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Abstract. This paper concerns fields of definition and fields of moduli of G-Galois covers
of the line over p-adic fields, and more generally over henselian discrete valuation fields.
We show that the field of moduli of a p-adic cover will be a field of definition provided
that the residue characteristic p does not divide |G| and that the branch points do not
coalesce modulo p (or in the more general case, that the branch locus is smooth on the
special fibre). Hence if p does not divide |G|, then a G-Galois cover of the Q-line with field
of moduli Q will be defined over a number field contained in Qp if the branch points do
not coalesce modulo p. This provides an explicit global-to-local principle for p-adic covers.
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§1: Introduction

Suppose we are given a base field K, a Galois field extension L/K, and an object
ξ over L (e.g. a curve, or a cover of curves). A subfield F ⊂ L containing K is a field

of definition for ξ if there is a “model” for ξ over F , i.e. an object ξF over F such that
ξF ×F L ≈ ξ. The natural candidate for the smallest field of definition (assuming there is
one) is the field of moduli M of ξ; this is the fixed field of

{ω ∈ Gal(L/K) | ξω ≈ ξ over L}.

(Here ξω is the conjugate of ξ under ω, i.e. the result of applying ω to ξ.) This field
M is contained in every field of definition of ξ, and so if it is a field of definition then
it will in fact be the smallest one. And for many objects , the field of moduli is indeed
a field of definition — e.g. for covers of curves that either have no non-trivial covering
automorphisms (cf. [Fr], Cor. 5.3) or are Galois (cf. [CH], Prop. 2.5).

But for other objects, the field of moduli need not be a field of definition. In this
paper we focus on G-Galois covers of curves (also called “G-covers with Galois group G”)
— by definition these are Galois covers together with a fixed isomorphism between their
Galois group and a given finite group G. (Cf. §2 of [DeDo1] for precise definitions.) For
these objects, the absolute field of moduli over Q (i.e. the field of moduli relative to the
Galois field extension Q/Q) need not be a field of definition ([CH], Example 2.6). In fact
the obstruction lies in H2(G(L/K), Z(G)) ([DeDo1]; cf. also [Bel], [CH]). Thus G-Galois
covers will be defined over their field of moduli if the Galois group Gal(L/K) is projective
(regardless of G) or if the center Z(G) is trivial. In the case that L = Ks (the separable
closure of K), Gal(L/K) is the absolute Galois group GK , and projectivity is equivalent
to the condition that cdK ≤ 1 ([FrJa], Lemma 10.18). In particular, if K is a finite
field [Dew1] or K = Qab, then the field of moduli of any G-Galois cover relative to the
field extension K/K will be a field of definition. The latter case has been combined with
“rigidity” methods in the context of the inverse Galois problem over Qab (e.g. [Bel], [Ma],
[Th]; cf. [Se2], Chap. 7,8 for further discussion of rigidity).

The current paper focuses on fields of definition and absolute fields of moduli of G-
Galois covers of the line over henselian (e.g. p-adic) fields K, i.e. relative to the field
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extension Ks/K. In [Dew1], it was conjectured that given a G-Galois cover of the line
defined over Q, a number field F is a field of definition if and only if all of its completions
Fv (including the infinite ones) are fields of definition of the induced covers over Qp. This
“local-to-global principle” was later proven to hold for “most” number fields F , including
Q, in [De], Theorem 7.1 (with the possible exceptional F ’s corresponding to the special
case of the Grunwald-Wang Theorem). In fact, it is even true if “all Fv” is replaced by “all
but possibly one Fv” ([DeDo2], §3.4). Moreover, without restriction on the number field,
F is the absolute field of moduli (over F ) if and only if all but finitely many completions
Fv are fields of definition (the “global-to-local principle” of [De], Theorem 8.1).

In [Dew1], the question was asked as to whether every p-adic G-Galois cover is defined
over its field of moduli. As explained in [De], §8.1, there is a difficulty; in fact the results
just cited imply that this is not the case, as was pointed out to us by H. Lenstra. Namely,
Example 2.6 of [CH] provides a G-Galois cover of P1

Q
with field of moduli Q that is not

defined over Q or even over R. Thus the induced cover over C (obtained by completing
over the infinite prime) is not defined over R, which is the field of moduli of this completion.
Meanwhile, the completion of this cover at any finite place p has field of moduli Qp. If
all of these p-adic completions were defined over their fields of moduli, then the field of
moduli would be a field of definition at all but one place (the infinite completion); and
thus [DeDo2], §3.4, would imply that Q would be a field of definition — a contradiction.

