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Abstract: This paper proves the remaining open case of Abhyankar’s
higher dimensional conjecture on local fundamental groups in charac-
teristic p ([Ab2], [Ab3]). This conjecture, which is analogous to Ab-
hyankar’s conjectures on global fundamental groups, proposed that a
finite group G is a Galois group over k[[x1, . . . , xn]][(x1 · · ·xr)

−1] if and
only if its maximal prime-to-p quotient is, provided n ≥ 2 and 1 ≤ r ≤ n.
For r > 1, this conjecture was disproven in [HP]. Here we prove that
the conjecture is true in the case r = 1. So the Galois groups over
k[[x1, . . . , xn]][x

−1
1 ] are precisely the cyclic-by-quasi-p groups.

Section 1. Introduction.

In 1957, Abhyankar made a conjecture [Ab1] concerning the fundamental group of an affine

curve X over an algebraically closed field k of characteristic p. Specifically, his conjecture

stated what the finite quotients G of π1(X) are — or equivalently, which finite groups

are Galois groups of finite unramified connected covers of X . Namely, if X is obtained

by deleting r points from a smooth projective curve of genus g ≥ 0, then G is such a

Galois group if and only if its maximal prime-to-p quotient G/p(G) can be generated by

a set of at most 2g + r − 1 elements. (Here p(G) is the subgroup of G generated by the

Sylow p-subgroups of G.) As Grothendieck later showed [Gr2], a prime-to-p group is a

Galois group over X if and only if it has such a set of generators. Thus Abhyankar’s curve

conjecture was equivalent to the assertion that a finite group G is a Galois group over X

if and only if G/p(G) is. This was proven in the case that X = A1 in [Ra], and was then

proven for general affine curves in [Ha1].

Generalizing the statement of this conjecture, Abhyankar has proposed that the same

principle should govern Galois groups of affine k-varieties in higher dimensions, in both

local and global situations. (This was stated implicitly in [Ab2] and explicitly in [Ab3].)

In the global case, he considered the fundamental group of an affine variety X that is the

complement of a normal crossing divisor D in Pn, with n > 1. Say D has irreducible

components D1, . . . , Dr of degrees d1, . . . , dr. Then Abhyankar’s global conjecture says

that a finite group G is a Galois group over X if and only if G/p(G) is an abelian group

that is generated by elements g1, . . . , gr satisfying gd1

1 · · · gdr
r = 1. For a prime-to-p group,

G is indeed a Galois group over X if and only if it has such a set of generators [Ab2], [F].

(The corresponding case over C had previously appeared in work of Zariski [Z1], [Z2], [F].)
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Thus Abhyankar’s higher dimensional global conjecture was again equivalent to saying that

a finite group G is a Galois group over X if and only if G/p(G) is.

Similarly, in the local case, Abhyankar proposed his

Local conjecture. (Abhyankar) Let n > 1 and 1 ≤ r ≤ n. Then a finite group G is the

Galois group of a finite unramified extension of R̂n,r := k[[x1, . . . , xn]][(x1 · · ·xr)
−1] if and

only if its maximal prime-to-p quotient G/p(G) is abelian and has a generating set of at

most r elements.

(Here, as elsewhere in this paper, it is understood that the extension is required to be a

domain, or equivalently that its spectrum is (reduced and) irreducible.)

A prime-to-p group is a Galois group over Rn,r if and only if it is abelian with such a

generating set (because of Abhyankar’s Lemma; see [Ab2], [HP, Prop. 3.1]). So as before,

the conjecture says that a finite group G is a Galois group over X = Spec R̂n,r if and only

if G/p(G) is.

Of course, for G to be a Galois group over any space X it is necessary for G/p(G) to

be a Galois group over X . So in these conjectures, the issue is whether this condition is

also sufficient. In [HP], it was shown by the first author and by M. van der Put that this

condition is not sufficient in either the local and global cases in dimension > 1. Namely, if

1 ≤ r ≤ n, and if X̂n,r = Spec R̂n,r, then the short exact sequence

1 → p(π1(X̂n,r)) → π1(X̂n,r) → π1(X̂n,r)/p(π1(X̂n,r)) → 1

has a splitting [HP, Cor. 3.4(a)]; and from this it follows that an analogous splitting exists

for the fundamental group of Xn,r := An − (x1 · · ·xr = 0) [HP, Cor. 4.7(a)]. This splitting

imposes an additional non-trivial condition on Galois groups over X and X̂, if 1 < r ≤ n.

