)2, but G is not in πA(U2)
unless n is a power of 2. Namely, if Dn is the Galois group of a Galois extension
Q ⊂ K ramified only at the prime 2, then let N ⊂ G be a cyclic normal subgroup
of order n, and let L be the fixed field of N . Then L is either Q(i), Q(

√
2), or

Q(
√
−2), since these are the only 2-cyclic extensions of Q ramified only at 2. Each

of these has class number 1, so 2.17 implies that the cyclic group N = Gal(K/L)
is a quasi-2-group. Thus n is a 2-power. �

In the solvable case, 2.17 yields:

Lemma 2.19. Under the hypotheses of Lemma 2.17, if G = Gal(K/Q) is solvable,
and K0 is the maximal 2-power subextension of K, then we may replace (i) of 2.17
by the condition that K = K0 (i.e. G is a 2-group).

Proof. Let N = Gal(K/K0). Then N is the minimal normal subgroup of G whose
index is a power of 2. If K 6= K0, then N 6= 1. Since G is solvable, G has a normal
subgroup N1 ⊂ N such that N/N1 is of the form (Z/p)n for some prime p and some
n ≥ 1. By the minimality of N , the index (G : N1) is not a power of 2, and so p is
odd. Thus every 2-subgroup of N is contained in the proper subgroup N1, and so
N = Gal(K/K0) is not a quasi-2-group. So (i) of 2.17 fails, and thus (ii) holds. �

As a result, we obtain:

Theorem 2.20. Let G be a solvable group in πA(U2). Then either G is a 2-group
of order < 16, or G has a quotient of order 16.

Proof. The result is clear if G is a 2-group, so assume not. Let K be a G-Galois
extension of Q ramified only at 2, let K0 be as in Lemma 2.19, and let N =
Gal(K/K0). Since G is not a 2-group, N 6= 1. So by 2.19, K0 has class number
> 1. Since K0 is Galois over Q of 2-power degree, it follows by 2.15 that |G/N | =
[K0 : Q] ≥ 16. �



GALOIS GROUPS WITH PRESCRIBED RAMIFICATION 21

In the non-solvable case, there are the following examples of groups that are not
in πA(U2):

Example 2.21. (a) J. Top [To, Lemma 4.8.2] has shown that the alternating
groups A5 and A6, and the symmetric groups S5 and S6, do not lie in πA(U2).
This follows from showing that there is no extension of Q of degree 5 or 6 that is
ramified only at 2, even without a Galois hypothesis. This was shown by observing
that the upper bound (*) given above shows that v2(∆) ≤ 11 for degree 5, and
v2(∆) ≤ 14 for degree 6; and by inspecting lists of all fields of degree 5 and 6 with
small discriminant. (In the case of A5, Lenstra and Brumer have each observed
that one can instead apply the upper bound (**) to the Galois extension itself, and
this contradicts Odlyzko’s lower bound.)

(b) The simple group SL(2, 8) is not in πA(U2). To see this, assume not and apply
(**) to such an extension. Since the largest power of 2 dividing |SL(2, 8)| = 504
is 8, we have that v2(e) ≤ 3 (dropping the last term in the exponent), and so

|∆| 1
n ≤ 24 = 16. But according to [Od, p. 380, 1.11], for any extension of Q of degree

n we have the inequality |∆| ≥ (21.8)ne−70 (where in this formula e = 2.718 . . . ).

So in our situation, |∆| 1
n ≥ 21.8 · e−70/504 = 18.973... > 16. This is a contradiction.

(c) The simple group G = SL(3, 2) of order 168 does not lie in πA(U2). For
this, we again proceed by contradiction and apply (**). But now in order to get
a contradiction we must proceed more carefully, and need to analyze the possible
ramification indices. Since the largest power of 2 dividing |G| = 168 is 8, we have

that v2(e) ≤ 3. If v2(e) < 3, then (**) gives |∆| 1
n ≤ 23 = 8. On the other hand

if v2 = 3, then each of the Sylow 2-subgroups of G lies in some inertia group as a
normal subgroup. But the upper triangular matrices in G form a Sylow 2-subgroup
P of G, and the normalizer NG(P ) is equal to P (this being true for the subgroup of
upper triangular matrices in SL(m, k) for any m and any field k). Thus the inertia
group containing P is P itself, showing that e = 8. Hence in this case (i.e. when

v2 = 3), (**) gives that |∆| 1
n ≤ 21+3− 1

8 = 14.672 . . . . So in both cases, |∆| 1
n ≤ 15.