This paper shows, though (Cor. 4.3), that for completions at “good primes” (in the
sense of [Bec1]), the field of moduli of a G-Galois cover will indeed be a field of definition.
This can be regarded as an explicit version of (the forward implication of) the global-
to-local principle for G-Galois covers ([De], Theorem 8.1); that result asserted that there
are only finitely many exceptional primes, but did not say which they are (although a
bound on the exceptional primes was given in [Sad]). Corollary 4.3 follows from the Main
Theorem 3.1, which applies in the more general situation of G-Galois covers over henselian
fields K. That result says that if f : X → P1

Ks is a G-Galois cover whose branch points
are each defined over Ks and remain distinct on the closed fibre, and if |G| is not divisible
by the residue characteristic, then the field of moduli is a field of definition. In fact the
result asserts somewhat more, concerning the existence of “stable” models.

One key tool in our proof is S. Beckmann’s Good Models Theorem (cf. [Bec2], Prop.
2.4), and another is the first author’s Stability Criterion ([De], Lemma 8.2). A possible
alternative approach to proving the theorem has been suggested to us by Michel Emsalem
and the referee. This would use a result of Grothendieck-Murre ([GrMu], Thm. 4.3.2) and
Fulton ([Fu], Thms. 3.3, 4.10) to relate the fields of moduli over the fraction field and over
the residue field.

An interesting consequence of our Main Theorem is the following (Cor. 4.4): Consider
a G-Galois cover of the line defined over Q and assume that its field of moduli is Q (or
more generally a number field not corresponding to the special case of the Grunwald-Wang
theorem, as in [De], Thm. 7.1). Then in order to verify that Q is a field of definition, it is
sufficient to check that the G-Galois cover is defined over Qp for each “bad” prime p (in
the above sense).

This paper is structured as follows: Section 2 contains some results that will be needed
in the proof of the Main Theorem. Section 3 states and proves the Main Theorem 3.1,
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and section 4 contains several corollaries (including those mentioned above and in the
abstract). Finally, section 5 contains several open questions.

The material in this paper resulted from discussions between the authors in the sum-
mer of 1996 in Lille, subsequent to the conference there on the arithmetic of covers. We
would like to thank M. Emsalem and F. Pop for mathematical discussions, and the referee
for suggestions on the first draft of the paper.

§2: Some useful results

Consider a G-Galois cover f : X → P1

Q
and a base field K ⊂ Q (typically Q). In

[Bec1] and [Bec2], S. Beckmann introduced the notion of bad primes of K, relative to the
cover. This set, denoted Sbad, consists of the finite primes ℘ of K such that either the
residue characteristic of ℘ divides |G| or at least two geometric branch points coalesce
modulo ℘ (i.e. at a prime of Ks over ℘). The set Sbad is finite, and the remaining non-
archimedean primes of K are regarded as “good”. By [Bec1], Thm. 5.5, the absolute field
of moduli M of the G-Galois cover (over K) is ramified over K only at primes in Sbad.

In [Bec2], a model fF : XF → P1
F (over a number field F containing K) was defined to

be a good model for f if the corresponding cover of normal arithmetic surfaces fo
F : XOF

→
P1

OF
has no vertical ramification except over primes in Sbad. (Here “vertical ramification”

refers to branching over a divisor of P1
OF

supported over a prime of OF .) Under an
assumption on the class group of F , she showed ([Bec2], Prop. 2.4) that there is a good
model over F , or equivalently a model over the arithmetic curve U = (Spec OF ) − Sbad

that has no vertical ramification. The proof of this Good Models Theorem carries over to
more general base curves U = Spec R without change, if the result is stated as follows:

Proposition 2.1. Let R be a Dedekind domain with fraction field F , let G be a finite
group whose center Z has exponent m, and assume that F contains a primitive mth root
of unity. Suppose also that the ideal class group of R is m-torsion, and that no residue
characteristic of R divides the order of G. Let f : X → P1

F s be a G-Galois cover of regular
F s-curves having a model over F , say with branch locus D ⊂ P1

F . Suppose that the closure
D ⊂ P1

R of D is étale over R. Then there is a model of the G-Galois cover f : X → P1
F s

over R having no vertical ramification.

Remarks. (a) For each prime ideal ℘ of R, the property that D is étale over R at ℘ is
equivalent to the property that the following two conditions hold:

(i) Each geometric point of D is defined over F s.

(ii) No two F s-points of D coalesce at any prime over ℘; i.e. for any two F s-points of
D, their closures in P1

Rs do not meet over any prime of Rs lying over ℘, where Rs is the
integral closure of R in Ks.

Indeed, condition (i) is equivalent to being generically étale, and condition (ii) is equivalent
to the cardinality of each geometric fibre over ℘ equaling that of the geometric generic fibre
(which, for a generically étale cover, is equivalent to being étale at ℘).

Note that condition (ii) can be rephrased more explicitly as follows: View P1
K as

the x-line, and consider two geometric points α = (x = a) and α′ = (x = a′), where
a, a′ ∈ K ∪ {∞}. Then α, α′ coalesce at a prime P of Rs over ℘ if |a|P ≤ 1, |a′|P ≤ 1, and
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|a − a′|P < 1, or else if |a|P ≥ 1, |a′|P ≥ 1, and |a−1 − a′−1|P < 1. (Here we interpret
“∞−1” to be 0.)

