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Section 1. Introduction.

This paper contains a proof of Abhyankar’s Conjecture [Ab1] concerning the fundamental
group of affine curves U in finite characteristic. The conjecture gives a necessary and
sufficient condition for a finite group G to be a quotient of π1(U), or equivalently for G to
be the Galois group of a Galois unramified cover of U . In fact, we show more, viz. that all
but one of the branch points can be taken to be tame.

Roughly speaking, Abhyankar’s Conjecture asserts that a group G occurs over a given
affine curve in characteristic p if and only if every prime-to-p quotient of G occurs over the
“analogous complex curve.” More precisely, if g and r are non-negative integers, let Γg,r
be the group generated by elements a1, . . . , ag, b1, . . . , bg, c0, . . . , cr subject to the single
relation

∏g
j=1[aj , bj ]

∏r
i=0 ci = 1, where [a, b] denotes the commutator aba−1b−1. Thus

if X is a compact Riemann surface of genus g, and U is the complement in X of a set
of r + 1 points ξ0, . . . , ξr, then Γg,r may be identified with the fundamental group of U .
Under this identification, aj and bj correspond to loops around the jth “hole,” and ci
corresponds to a loop around ξi. Thus a finite group G is the Galois group of a connected
finite Galois covering space V → U if and only if G is a quotient of Γg,r; and in this case
the image of ci in G generates the inertia group of a ramification point over ξi. Note that
Γg,r is isomorphic to the free group on 2g + r generators, a1, . . . , ag, b1, . . . , bg, c1, . . . , cr;
here c0 = (

∏r
i=1 ci

∏g
j=1[aj , bj ])

−1.
Let k be an algebraically closed field of characteristic p 6= 0.

Conjecture 1.1. (Abhyankar’s Conjecture) Let X be a smooth connected projective
curve of genus g over k, let ξ0, . . . , ξr (r ≥ 0) be distinct points of X, and let U =
X − {ξ0, . . . , ξr}. Then for any finite group G, G is the Galois group of a connected finite
étale Galois cover of U if and only if every prime-to-p quotient of G is a quotient of Γg,r.

The conjecture can also be rephrased a bit differently. If G is a finite group, we
define the quasi-p-part of G to be the subgroup p(G) generated by the p-subgroups of G.
This can also be described as the subgroup generated by the Sylow p-subgroups of G, or
alternatively as the subgroup generated by the elements of p-power order. A group G is
said to be a quasi-p-group if G = p(G). For any finite group G, p(G) is a characteristic
subgroup of G (and in particular is normal), and G/p(G) has order prime to p. Moreover a
quotient G/N of G has order prime to p if and only if p(G) ⊂ N . Abhyankar’s Conjecture
is thus equivalent to the assertion that the groups G that occur as Galois groups over U
are precisely those such that G/p(G) occurs over “the analogous complex curve,” i.e. such
that G/p(G) is a quotient of Γg,r (where g and r are as in 1.1).

* Supported in part by a grant from the NSA.
Email: harbater@rademacher.math.upenn.edu

1



In the case of groups G of order prime to p, the conjecture simply states that G occurs
over U if and only if G is a quotient of Γg,r; this has been shown by Grothendieck [Gr,
XIII, Cor.2.12]. That result yields one implication of Conjecture 1.1 in the general case: if
a finite group G occurs over U then G/p(G) (which thus also occurs over U , and which is
prime-to-p) must be a quotient of Γg,r. The other direction of Conjecture 1.1 has recently
been proven in the case of g = r = 0, i.e. for the affine line, by Raynaud [Ra], following
partial results by Nori (cf. [Ka] or [Se3]), Abhyankar (e.g. [Ab2]), and Serre [Se2].

Grothendieck has shown [Gr, XIII, Cor.2.12] that if a group G occurs as the Galois
group of a connected Galois étale cover of U whose smooth completion over X is tamely
ramified, then G itself must be a quotient of Γg,r. For example, since Γ0,0 is trivial,
there are no tamely ramified covers of P1 branched only over one point. Thus Conjecture
1.1 cannot be strengthened so as to assert that the cover may be chosen to have tamely
ramified completion over X. But one may still conjecture that only one wildly ramified
branch point is needed:

Conjecture 1.2. Let X be a smooth connected projective curve of genus g ≥ 0 over
k, and let ξ0, . . . , ξr (r ≥ 0) be distinct points of X. Let G be a finite group such that
G/p(G) is a quotient of Γg,r. Then there is a smooth connected G-Galois branched cover
of X branched only over the points ξi, and tamely ramified except possibly over ξ0.

Partial results in the case of a general affine curve have been obtained by the present
author [Ha3], using formal patching. In the present paper, formal patching is combined
with Raynaud’s result to prove Conjectures 1.1 and 1.2; cf. Theorem 6.2.

The paper is organized as follows: Section 2 contains the formal patching and defor-
mation results which will be needed; these depend on [Ha3]. Section 3 proves some results
about the moduli space of p-covers of the affine line, and these are used in section 4 to
obtain a family of cyclic-by-p covers. Section 5 proves the two conjectures in the special
case of P1 − {0,∞}. It does so by patching a cyclic-by-p cover of P1

k((x−1)) − {0,∞},
obtained from section 4, together with a quasi-p-cover of A1, obtained from [Ra]. Then in
section 6, the general case is handled by patching a general cover of P1−{0,∞}, obtained
from section 5, together with a tame cover of X, obtained from [Gr].

Conventions:

Throughout this paper, we will work over a base field k. Beginning in section 3, k will
be assumed algebraically closed and of characteristic p 6= 0. Unless otherwise adorned, P1

and A1 will denote the affine and projective lines over the field k.

If X is a scheme and ξ is a point of X such that the complete local ring ÔX,ξ is a

domain, then we let K̂X,ξ be the fraction field of ÔX,ξ.
For any ring R let frac(R) be the total ring of fractions of R. If R is a domain and

R ⊂ S is an extension of rings, then we say that S is generically separable as an R-algebra
if frac(S) is a separable frac(R)-algebra and if no non-zero element of R becomes a zero-
divisor of S. For any finite group G, a G-Galois R-algebra consists of a finite generically
separable R-algebra S together with a group homomorphism ρ : G→ AutR(S) with respect
to which G acts simply transitively on a generic geometric fibre of Spec(S) → Spec(R).
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We say that a morphism of schemes φ : Y → X is generically separable [resp. G-Galois,
with respect to a homomorphism ρ : G → AutX(Y )] if X can be covered by affine open
subsets U = Spec(R) such that the ring extensions R ⊂ O(φ−1(U)) have that property. A
morphism φ : Y → X which is finite and generically separable [resp. finite and G-Galois]
will be called a cover [resp. a G-Galois cover]. Its branch locus is the complement in X of
the locus where φ is étale. As usual, if Y → X is a G-Galois cover, and η is a point of Y ,
then the decomposition group at η is the subgroup of G consisting of elements taking η to
itself, and the inertia group is the subgroup of the decomposition group which induces the
identity on the residue field. Ramification at η is tame if the order of the inertia group is
prime to the residue characteristic; otherwise it is wild. A cover is tamely ramified if all of
its ramification is.

Acknowledgments: I wish to thank M. Raynaud, and my student Kate Stevenson, for
reading earlier versions of this paper and suggesting improvements.

Section 2. Formal patching and deformation.

In [Ha3] some formal patching results were proven, and these were then used in the proofs
of several results about Galois groups over affine curves in finite characteristic. This section
contains variants and applications of those patching results, for use in sections 5 and 6 of
the present paper. In this section, k will denote an arbitrary base field.

As in [Ha3], for any scheme X, let P(X) [resp.AP(X)] denote the category of coherent
sheaves of projective OX -modules [resp. projective OX -algebras]. Also, let SP(X) denote
the subcategory ofAP(X) consisting of sheaves which are generically separable; and for any
finite group G let GP(X) be the subcategory of SP(X) consisting of G-Galois sheaves. For
any ring R, let P(R) = P(Spec(R)), and similarly for AP, SP, and GP. Given categories
A,B, C and functors A → C and B → C, let A×C B denote the category of triples (A,B,C)
of objects in A,B, C together with isomorphisms between C and the images of A and of B
in C.

Proposition 2.1. Let L be a regular connected projective k-curve, let λ be a closed
point of L, and let Spec(S) = L− {λ}. Let L∗ = L×k Spec(k[[v]]), let φ : T ∗ → L∗ be a
cover, and assume that φ is flat (e.g. if T ∗ is normal). Let B be the category

P(φ∗(S[[v]]))×P(φ∗(K̂L,λ[[v]])) P(φ∗(ÔL,λ[[v]])).

Then the base change functor P(T ∗) → B is an equivalence of categories. Moreover this
remains true if P is replaced by AP, SP, or GP for any finite group G.

Proof. Since L is a regular curve, it follows that L∗ is a regular surface. So if T ∗ is
normal, then it is flat over L∗ (using [AB], as in the proof of [Ha3,Proposition 4(b)]). Also,
a flat cover is finite and hence corresponds to a coherent sheaf of projective algebras. So
under the hypotheses of the proposition, every finite projective module over T ∗ is projective
over L∗. Thus giving an object in the category P(T ∗) is equivalent to giving an object
V in the category P(L∗), together with a morphism OT∗ → End(V) in P(L∗). Similarly,
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since flatness is preserved under pullback, giving an object in the category B is equivalent
to giving an object (V1,V2,V0) in the category

D = P(S[[v]])×P(K̂L,λ[[v]]) P(ÔL,λ[[v]]),

together with a morphism (φ∗(S[[v]]), φ∗(ÔL,λ[[v]]), φ∗(K̂L,λ[[v]]))→ End(V1,V2,V0) in D.
So the result for P follows from the fact that the base change functor P(L∗) → D is an
equivalence of categories [Ha3,Theorem 1]. The other analogs, for AP, SP, and GP, follow
formally from the result for P as in the proof of [Ha3,Theorem 1]. []

Remark. Proposition 2.1 says that projective modules or algebras that are given over
“pieces” of T ∗ can be patched to give a global module or algebra over all of T ∗. In the
assertion, the auxiliary space L∗ appears only in order to permit the use of [Ha3, Theorem
1]. It seems likely, though, that Proposition 2.1 and [Ha3, Theorem 1] hold in a more gen-
eral context. Namely, suppose that R is a complete discrete valuation ring, T ∗ is a proper
flat R-scheme of relative dimension 1, and F is a finite set of closed points of T ∗. Let T ′∗

be the completion of T ∗ − F along its closed fibre, and let T̂ ∗ =
⋃
τ∈F Spec(ÔT∗,τ ). Then

compatible projective modules or algebras over T ′∗ and T̂ ∗ can presumably be patched
to yield such a global object over all of T ∗. But such a general patching assertion is not
essential here, and we do not prove it in this paper.