But by [Od, Table 1, p.401], for any Galois extension of degree ≥ 160, |∆| 1
n ≥ 15.12.

This is a contradiction. �

Remarks. (a) Example 2.21 shows that the four smallest simple groups (viz. A5,
SL(3, 2), A6, and SL(2, 8)) do not lie in πA(U2). This raises the question of whether
there are any simple groups in πA(U2). It seems probable (to the author) that such
groups do exist, but it may be difficult to find them.

(b) Example 2.21 provides instances of Serre’s Conjecture. Namely, that conjec-
ture implies that no group G of the form SL(2, 2m) can lie in πA(U2). For m = 1 we
get G = S3, which by Theorem 2.20 (or by Example 2.18) does not lie in πA(U2).
For m = 2 we get G = A5, and for m = 3 we get G = SL(2, 8); by Example 2.21
these also do not lie in πA(U2). But in fact, in a 1973 letter to Serre, J. Tate gave a
proof of Serre’s conjecture in the case of the prime 2. Specifically, he showed that if
G ⊂ SL(2, 2m) is the Galois group of an extension K/Q that is ramified only at 2,

then K ⊂ Q(
√
−1,

√
2) and G is contained in the matrices of trace 0. His argument

used the fact that a Sylow 2-subgroup of G is elementary abelian, along with class
field theory and the Minkowski bound on the discriminant. Serre has observed that
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a similar argument shows that no SL(2, 3m) lies in πA(U3). See [Se1, p.710, note 2
to p.229] for further comments on Tate’s argument.

By 2.6(a), there is no non-trivial Galois extension of Q that is tamely ramified
over 2 and unramified elsewhere. In fact more is true, as Theorem 2.23 below shows.
First we prove

Lemma 2.22. If G ∈ πA(U2) and |G| ≤ 300 then G is solvable.

Proof. Proceeding by induction on |G|, we assume the result holds for all strictly
smaller groups. If N is any non-trivial normal subgroup in G, then G/N is also in
πA(U2), but it is smaller than G. So G/N is a solvable.

If G is not solvable, then any N as above is also non-solvable (since G/N is
solvable), and so N has order ≥ 60. Since |G| ≤ 300, we have that G/N has
order ≤ 5 and so is abelian. Thus G satisfies the hypotheses of Lemma 2.5. Since
|G| ≤ 300, we have that G is isomorphic either to A5, to S5, or to PSL(2, 7) ∼=
SL(3, 2). But these groups do not lie in πA(U2), by Example 2.21, and this is a
contradiction. �

Theorem 2.23. Let Q ⊂ K be a Galois extension ramified only over 2, with
Galois group G and ramification index e. Then 16 divides e unless G is a 2-group
of order < 16 (in which case the extension is totally ramified).

Proof. We have already observed that if G is a 2-group then the extension is totally
ramified. And by Theorem 2.20, if G is not a 2-group of order < 16 and G is
solvable, then G has a quotient H of order 16. In this case the corresponding H-
Galois subextension of K is totally ramified, and so 16 divides e. So it remains to
consider the case that G is not solvable. Now by Lemma 2.22, |G| > 300. But for
a Galois field extension Q ⊂ K of degree n ≥ 240, [Od, Table 1, p.401] says that

|∆| 1
n ≥ 16.28. So by (**), we have that 16.28 < 21+v2(e) and so v2(e) > 3. Since

v2(e) is an integer, it is at least 4, and so 16 divides e. �

The number 16 in Theorem 2.23 cannot be replaced by a higher power of 2, as
the following example shows:

Example 2.24. Let Γ be the semi-direct product Z/17 o (Z/17)∗, where the
conjugation action of (Z/17)∗ on Z/17 is given by multiplication. Then Γ ∈ πA(U2),

corresponding to the Hilbert class field H of Q(i(ζ64 + ζ64
−1)). Namely, the class

number of F = Q(ζ64) is 17, and so the maximal abelian unramified extension L of
F is Galois over F with group Z/17. Now Gal(F/Q) ∼= Z/16 × Z/2, which has a
unique subgroup V of the form (Z/2)2. The three subgroups of order 2 correspond

to the intermediate fields F1 = Q(ζ64)
+, F2 = Q(ζ32), and F0 = Q(i(ζ64 + ζ64

−1)).
For i = 0, 1, 2 let ai be the involution in Vi = Gal(F/Fi). Thus a1a2 = a0. For
i = 1, 2, Fi has class number 1, and so the unramified Z/17-Galois extension F ⊂ L
does not descend to a Z/17-Galois extension of Fi (which, if it existed, would have
to be unramified; a contradiction). Now for i = 1, 2, Gal(L/Fi) is a semidirect
product of the form Z/17 o Z/2, and since F ⊂ L does not descend to Fi, this
cannot be a direct product. Thus in the semi-direct product, the involution ai acts
on Gal(L/F ) ∼= Z/17 non-trivially, and hence as multiplication by −1 (for i = 1, 2).