So the local and global conjectures do not hold in those cases [HP, Examples 5.2, 5.3],

although several possible variants are suggested by [HP, §5].

This leaves open the question of whether Abhyankar’s higher dimensional conjectures

hold for Xn,1 and for X̂n,1. In these situations, the cokernel of the above exact sequence

is free of rank 1 (as a pro-prime-to-p group), hence it automatically splits. So in these

two cases, the splitting condition does not impose any new restrictions for a finite group

to be a Galois group. And in the case of Xn,1, it is easy to see from Abhyankar’s original

conjecture for A1 that the higher dimensional global conjecture does in fact hold here [HP,

Ex. 5.3]. The case of X̂n,1 has remained open, though; and the purpose of the present

paper is to prove that Abhyankar’s higher dimensional local conjecture does hold for this

space:

Main Theorem. For n > 1, a finite group G is the Galois group of an unramified

extension of R̂n,1 = k[[x1, . . . , xn]][x
−1
1 ] if and only if G/p(G) is cyclic.
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Note that the case n = 1 clearly does not hold, since only cyclic-by-p groups can occur

over the Laurent series field k((x)) = k[[x]][x−1] (using that k is algebraically closed). Of

course this case was not part of Abhyankar’s conjectures.

As in [Ha1], the proof will rely on Abhyankar’s original conjecture for the affine line

[Ra], together with results about embedding problems and methods of formal patching.

Since the formal patching methods apply to global objects, not to local ones, we will first

use blowings-up in order to introduce exceptional divisors and thereby pass from a local

situation to a global one.

Section 2 of this paper contains some related results about Galois covers in a global

situation. These are combined with a blowing-up construction in Section 3 in order to prove

our Main Theorem above (rephrased as Theorem 3.3 below), saying that Abhyankar’s local

conjecture holds if (and only if) r = 1. We provide another viewpoint on this result in

Section 4.

Throughout this paper, if X is a connected scheme, then a cover f : Y → X will

be a morphism that is finite and generically separable. A Galois cover f : Y → X is a

connected cover whose covering group AutX(Y ) acts simply transitively on each geometric

generic fibre of f . If G is a finite group, then a G-Galois cover is a (possibly disconnected)

cover f : Y → X together with a homomorphism G → AutX(Y ) with respect to which G

acts simply transitively on each generic geometric fibre.

Section 2. Global results.

This section contains an extension of a result in [Ha3] related to embedding problems over

curves in characteristic p. Recall that a finite group Q is a quasi-p group if Q = p(Q). The

following proposition is a special case of [Ha3, Prop. 2.3]:

Proposition 2.1. Let Γ = Q×|G be the semi-direct product of a quasi-p group Q with

a finite group G such that G normalizes a Sylow p-subgroup P of Q. Let Y → X be a

G-Galois cover of smooth connected projective k-curves, and let ξ0 ∈ X . Then there is a

normal absolutely irreducible Q-Galois cover Zt → Yt := Y ×k k((t)) that is étale away

from the fibre over ξ0, such that Zt → Xt := X ×k k((t)) is Γ-Galois.

In fact, as we show below, even more is true:

Proposition 2.2. In Proposition 1, let δ1, . . . , δm ∈ X − {ξ0} be distinct non-branch

points of Y → X . For i = 1, . . . , m let Wi → S be (possibly disconnected) smooth Q-

Galois covers of the projective s-line S, branched only at s = 0, where they have p-group

inertia. Let X̂t be the blow-up of X ×k k[[t]] at the points δ1, . . . , δm on the closed fibre,

and let Ẑt be the normalization of X̂t in Zt. Then the cover Zt in Proposition 1 may be

chosen so that the fibre of Ẑt → X̂t over the exceptional divisor at δi is a disjoint union
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of copies of Wi → S away from its branch point, and such that fibre of Ẑt → X̂t over the

proper transform of (t = 0) is connected.

Here we prove these two results together, essentially following the construction in the

proof of [Ha3, Prop. 2.3]. As in that paper, there are three main ingredients: Abhyankar’s

Conjecture over the affine line [Ra], formal patching [HS], and the existence of solutions

to p-embedding problems in characteristic p [Ha2].