Corollary 2.2. Under the hypotheses of Proposition 2.1, assume that the closed
fibre of φ has two irreducible components X1, X2, each of which is a regular curve; that
these meet at a unique point τ ∈ T ∗; and that φ(τ) = λ. For i = 1, 2 let Ri be the
ring of functions on the affine curve X ′i = Xi − {τ}; let X ′∗i = Spec(Ri[[v]]), and let

X̂ ′∗i = Spec(K̂Xi,τ [[v]]). Also, let T̂ ∗ = Spec(ÔT∗,τ ). Let C be the category

P(X ′∗1 ∪X ′∗2 )×P(X̂′∗1 ∪X̂′∗2 ) P(T̂ ∗).

Then the base change functor P(T ∗) → C is an equivalence of categories. Moreover this
remains true if P is replaced by AP, SP, or GP for any finite group G.

Proof. Viewing L ⊂ L∗, let D = φ−1(λ), Di = D ∩ Xi, D
′
i = D ∩ X ′i, and

L′ = L − {λ} = Spec(S). For i = 1, 2, let T ′i = Xi − Di and let Si be the ring of

functions on the affine curve T ′i . Let Y ∗ = Spec(φ∗(ÔL,λ[[v]])) =
⋃
δ∈D Spec(ÔT̂∗,δ)

and Y ′∗ = Spec(φ∗(K̂L,λ[[v]])) =
⋃
i=1,2;δ∈Di Spec(K̂Xi,δ[[v]]). For i = 1, 2, let Y ∗i =⋃

δ∈D′
i

Spec(ÔT̂∗,δ), Y ′∗i =
⋃
δ∈D′

i
Spec(K̂Xi,δ[[v]]), and T ′∗i = Spec(Si[[v]]). Let B be as

in Proposition 2.1. Thus B = P(T ′∗1 ∪ T ′∗2 ) ×P(Y ′∗) P(Y ∗), and the base change functor
P(T ∗)→ B is an equivalence of categories.

By [Ha3, Prop.3] (which is the affine analog of [Ha3, Theorem 1]) and induction on
#(D′i), base change induces an equivalence of categories

P(X ′∗i )→̃P(T ′∗i )×P(Y ′∗
i

) P(Y ∗i )
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for i = 1, 2. So base change induces an equivalence of categories P(X ′∗1 ∪ X ′∗2 )→̃ E ,
where E = P(T ′∗1 ∪ T ′∗2 ) ×P(Y ′∗1 ∪Y ′∗2 ) P(Y ∗1 ∪ Y ∗2 ), and hence also induces an equivalence

C→̃ E ×P(X̂′∗1 ∪X̂′∗2 ) P(T̂ ∗). The latter category is canonically equivalent to B, because of

the disjoint unions Y ∗ = Y ∗1 ∪ Y ∗2 ∪ T̂ ∗ and Y ′∗ = Y ′∗1 ∪ Y ′∗2 ∪ X̂ ′∗1 ∪ X̂ ′∗2 . Thus the base
change functors P(T ∗)→ B and C → B are equivalences of categories, and hence so is the
base change functor P(T ∗)→ C. This proves the result for P. Replacing P throughout by
AP, SP, or GP yields the proofs in those cases. []

If H is a subgroup of a finite group G, and Y → X is an H-Galois cover, then there
is an induced G-Galois cover IndGH Y → X. It is a union of (G : H) disjoint copies of
Y , indexed by the left cosets of H in G. The stabilizer of the identity copy is H ⊂ G,
and the stabilizers of the other copies are the conjugates of H in G. Similarly, if F is a
coherent sheaf of H-Galois OX -algebras, then there is an induced coherent sheaf IndGH F
of G-Galois OX -algebras, which as a sheaf of modules is isomorphic to F⊕(G:H).

Proposition 2.3. Under the hypotheses of Corollary 2.2, let G be a finite group;
let G1, G2, I be subgroups which generate G; and for i = 1, 2 let Ii be a subgroup of
I ∩ Gi. For i = 1, 2 let W ′∗i → X ′∗i be an irreducible normal Gi-Galois cover; and let

Ŵ ′∗i be an irreducible component of W ′∗i ×X′∗i X̂ ′∗i such that Gal(Ŵ ′∗i /X̂
′∗
i ) = Ii ⊂ Gi.

Also, let N̂∗ → T̂ ∗ be an irreducible normal I-Galois cover. Suppose that for i = 1, 2
there is an isomorphism N̂∗ ×T̂∗ X̂ ′∗i →̃ IndIIi Ŵ

′∗
i of I-Galois covers of X̂ ′∗i . Then there

is an irreducible normal G-Galois cover V ∗ → T ∗ such that V ∗ ×T∗ X ′∗i ≈ IndGGiW
′∗
i as

G-Galois covers of X ′∗i for i = 1, 2, and V ∗ ×T∗ T̂ ∗ ≈ IndGI N̂
∗ as G-Galois covers of T̂ ∗.

Proof. We preserve the notation of the statements of 2.1 and 2.2. As in the proof of
Proposition 2.1, W ′∗i → X ′∗i and N̂∗ → T̂ ∗ are flat and hence define projective modules,

since the total spaces are normal surfaces. So V2 = IndGI ON̂∗ is an object in GP(T̂ ∗) and

IndGGi OW ′∗i is an object in GP(X ′∗i ), and so V1 = IndGG1
OW ′∗1 × IndGG2

OW ′∗2 is an object

in GP(X ′∗1 ∪X ′∗2 ). Similarly V0 = IndGI1 OŴ ′∗1 × IndGI2 OŴ ′∗2 is an object in GP(X̂ ′∗1 ∪ X̂ ′∗2 ).

For i = 0, 1, 2, let Vi = Spec(Vi).
By definition of induced modules, we have an isomorphism

OW ′∗
i
⊗Ri[[v]] OX̂′∗

i
→̃ IndGiIi OŴ ′∗i

of modules over X̂ ′∗i . Using OX̂′∗
i
≈ K̂Xi,τ [[v]], this induces an isomorphism

V1 ⊗R1[[v]]×R2[[v]] (K̂X1,τ [[v]]× K̂X2,τ [[v]]) =
2∏
i=1

(IndGGi OW ′∗i ⊗Ri[[v]] OX̂′∗i ) →̃ V0

in GP(X̂ ′∗1 ∪ X̂ ′∗2 ). Here the left hand side is the object in GP(X̂ ′∗1 ∪ X̂ ′∗2 ) induced by V1.
Meanwhile, the given isomorphisms N̂∗ ×T̂∗ X̂ ′∗i →̃ IndIIi Ŵ

′∗
i induce an isomorphism

V2 ⊗ÔT∗,τ (K̂X1,τ [[v]]× K̂X2,τ [[v]]) =

2∏
i=1

(IndGI ON̂∗ ⊗OT̂∗ OX̂′∗i ) →̃ V0
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in GP(X̂ ′∗1 ∪ X̂ ′∗2 ). Again, the left hand side is the object in GP(X̂ ′∗1 ∪ X̂ ′∗2 ) induced by
V2.

Let GC be the category which is the analog of the category C in Corollary 2.2, but with
P replaced by GP. Then the triple (V1,V2,V0), together with the above isomorphisms,
defines an object in GC. So by Corollary 2.2 this object is induced (up to isomorphism)
by an object V in GP(T ∗). Thus V ∗ = SpecT∗ (V) is a G-Galois cover of T ∗ inducing Vj
on the jth patch; i.e. inducing IndGGiW

′∗
i → X ′∗i and IndGI N̂

∗ → T̂ ∗, as G-Galois covers.

For i = 1, 2, the identity component of IndGIi Ŵ
′∗
i maps to the identity component

of IndGGiW
′∗
i under V0 → V1, and it maps to the identity component of IndGI N̂

∗ under
V0 → V2. Since the stabilizers of these latter components are respectively Gi and I, and
since the subgroups G1, G2, I generate G, it follows that V ∗ is irreducible.

To verify that V ∗ is normal, it suffices to show that for every closed point σ in
the closed fibre of T ∗, V̂ ∗σ = V ∗ ×T∗ Spec(ÔT∗,σ) is normal. If σ = τ then V̂ ∗σ =

V ∗ ×T∗ T̂ ∗ =̃ IndGI N̂
∗, which is normal. Otherwise, we may identify σ with some other

point on the closed fibre of T ∗, i.e. a point on the closed fibre X ′i of X ′∗i , for i = 1 or 2.

Choosing σ̃ ∈ W ∗i lying over σ ∈ X ′∗i , we have that V̂ ∗σ = IndGGiW
∗
i ×X′∗i Spec(ÔX′∗

i
,σ) is

a union of copies of Spec(ÔW∗
i
,σ̃); this is normal since W ∗i is. []

Lemma 2.4. Let S be a regular scheme, let V be irreducible and normal, and let
π : V → S be a proper surjective morphism such that the fibre over every closed point is
generically smooth.

(a) Then there is a finite étale cover φ : S′ → S and a proper morphism π′ : V → S′

whose closed fibres are non-empty and connected, such that π = φ ◦ π′.
(b) If S is the spectrum of a complete local ring having algebraically closed residue

field, then the closed fibre of π is connected.

Proof. (a) By Stein factorization, if S′ = Specπ∗(OV ), then π factors as V → S′ →
S, where the first morphism is proper with non-empty connected fibres and the second
morphism is finite and surjective. Here S′ is irreducible and normal since V is. By Purity
of Branch Locus, in order to show that S′ → S is étale it suffices to show this property
holds in codimension one. So localizing at an irreducible hypersurface in S reduces us to
the case that S is of dimension one and has only one closed point σ. Now S′ is irreducible,
S′ → S is finite and surjective, and S is regular and of dimension one; so S′ → S is
torsion-free and hence flat. Let m be the maximal ideal in the local ring OS,σ, and let
kσ = OS,σ/m be the residue field at σ. It remains to show that if σ′ ∈ S′ lies over σ, then
k′ = OS′,σ′/mOS′,σ′ is étale over kσ.

Now k′ is local; it is a finite extension of kσ; and it is a subalgebra of the algebra of
global functions on the fibre Vσ′ of V → S′ over σ′. Since the fibre over σ is generically
smooth, it is also generically geometrically smooth, and hence geometrically reduced. Thus
so is k′, which is thus étale over kσ, as desired.