GALOIS GROUPS WITH PRESCRIBED RAMIFICATION 23

Thus a0 = a1a2 acts trivially on Gal(L/F ). So Gal(L/F0) ∼= Z/17 × Z/2, and the
subfield L0 of L corresponding to the subgroup Z/2 is then a Z/17-Galois unramified
extension of F0. In fact, it is the maximal abelian unramified extension of F0, and
so it is Galois over Q, with group Z/17oGal(F0/Q). The conjugation action of this
semi-direct product is given by a homomorphism α : Gal(F0/Q) → Aut(Z/17), and
the kernel of α is trivial since the Z/17-Galois extension F0 ⊂ L0 does not descend
further (by Theorem 2.23). Thus α is an isomorphism, showing that the extension
is as asserted. �

In fact, the Γ-Galois extension Q ⊂ H of Example 2.24 is the smallest non-2-
group extension of Q with ramification only at 2:

Theorem 2.25. The group Γ = Z/17 o (Z/17)∗, of order 272, is the smallest
non-2-group in πA(U2), and there is a unique extension of Q with this degree that
is ramified only at 2.

Proof. By 2.24, the group Γ is in πA(U2), corresponding to the Hilbert class field H
of Q(i(ζ64 + ζ64

−1)). Let G be the smallest non-2-group in πA(U2), corresponding
to a field extension Q ⊂ L. We wish to show that G ∼= Γ, and that L = H .

Since G is smallest, we have that |G| ≤ 272, and so G is solvable by Lemma 2.22.
Let N be the minimal normal subgroup of 2-power index in G. Thus N 6= 1, since
|G| is not a power of 2. By minimality of G, the subgroup N is minimal among all
the non-trivial normal subgroups of G; hence N is an elementary abelian p-group
(Z/p)ν , for some odd prime p. By Theorem 2.20, G = G/N has order ≥ 16. Let
K = LN . Thus Q ⊂ K is G-Galois and is ramified only over 2. Since |G| ≤ 16 · 17,
we have that |N | ≤ 17.

We claim that the extension K ⊂ L is unramified. For if not, let K ⊂ L0 be
the maximal unramified intermediate extension. This extension is Galois, say with
groupG/N0, where N0 6= 1. If N0 is strictly contained inN , then the index (G : N0)
is not a power of 2 (by definition of N), and so G/N0 is a non-2-group in πA(U2)
which is strictly smaller than G (since N0 6= 1). This is a contradiction, proving
that N0 = N . Thus the extension K ⊂ L is totally ramified, with inertia group
N . Since N has no non-trivial 2-power quotients (by definition of N), this inertia
group must be tame, and hence cyclic of odd order. This contradicts Proposition
2.17, proving the claim.

Next, we show that the homomorphism ρ : G→ Out(N) = Aut(N), induced by
the exact sequence 1 → N → G→ G→ 1, is injective. Let I be an inertia group of
L/Q over 2. Since K ⊂ L is unramified, and since Q ⊂ K is totally ramified over
2 by 2.8(a), it follows that the homomorphism G→ G maps I isomorphically onto
G. This induces a splitting of the exact sequence, and allows us to regard G ⊂ G.
Let N1 = ker(ρ) ⊂ G ⊂ G. Then the elements of N1 commute with those of N ,
and N1 is normal in G; so N1 is normal in G, of 2-power order. Thus G/N1 is a
non-2-group in πA(U2). The minimality of G implies that N1 = 1, as desired.

In order to prove that G ∼= Γ, it suffices to show that ν = 1. For if this is shown,
then N is cyclic of order p, so that Out(N) = Aut(N) ∼= (Z/p)∗ has p−1 elements.
But ρ : G → Out(N) is injective, and so p − 1 ≥ 16; i.e. |N | = p ≥ 17. But
|N | ≤ 17, and so p = 17 and ρ is an isomorphism. Thus G ∼= Γ, as desired.