(b) In the situation of [Bec2], Prop. 2.4, the domain R would be taken to be the ring
of functions on (SpecOF ) − Sbad. Note that the papers [Bec1] and [Bec2] refer explicitly
only to condition (ii) above, but condition (i) is automatic there since those papers concern
fields of characteristic 0, where Ks = K. The proof of the above proposition, though, uses
(i) as well as (ii). Namely, [Bec1] uses that there is a finite Galois extension K of F over
which the branch locus becomes rational, and in the general case this is guaranteed by (i).
The construction in the proof of [Bec1], Prop. 5.3, is used in [Bec2], Prop. 2.3, and thus
indirectly in [Bec2], Prop. 2.4. So it is necessary to include hypothesis (i) above in order
to use the same argument as before. It is unclear whether this hypothesis is essential for
the truth of the above proposition, however, or whether (ii) alone would suffice.

(c) Although the main result of [Bec2] (Theorem 1.2 there) assumes that the branch
points are individually defined over the field K, this hypothesis is not used in the proof of
[Bec2], Prop. 2.4, and so is not required above.

(d) In the applications below of Proposition 2.1, we will take the Dedekind domain R
to be local (i.e. a discrete valuation ring). In this situation the ideal class group is trivial,
and so the m-torsion hypothesis of Proposition 2.1 is automatically satisfied.

After using Proposition 2.1 in order to perform a descent from the separable closure
to a smaller field (viz. the maximal unramified extension; cf. below), a second descent will
be accomplished via the following result, which uses E. Dew’s notion of “stable models”
[Dew2]: Given a base field K, a model fL : XL → P1

L of a G-Galois cover f : X → P1
Ks is

stable over K if the field of moduli of fL, relative to the Galois extension L/K, is equal to
the (absolute) field of moduli M of f over K. Note that as L grows (i.e. if L is replaced
by an extension L′ ⊂ Ks and fL by fL′ = fL ×L L′), the relative fields of moduli of the
induced covers will drop, and eventually will equal the absolute field of moduli M ; and a
sufficiently large base change of any given model is stable. Also note that if K is replaced
by a larger field K ′ ⊂ L, then the field of moduli of fL relative to K ′ is the compositum
of K ′ with the field of moduli of fL relative to K. Since M is contained in every relative
field of moduli of fL, by taking K ′ = M it follows that fL is stable over K if and only if
it is stable over M .

Proposition 2.2. Let K be a field, and let f : X → P1
Ks be a G-Galois cover with field

of moduli K. Let L be a Galois extension of K, and let fL : XL → P1
L be a model of the

cover f (without the G-action) such that the fibre of fL over some unramified K-rational
point of P1

K consists entirely of L-rational points.
(a) Then the G-action on f is induced by such an action on fL, and this G-Galois

cover fL is a stable model for f relative to K.
(b) If Gal(L/K) is projective, then the G-Galois covers fL and f are induced by a

G-Galois model fK : XK → P1
K over K.

Proposition 2.2 is a strengthening of the statement of [De], Lemma 8.2, which was
used in the proof of [De], Theorem 8.1 (cited in §1). The proof in [De] showed more
than was claimed there, though, and indeed it proves the above result mutatis mutandis.
Specifically, the first part of Proposition 2.2 above is proven in 8.2.1 and 8.2.2 of [De], and
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the second part is proven in 8.2.3 of [De]. Although [De] restricted attention to number
fields and p-adic fields, that was not used in the proof there. The only point to be careful
about here is to consider fields of moduli of covers over Ks, rather than over K (which of
course is equal to Ks in the characteristic 0 situation of [De]).

Our main result will be stated for henselian discrete valuation fields, and so will hold
in particular for complete fields. Recall that a valuation ring (R, v) is henselian if it satisfies
Hensel’s Lemma, and in this case the fraction field F (together with the valuation v) is a
henselian field. This is equivalent to the property that v has a unique extension to each
algebraic field extension of F ([Ri], p.176). Thus any algebraic extension of a henselian field
is henselian. In particular, if F is henselian then so is its maximal unramified extension F ur

(i.e. the fraction field of the maximal unramified extension of the corresponding local ring
R). If K is henselian with residue field k, then ks is the residue field of Kur. Also, Hensel’s
Lemma implies that HomK−alg(K

′, K ′′) ≈ Homk−alg(k
′, k′′) for any K-algebras K ′, K ′′

having residue fields k′, k′′ with K ′/K unramified. Thus in particular Gal(Kur/K) = Gk.
We also have the following result concerning the cohomological dimension of henselian
fields:

Proposition 2.3. Let K be a henselian field whose residue field k is perfect. Then
cd(K) ≤ cd(k) + 1.

Proof. Let ` be a prime number. If ` 6= char K and cd(k) < ∞, then cd`(K) = cd`(k) + 1
by [AGV], X, Theorem 2.2. If ` = char K then cd`(K) ≤ 1 by [Se1], II, §4.3, Prop. 12. So
cd`(K) ≤ cd`(k) + 1 for all `, showing the result.