Proof of Propositions 2.1 and 2.2. After adding an additional δi if necessary and renumber-

ing, we may assume that W1 is the trivial (disconnected) Q-Galois cover of the projective

s-line S. Let G̃ = P×|G be the subgroup of Γ generated by P and G. Let Ki be the local

field of a point of Wi → S over (s = 0) whose inertia group Pi is contained in P . Mean-

while, by [Ra], there is a smooth connected Q-Galois cover W → S branched only over

(s = 0), where its inertia groups are the Sylow p-subgroups of Q. Let K be the local field of

a ramification point of W → S with inertia group P ; this is a P -Galois extension of k((s)).

Pick a non-branch point δ0 6= ξ0 distinct from δ1, . . . , δm, and let W0 = W and P0 = P .

By [Ha2, Theorem 5.6], there is an irreducible G̃-Galois cover Ỹs → Xs := X ×k k((s))

that dominates the G-Galois cover Ys := Y ×k k((s)) → Xs, such that Ỹs → Ys is étale

away from ξ0,s := ξ0 ×k k((s)), and the fibre over δi,s := δi ×k k((s)) consists of a disjoint

union of copies of the Pi-Galois cover SpecKi (for i = 0, . . . , m). The normalization Ỹs of

Xs := X ×k k[[s]] in Ỹs is an irreducible G̃-Galois cover of Xs, proper over k[[s]]. So by

[Gr1, Proposition 5.5.1], the closed fibre of Ỹs is connected.

Let Xt be the blow-up of X×k k[[t]] at the points δ0, . . . , δm on the closed fibre (t = 0).

We may identify the proper transform of (t = 0) with X , and regard each exceptional

divisor Si as a copy of S, meeting X at the point δi (corresponding to the point s = 0 on

S). So Xt is a projective k[[t]]-curve whose general fibre is Xt := X ×k k((t)) and whose

closed fibre consists of X and the exceptional divisors Si. By formal patching [HS, Cor.

to Theorem 1], there is a Γ-Galois cover Zt → Xt whose formal completion along X is a

disjoint union of copies of the G̃-Galois cover Ỹs → Xs, indexed by the cosets of G̃; whose

fibre over the exceptional divisor Si (for i = 0, . . . , m) is a union of copies of the Q-Galois

cover Wi → S that are indexed by the cosets of Q and are disjoint away from δi; and such

that the identity copies of Ỹs and Wi meet at a point ζi over δi on X . Let Z0 be the inverse

image of X0 := X ∪ S0 under Zt → Xt. Then the connected component of ζ0 in Z0 is all

of Z0, since Q and G̃ generate Γ. That is, Z0 is connected.

Recall that Xt is the blow up of X ×k k[[t]] at δ0, δ1, ..., δm (on the closed fibre). Now

consider the blow up X̂t of X×k k[[t]] at δ1, ..., δm (omitting δ0). In X̂t, identify the proper

transform of (t = 0) under X̂t → X ×k k[[t]] with X ⊂ X̂t. Then Xt is the blow-up of

X̂t at δ0. Let Ẑt be the normalization of X̂t in Zt. Thus Zt → Xt is the normalized

pullback of Ẑt → X̂t. So for i = 1, . . . , m, the fibre of Ẑt → X̂t over Si is the same as

that of Zt → Xt over Si, viz. a union of copies of Wi → S as asserted in Proposition 2.2.
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Under the blow-up morphism Xt → X̂t, the closed set X0 ⊂ Xt is the inverse image of

X ⊂ X̂t. Also, Z0 is the inverse image under Zt → Ẑt of the fibre of Ẑt → X̂t over

X ⊂ X̂t. But Z0 is connected. Hence so is the fibre over X ⊂ X̂t, the proper transform of

(t = 0). Thus the closed fibre of Ẑt → X̂t is connected, and hence so is the general fibre

Zt → Xt = X ×k k((t)). The G-Galois cover Zt/Q of Xt is just Yt := Y ×X Xt, since

this is true along the formal completion along X and along the Si’s; and Zt → Yt is étale

away from ξ0 ×k k[[t]] and the closed fibre. So Zt → Xt factors through Yt, and Zt → Yt

is étale away from ξ0,t := ξ ×k k((t)). So it is a Γ-Galois cover. Moreover Zt is normal

since Ẑt is. So Zt is irreducible, and Ẑt is the normalization of X̂t in Zt (and so agrees

with the definition of Ẑt in the statement of Proposition 2.2). Finally, if K is a non-trivial

finite extension of k((t)), then the normalization of X̂t in XK := X ×k K has the property

that its fibre over the generic point of S1 is totally ramified; whereas the fibre of Ẑt there

is totally split. So Zt is linearly disjoint from XK = Xt ×k((t)) K over Xt, and thus the

k((t))-curve Zt is absolutely irreducible.