(b) Let S′ be as in (a). Then S′ is connected, and the residue field of S is algebraically
closed; so S′ defines a connected étale neighborhood of the closed point of S. By Hensel’s
Lemma, S′ → S is an isomorphism. So π = π′, and the closed fibre of π is connected. []
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Lemma 2.5. Let k be algebraically closed, let E and Y be smooth irreducible k-
schemes, and let η0, . . . , ηr ∈ Y , and write YE = Y ×k E. Let VE be irreducible and
normal, let VE → E be surjective and proper, let G be a finite group, and let VE → YE be a
G-Galois cover. Assume that VE → YE is étale away from ηE0 , . . . , η

E
r , where ηEi = ηi×kE.

For each i let Ci be an inertia group over the generic point of ηEi , and assume that the
conjugates of the subgroups Ci together generate G. Then for all closed points e in a
non-empty open subset of E, the fibre Ve is irreducible.

Proof. By the ramification hypothesis, for each closed point e ∈ E the fibre Ve → Ye
of VE → YE is generically étale. Since Ye ≈ Y is smooth, it follows that Ve is generically
smooth. So by Lemma 2.4(a), we may factor VE → E as VE → D → E, where the first
morphism is proper with non-empty connected fibres and the second morphism is finite
étale.

Since the compositions VE → YE → E and VE → D → E agree, they together induce
a morphism VE → YD = YE×ED, through which VE → YE factors. Since k is algebraically
closed, and since Y and D are connected, the product YD = Y ×k D is also connected.
And since D → E is finite étale, so is YD → YE . Thus YD → YE is an étale subcover of
VE → YE , and we may write YD = VE/N for some normal subgroup N of G. Since the
inertia groups of VE → YE over ηEi are the conjugates of Ci (for i = 0, . . . , r), and since
YD → YE is étale, it follows that N contains all the conjugates of the subgroups Ci. But
the conjugates of the subgroups Ci generate G; so N = G. Hence YD = VE/G = YE and
so D = E. Thus by definition of D, the fibres of the projective morphism VE → E are
non-empty and connected.

Now pick any k-point ε on E. The fibre Vε of VE → E over ε is (geometrically)
connected and generically smooth. Since VE is a normal k-scheme, it is geometrically
unibranched along Vε. Since the morphism VE → E is projective, Proposition 5 of [Ha3]
applies. That result asserts that the desired conclusion holds. []

Proposition 2.6. Assume k is algebraically closed. Let X be a smooth connected
projective k-curve; ξ0, . . . , ξr ∈ X; K = k((t)); Xo = X ×k K; and ξoi = ξi ×k K ∈ Xo for
each i. Let G be a finite group, let πo : V o → Xo a regular G-Galois cover of K-curves
with branch locus {ξo0 , . . . , ξor}, and for each i let Ci be an inertia group over ξoi . Let
I ⊂ {0, . . . , r}, and for each i ∈ I assume V o is K-smooth at (πo)−1(ξoi ). Suppose either

(i) V o is irreducible, and G is generated by the conjugates of C0, . . . , Cr; or

(ii) There is a projective k[[t]]-curve T ∗, an irreducible normal scheme V ∗ with gener-
ically smooth closed fibre, and a G-Galois cover V ∗ → T ∗ with generic fibre V o → Xo.

Then there is a k-subalgebra A ⊂ K of finite type, and a regular G-Galois cover
πE : VE → XE = X ×k E (where E = Spec(A)), such that

(a) VE → XE is branched only over ξE0 , . . . , ξ
E
r , where ξEi = ξi ×k E;

(b) For each i ∈ I, Ci is an inertia group over ξEi , and VE → E is smooth at π−1E (ξEi );

(c) The fibre of VE → XE over each closed point of E is irreducible and non-empty;

(d) VE ×E K is isomorphic to V o as a G-Galois cover of Xo.
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Proof. (i) Since a G-Galois cover is of finite presentation, it follows that V o → Xo

descends, along with its G-action, to a regular k-subalgebra A ⊂ K of finite type over
k, having (smooth) connected spectrum E = Spec A. That is, there is an irreducible
regular E-scheme VE such that VE → E is surjective, and there is a G-Galois cover
VE → XE = X ×k E, satisfying (a), (b), and (d). It remains to show that (c) can also be
satisfied. By Lemma 2.5 (taking Y = X and ηi = ξi), the fibre Ve of VE → E over e is
irreducible, for all closed points e in a non-empty open subset E′ ⊂ E. We may assume
that E′ is a basic open subset Spec(A′) of E, where A′ = A[f−1], for some non-zero f ∈ A.
Replacing A by A′, and VE → XE by the pullback over E′, the result follows.

(ii) By hypothesis, the closed fibre of V ∗ → Spec(k[[t]]) is generically smooth. So
applying Lemma 2.4(b) to V ∗ → Spec(k[[t]]), we deduce that the closed fibre is connected.

Since the connected normal G-Galois cover V ∗ → T ∗ is of finite presentation, it
descends to a regular k[t]-algebra R ⊂ k[[t]] of finite type over k[t]. That is, for some
such algebra R, if we let A = R[t−1] and E = Spec(A), then there is a connected normal
projective R-scheme XR such that XE = XR ×R E is isomorphic to X ×k E; and there is
an irreducible normal projective R-scheme VR together with a G-Galois covering morphism
VR → XR which induces V ∗ → T ∗ over k[[t]], and such that VE = VR ×R E is regular and
satisfies (a), (b), and (d).

It remains to verify (c). Since VR induces V ∗, the fibre of VR over (t = 0) is connected
and generically smooth. Moreover V ∗ is normal. Applying [Ha3,Proposition 5] to VR →
Spec(R), and letting ε be the point (t = 0), it follows that for all k-points e in a dense
open subset of Spec(R) (and hence in a dense open subset of E = Spec(R)− (t = 0)), the
fibre Ve is irreducible. So as in the case of (i), after shrinking E we obtain condition (c)
as well. []

Corollary 2.7. Under the hypotheses of Proposition 2.6, there is a smooth connected
G-Galois cover V0 → X, branched only over ξ0, . . . , ξr, and with Ci an inertia group over
ξi for i ∈ I.

Proof. Let E and VE → XE be as in Proposition 2.6. Take any closed point e ∈ E,
and let V0 be the normalization of the fibre Ve of VE → E over e. Then V0 → X is as
desired. []
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Section 3. Some results on p-covers.

This section contains some results concerning the moduli space of p-covers of an affine
curve in characteristic p. These will used to obtain a family of cyclic-by-p covers of the
line in section 4, for use in section 5. In this section, and for the remainder of the paper,
we will work over a fixed base field k which is algebraically closed and of characteristic p.

Let (U, u) be a smooth pointed affine curve over k, and let P be a finite p-group. By
[Ha1], there is a fine moduli space MP for (not necessarily connected) pointed P -Galois
étale covers of (U, u) – viz. a certain direct limit of affine spaces Ami

k , where the transition
maps are Z/pZ-linear injections. Actually, there are several ways to make this assertion
precise, depending on which functor is asserted to be represented by MP . In particular,
define the contravariant functors F ′P and F∗P : (k-schemes) → (sets) by F ′P (S) = {étale P -
Galois covers Z → U×S, together with a section of Zu → {u}×S} and F∗P (S) = F ′P (S)/ ∼,
where ∼ is the equivalence relation under which two covers are considered equivalent if
they agree after pullback to U × S̃, for some finite étale cover S̃ → S. Each of these
functors can be extended to a contravariant functor on the category of ind-schemes, i.e.
direct limits of schemes. Namely, define the extended F ′P : (k-ind-schemes) → (sets) by

F ′P (lim
→
Si) = lim

←
F ′P (Si)

and similarly for F∗P . According to [Ha1, 1.7], the ind-scheme MP represents the functor
F∗P . But as shown below (Proposition 3.2), MP also represents F ′P . First we prove a
lemma:

Lemma 3.1. Let (U, u) be a smooth pointed affine curve over k, let S be an irreducible
k-scheme, and let P be a p-group. Let X,Y → U×S be P -Galois étale covers with sections
ξ : S → X, η : S → Y over {u} × S. Let S′ → S be a finite étale cover, let X ′ = X ×S S′
and Y ′ = Y ×S S′, and let ξ′, η′ be the induced sections of X ′, Y ′ → U ×S′ over {u}×S′.
Suppose that there is an isomorphism X ′ → Y ′ of P -Galois covers of U × S′, taking ξ′ to
η′. Then there is an isomorphism X → Y of P -Galois covers of U × S, taking ξ to η.

Proof. Let S′′ = S′ ×S S′ and let X ′′ = X ×S S′′, Y ′′ = Y ×S S′′. It suffices to show
that the natural map

HomU×S(X,Y )→ HomU×S′(X
′, Y ′)

is surjective. By [Gr,IX, Prop. 3.2], this is the equalizer of the two induced maps

HomU×S′(X
′, Y ′)→ HomU×S′′(X

′′, Y ′′).

So it suffices to show that these two induced maps are equal. Now a morphism of covers
X ′ → Y ′ is determined by its restriction to the fibre X ′u over {u} × S′, and similarly for
X ′′ → Y ′′. So it suffices to show that the two induced maps

Hom{u}×S′(X
′
u, Y

′
u)→ Hom{u}×S′′(X

′′
u , Y

′′
u )
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are equal. But since the sections ξ and η exist, and since the covers are P -Galois, the fibres
Xu and Yu are each trivial covers of {u} × S. So any φ′ ∈ Hom{u}×S′(X

′, Y ′) is actually
induced by some φ ∈ Hom{u}×S(Xu, Yu), and thus

Hom{u}×S(X,Y )→ Hom{u}×S′(X
′, Y ′)

is surjective. Again using [Gr,IX, Prop. 3.2], the conclusion follows. []

Proposition 3.2. With notation as above, MP represents F ′P .

Proof. There is a natural map F ′P → F∗P which sends each cover to its equivalence
class. By definition this is surjective, and it is injective by Lemma 3.1. So the functors F ′P
and F∗P are isomorphic, proving the result. []

Thus for every k-scheme S, the morphisms S → MP are in natural bijection with
the isomorphism classes of Galois étale P -covers Z → U × S, together with a section over
{u} × S. In the case that S = k, this says that the k-points of MP are in bijection with
isomorphism classes of P -Galois étale covers Z → U , together with base point over u. If P
is an elementary abelian p-group (i.e. of type (p, p, . . . , p)), then MP (k) may be functorially
identified with the Z/p-vector space H1(U,P ) [Ha1, Theorem 1.2].

Remark. If the analogous functors without section were considered, then they would
not be isomorphic, i.e. the equivalence relation ∼ would not be trivial. For example take
the covers of the (x, t)-plane A1×A1, given respectively by yp− y = x and yp− y = x+ t.
Then for each α ∈ k, the covers have isomorphic fibres over A1 × (t = α), but the covers
are not themselves isomorphic. Note also that the second cover does not have a section
over (x = 0)×A1.