For a given valuation field (F, v), its minimal separable algebraic extension that is
henselian is the henselization of (F, v). For example, the henselization of k(t) for the t-adic
valuation is the field of algebraic Laurent series (i.e. the algebraic closure of k(t) in k((t)) ),
and the henselization of Q for the p-adic valuation is the field of algebraic p-adic numbers
(i.e. the algebraic closure of Q in Qp). The Main Theorem will apply not only to complete
fields like Qp and k((t)), but also to these corresponding henselian subfields of algebraic
elements.

§3: Main theorem

Let O be a Dedekind domain with fraction field K, let F be a field extension of K,
and let R be the integral closure of O in F . If D is a proper closed subset of P1

K and ℘ is
a maximal ideal of O, we will say that D is smooth at ℘ if its closure D ⊂ P1

R is étale over
R at each maximal ideal of R lying over ℘. As noted in the remarks after Proposition 2.1,
this is equivalent to the branch points being defined over Ks and not coalescing modulo ℘.

Main Theorem 3.1. Let K be the fraction field of a henselian discrete valuation ring
(O, ℘) whose residue field k is perfect. Let G be a finite group, and let f : X → P1

Ks be
a G-Galois cover of regular Ks-curves with field of moduli M . Assume that the degree of
this cover is not divisible by char k, and that its branch locus is smooth at ℘. Let Mur be
the maximal unramified extension of M in Ks.

(a) Then the G-Galois cover f has a stable model fMur : XMur → P1
Mur relative to K.

(b) If cd k ≤ 1, then M is a field of definition of the G-Galois cover f and also of the
model fMur .
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Remark. After reducing to the case M = K, the proof will first use Proposition 2.1
and Proposition 2.2(a) in order to descend from Ks to Kur. Then, if the extra hypothesis
in 3.1(b) is satisfied (e.g. for p-adic fields), we will use Proposition 2.2(b) in order to
descend to K. These steps correspond to invoking the projectivity of Gal(Ks/Kur) and of
Gal(Kur/K), respectively. An extra step is needed in the case that the base space has no
unramified rational points on the closed fibre.

Proof of 3.1. Since M is a finite separable extension of K, we have that Ks = M s; that
the residue field m of M is perfect; and that cd m ≤ 1 provided that cd k ≤ 1. Moreover a
model of f will be stable over K if and only if it is stable over M (as observed just before
the statement of Proposition 2.2). So replacing K by M , we may assume that M = K.

As remarked at the end of section 2, Kur is henselian with residue field ks. Since k is
perfect, its separable closure ks is equal to its algebraic closure k. Thus k is the residue
field of Kur, and Proposition 2.3 yields cd(Kur) ≤ cd(k) + 1 = 1. Thus cd(Kur) ≤ 1, or
equivalently GKur is projective ([FrJa], Lemma 10.18). But Kur is the field of moduli of
the G-Galois cover f relative to the extension Ks/Kur (i.e. viewing Kur as the base field).
So by Cor. 3.3 of [DeDo1] (as discussed in §1 above), there is a G-Galois model of f over
Kur, say fKur : XKur → P1

Kur . Thus there is also a finite unramified extension F of K
over which f has a model.

Since d = |G| is not divisible by char k, it follows that k contains a primitive dth root
of unity; hence so does Kur, and thus we may assume (after enlarging F ) that so does
F . In particular, F contains a primitive mth root of unity, where m is the exponent of
the center of G. Let R be the integral closure of O in F . Since O is a henselian discrete
valuation ring, so is R (since there is a unique extension to R of the valuation of O by [Ri],
p.186), and so its class group is trivial. Thus the hypotheses of Proposition 2.1 hold, and
so there is a (normal) model fR : XR → P1

R having no vertical ramification over ℘. Let
fF : XF → P1

F be the generic fibre of fR, let D ⊂ P1
F be the branch locus of fF , and let

D ⊂ P1
R be the closure of D in P1

R.
We now consider two cases:

Case 1: There is a K-point α of P1 such that D ∪ {α} is smooth over ℘, where D
is the branch locus of fF . (That is, we assume that α does not meet any of the branch
points residually over ℘.) Also, the model fR : XR → P1

R is generically unramified over
the special fibre. So by Purity of Branch Locus ([Na], Theorem 41.1), the closure of α
in P1

R does not meet the branch locus of fR. Thus (as in [Bec2], Lemma 3.1), we have
thatf−1

F (α) ⊂ X(Kur). Hence the model fKur is a stable G-Galois cover, by Proposition
2.2(a) (with L = Kur). This proves (a) of the theorem in Case 1. Now if cd k ≤ 1, then
the absolute Galois group Gk is projective. But since K is henselian with residue field k,
restriction to the closed fibre induces an isomorphism Gal(Kur/K) ≈ Gk. So Proposition
2.2(b) implies that the G-Galois covers f and fKur descend to K, thereby proving (b) of the
theorem in Case 1. (Alternatively, we may use [DeDo1], Cor. 3.3, instead of Proposition
2.2(b).)