Corollary 2.3. In Proposition 2.1, let δ ∈ X be a non-branch point of Y → X , and let

X̂t be the blow up of X ×k k[[t]] at the point δ on the closed fibre. Then we may choose

Zt such that the normalization Ẑt of X̂t in Zt is unramified over the exceptional divisor

away from where it meets the proper transform of (t = 0), and such that the fibre of Ẑt

over this proper transform is connected.

Proof. In Proposition 2.2, take m = 1 and δ1 = δ. Take W1 → S to be an arbitrary

Q-Galois cover (e.g. the trivial cover, composed of a disjoint union of copies of S). Then

Proposition 2.2 gives us a choice of Zt → Xt satisfying the conclusion there. In particular,

the fibre of Ẑt → X̂t over the exceptional divisor is a union of copies of W1 → S away

from the point δ. So this fibre is étale there.

Remark. In the above proof of Propositions 2.1 and 2.2, the point δ0 is what holds the

Γ-Galois cover together, since a G̃-Galois cover and a Q-Galois cover meet at a point ζ0

over it. On the other hand, the locus {δ1, . . . , δm} (or just δ in the Corollary) is where the

constructed cover from Proposition 2.1 is blown up (for use in Lemma 3.2 below).
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Section 3. Proof of the Main Theorem.

In this section we prove the main theorem of the paper, that Abhyankar’s local conjecture

holds in dimension > 1 if only one coordinate hyperplane is deleted. The proof relies on

the previous section together with a formal patching construction applied to a blow-up of

a local scheme. It suffices to work in dimension 2, and afterwards to pass to dimension n.

Specifically, using Corollary 2.3, we prove

Theorem 3.1. Let k be an algebraically closed field of characteristic p > 0. Let Γ be a

finite group, let Q = p(Γ), and suppose that C := Γ/Q is cyclic. Then there is a Galois

étale cover of Spec k[[x, y]][1/y] with Galois group Γ.

The key step in the proof of Theorem 3.1 is the following

Lemma 3.2. Under the hypotheses of Theorem 3.1, suppose that Γ = Q×|C, and that

C ⊂ Γ normalizes a Sylow p-subgroup of Q. Then there is a normal connected Γ-Galois

cover Z → Spec k[[x, y]] which is étale away from (xy = 0); such that C is an inertia group

over the generic point of (x = 0); and such that the C-Galois cover Z/Q → Spec k[[x, y]]

is totally ramified over the generic point of (y = 0).

Proof of Lemma 3.2. Let R = k[[z]], and let Pt = P1
R, the projective t-line over R. Thus

we may regard P1
K as the generic fibre of Pt, where K = k((z)). Let P̃ be the blow-up of Pt

at the point ξ ∈ Pt where (t = z = 0); let E ⊂ P̃ be the exceptional divisor of the blow-up;

and let T ⊂ P̃ be the proper transform of the closed fibre of Pt. Also, let ξ̃ ∈ P̃ be the

point where E meets T (and which lies over ξ ∈ Pt). Consider the parameter x = z/t

on E. Thus x = 0 at the point ξ̃; and we may identify E with the projective x-line P1
k

over k, or equivalently with the closed fibre of the projective x-line Px over R. Note here

that the blow-up P̃ is a closed subset of Pt ×k P
1
k = Pt ×R Px. Here the second projection

π : P̃ → Px is a birational isomorphism which is an isomorphism away from T ⊂ P̃ (and

blows down T ).

Let n be the order of C. Let W0 → P1
k be the C-Galois cover of the projective t-line

that is given generically by wn = t − 1. This cover is branched precisely over t = 1,∞,

where it is totally ramified. Since C normalizes a Sylow p-subgroup of the quasi-p group

Q, we may apply Proposition 2.1 above to this C-Galois cover, to the point ξ0 : (t = 1) on