If P and Q are p-groups, and φ : P → Q is a group homomorphism, then there is an
induced morphism of functors F ′P → F ′Q, and hence an induced morphism MP → MQ.
In particular, taking Q = P , if φ : P → P is an automorphism then there is an induced
automorphism MP →MP . This association is functorial; so if a group C acts on P , then
C also acts on MP . More explicitly, in terms of the k-points of MP , we may describe the
induced C-action as follows: For any ξ ∈MP , consider the corresponding pointed P -Galois
cover Zξ → U . Then for c ∈ C, c∗(ξ) is the point ξ′ of MP corresponding to the pointed
P -Galois cover Zξ′ → U whose underlying pointed cover is the same as that of Zξ → U ,
but whose P -action is defined so that c · g acts on Zξ′ in the same manner that g acts on
Zξ, for all g ∈ P .

According to [Ha1, Theorem 1.2], MP also represents the functor FP : (pointed ind-
schemes over k) → (sets) given by FP (S) = {equivalence classes of P -Galois covers of
S×U , with a base point over (s, u)}, where s is the base point of S. Here, two such covers
are declared to be equivalent if and only if they agree after pullback by some finite étale
cover T → S. So FP (S) is the quotient of Hom(π1(S×U), P ) by this equivalence relation.

In particular, the set MP (k) is in bijection with Hom(π1(U), P ), which parametrizes
the pointed P -Galois covers of U (which, as always, come equipped with a fixed group
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action). Here, the surjective homomorphisms correspond to the connected covers. Given
such a cover, if the choice of base point over {u} is changed by g ∈ P , then the unique
isomorphism taking the old base point to the new one will in general not preserve the
given group action (which will be conjugated by g); and so the isomorphism class of the
object will in general change. Observe similarly that the quotient Hom(π1(U), P )/Inn(P )
parametrizes P -Galois covers of U without a chosen base point.

By [Ha1, Theorem 1.2], if P is elementary abelian, then MP is a direct limit of
commutative group schemes. Also by that result, the corresponding group structure on
the set k-points MP (k) is the same as that on H1(U,P ) = Hom(π1(U), P ), under its
identification with MP (k). In particular, this group is p-torsion.

If A ⊂ P is a central elementary abelian subgroup of a p-group P , then MA acts
on MP , via compatible actions of MA(S) on MP (S) for all k-schemes S. Namely, using
the fact that MP represents FP and that FP (S) = Hom(π1(S × U), P )/ ∼, each such
action is induced by the action of Hom(π1(S × U), A) on Hom(π1(S × U), P ) given by
(η · ψ)(ξ) = η(ξ)ψ(ξ) ∈ P , where ξ ∈ π1(S × U), η ∈ Hom(π1(S × U), A), and ψ, η · ψ ∈
Hom(π1(S × U), P ). In particular, if P = A, the action of MA on itself agrees with the
group structure on MA (which is written additively).

With A ⊂ P as above, let P = P/A. Then the quotient map P → P induces a
morphism ν : MP → MP . Observe that the fibres of ν are the orbits of the action of MA

on MP . Now since MP represents FP , for any scheme S and any morphism γ : S → MP

there is an induced family of P -Galois covers of U parametrized by S, and this in turn
corresponds to a homomorphism ψ : π1(S×U)→ P . Since π1(S×U) has p-cohomological
dimension ≤ 1 [AGV, X 5.1], ψ lifts to a homomorphism ψ : π1(S × U) → P , by [Se1,
I Prop. 16]. Since MP represents FP , we thus obtain a lifting γ : S → MP of γ, i.e. a
morphism such that ν ◦ γ = γ.

Now fix a γ : S →MP as above, and let Hγ be the set of liftings of γ to Hom(S,MP ).
For each choice of a (base) lifting γ : S → MP of γ, there is an induced structure on Hγ

as a p-torsion abelian group, such that γ is the zero element. Namely, if γ1, γ2 ∈ Hγ , then
define γ1 + γ2 as follows: Since γ ∈ Hγ , for i = 1, 2 there is an αi ∈ MA(S) such that
γi = αi · γ for some αi ∈MA(S). Now take γ1 + γ2 = (α1 + α2) · γ. This group law is not
canonical, however, since it depends on the choice of a base lifting γ. Nevertheless, we do
have the following result:

Proposition 3.3. Let P be a p-group, let A ⊂ P be a central elementary abelian
subgroup, and let P = P/A. Let γ : S → MP be a morphism, and let γ1, . . . γn ∈ MP (S)
be lifts of γ. Let a1, . . . , an ∈ Z/pZ be elements satisfying

∑n
i=1 ai = 1.

(a) Then
∑n
i=1 aiγi is independent of the choice of base lifting γ of γ.

(b) Let σ ∈ Aut(P ) satisfy σ(A) = A. Let σ∗ denote the induced automorphisms on
MP and on MP . Then σ∗(αγ) = σ∗(α)σ∗(γ) for each lift γ of γ and each α ∈ MA(S); σ∗
preserves the fibres of ν : MP →MP ; and σ∗(

∑n
i=1 aiγi) =

∑n
i=1 aiσ∗(γi).

Proof. (a) Let γ, γ′ : S → MP be any two lifts of γ. Thus γ′ = α · γ, for some
α : S → MA. Write γi = αi · γ, for some αi ∈ MA(S). Thus γi = α′i · γ′, where
α′i = αi−α : S →MA. With respect to the lift γ,

∑n
i=1 aiγi = (

∑n
i=1 aiαi) ·γ. Meanwhile,
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respect to the lift γ′, we have
n∑
i=1

aiγi = (
n∑
i=1

aiα
′
i) · γ′ = (

n∑
i=1

ai(αi − α)) · (α · γ) = (
n∑
i=1

aiαi) · γ,

using that
∑n
i=1 ai = 1. So the sum is independent of the choice of lift.

(b) The first part of (b) follows from the definition of the action of MA on MP , and by
the hypotheses on σ. The second assertion follows from this by the fact that the fibres of ν
are the MA-orbits on MP . In particular, using this in the special case that γ = α′ ∈MA(S)
(corresponding to the case when γ is trivial), it follows that σ∗ defines a homomorphism
on MA(S).

For the final assertion, let q = ord(σ), and let S̃ be the disjoint union of q copies of
S. Thus the cyclic group 〈σ〉 acts on S̃, by cyclically permuting the copies of S. Define
γ̃ : S̃ →MP such that on the jth copy of S, γ̃ acts like σj∗◦γ. Thus γ̃◦σ∗ = σ∗◦γ̃ : S̃ →MP .

So replacing S by S̃ and γ by γ̃, we may assume that 〈σ〉 acts on S in a such a way that
γ ◦ σ∗ = σ∗ ◦ γ : S →MP .

Choose a base lift γ of γ. The actions of σ∗ on MP and on S induce another lift
γ′ of γ, given by γ′ = σ∗ ◦ γ ◦ σ−1∗ : S → MP . Writing γi = αi · γ, we have that∑n
i=1 aiγi =

∑n
i=1(aiαi) · γ. So the left hand side of the final assertion of (b) is equal to

σ∗
(
(

n∑
i=1

aiαi) · γ
)

= σ∗
( n∑
i=1

aiαi
)
· σ∗(γ) =

( n∑
i=1

aiσ∗(αi)
)
· (γ′ ◦ σ∗),

using that σ∗ is a homomorphism on MA(S). Similarly, σ∗(γi) = σ∗(αi) · (γ′ ◦ σ∗). But
each σ∗(γi) is a lift of σ∗(γ) = γ ◦ σ∗. So using (a), and taking γ′ ◦ σ∗ as the base lift
of γ ◦ σ∗, we obtain that the right hand side of the final assertion in (b) is also equal to
(
∑n
i=1 aiσ∗(αi)) · (γ′ ◦ σ∗). This proves the last part of (b). []

Lemma 3.4. Let P be a finite p-group, let A be a central elementary abelian p-
subgroup of P , let P = P/A, and let ν : MP → MP be the induced morphism of moduli
spaces. Let σ ∈ Aut(P ) be an automorphism of order n prime to p, and assume that
σ(A) = A. Let τ (0), . . . , τ (r) ∈ A1 − {0}, let η(0), . . . , η(r) ∈ MP , and let η(e) = ν(η(e))
for all e. Suppose that for 1 ≤ e, e′ ≤ r, we have that [τ (e)]n = [τ (e

′)]n if and only if
e = e′. Let F : A1 → MP be a morphism such that F (τ (e)) = η(e) for all e, and such

that F (ζnτ) = σ∗(F (τ)) for all τ ∈ A1, where ζn ∈ k is a fixed nth root of unity. Then
there is a morphism F : A1 → MP such that ν ◦ F = F , F (τ (e)) = η(e) for all e, and
F (ζnτ) = σ∗(F (τ)) for all τ ∈ A1.

Proof. By composing F : A1 → MP with a section of ν : MP → MP , we obtain

a morphism F0 : A1 → MP such that ν ◦ F0 = F . For each e = 0, . . . r and each

i = 0, . . . , n − 1, let η
(e)
i = σi∗(η

(e)) and τ
(e)
i = ζinτ

(e). In particular, η
(e)
0 = η(e) and

τ
(e)
0 = τ (e), for all e.

For each e and i, ν(η
(e)
i ) = σi∗(ν(η(e))) = σi∗(η

(e)) = σi∗(F (τ (e))) = F (τ
(e)
i ) =

ν(F0(τ
(e)
i )). So there is an element α

(e)
i ∈ MA(k) such that α

(e)
i · F0(τ

(e)
i ) = η

(e)
i , un-

der the action of MA on MP . Since the set {α(e)
i | e = 0, . . . r; i = 0, . . . , n − 1} is finite,
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the points α
(e)
i ∈ MA(k) all lie in a common affine space Am in the direct limit defining

MA. For each e and i write α
(e)
i = (α

(e)
i,1 , . . . , α

(e)
i,m) ∈ Am

k ⊂MA(k).

By hypothesis, the points τ
(e)
i ∈ A1 (e = 0, . . . r; i = 0, . . . , n− 1) are distinct. Hence

there are polynomials φ1, . . . , φm ∈ k[t] such that φj(τ
(e)
i ) = α

(e)
i,j for all e, i, j. Let φ =

(φ1, . . . , φm) : A1 → Am ⊂ MA. Thus φ(τ
(e)
i ) = α

(e)
i for all e, i. Let F1 : A1 → MP be

given by F1 = φ · F0. Then ν ◦ F1 = ν ◦ F0 = F , and F1(τ
(e)
i ) = α

(e)
i · F0(τ

(e)
i ) = η

(e)
i for

all e, i. In particular, F1(τ (e)) = η(e) for all e.