Case 2: Otherwise. Then the closure of every K-point of P1 meets D over ℘. Hence
P1(k) = ∆(k), where ∆ is the intersection of D with the closed fibre. Thus P1(k) is
finite, and k is a finite field. Since k is infinite, there exists α′ ∈ P1(k) that does not
lie on ∆. Since k is finite, there are infinitely many finite field extensions k′/k of degree
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relatively prime to [k(α′) : k], and each is generated by a primitive element. Thus there
is an α′′ ∈ P1(k) that does not lie on ∆ and such that [k(α′) : k] and [k(α′′) : k] are
relatively prime. Since k is the residue field of Kur, there exist α′, α′′ ∈ P1(Kur) that lift
α′, α′′ respectively. Here [K(α′) : K] = [k(α′) : k] and similarly for α′′, by Hensel’s Lemma.
So [K(α′) : K] and [K(α′′) : K] are relatively prime, and thus K(α′) ∩ K(α′′) = K. The
fields K ′ = K(α′) and K ′′ = K(α′′) are each contained in Kur, since α′ and α′′ are. Thus
K ′ur = Kur = K ′′ur.

Now K ′ and K ′′ are henselian, since they are algebraic extensions of the henselian
field K. Also, their residue fields k′ and k′′ are perfect, since they are finite separable
extensions of the perfect field k. So we may let K ′ [resp. K ′′] play the role of K in part
(a) of Case 1 of the theorem, with α′ [resp. α′′] playing the role of α. By the conclusion
of Case 1 for K ′, the G-Galois cover f has a stable model fKur : XKur → P1

Kur relative
to K ′ (using K ′ur = Kur). Thus the field of moduli of fKur , relative to K, is contained
in K ′. Similarly this field of moduli is contained in K ′′. Since K ′ ∩ K ′′ = K, the field of
moduli of fKur over K is K itself. That is, fKur is a stable model, proving part (a).

For (b), suppose that cd k ≤ 1. By part (a), the field of moduli of fKur is K. Now
Gal(Kur/K) is isomorphic to the projective group Gk, since K is henselian with residue
field k. So again using [DeDo1], Cor. 3.3, there is a model fK over K for the G-Galois
cover fKur . Since fKur is a model for f , it follows that fK is also a model for f . This
proves (b).

Remarks. (a) By Remark (a) after Proposition 2.1, the smoothness hypothesis of The-
orem 3.1 will be satisfied if the branch locus consists of Ks-points that do not coalesce
over ℘. Moreover, by Lemma 3.3 of [LL], if X is smooth over K, and not merely regular,
then the branch points are each automatically defined over Ks. Cf. also Remark (a) after
Corollary 4.1 below.

(b) In part (b) of the Main Theorem, the fact that K is a field of definition corresponds
to the vanishing of a certain explicit cocycle in H2(k, Z(G)), where Z(G) is the center of
G, and where Gk ≈ Gal(Kur/K) as above; cf. [DeDo1], Main Theorem II(e).

(c) In the above theorem, cd k ≤ 1 if and only if cdK ≤ 2, by Proposition 2.3.

§4: Some corollaries

We consider some consequences of the Main Theorem 3.1. First, we consider the case
of a local field K, in the sense of number theory – i.e. a non-trivial completion of a global
field. Thus if the global field is a number field, then K is a finite extension of Qp for some
p, or else is R or C; while if the global field is the function field of a curve over a finite
field, then K is a finite extension of some Fp((t)). In the case that the local field K is
non-archimedean (so a finite extension of Fp((t)) or of Qp), our Main Theorem applies:

Corollary 4.1. Let K be a non-archimedean local field of residue characteristic p, let G
be a finite group, and let f : X → P1

Ks be a G-Galois cover of regular Ks-curves with
field of moduli K. If p does not divide |G| and if the branch locus consists of Ks-points
that remain distinct modulo the maximal ideal of OKs , then there is a G-Galois model
fK : XK → P1

K of f .

Proof. By Remark (a) after the proof of Theorem 3.1, the closure of the branch locus
in P1

OK
is étale over OK ; i.e. the branch locus is smooth at the maximal ideal of OK .
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Moreover, the residue field of OK is perfect and has cd = 1. So the hypotheses of part (b)
of Theorem 3.1 apply, and the conclusion follows.

Remarks. (a) In the case that the local field K is p-adic, it has characteristic 0, and so
every branch point of f is automatically defined over Ks = K. Thus this hypothesis need
not be explicitly assumed in this case. But for local fields K of equal characteristic, it is
possible for a cover over Ks to have branch points that are not defined over Ks; e.g. the
C2-Galois cover y2 = xp − t, with K = Fp((t)) where p 6= 2. Observe that this cover is
regular (indeed, it is the general fibre of a surface that is smooth over Fp), but it is not
smooth over K (and so Lemma 3.3 of [LL] does not apply; cf. Remark (a) after the proof
of Theorem 3.1 above). This is possible because the field K is not perfect. Finally, note
that this cover is already defined over K; and so it remains unclear if the hypothesis on
Ks-valued branch points is essential in order for the conclusion of Corollary 4.1 to be valid.