P1
k, and to the group Γ, using the Laurent series field K = k((z)). The conclusion is that

there is a normal absolutely irreducible Q-Galois cover U◦ → W0 ×k K that is étale away

from the fibre over (t = 1), and such that U◦ → P ◦ := P1
K is Γ-Galois. In particular, C

is an inertia group over t = ∞, and the C-Galois cover U◦/Q ≈ W0 ×k K of P ◦ is totally

ramified over the point (t = 1). Let U be the normalization of Pt in U◦. So U → Pt is a

connected normal Γ-Galois cover which is étale away from (z = 0), (t = 1), and (t = ∞),

and whose inertia groups over the generic point of (t = ∞) are n-cyclic.
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Moreover, using Corollary 2.3 above with δ taken as the point (t = 0) on P
1
k, we may

choose U◦ above with two additional properties. Namely, let Ũ → P̃ be the normalized

pullback of U → Pt with respect to P̃ → Pt, and let Ũ0 be the fibre of Ũ over T . Then

we may choose U◦ such that Ũ0 is connected and such that Ũ is étale over E away from

ξ̃. So Ũ → P̃ is ramified only over t = 1,∞ and over T .

We next consider a Γ-Galois cover of Px whose local behavior at (x = z = 0) will

enable us to obtain the local cover asserted in the statement of the lemma. Namely, let V

be the normalization of Px in Ũ , relative to the morphism Ũ → P̃ → Px. This space is the

same as the normalization of Px in the general fibre of Ũ , which is an irreducible normal

Γ-Galois cover of the generic fibre of Px. Thus V is an irreducible normal Γ-Galois cover

of Px. This cover is branched only over t = 1,∞, since Ũ → P̃ is ramified only there and

over T , and since T maps to the closed point (x = z = 0) under P̃ → Px. Here the locus

of t = 1 on Px is the locus of x = z, and the locus of t = ∞ on Px is the locus of x = 0.

(Note that both of these loci contain the closed point (x = z = 0).) So the general fibre

of V → Px is an irreducible Γ-Galois cover of the projective x-line over K, branched only

over x = 0, z. Moreover this cover is tamely ramified over the generic point of x = 0 with

C as an inertia group, and the C-Galois subcover V/Q is totally ramified over the generic

point x = z, by the corresponding facts for U and hence for Ũ over t = 1,∞.

Now under the surjection Ũ → V , the connected closed set Ũ0 is the inverse image of

the fibre of V over the point (x = z = 0). So that fibre is connected; i.e. the irreducible

normal Γ-Galois cover V → Px is totally ramified over (x = z = 0). So the pullback of

V under the morphism Spec k[[x, z]] → Px is also an irreducible normal Γ-Galois cover,

branched only over x = 0 and x = z, with C as an inertia group over x = 0 and with

the quotient modulo Q being a C-Galois cover with total ramification over x = z. Setting

y = z − x completes the proof of the lemma.

Using Lemma 3.2, we complete the proof of Theorem 3.1:

Proof of Theorem 3.1. Let n be the order of C. Thus n is prime to p. By [Ha1, Lemma 5.3]

(or by using the Schur-Zassenhaus Theorem in group theory [Go]), there is a prime-to-p

cyclic supplement C′ ⊂ Γ to Q in Γ such that C′ normalizes a Sylow p-subgroup of Q.

Thus Γ is a quotient of the semidirect product Γ′ := Q×|C′, and Q = p(Γ′). So it suffices

to prove the result for Γ′. Replacing Γ, C by Γ′, C′, we may assume that Γ = Q×|C, and

view C as a subgroup of Γ that normalizes a Sylow p-subgroup of Q.

So the lemma applies. Thus there is a normal connected Γ-Galois cover Z → S :=

Spec k[[s, y]] which is étale away from (sy = 0), such that C is an inertia group over the

generic point of (s = 0), and such that W := Z/Q → S is totally ramified over (y = 0).

Here W → S is a normal connected C-Galois cover of S, branched only over (sy = 0); and

Z → W is a normal connected Q-Galois cover.
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Let X = Spec k[[x, y]], and consider the morphism X → S given by xn = s. Let

Z ′ → X [resp. W ′ → X ] be the normalized pullback of Z → S [resp. of W → S] with

respect to this morphism. Thus W ′ = Z ′/Q, and Z ′ is the normalized fibre product of W ′

and Z over W . Since X → S is étale over the generic point of (y = 0), whereas W → S is

totally ramified there, it follows that X and W are linearly disjoint over S, and hence W ′

is irreducible.

By Abhyankar’s Lemma, the cover Z ′ → X is étale over the generic point of (x = 0),

and so this cover is branched only over (y = 0). Now W ′ → W is C-Galois, where C is of

order prime-to-p. But Z → W is Q-Galois, where Q is a quasi-p group. So C and Q have

no non-trivial common quotients, and the two covers Z → W and W ′ → W dominate

no non-trivial common subcover of W . Since these two covers are also Galois, it follows

that they are linearly disjoint. Hence their normalized fibre product Z ′ is irreducible.