Finally, define F : A1 → MP by F (t) =
∑n−1
i=0 (1/n)σ−i∗ F1(ζint). This is well de-

fined by Proposition 3.3(a), since the projections ν(σ−i∗ F1(ζint)) = σ−i∗ F (ζint) = F (t)
are all equal. We wish to verify the three desired properties for F . First, the com-
position ν ◦ F (t) =

∑n−1
i=0 (1/n)σ−i∗ F (ζint) =

∑n−1
i=0 (1/n)F (t) = F (t). Second, we have

F (τ (e)) =
∑n−1
i=0 (1/n)σ−i∗ F1(τ

(e)
i ) =

∑n−1
i=0 (1/n)σ−i∗ (η

(e)
i ) =

∑n−1
i=0 (1/n)η(e) = η(e). And

third, using Proposition 3.3(b) we obtain that F (ζnτ) =
∑n−1
i=0 (1/n)σ−i∗ F1(ζi+1

n τ) =

σ∗(
∑n−1
i=0 (1/n)σ

−(i+1)
∗ F1(ζi+1

n τ)) = σ∗(
∑n−1
i=0 (1/n)σ−i∗ F1(ζinτ)) = σ∗(F (τ)). []

Proposition 3.5. Let P be a finite p-group, and let C be a cyclic group of order n
prime to p, having generator σ. Let C act on P , let σ∗ be the induced automorphism of
the moduli space MP of pointed P -Galois étale covers of the pointed affine curve (U, u),
and let ξ0 ∈MP . Then there is a morphism F : A1 →MP such that

(1) F (1) = ξ0,

(2) F (ζnτ) = σ∗(F (τ)) for all τ ∈ A1, where ζn is a fixed primitive nth root of unity
in k, and

(3) For every proper normal subgroup N of P , the induced morphism A1 →MP/N

is non-constant.

Proof. The result is trivial if P is the trivial group. Proceeding by induction on the
order of P , we assume that P is non-trivial, and that the result holds for all p-groups P ′

of order less than that of P . There are two cases:

Case 1: P is an elementary abelian p-group. Let N1, . . . , Nr be the subgroups of P
having index p, let Pe = P/Ne, and let νe : MP →MPe be the induced morphism between
moduli spaces. By the comments before Proposition 3.3 concerning lifting, νe is surjective
on points. So for each e = 1, . . . , r, there is a k-point η(e) ∈MP such that νe(η

(e)) 6= νe(ξ0).
Also, let η(0) = ξ0.

Let τ (0) = 1. Since k is infinite, we may choose non-zero elements τ (1), . . . , τ (r) ∈ k
such that no τ (e)/τ (e

′) is an nth root of unity, for e 6= e′, 0 ≤ e, e′ ≤ r. Thus the
hypotheses of Lemma 3.4 are satisfied (with A = P , and with P and F trivial). Hence
there is a morphism F : A1 → MP such that F (τ (e)) = η(e) for all e = 0, . . . , r, and
F (ζnτ) = σ∗(F (τ)) for all τ ∈ A1. So (1) and (2) hold. If remains to show (3).

It suffices to check (3) for maximal proper subgroups N ⊂ P . Thus we may assume
N = Ne for some e. Now F (τ (e)) = η(e), and so νe ◦ F (τ (e)) = νe(ηe). By construction,
νe(η

(e)) 6= νe(ξ0), and νe(ξ0) = νe ◦ F (1) by (1). Hence νe ◦ F (τ (e)) 6= νe ◦ F (1). Thus the
induced morphism νe ◦ F : A1 →MP/N is non-constant, proving (3).
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Case 2: Otherwise. Then the Frattini subgroup Q ⊂ P is a non-trivial proper sub-
group of P , and hence Q has a non-trivial center Z. Let A ⊂ Z consist of the p-torsion
elements. Thus A is a non-trivial characteristic subgroup of P (and so is σ-invariant), it
is unequal to P , and it is an elementary abelian p-group. Let P = P/A, let ν : MP →MP

be the induced morphism of moduli spaces, and let ξ0 = ν(ξ0). Since the order of P is
strictly less than that of P , the inductive hypothesis implies that there is a morphism
F : A1 → MP such that F (1) = ξ0; F (ζnτ) = σ∗(F (τ)) for all τ ∈ A1; and the induced

morphism F
′

: A1 →MP ′ is non-constant for each non-trivial quotient P ′ of P . Applying
Lemma 3.4, we obtain a morphism F : A1 → MP such that ν ◦ F = F , F (1) = ξ0, and
F (ζnτ) = σ∗(F (τ)) for all τ ∈ A1. Thus (1) and (2) hold, and it remains to check (3).

As in case 1, it suffices to check (3) for maximal proper subgroups N of P . (Each such
N is normal, since P is a p-group.) Since the Frattini subgroup Q is the intersection of the
maximal proper subgroups of P , we have that N contains A. Since A is a characteristic
subgroup of P , it is also a normal subgroup of N , and (P/A)/(N/A) is isomorphic to
P ′ = P/N . Let ν′ : MP → MP ′ and ν′ : MP → MP ′ be the induced morphisms of

moduli spaces. Thus ν′ ◦ ν = ν′. By the inductive hypothesis, F : A1 → MP induces a

non-constant morphism F
′

= ν′ ◦ F : A1 → MP ′ . But ν ◦ F = F and ν′ ◦ ν = ν′. So

the induced morphism ν′ ◦ F : A1 →MP ′ of (3) is equal to F
′
, and so is non-constant, as

desired. []

Section 4. Cyclic-by-p families.

Using the results of section 3, this section constructs and studies a family of cyclic-by-p
unramified covers of the affine k-curve P1 − {0,∞} (where as before, k is algebraically
closed of characteristic p). The family will be used in section 5, in proving Conjectures 1.1
and 1.2 in the case of P1 − {0,∞}. Specifically, the results of this section will be used in
section 5 to show that an extension G of a prime-to-p cyclic group C by a quasi-p-group
Q must occur as a Galois group over the twice punctured projective line, with one branch
point tame. Cf. Proposition 5.2 and Theorem 5.4.

Remark. At first glance, a much simpler strategy may suggest itself for constructing
such a G-Galois cover of P1−{0,∞}. Namely, by [Ra], there is a Q-Galois cover π : W →
P1 of the projective t-line which is branched only over infinity. Let ψ : P1 → P1 be the
map from the t-line to the s-line given by s = tn. Then the composition ψ ◦ π : W → P1

is a cover of the s-line branched only over (s = 0) and (s =∞), and tamely ramified over
(s = 0). But this cover will not in general be Galois with group G, or even be Galois at all.
So instead, Proposition 4.1 below is used to construct (in Lemma 5.1) a cyclic-by-p cover
that can be patched (in 5.2) to the Q-cover W in a way that yields the desired G-cover.
See also the remark after the proof of 5.2.

Observe that if P is a p-group, and V → P1 is an irreducible P -Galois branched cover
which is ramified only over one point, then the cover is totally ramified there. For otherwise,
the inertia groups over the branch point are the conjugates of a proper p-subgroup I of P .
Since P is a p-group, I and hence its conjugates lie in a proper normal subgroup N of P .
Thus V/N is a nontrivial connected étale cover of P1, which is impossible.
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Proposition 4.1. Let H be a cyclic-by-p group with Sylow p-subgroup P and cyclic
quotient C of order n (prime to p). Define θ : P1×P1 → P1×P1 by θ(x, t) = (x, s) where
s = tn. Let Y ′ → A1 be a connected P -Galois étale cover of the affine x-line over k. Then
there is a connected normal k-surface Z and a P -Galois morphism π : Z → P1 × P1 to
(x, t)-space, such that

(i) the restriction π′ : Z ′ → A1 ×A1 of Z is finite étale;

(ii) the fibre of Z ′ over A1 × (t = 1) is isomorphic to Y ′ → A1;

(iii) the morphism π is totally ramified over (x =∞) and over (t =∞); and

(iv) the composition θ ◦ π : Z → P1 ×P1 is a H-Galois ramified cover, with branch
locus (s = 0) ∪ (s = ∞) ∪ (x = ∞). It is tamely ramified over (s = 0) with inertia group
C, it is totally ramified over (s =∞), and P is the inertia group over (x =∞).

Proof. Step 1: Construction of Z.

Since H is a semidirect product of P with C, C acts on P by conjugation. As in
section 3, let σ be a generator of C, let ζn be a primitive nth root of unity in k, and let
MP be the fine moduli space of étale P -Galois covers of A1 pointed over (x = 0). Choose a
base point on Y ′ over (x = 0), and let ξ0 ∈MP be the k-point corresponding to the pointed
cover Y ′ → A1. By Proposition 3.5, we obtain a morphism F : A1 →MP satisfying (1) -
(3) of that result.

The morphisms F : A1 → MP and F̃ = σ∗ ◦ F : A1 → MP , defined on the affine
t-line, induce P -Galois étale covers π′ : Z ′ → A1 ×A1, π̃′ : Z̃ ′ → A1 ×A1 of (x, t)-space
with sections over (x = 0)×A1. Let π : Z → P1×P1 be the normalization of P1×P1 in
Z ′. Thus (i) holds. By construction, the fibre Z ′α of Z ′ over A1× (t = α) is in the class of
F (α), for all α ∈ A1. In particular, by (1) of Proposition 3.5, the fibre over A1 × (t = 1)
in isomorphic to the P -Galois cover Y ′ → A1, together with its base point over (x = 0).
Thus (ii) holds.

Step 2: Showing that θ ◦ π is H-Galois.

Let C act on the t-line A1 by σ∗ : (t = α) 7→ (t = ζnα). So 1 × σ∗ defines an action
of C on (x, t)-space A1 ×A1. We will lift this to an action Φ of C on Z ′, in such a way
that Φ and the given action of P on Z ′ generate a copy of H acting on Z ′. This will then
extend to a Galois action of H on Z over (x, s)-space P1 ×P1.

By (2) of Proposition 3.5, for each α ∈ A1, the fibre Z̃ ′α of Z̃ ′ over A1 × (t = α) is in
the class of σ∗(F (α)) = F (ζnα), and so is isomorphic to Z ′ζnα. Meanwhile, by definition
of the action of C on MP , this fibre is isomorphic to Z ′α as a pointed cover, but with a
different P -action. Namely, for g ∈ P , σgσ−1 acts on Z̃ ′α = Z ′ζnα in the same way that g
acts on Z ′α.