(b) One can also consider the question of when the field of moduli is a field of definition
in the case of archimedean local fields. The question is trivial for K = C, but is interesting
in the case of K = R. Of course the hypotheses of Cor. 4.1 do not make sense in this
situation (since there is no residue field), and the answer to the question is not always
yes (as noted in the introduction to this paper). But for each cover the question can be
decided by topological methods; see Thm. 1.1 and §3.5 of [DeFr].

A corollary about more global fields is the following:

Corollary 4.2. Let Q be a field and f : X → P1
Qs a G-Galois cover over Qs. Let M be

its field of moduli relative to the extension Qs/Q and let M̃v denote the henselization of
M at a discrete valuation v. Let SM,bad be the set of discrete valuations v of M at which

- the residue characteristic divides |G|, or,

- the branch locus of the cover is not smooth, or,

- the residue field of M̃v is not perfect.

Then, for each v 6∈ SM,bad, the G-Galois cover f has a model f
M̃ur

v

over M̃ur
v that is stable

and has no vertical ramification over v. If in addition, the Galois group Gal(M̃ur
v /M̃v) is

projective, then M̃v is a field of definition of the G-Galois covers f
M̃ur

v

and f .

Proof. For each v 6∈ SM,bad, we may apply the Main Theorem to the field K = M̃v.

Consider the classical case Q = Q. Then SM,bad is just the (finite) set of places of M
that lie over Sbad (cf. section 2, taking the base field K = Q), i.e. the places lying over
prime numbers that divide |G| or modulo which two geometric branch points coalesce.
In this situation, we have the following result, which provides the explicit global-to-local
principle:

Corollary 4.3. Let f : X → P1

Q
be a G-Galois cover with field of moduli M .

(a) Then for every p 6∈ Sbad, there is a number field K(p) contained in Qp such that
the G-Galois cover f is defined over the compositum MK(p).

(b) For every p 6∈ Sbad and every prime ℘ of M over p, the induced G-Galois cover
f℘ : X

Qp
→ P1

Qp

is defined over the completion M℘, which is its field of moduli over Qp.
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Proof. (a) Let Q̃p be the (abstract) henselization of Q at p, and choose an embedding

Q̃p ↪→ Q. (The image is a henselization of Q inside Q at p, and any two such choices

are conjugate to each other under the action of GQ.) Then the compositum MQ̃p is

the field of moduli of f relative to the extension Q/Q̃p. By the Main Theorem (taking

K = MQ̃p), we have that f has a model over MQ̃p. Since G-Galois covers are of finite
type, it follows that f is actually defined over the compositum MK(p) for some number

field K(p) ⊂ Q̃p ⊂ Qp.
(b) The field of moduli of f℘ is the compositum MQp = M℘ ⊂ Qp. By part (a), f is

defined over MK(p) ⊂ MQp = M℘, and the conclusion follows.

Remark. The proof of the above corollary actually shows more. Namely, the proof shows
that the number field K(p) ⊂ Q can be chosen to lie within any henselization of Q in Q

at p. Thus the G-Galois cover has a model over each of the henselizations of M in Q at a
given place of M over p.

In the case of Q = M = Q, we also have the following:

Corollary 4.4. Let G be a finite group, and let f : X → P1

Q
be a G-Galois cover with

field of moduli Q. Then Q is a field of definition of the G-Galois cover f if and only if Qp

is a field of definition of the induced G-Galois cover fp : X
Qp

→ P1

Qp

for each p ∈ Sbad.

Proof. The forward implication is clear: If Q is a field of definition of the G-Galois cover
f , then it is automatic that Qp is a field of definition of the induced G-Galois cover fp for
all primes p, and in particular for p ∈ Sbad. For the converse, since Q is the field of moduli
of f , it follows for every p that Qp is the field of moduli of fp (relative to the extension
Qp/Qp). So for finite p 6∈ Sbad, Corollary 4.1 asserts that Qp is a field of definition of fp.
By hypothesis, this is also the case for p ∈ Sbad, and hence for all finite primes p. Since
there is only one infinite prime, and since the special case of Grunwald-Wang does not
include Q (cf. [DeDo2], §3.2), we may apply the local-to-global principle in [DeDo2] (see
Theorem 3.7(b) and §3.4) to conclude that Q is a field of definition of the G-Galois cover
f .

Corollary 4.5. Let G be a finite group, and let f : X → P1

Q
be a G-Galois cover. Suppose

that Qp is a field of definition of the induced G-Galois cover fp : X
Qp

→ P1

Qp

for each

prime p in a set that contains Sbad and contains all but finitely many primes not in Sbad.
Then Q is a field of definition of the G-Galois cover f .