The restriction of the Γ-Galois cover Z ′ → X to y 6= 0 is then the asserted cover of

Spec k[[x, y]][1/y].

Theorem 3.1 is the case of dimension 2 in the Main Theorem. The general case is now

immediate:

Main Theorem 3.3. Abhyankar’s Local Conjecture on Galois groups over R̂n,r =

k[[x1, . . . , xn]][(x1 · · ·xr)
−1] (with n > 1 and 1 ≤ r ≤ n) holds if and only if r = 1.

Proof. As noted in the introduction, the case of r > 1 was disproven in [HP]. So it remains

to prove the case r = 1; i.e. that a finite group G is the Galois group of an unramfied

extension of R̂n,1 = k[[x1, . . . , xn]][x
−1
1 ] if and only if G/p(G) is cyclic. Theorem 3.1 is the

case n = 2. For the general case, let G be a finite group with G/p(G) cyclic, and let S

be a Galois étale extension of Rn,1 with group G, given by Theorem 3.1. Then Rn,1 is

algebraically closed in Rn,r, and Rn,r is separable over Rn,1; so Rn,r is linearly disjoint

from S over Rn,1 [FJ, Lemma 9.7]. Thus Rn,r ⊗Rn,1
S is a domain, and is an unramified

Galois extension of Rn,r with group G.

Thus we conclude that the Galois groups over k[[x1, . . . , xn]][x
−1
1 ] are precisely the

cyclic-by-quasi-p groups:

Corollary 3.4. If 1 → Q → G → C → 1 is an exact sequence of finite groups, with Q a

quasi-p group and C a cyclic group, then G is the Galois group of an unramified extension

of R̂n,1 = k[[x1, . . . , xn]][x
−1
1 ] for all n > 1. Conversely, every Galois group G over R̂n,1 is

of this form.

Proof. Since Q is a quasi-p group, it is contained in p(G). Hence G/p(G) is a quotient

of C, and thus is cyclic. So G is a Galois group over k[[x1, . . . , xn]][x
−1
1 ] by the Main

Theorem. This proves the forward direction. The converse is also immediate from the

Main Theorem, by taking Q = p(G) and C = G/p(G).
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Section 4. Another viewpoint.

In this section, we sketch an alternative construction to prove Theorem 3.1 and hence

the Main Theorem. The presentation here, which relies on a series of blowings-up, may

be viewed as geometrically more intuitive than the earlier argument; but filling in all the

details here (particularly concerning the use of the patching result of [HS]) would produce

a longer argument than the one in the previous section.

The basic idea of the proof here is to start with a cyclic cover of the base space

Spec k[[x, y]] branched only along (x = 0); to blow up the base, obtaining an exceptional

divisor E; and then to use Abhyankar’s Conjecture for the affine line [Ra] together with

formal patching [HS] on E and the existence of solutions to p-embedding problems [Ha2]

in order to enlarge the Galois group of the cover by a quasi-p group. The difficulty is that

doing this would cause the resulting cover of Spec k[[x, y]] (after blowing back down) to be

ramified along both axes; so instead we blow up a series of times, to avoid obtaining extra

ramification. (The corresponding trick in the first proof of Theorem 3.1, given in Section

3, was to consider the morphism X → S given by xn = s.)

We begin with a definition and a lemma. As before, let k be an algebraically closed

field of characteristic p ≥ 0. In k, fix a compatible system {ζn}(p,n)=1 of roots of unity in

k (i.e. such that ζmmn = ζn).

Definition 4.1 (a) Let V → X be a G-Galois cover of normal k-schemes. Let α be a point

of X of codimension 1 at which X is regular and over which the cover is tamely ramified,

say of ramification index m. Let x ∈ ÔX,α be a uniformizer at α. If β is a point of V over

α, and v ∈ ÔV,β is a uniformizer at β such that vm = x, then the canonical generator of

inertia of V → X at β is the unique element g ∈ G of the inertia group at β such that

g(v) = ζmv. An element g ∈ G is a canonical generator of inertia of V → X over α if it is

the canonical generator of inertia at some point β over α.