Let Z ′∗ → A1×A1 be the P -Galois cover with a section over (x = 0) whose underlying
cover and section agree with those of Z̃ ′, but whose P -action is defined so that each g ∈ P
acts on Z ′∗ in the same way that σgσ−1 acts on Z̃ ′. Thus Z ′∗ is a family of P -Galois
covers of A1 together with a section over (x = 0), parametrized by the t-line. Since MP

is a fine moduli space for such covers, it follows that Z ′∗ → A1 × A1 is induced by the
morphism F ∗ : A1 → MP taking each point (t = α) to the point of MP corresponding
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to the class of Z ′∗α . But by construction, Z ′∗α is isomorphic to Z ′α, as a P -Galois pointed
cover, for all α. So F ∗ = F , and hence Z ′ and Z ′∗ are isomorphic as P -Galois covers
with sections. Equivalently, there is an isomorphism φ : Z ′ → Z̃ ′ of covers of (x, t)-space
A1 ×A1 preserving the section over (x = 0), and such that for each g ∈ P and z ∈ Z ′,
φ((σ−1gσ)(z)) = g(φ(z)). That is, π̃′ ◦ φ = π′ and

(*) φ−1gφ = σ−1gσ : Z ′ → Z ′ for all g ∈ P .

With respect to the above action σ∗ on the t-line, the fibre of the P -Galois cover
(1 × σ−1∗ ) ◦ π′ : Z ′ → A1 × A1 over (t = α) is the P -Galois cover Z ′ζnα → A1. So

(1×σ−1∗ )◦π′ : Z ′ → A1×A1 is induced by the map F ◦σ∗ : A1 →MP . But σ∗◦F = F ◦σ∗
by property (2) of Proposition 3.5, and π̃′ : Z̃ ′ → A1 ×A1 is the P -Galois cover induced
by the map σ∗ ◦F . So there is an isomorphism between these two P -Galois covers, i.e. an
isomorphism ι : Z̃ ′ → Z ′ such that [(1× σ−1∗ ) ◦ π′] ◦ ι = π̃′, and

(**) ι−1gι = g : Z̃ ′ → Z̃ ′ for all g ∈ P ,
as well as preserving the section.

Let Φ = ι◦φ : Z ′ → Z ′. Then (θ◦π′)◦Φ = [θ◦(1×σ−1∗ )]◦π′◦ι◦φ = θ◦π̃′◦φ = θ◦π′. So Φ
is an automorphism of the cover θ◦π′ : Z ′ → A1×A1. Also, (1×σ−1∗ )◦π′◦ι = π̃′ = π′◦φ−1,
and so π′ ◦Φ = (1×σ∗)◦π′. Thus Φ : Z ′ → Z ′ lifts the action of 1×σ∗ on the intermediate
C-cover θ : A1 ×A1 → A1 ×A1. As a consequence, Φn lifts the identity on (x, t)-space
A1 ×A1, and so it is an automorphism of the P -Galois cover π′ : Z ′ → A1 ×A1 of (x, t)-
space which preserves the section. Hence Φn = 1. Moreover Φ−1gΦ = σ−1gσ for all g ∈ P ,
by (*) and (**). Thus Φ and P generate a group of automorphisms of θ◦π′ : Z ′ → A1×A1

which is isomorphic to H, the semidirect product of P with C. Since the degree of θ ◦ π′
is equal to (#P )(#C) = #H, it follows that θ ◦ π′ : Z ′ → A1 ×A1 is Galois with group
H, and hence so is θ ◦ π : Z → P1 ×P1.

Step 3: Verification of the other properties.

It remains to show the rest of (iv), condition (iii), and the connectivity of Z. Now
the branch locus of θ ◦ π is the union of that of θ with the image of that of π, and the
ramification indices multiply. So the branch locus of θ ◦ π is (s = 0)∪ (s =∞)∪ (x =∞).
For all α, Φ takes the fibre Z ′α to Z ′ζnα, sending base point to base point. So Φ restricts
to the identity on the fibre Z ′0. Thus the inertia group over (s = 0) is C ⊂ H. Hence (iv)
will follow from (iii), as will connectivity of Z.

So to complete the proof it suffices to show that (iii) holds. By [Ha1,1.12], there is a
dense open subset Mo

P ⊂MP corresponding to the connected étale P -Galois covers of A1.
Since Z ′α → A1 is in the class of F (α) for all α ∈ A1, and since Z ′1 = Y ′ is connected, it
follows that the point F (1) lies in Mo

P . So for all α in a dense open subset of A1, Z ′α → A1

corresponds to a point in Mo
P , and hence Zα → P1 is an irreducible P -Galois cover. Since

P is a p-group, and since Zα → P1 is ramified only over infinity, it follows by the comment
just before the proposition that Zα is totally ramified over infinity, for each α in the open
set. Thus π : Z → P1 ×P1 is totally ramified over (x =∞). This shows half of condition
(iii).

To conclude the proof, we need to show that π is totally ramified over (t = ∞).
So assume not, and let I be an inertia group over the generic point of (t = ∞). By
assumption, I is a proper subgroup of P . Since P is a p-group, I lies in a proper normal
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subgroup N ⊂ P . Let P = P/N , let ν : MP → MP be the induced morphism between

moduli spaces, and let π : Z → P1 × P1 be the quotient of Z by N . Let Z
′′

be the
inverse image of A1 × P1 under π. This is normal, and unramified in codimension 1; so

by Purity of Branch Locus, it is étale. So Z
′′ → A1 × P1 defines a family of pointed

P -Galois covers of the affine x-line, parametrized by the projective t-line. The restriction
of this family to A1 ×A1 corresponds to the quotient Z ′/N , and hence is induced by the
morphism F = ν ◦ F : A1 →MP on the affine t-line. Since MP is a fine moduli space for

P -Galois covers of the affine line, the full family Z
′′ → A1×P1 is induced by a morphism

ψ : P1 → MP which extends F . Since MP is a direct limit of affine spaces, it follows

that ψ is constant, and hence so is F . This contradicts (3) of Proposition 3.5, thereby
completing the proof. []

Proposition 4.2. In the situation of Proposition 4.1, let δ ∈ S = P1 × P1 be the
point (x = s = ∞) in (x, s)-space, and let b : S′ → S be a blow-up at a finite set of
distinct points including δ. Let D ⊂ S′ be the exceptional divisor over δ, and let Z ′ be
the normalization of the pullback Z ×S S′. Then the H-Galois cover Z ′ → S′ is totally
ramified over D.

Proof. Let T be (x, t)-space P1 × P1. In an affine neighborhood of the point δ ∈ S,
take local coordinates x = x−1 and s = s−1. Similarly, on an affine neighborhood of the
point θ−1(δ) ∈ T , take local coordinates x = x−1 and t = t−1. Thus in a neighborhood of
δ, the morphism θ : T → S is given by s = t

n
. Also, over an affine neighborhood of δ that

excludes the other blown-up points, S′ is described in an affine patch S′1 by s = wx and
in a complementary affine patch S′2 by x = us. The exceptional locus D is given in S′1 by
(x = 0), and it is given in S′2 by (s = 0). Let T ′ = T ×S S′. Thus T ′ is given over the
patch S′1 by t

n
= wx, and it is given over S′2 by t

n
= s. So T ′ is normal, and T ′ → S′ is

totally ramified over D.
It remains to show that the P -Galois cover Z ′ → T ′ is totally ramified over the inverse

image L ⊂ T ′ of D ⊂ S′. Since T ′ → S′ is totally ramified over D, it follows that L is
irreducible. Let Q ⊂ P be an inertia group of Z ′ → T ′ over the generic point of L. We
wish to show that Q = P . If this does not hold, then Q is contained in a maximal subgroup
M of the p-group P . Now M is normal in P of index p. Let U = Z/M and U ′ = Z ′/M .
Thus U → T and U ′ → T ′ are Z/p-Galois covers, and U ′ → T ′ is unramified over the
generic point of L. Note that on the patch T ′1 ⊂ T ′ over S′1 ⊂ S′, L is given by (x = 0).

Now U → T is a Z/p-Galois cover that ramified only over the loci (x =∞)∪ (t =∞),
and it is totally ramified there. So it restricts to a non-trivial Z/p-Galois étale cover of
the affine (x, t)-plane. Thus it is given over this affine plane by an equation of the form
zp − z = f(x, t), for some f(x, t) =

∑
(i,j)∈I aijx

itj ∈ k[x, t] (where I is a finite index set

and each aij is non-zero). This cover of the affine plane is unchanged if f is altered by
adding a polynomial of the form gp − g, where g ∈ k[x, t]. Since k is algebraically closed,
we may thus assume that f has no constant term. Similarly, we may replace any term of
f by its pmth power, for any positive integer m; and so we may assume that there is a
positive integer N such that for all (i, j) ∈ I, we have pN ≤ ni+ j < pN+1. Moreover the
index set I remains non-empty, since the cover is non-trivial.
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Generically on T ′ (and using the variables on the patch T ′1), the p-cover U ′ → T ′ is
given by

zp − z =
∑

(i,j)∈I

aijw
it
−ni−j

,

since x = t
n
/w. Completing at the point (w = t = x = 0) on T ′, we obtain a normalized

p-extension of k[[w, x]][t]/(t
n − wx) that is unramified over the generic point of (x = 0).

Passing to the overring k((w))[[t]] (where the inclusion of k[[w, x]][t]/(t
n − wx) takes x to

t
n
/w), the induced normalized p-extension given by the same equation is thus unramified

over (t = 0). Hence the same is true for the induced normalized p-extension of K[[t]], where
K is the algebraic closure of k((w)). But K[[t]] has no non-trivial unramified extensions.

So the above extension of K[[t]] is trivial, and hence
∑

(i,j)∈I(aijw
i)t
−ni−j

is of the form

gp−g for some polynomial g ∈ K[t
−1

] = K[t]. Since pN ≤ ni+j < pN+1 for each (i, j) ∈ I,
it follows that g = 0, and hence f = 0. Viewing f =

∑
I aijw

itni+j as a polynomial in t
with coefficients in k[w], we have for every non-negative integer d that the coefficient fd of
td must equal 0. Here

fd =
∑

(i,j)∈Id

aijw
i, (∗)

where Id = {(i, j) ∈ I | ni + j = d}. But no terms in the sum (∗) can cancel, and each
aij 6= 0; hence Id is empty. This holds for all d, so I is empty: a contradiction. []

Section 5. The twice punctured line.

The purpose of this section is to prove Abhyankar’s Conjecture 1.1 in the case of the curve
P1 − {0,∞}, over an algebraically closed field k of characteristic p. Moreover, we also
prove Conjecture 1.2 in this case (cf. Theorem 5.4).