Proof. By the converse part of the global-to-local principle ([De], Theorem 8.1), the field
of moduli of f is Q. So the result follows from Corollary 4.4.

§5: Questions and possible generalizations

§5A. Bad primes.

Given a G-Galois cover f over Q with field of moduli M over Q, denote the set of
primes p for which the induced cover f℘ over Qp is not defined over M℘, for some ℘|p, by
Sobs (the “obstructed set”). Corollary 4.3(b) says that Sobs ⊂ Sbad. From [Bec1], Theorem
5.5, the set Sram of primes that ramify in M/Q is also contained in Sbad. Thus we have
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Sobs ∪ Sram ⊂ Sbad. The following questions seem natural, but the examples below show
that the answers are all negative.

Question 5.1. Under the above notation, is it always true that

(a) Sobs ⊂ Sram ?

(b) Sram ⊂ Sobs ?

(c) Sobs = Sbad?

(d) Sbad ⊂ Sobs ∪ Sram?

Examples. (a): Consider the cover of P1 in Example 2.6 of [CH] (already mentioned
in the introduction). Its field of moduli M is Q but it is not defined over R. The group of
the cover is the quaternion group of order 8 with center {±1} and the branch points are
1, 2 and 3. In fact, the branch points could be taken to be any 3-point set {t1, t2, t3} ⊂
P1(Q) (using transitivity of PGL2(Q) on such sets). Take {t1, t2, t3} = {0, 1,∞}. Then
Sbad = {2}. Now according to §3.4 of [DeDo2], since the cover is not defined over M , nor
over the completion of M at the infinite prime, there must be at least one other prime p
over whose completion the cover is not defined. By our Main Theorem, that prime must
lie in Sbad. Therefore Sobs = {2}. On the other hand Sram = ∅. Thus Sobs 6⊂ Sram.

(d): Consider the same example as in (a) but take {t1, t2, t3} = {0, 3,∞}. Then
Sbad = {2, 3}. As in (a), Sobs = {2} and Sram = ∅. Thus Sbad 6⊂ Sobs ∪ Sram.

(b),(c): Example 8.3.2 of [Se2] is an A5-cover of the projective line, branched at
{0, 1,∞}, whose field of moduli is Q(

√
5) (which is also a field of definition). So here

Sbad = {2, 3, 5}; Sobs = ∅; and Sram = {5}. Thus (b) and (c) both fail. (This is also a
counterexample to (d).)

Remark. (i) The counterexample to (b) above easily generalizes, viz. to any G-Galois
cover with field of moduli M 6= Q, provided that the given cover can be defined over M .
This will happen, for example, if G is centerless (cf. [CH], Prop. 2.8(c)). It will also happen
if the cover corresponds to an M -valued point on a Hurwitz space over which there is a
Hurwitz family of G-Galois covers; and again this happens in particular if G is centerless
(cf. [CH], Prop. 1.4(b)).

(ii) In connection with the above, it is natural to investigate what conditions would
guarantee that for a given p ∈ Sbad, the p-completion of the field of moduli is indeed not a
field of definition, i.e., p ∈ Sobs. Let H be a Hurwitz space parametrizing certain G-Galois
covers of the projective line. If there is a Hurwitz family over H, then (as just noted) the
field of moduli of any cover in the family will be a field of definition. And whether or not
there is such a Hurwitz family, if p does not divide the order of G, then there are members
of the family for which p is not in Sbad — and hence the corresponding covers are defined
over their fields of moduli (with respect to Qp). So if p ∈ Sobs for each cover parametrized
by H, then p | #G and there is no Hurwitz family over H. Conversely, we may ask: If
p | #G and there is no Hurwitz family over H, then is p ∈ Sobs for some cover associated
to a Q-point of H?

Also, while Corollaries 4.2 and 4.3 treat primes one at a time, one may ask whether
there is a single extension that works for all good primes at once:
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Question 5.2. Let f : X → P1

Q
be a G-Galois cover. Must there exist a number field K

ramified only over Sbad, such that there is a stable model for f over K?

In a similar vein, fixing a prime p 6∈ Sbad of Q, one may ask if the number field K(p)
in Corollary 4.3 can be chosen so as to be totally p-adic (i.e. so that every embedding of
it into Qp actually has image in Qp). In particular, we may ask:

Question 5.3. Let f : X → P1

Q
be a G-Galois cover with field of moduli Q and say

p 6∈ Sbad. Must there exist a model for f over some totally p-adic number field K?

In connection with this question, we note Pop’s result ([Po], Theorem S) that a smooth
geometrically irreducible Q-variety that has a p-adic point also has a totally p-adic point.

§5B. Other base spaces.