(b) Let X be a regular k-scheme, let V be a normal k-scheme, and let V → X be a

G-Galois cover. Let ξ ∈ X be a closed point in the branch locus B, at which B has at

most normal crossings. Let ν be a point of V over ξ, and let D1, . . . , Dr be the irreducible

components of the branch locus of V̂ = Spec ÔV,ν → X̂ = Spec ÔX,ξ. Let gi ∈ G be the

canonical generator of inertia of V̂ → X̂ at the generic point of Di. Then g1, . . . , gr are

the canonical generators of inertia of V → X at ν.

Note that in (a) of the definition, once one chooses x, a uniformizer v as above always

exists. Moreover the canonical generator of inertia at β depends only on β, not on the

choice of x or v. The canonical generators of inertia over α form a conjugacy class in G.

So in (b), the gi’s are each determined up to conjugation in the inertia group at ν (which

is the Galois group of ÔV,ν over ÔX,ξ). But that group is abelian, of order prime to p,

and of rank at most r. (This standard fact follows from Abhyankar’s Lemma; e.g. see [HP,
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Proposition 3.1].) So actually the gi’s in (b) are uniquely determined by ν.

Lemma 4.2 Let V → X be a G-Galois cover of k-schemes, with X regular and V normal.

Let ξ be a closed point of X at which the branch locus B has at most normal crossings,

and suppose V → X is tamely ramified at the generic point of each branch component

containing ξ. Let ν ∈ V be a point lying over ξ, with canonical generators of inertia

g1, . . . , gr. Let X̂ be the blow-up of X at ξ, and let V̂ be the normalization of V ×X X̂ .

(a) Then V̂ → X̂ is tamely ramified over the exceptional divisor E.

(b) Let ǫ be the generic point of E ⊂ X̂, and let φ ∈ V̂ be a point lying over ǫ that

maps to ν under V̂ → V . Then the canonical generator of inertia at φ is g1 · · · gr.

Note that the element
∏

gi in (b) of the lemma is independent of the order in which

the gi’s are taken. This is because the gi’s lie in an abelian group (viz. the inertia group

at ν), by the comment preceding the statement of the lemma.

Proof of Lemma 4.2. Since the result is local, we are reduced to the special case that

X = Spec k[[x1, x2, . . . , xn]], with ξ being the closed point (x1, x2, . . . , xn), and where

V → X is branched only at D1 ∪ . . . ∪ Dr for some r ≤ n, where Di := (xi = 0), and

where gi is the canonical generator of inertia over Di. This cover is totally ramified over ξ

since X is completely local and since k is algebraically closed; so its Galois group G is the

inertia group over ξ.

First consider the case that r = n and that V → X is the cover S → X given

by smi = xi (1 ≤ i ≤ n), for some m prime to p. This cover is Galois with group

A = (Cm)n = 〈a1, a2, . . . , an〉, where the action is given by ai(si) = ζmsi and ai(sj) = sj

for i 6= j. Thus ai is the canonical generator of inertia of S → X over Di. Let X̂ be

the blow-up of X at ξ, with exceptional divisor E ≈ Pn−1. The function field of E is

generated by zj = xj/x1, for j = 2, . . . , n. Let Ŝ be the normalized pullback of S → X

via X̂ → X ; thus Ŝ → X̂ is an A-Galois cover. Since A is of order prime to p, all

ramification is tame. Let F be a component of the fibre of Ŝ → X̂ over E. Thus the

function field of F is generated by wj = sj/s1, for j = 2, . . . , n. Here wm
j = zj . Now

ai11 ai22 · · ·ainn (wj) = ζ
ij−i1
m wj . Thus the parameter wj is fixed exactly when ij = i1, so the

inertia group at the generic point φ of F is the cyclic group 〈a1a2 · · ·an〉. The element

s1 is a local uniformizer at the generic point ǫ of E in X̂ ; and for each d in the inertia

group 〈a1a2 · · ·an〉, we have d = ai1a
i
2 · · ·a

i
n and d(s1) = ai1a

i
2 · · ·a

i
n(s1) = ζims1. Thus

the canonical generator of inertia is d = a1a2 · · ·an. This proves the lemma for the cover

S → X .