For the affine curve C = P1
k−{0,∞}, Abhyankar’s Conjecture asserts that the groups

G that occur as Galois groups over C are precisely those such that G/p(G) occurs over
the analogous complex curve, P1

C − {0,∞}; i.e. such that G/p(G) is cyclic of order prime
to p. Since it is known that any group which does occur over P1

k − {0,∞} must be of this
form, it suffices to show conversely that each group of this form must indeed occur as the
Galois group of a Galois étale cover of P1

k − {0,∞}.
We first prove a version of the result in a special case in which G is a semi-direct

product (Proposition 5.2). The proof uses Raynaud’s result [Ra] for A1; Propositions 4.1
and 4.2 above; and the patching and deformation results of section 2. See also the remarks
at the beginning of section 4 and after the proof of 5.2, concerning the strategy. The proof
begins with Lemma 5.1 below, which constructs a certain cyclic-by-p cover B∗ → T ∗, in
which the general fibre of T ∗ is a conic and the special fibre consists of two lines meeting
at a point τ . (In the statement of 5.1, an auxiliary space L∗ appears for reasons that may
not be essential; cf. the remark after Proposition 2.1.)

Lemma 5.1. Let H be a semi-direct product of a p-group P and a cyclic group C
of order prime to p. Let Y ′ → A1 be an irreducible P -Galois étale cover of the affine line.
Let L be the projective u-line, let L∗ = L×k Spec(k[[v]]), and let K = k((v)). Then there
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is an irreducible normal cover φ∗ : T ∗ → L∗ and an irreducible normal H-Galois cover
χ∗ : B∗ → T ∗ such that:

(i) The closed fibre X of φ∗ consists of two irreducible components X1, X2, each
isomorphic to the projective line, and meeting at a single point τ ∈ X;

(ii) The open fibre T ∗o = T ∗×Spec(k[[v]]) Spec(K) of φ∗ is isomorphic to the projective
s-line P1

K , and the closures of (s = 0) and (s =∞) in T ∗ meet X ′2 = X2 − {τ};
(iii) The fibre of χ∗ over X ′1 = X1 − {τ} is isomorphic to the H-Galois étale cover

IndHP Y ′ → A1, and P is the inertia group of χ∗ at a point β ∈ B∗ lying over τ .

(iv) The open fibre B∗o → T ∗o of χ∗ is étale away from (s = 0) ∪ (s = ∞), and B∗o

is K-smooth away from (s = ∞). Moreover, C is an inertia group over (s = 0) and H is
the inertia group over (s =∞).

Proof. Let Y → P1 be the normalization of P1 in Y ′. By the observation just prior
to Proposition 4.1, this is a smooth P -Galois cover which is totally ramified at a point η
over the point (x =∞), and is elsewhere unramified.

By Proposition 4.1, we obtain a connected normal P -Galois branched cover π : Z →
P1×P1 of (x, t)-space. Its restriction π′ : Z ′ → A1×A1 is finite étale; the fibre of Z ′ over
A1 × (t = 1) is isomorphic to Y ′ → A1; π is totally ramified over (x = ∞) and (t = ∞);
and the composition θ ◦ π : Z → P1 × P1 is an H-Galois ramified cover of (x, s)-space
(where θ : P1 × P1 → P1 × P1 is given by θ(x, t) = (x, s), s = tn). Moreover, this
H-Galois cover is tamely ramified over (s = 0) with inertia group C, it is totally ramified
over (s =∞), and the inertia group over (x =∞) is P .

Write πα : Zα → P1 for the fibre of π : Z → P1 × P1 over P1 × (t = α), and
π′α : Z ′α → A1 for its restriction to A1 × (t = α). Then for α 6= ∞, Zα is smooth except
possibly over (x =∞), and the normalization of Z1 is isomorphic (as a P -Galois cover of
P1 × (t = 1)) to Y . Letting ζ be the unique ramified point of Z1, we have isomorphisms
K̂Z1,ζ ≈ K̂Y,η of P -Galois k((x−1))-algebras. Note that by Proposition 4.1(iv), P is the
inertia group of θ ◦ π : Z → P1 ×P1 at ζ.

Now define a rational map φ0 : P1 × P1 −−> P1 × P1 by (x, s) 7→ (u, v), where
u = (s − 1 + x−1)−1 and v = (s − 1)/x. Thus φ0 is defined except at the two points δ1 :
(x = 0, s = 1) and δ2 : (x = s =∞). Letting pr2 : P1×P1 → P1 be the second projection
from (u, v)-space to the v-line, we obtain the composition pr2 ◦ φ0 : P1 ×P1 −−> P1 from
(x, s)-space to the v-line, given by v = (s− 1)/x.

Let the surface T be the blow-up of (x, s)-space P1 × P1 at δ1 and δ2, and let D be
the exceptional locus over δ2. We obtain a blow-up map b : T → P1 ×P1 to (x, s)-space,
and a morphism φ : T → P1 × P1 to (u, v)-space, such that φ = φ0 ◦ b as a rational
map. Here φ is a branched covering map of degree 2, and the morphism pr2 ◦ φ : T → P1

to the v-line is smooth except at the points (x = ∞, s = 1) and (x = 0, s = ∞). The
H-Galois ramified cover θ ◦ π : Z → P1 × P1 of (x, s)-space pulls back via the blow-up
morphism b to a morphism χ0 : Σ → T . Since θ ◦ π : Z → P1 ×P1 is smooth away from
(x = ∞) ∪ (s = 0) ∪ (s = ∞), so is the pullback χ0 : Σ → T . Hence the composition
pr2 ◦ φ ◦ χ0 : Σ→ P1 is also smooth away from the locus of (x =∞) ∪ (s = 0) ∪ (s =∞).

But pr2 ◦ φ0 ◦ θ : P1 × P1 → P1 restricts to a well-defined smooth morphism over
(s = 0) (i.e. over (t = 0)), given by v = −x−1. Since π′ : Z ′ → A1×A1 is étale over (t = 0)
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and since the pullback b′ : Σ→ Z of b : T → P1×P1 is the identity over (s = 0), it follows
that the composition (pr2 ◦ φ0 ◦ θ) ◦ π ◦ b′ = pr2 ◦ φ ◦χ0 : Σ→ P1 is smooth along (s = 0),
away from (x =∞). Hence Σ→ P1 is actually smooth away from (x =∞) ∪ (s =∞).

In T , the locus of (x =∞) is the union of D with the proper transform of (x =∞) ⊂
P1×P1 under b : T → P1×P1. The same statement holds with x replaced by s. Now the
proper transform of (x =∞) lies over the locus of (v = 0). Hence on the open set (v 6= 0),
pr2 ◦ φ ◦ χ0 : Σ→ P1 is smooth away from (the total transform of) (s =∞), and Σ→ T
is étale away from (s = 0) ∪ (s =∞) on this open set.

Let K = K̂P1,(v=0) = k((v)), the fraction field of the complete local ring of the
projective v-line P1 at the point (v = 0). Let T ∗o → Spec(K) be the pullback of pr2 ◦ φ :
T → P1 under Spec(K) → P1, and let Σ∗o → Spec(K) be the pullback of pr2 ◦ φ ◦ χ0 :
Σ → P1 under Spec(K) → P1. By the previous paragraph, it follows that the pullback
morphism Σ∗o → Spec(K) is smooth away from (s = ∞). Also, C is an inertia group for
the cover Σ∗o → T ∗o over (s = 0), since C is an inertia group for θ ◦ π : Z → P1 × P1

there.

Let B be the normalization of Σ, let ν : B → Σ be the canonical morphism, let
χ = χ0 ◦ ν : B → T , and let β ∈ B be the unique point lying over ζ ∈ Z. Thus P is the
inertia group of χ : B → T at β. Applying Proposition 4.2 (with B and T playing the roles
of Z ′ and S′ there), we find that B → T is totally ramified over D, and thus the inertia
group there is H. Let B∗o be the pullback of B to Spec(K). Thus H is the inertia group
of B∗o → T ∗o over (s = ∞), and B∗o agrees with Σ∗o away from (s = ∞). In particular,
B∗o is K-smooth away from (s =∞), and C is an inertia group over (s = 0) for the cover
B∗o → T ∗o. Moreover, B∗o → T ∗o is étale away from (s = 0) ∪ (s =∞). This shows (iv).

Identify the projective u-line L with the u-axis (v = 0) in (u, v)-space. Its inverse
image φ−1(L) ⊂ T is the union of the proper transforms X1, X2 of the lines (s = 1) and
(x =∞) under the blow-up map b. Here X1 and X2 meet at a point τ lying over the point
λ : (u =∞, v = 0) on L. Thus (i) holds.

We may regard L∗ as the formal completion of (u, v)-space P1×P1 along the projective
line L. Thus there is an “inclusion” morphism L∗ → P1 × P1. The pullback of φ : T →
P1 × P1 under L∗ → P1 × P1 is a degree 2 branched covering morphism φ∗ : T ∗ → L∗,
where T ∗ is the formal completion of T at X = φ−1(L). Let χ∗ : B∗ → T ∗ be the pullback
of χ : B → T . Thus the second assertion in (iii) holds, since it holds for χ.

Now let L∗o be the generic fibre of L∗, i.e. L∗o = L×k Spec(K) = L∗− (v = 0). Note
that T ∗o is the inverse image of L∗o under φ∗ : T ∗ → L∗. Thus T ∗o is the projective curve
over K = k((v)) given as a branched cover of the u-line by the equation Y 2−u−1Y +v = 0
(whose roots are s − 1 and x−1). Identifying Y with s − 1, the function field of T ∗o is
K(Y ) = K(s), with u−1 = Y + v/Y = (s − 1) + v/(s − 1). So this curve is rational, and
indeed is isomorphic to the projective s-line over K, showing the first part of (ii). Since
T ∗ → Spec(k[[v]]) is proper, the closures of the K-points (s = 0) and (s =∞) of T ∗o must
meet the closed fibre X ⊂ T ∗. But X1 lies in the locus of (s = 1). So the loci of (s = 0)
and (s =∞) in T ∗ cannot meet X1, and so must meet X ′2. This proves the second part of
(ii).

Letting ζn be a primitive nth root of unity in k, and identifying the affine x-line with
X ′1 ⊂ T , the fibre of χ∗ over X ′1 becomes identified with the disjoint union of the P -Galois
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étale covers π′ζin
: Z ′ζin

→ A1 of the x-line, as i ranges over i = 0, . . . , n − 1 (since the ζin
are the values of t at which s = 1). This union is in turn isomorphic to the étale cover
IndHP Y ′ → A1, since the cover Y ′ is isomorphic to Z ′1. This proves the first assertion in
(iii), and concludes the proof. []

Proposition 5.2. Let Q be a quasi-p group, let C be a cyclic group of order prime
to p, and let G be a semi-direct product of Q with C. Suppose that C is contained in the
normalizer of some Sylow p-subgroup P ⊂ G. Then there is a smooth connected G-Galois
cover of P1, branched only over the points (s = 0) and (s = ∞), such that the inertia
groups over (s = 0) are the conjugates of C.