As shown above, the Galois extension K ⊂ L is unramified, and has group N .
If ν > 1, then 17 ≥ |N | ≥ p2, and so p = 3 and ν = 2. Thus N ∼= (Z/3)2, and so
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Out(N) = Aut(N) ∼= GL(2, 3), a group of order 48 = 16 · 3. Since ρ : G→ Out(N)
is injective, and since G is a 2-group of order ≥ 16, it follows that |G| = 16 and ρ
defines an isomorphism between G and a Sylow 2-subgroup of GL(2, 3). That is, G
is isomorphic to the group E = 〈s, t | s8 = 1, t2 = 1, tst−1 = s3〉 (cf. Example 2.16).
Since K is E-Galois over Q with ramification only over 2, Example 2.16 says that
K has class number 1. But L is an unramified Galois extension of K with group
(Z/3)2. This is a contradiction, and so indeed ν = 1.

Thus G ∼= Γ. As above, L is a 17-cyclic unramified extension of K, which is a
16-cyclic extension of Q ramified only at 2. But the only such degree 16 extensions
of Q are Q(i(ζ64 + ζ64

−1)) and Q(ζ64)
+. The former has class number 17 and the

latter has class number 1. So L must be the Hilbert class field of the former. This
proves uniqueness. �

We conclude by returning to the problem of studying πtr
1 (U2) (cf. Theorem

2.11(b)).

Remark. In terms of the parallel between the arithmetic and geometric situa-
tions, πtr

1 (U2) may be regarded as an analog of π1(P
1 − {ξ}), where ξ is a single

point, since 2 is the rational prime of minimal possible degree, and since number
theorists traditionally regard totally real number fields as being the ones that are
unramified over the prime at infinity. On the other hand, this standard interpre-
tation of totally real fields is a bit arbitrary, since the extension of local fields at
infinity could instead be viewed as arising from “an extension of residue fields,”
rather than from ramification. Indeed, there are reasons for this alternative in-
terpretation [Ha1, section 2, esp. remark after Proposition 2.5]. Under this view,
totally real fields ramified only over 2 correspond to Galois covers of P1

k that are
ramified only over (x = 0), and have a k-rational point over the base point (x = ∞).

Proposition 2.26. Let G be a non-cyclic solvable group in πtr
A (U2), corresponding

to a totally real field K. Let K0 be the maximal subfield of K of the form Q(ζ2n)+.
Then K contains a subfield L which is unramified over K0 of odd degree > 1.

Proof. By 2.11(b), the fields of the form Q(ζ2m)+ are the only totally real 2-power
Galois extensions of Q ramified only at 2. So K0 is the maximal subfield of K that
is Galois over Q and whose Galois group over Q is a 2-group. Also, K 6= K0 since
G is not cyclic. So the result follows from 2.19. �

Corollary 2.27. Let G be a non-cyclic solvable group in πtr
A(U2). Then G has a

cyclic quotient of order 32 (or 64, assuming the Generalized Riemann Hypothesis).

Proof. Let K and K0 be as in Proposition 2.26. Then the class number of Q(ζ2n)+

is greater than 1. But the class number of Q(ζ2n)+ is known to be 1 for n ≤ 6 (or
even n ≤ 7, assuming GRH). So in K0, n > 6 (resp. n > 7), and the conclusion
follows. �

Actually, there is no value of n for which Q(ζ2n)+ is known to have class number
greater than 1. And as H.W. Lenstra and L. Washington have speculated to the
author, the ideas of [CL] suggest the possibility that all of these fields might have
class number 1. Also, no non-abelian simple groups are known to lie in πtr

A (U2) (or,
for that matter, in πA(U2); cf. the comment after Example 2.21). Indeed, the only
groups known to lie in πtr

A(U2) are the cyclic 2-groups. So we ask the following
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Question 2.28. (a) Is every h(Q(ζ2n)+) = 1? Equivalently (by Prop. 2.26), is
(πtr

1 )solv(U2) = Z2?

(b) Is πtr
1 (U2) = Z2?

Addendum (added April 25, 1994). G. Malle has pointed out to me that an
affirmative answer to Question 2.13 follows from a result of H. Markscheitis [Ma].
In fact, [Ma] showed that π2

1(U2) is the pro-2-group on two generators a, b subject
only to the relation b2 = 1. So by the Burnside Basis Theorem, a finite 2-group
G is in πA(U2) if and only if G/F has two generators, one of them of order ≤ 2.
(Here F is the Frattini subgroup of G.) Since G/F is abelian, this condition will
be satisfied if G is generated by an element g together with the conjugates of an
involution i. Hence the condition in 2.12(a) indeed implies that G ∈ πA(U2). Cf.
also [Ko].
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