Now consider the case of a more general cover V → X = Spec k[[x1, x2, . . . , xn]],

branched over D1, . . . , Dr, with r ≤ n, and with gi being the canonical generator of inertia

over Di for 1 ≤ i ≤ n. (Here gi = 1 for r < i ≤ n.) By [HP, Proposition 3.1], G is prime-

to-p and abelian of rank r, and V → X is dominated by the A-Galois cover S → X of
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the previous paragraph, for some m prime to p. For 1 ≤ i ≤ n, the canonical generator of

inertia of V → X over the generic point of Di [resp. of E] is the image, under the quotient

map π : A → G, of the canonical generator of inertia of S → X there — i.e. the image of ai
[resp. of a1a2 · · ·an] inG. So π(ai) = gi; and hence g1g2 · · · gr = g1g2 · · · gn = π(a1a2 · · ·an)

is the canonical generator of inertia of V → X over ǫ as claimed.

We now use this lemma to provide the alternative construction to prove Theorem 3.1

and hence the Main Theorem.

Alternative proof sketch of Theorem 3.1. As in the previous proof of this theorem, we

immediately reduce to the case that Γ = Q×|C, where Q is a quasi-p group, C is a cyclic

group of order n prime to p, and C ⊂ Γ normalizes a Sylow p-subgroup P of Γ (or

equivalently, of Q).

Let X be the projective x-line over k, and X = X×k k[[y]]. Identify X with the closed

fiber of X . Consider the C-Galois cover W → X defined by wn = x. This is ramified only

at the point τ where x = 0 and at the point σ where x = ∞; and over both points the cover

is totally ramified. Let c be the canonical generator of inertia over x = 0. So C = 〈c〉. Let

Y = τ ×k k[[y]] ⊂ X and S = σ ×k k[[y]] ⊂ X . Let X0 = X and for each i = 1, 2, ..., n, let

Xi be the blow-up of Xi−1 at τ with exceptional divisor Ei. Here we inductively identify

X , E1, ..., Ei−1, Y, S ⊂ Xi−1 with their proper transforms in Xi, and identify τ with the

point of Xi where Y meets Ei. Let Wi → Xi be the normalized pullback of Wi−1 with

respect to Xi → Xi−1. Then this is a C-Galois cover ramified only over E1, E2, ..., Ei, Y, S.

The canonical generator of inertia over Y is c; and by the lemma (and induction on i), the

canonical generators of inertia over Ei is c
i. Notice that the canonical generator of inertia

of En is cn = 1, so Wn → Xn is unramified over the generic point of En.

Let δ be the point where En meets En−1, and let ξ be a point of En − {τ, δ}. Let

Xn+1 be the blow-up of Xn at ξ, with exceptional divisor En+1. Identify ξ with the point

of Xn+1 where En+1 meets En and identify X , Y , S, Ei with their proper transforms in

Xn+1. By [Ra] there exists a Q-Galois cover Z → En+1 branched only at the point ξ such

that the inertia groups over ξ are conjugate to P .

Let E be the formal completion of Xn+1 along the closed subset E1∪E2∪ ...∪En, and

let WE → E be the pullback of Wn+1 → Xn+1 via E → Xn+1. By applying [Ha2, Theorem

5.6] to the open fibre of the C-Galois cover WE → E , we obtain a G = P×|C-Galois cover

U → E that dominates WE and is ramified only at E1, E2, ..., En, Y , and such that there is

agreement locally between the generic fibre of U → E and the Q-Galois cover Z → En+1

near the point ξ (i.e. over the generic point of Spec ÔEn+1,ξ, which is a closed point of the

generic fibre of E). Moreover, according to [Ha2, Theorem 5.6], we can require that the

G-Galois cover U → E also agrees locally with the original C-Galois cover W → X near

the point χ at which E1 meets X . Using these local agreements, we may apply formal

patching [HS] to obtain a Γ-Galois cover Vn+1 → Xn+1 whose restrictions agree with the
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covers Z → En+1, U → E , and W → X , where the first two meet over ξ and the latter

two meet over χ. In particular, this cover is unramified over the generic point of X . Let

V be the normalization of X in Vn+1 (relative to the blow-up morphism Xn+1 → X ).

The natural morphism Vn+1 → V is a birational isomorphism, and V → X is a Γ-Galois

cover ramified only along Y and totally ramified at τ . Let Xτ = Spec k[[x, y]] be the

spectrum of the complete local ring of X at τ , and let Vτ be the pullback of V to Xτ . Thus

Vτ → Xτ = Spec k[[x, y]] is a Γ-Galois cover that is branched totally at the closed point τ ,

and is unramified away from (x = 0). This completes the construction, yielding Theorem

3.1 and hence the Main Theorem in general.
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