Above, we have been considering only G-Galois covers of the projective line. One
possible way to generalize these results would be to allow other base curves, or even more
general base schemes B. But some constraints on allowable base spaces B seem necessary:

(1) The K-scheme B should be given together with a regular model Bo over the ring
of integers O, so that Purity of Branch Locus can be used. Purity was used above in the
proof of Case 1 of the Theorem, and also in Proposition 2.1 – i.e. in the proof of the Good
Models Theorem [Bec2], Prop. 2.4 (via its use in [Bec1], Prop. 5.3, which was used in
[Bec2], Prop. 2.3). Also, Bo should presumably have good reduction, since that was used
in [Bec1], Prop. 5.3 and thus in Proposition 2.1 above.

(2) For any scheme C over a field F , and any extension field E/F , we will say that
(C, E) satisfies the Intersection Property if for any F ⊂ F ′ ⊂ E there are infinitely many
pairs of regular points α, α′ ∈ C(E) such that F ′(α) ∩ F ′(α′) = F ′. In order to generalize
our proof of the Main Theorem to a base scheme B over a henselian field K, the pair (Bk, k)
should satisfy the Intersection Property, where k is the residue field of K, and Bk is the
closed fibre of B. Namely, in this case (B, Kur) also satisfies the Intersection Property (as
can be seen by lifting regular points of Bk(k) Bk(k) to points of B(Kur) ), and this could
be relied on in generalizing the strategy of the proof of Case 2 of the Theorem.

Note also that the Intersection Property holds for (Bk, k) in each of the following
situations:

- Bk(k) is Zariski-dense in Bk(k) (since there are then infinitely many pairs (α, α′)
with α = α′ ∈ Bk(k)). This condition holds in particular

• if k is algebraically closed (or more generally PAC — cf. [FrJa], Ch.10), or
• if Bk is a k-rational variety and k is infinite.

- k is hilbertian. (Choose a covering morphism B → Ps defined over k, where s =
dim(B). Then apply the hilbertian property to get two points α, α′ ∈ B(k) such that k(α)
and k(α′) are linearly disjoint.)

- k is finite. (From the Riemann hypothesis, with k = Fq, we have Bk(Fqh) 6= ∅
provided that h is suitably large, say h > h0. Take α ∈ Bk(Fqh) and α′ ∈ Bk(Fqh′ ) with
h, h′ bigger than h0 and relatively prime.)

- k is a henselian field whose residue field κ is finite and Bk has good reduction (or,
more generally, k is henselian, Bk has good reduction and the Intersection Property holds
for (Bκ, κ)).
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But the Intersection Property does not always hold for (Bk, k). In particular, it fails to
hold if k = R and Bk is a curve defined over R with no real points.

Based on the above, we make the following conjecture:

Conjecture 5.4. Let K be the fraction field of a henselian discrete valuation ring (O, ℘)
with perfect residue field k. Let Bo be a regular projective O-scheme of relative dimension
1, with generic fibre B and smooth closed fibre Bk. Assume that (Bk, k) satisfies the
Intersection Property. Let f : X → B be a G-Galois cover with field of moduli M , whose
degree is not divisible by char k, and whose branch locus is smooth at ℘. Then conclusions
(a) and (b) of the Main Theorem hold.

Of course, in order to generalize the proof of the Main Theorem in order to prove this
Conjecture, it would be necessary to generalize the proofs of Propositions 2.1 and 2.2 (i.e.
of [Bec2], Prop. 2.4, and [De], Lemma 8.2) to covers of base curves other than P1. (Note
that [DeDo2], Thm. 5.1, generalizes [De], Thm. 8.1, to other base spaces, and the proof of
[De], Lemma 8.2, extends as well to more general base spaces.)

§5C. Mere covers.

We may also consider a generalization in another direction, viz. that of allowing con-
sideration of “mere covers”, i.e. covers that are not equipped with a given G-Galois action.
Note that [De], Lemma 8.2, also applies to “mere covers”, whereas the key results of [Bec1]
and [Bec2] apply only to G-Galois covers. We may nevertheless consider the following ques-
tion:

Question 5.5. Does the Main Theorem also hold for “mere covers” (under the assumption
that char(k) does not divide the order of the Galois group of the Galois closure)?

Remark. In Question 5.5, the covers in question may or may not be Galois, but even when
they are, their fields of moduli and of definition as “mere covers” will generally be smaller
than the corresponding fields for the associated G-Galois cover (since the G-action is no
longer part of the structure to be descended).

If Question 5.5 has an affirmative answer in the case of Galois mere covers, then there
is the following application: Given a curve X of genus at least 2, consider the finite cover
X → X/AutX . By Theorem 3.1 of [DeEm], the obstruction to the field of moduli being a
field of definition is the same for the curve X as it is for the “mere cover” X → X/AutX .
Hence we would obtain a criterion for fields of moduli of p-adic curves to be fields of
definition. In fact, even more would follow, since (as observed in [DeEm], Remark 3.2) the
conclusion of [DeEm], Theorem 3.1, holds for various other types of objects as well (e.g.
marked curves) – and so our Main Theorem would also carry over there too if the answer
to Question 5.5 is affirmative.
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