Proof. Since Q is a quasi-p-group, by [Ra] there is a smooth connected Q-Galois
cover W → P1 of the projective x-line, branched only at the point (x = ∞), and whose
inertia groups are the Sylow p-subgroups of Q. Let ω be a ramified point of W with
inertia group P . Now the complete local ring of P1 at (x = ∞) is k[[x−1]], with fraction
field k((x−1)), and K̂W,ω is a P -Galois field extension of k((x−1)). So by [Ha1,Cor.2.4],

there is a unique P -Galois étale cover Y ′ → A1 of the affine x-line which induces K̂W,ω
over k((x−1)). Let Y → P1 be the normalization of P1 in Y ′. By the observation just
before Proposition 4.1, this is a smooth P -Galois cover having a unique ramified point η,
lying over the point (x = ∞). By construction, we have an isomorphism K̂Y,η ≈ K̂W,ω of
P -Galois k((x−1))-algebras.

Let H ⊂ G be the subgroup generated by P and C. Since C ⊂ NG(P ) by hypothesis,
H is a semi-direct product of P with C. Taking L to be the projective u-line and L∗ =
L ×k Spec(k[[v]]), Lemma 5.1 yields an irreducible normal cover φ∗ : T ∗ → L∗ and an
irreducible normal H-Galois cover χ∗ : B∗ → T ∗ satisfying (i) - (iv) of that result. In the
notation of Lemma 5.1 (i) and (iii), we may write X ′j = Spec(Rj), where R1 = k[x] and

R2 = k[y]. For j = 1, 2 let X ′∗j and X̂ ′∗j be the formal completions of T ∗ along X ′j and at

Spec(K̂Xj ,τ ), respectively.
For j = 1, 2, we obtain pullbacks χj : B′∗j → X ′∗j , which are H-Galois ramified

covers. Here B′∗2 is normal since B∗ is. Now by 5.1(ii) and (iv), the H-Galois cover
χ2 : B′∗2 → X ′∗2 it totally ramified over the point at which (s =∞) meets X ′2. So since X ′∗2
is irreducible, it follows that B′∗2 is also. Meanwhile, pulling back B∗ to T̂ ∗ = Spec(ÔT∗,τ )

yields the H-Galois cover IndHP B̂
∗ → T̂ ∗, where B̂∗ = Spec(ÔB∗,β) is a P -Galois cover

of T̂ ∗. Let χ̂j : B̂∗j → X̂ ′∗j be the pullback of B̂∗ to X̂ ′∗j . Thus we have an isomorphism

B′∗j ×X′∗j X̂ ′∗j ≈ IndHP B̂
∗
j of H-Galois covers of X̂ ′∗j . By (iii) of Lemma 5.1, the closed fibre

of χ1 is isomorphic to the étale cover IndHP Y ′ → A1. So χ1 and hence χ̂1 are also étale,
and thus are trivial deformations of their closed fibres. In particular, the P -Galois cover
B̂∗1 is a trivial deformation of Spec(K̂Y,η).

Meanwhile, the Q-Galois ramified cover W → P1 of the projective x-line restricts to
a Q-Galois étale cover W ′ → A1 = X ′1, where we identify the affine x-line with X ′1 ⊂ T ∗.
Letting Ŵ ′ = Spec(K̂W,ω), which is a P -Galois cover of X̂ ′1 = Spec(k((x−1))), we have an

isomorphism W ′ ×A1 Spec(k((x−1))) ≈ IndQP Ŵ
′ = Spec(IndQP K̂W,ω) ≈ Spec(IndQP K̂Y,η).

Pulling back W ′ and Ŵ ′ by the morphisms X ′∗1 → X ′1 and X̂ ′∗1 → X̂ ′1 corresponding to
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the inclusions of rings, we obtain a Q-Galois étale cover W ′∗ → X ′∗1 and a P -Galois étale
cover Ŵ ′∗ → X̂ ′∗1 ; these are trivial deformations of W ′ → A1 and Ŵ ′ → Spec(k((x−1))),
respectively. Now B̂′∗1 → X̂ ′∗1 is a trivial deformation of Spec(K̂Y,η) → Spec(k((x−1))),

and we have an isomorphism Ŵ ′ = Spec(K̂W,ω) ≈ Spec(K̂Y,η). This yields an isomorphism

from Ŵ ′∗ to B̂∗1 , as P -Galois étale covers of X̂ ′∗1 . Since B̂∗ ×T̂∗ X̂ ′∗j ≈ B̂∗j , we obtain an

isomorphism B̂∗ ×T̂∗ X̂ ′∗1 ≈ Ŵ ′∗. Note that W ′∗ is regular since W ′ is, and that B′∗2 and

B̂∗ are normal since B∗ is.

We thus can apply Proposition 2.3, with G1 = Q, G2 = H, I = I1 = I2 = P ,
W ′∗1 = W ′∗, W ′∗2 = B′∗2 , and N̂∗ = B̂∗. This yields an irreducible normal G-Galois cover
V ∗ → T ∗ such that V ∗ ×T∗ X ′∗1 ≈ IndGQW

′∗ and V ∗ ×T∗ X ′∗2 ≈ IndGH B
′∗
2 as G-Galois

covers of X ′∗1 and X ′∗2 , and V ∗ ×T∗ T̂ ∗ ≈ IndGP B̂
∗ as G-Galois covers of T̂ ∗. Since its

branching agrees with W ′∗, B′∗2 , and B̂∗ respectively over X ′∗1 , X ′∗2 , and T̂ ∗, it follows by
Lemma 5.1(iv) that its generic fibre is branched only at (s = 0) ∪ (s = ∞). Moreover C
is an inertia group at (s = 0), and H is an inertia group over (s =∞), by Lemma 5.1 (ii)
and (iv). And since B∗o is K-smooth away from (s = ∞) (where K = k((v)) ), so is the
generic fibre V ∗o of V ∗.

Now V o∗ is a dense open subset of V ∗ having dimension one; hence it is irreducible
and regular. The G-Galois branched cover V ∗o → T ∗o = P1

K is branched at the points
(s = 0) and (s = ∞), with C and H respectively occuring as inertia groups, and V ∗o is
smooth over (s = 0). The conjugates of H contain the conjugates of P , and the conjugates
of P (being the Sylow p-subgroups of G) generate Q. Since Q and C generate G, it follows
that the conjugates of H and C generate G. So the result follows from Corollary 2.7, under
case (i) of Proposition 2.6. []

Remark. The strategy in Proposition 5.2 began with a quasi-p cover of the affine line
(from [Ra]), and found (via 4.1 and 5.1) a cyclic-by-p cover of P1

k((x−1)) branched at {0,∞}
and tame over (s = 0), whose behavior at (s = 1) allowed it to be patched to the quasi-p
cover at its branch point. This patching used formal geometry. M. Raynaud has observed
to the author that this strategy can also be carried out with rigid geometry, using ideas
from [Ra]. This requires a cyclic-by-p cover of the k((v))-line with branching as above,
agreeing with a given p-cover over an annulus centered at (s = 1). The existence of such a
cover follows from a variant of [Ra, Cor. 4.2.6]. There, from a cover V → U and a lifting
V ′ → U of a corresponding rigid cover V → U , one obtains a lift V ′ → U of V having
enlarged group. In the variant of [Ra, Cor. 4.2.6], V → U is allowed tame ramification over
a given finite set S, and V ′ is required to be unramified only over V (not U); the conclusion
is that V ′ → U exists and V ′ is unramified over V (rather than over U). This applies to
the present situation by taking X = P1

K ; U = X − {1,∞}; S = {0}; V → U the n-cyclic
cover branched at {0,∞}; U the boundary of a disc centered at (s = 1); and V ′ → U
the disconnected cyclic-by-p cover induced by the p-cover. The above variant of [Ra, Cor.
4.2.6] itself follows from a variant of [Ra, Prop. 4.2.5] with π1 replaced by a suitable tame
fundamental group.

Before stating the main result of this section, we prove a group-theoretic lemma con-
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cerning the quasi-p part p(G) of a finite group G:

Lemma 5.3. Let G be a finite group, let Q = p(G), and let π : G → G/Q be the
natural quotient map. Let P be a Sylow p-subgroup of G, and let G′ = NG(P ). Then G′

contains a subgroup F having order prime to p, such that π(F ) = G/Q.

Proof. Let C = G/Q. We claim that π(G′) = C. To see this, let c ∈ C; we will show
that π(g′) = c for some g′ ∈ G′. By definition of C, we know that there is a g ∈ G such
that π(g) = c. Since gPg−1 is a Sylow p-subgroup of G, it follows that gPg−1 ⊂ Q = p(G),
and hence that gPg−1 is a Sylow p-subgroup of Q. Since P (being a Sylow p-subgroup of
G) is also a Sylow p-subgroup of Q = p(G), there must be an element q ∈ Q ⊂ G such
that q(gPg−1)q−1 = P . Let g′ = qg. Thus g′Pg′−1 = P , and so g′ ∈ NG(P ) = G′. Also,
π(g′) = π(q)π(g) = c. So g′ is as desired, proving the claim.

Let Q′ = NQ(P ) = G′ ∩Q. Paralleling the proof of [Se1,I,Prop.45], we have

1→ Q′ → G′ → C → 1, (1)

1→ P → G′ → G′/P → 1, (2)

1→ Q′/P → G′/P → C → 1. (3)

Here (2) splits since #P is a power of p and #(G′/P ) is prime to p. So G′ contains a
subgroup F of order prime to p which maps isomorphically to G′/P in (2). Since the map
G′/P → C in (3) is surjective, it follows that F maps onto C in (1); i.e. π(F ) = C. []

Theorem 5.4. Conjectures 1.1 and 1.2 hold in the case of g = 0, r = 1, i.e. for étale
covers of P1 − {0,∞}.

Proof. In this situation, Conjecture 1.1 asserts that if G is a finite group, then there
is a smooth connected G-Galois cover of P1, branched only at the points (s = 0) and
(s =∞), if and only if G/p(G) is cyclic. Conjecture 1.2 asserts that for such groups G, the
cover may be chosen so as to be tamely ramified over one of these points (which we may
take to be the point (s = 0)). One direction of 1.1, viz. that if there is a cover then G/p(G)
is cyclic, is a consequence of [Gr, XIII, Cor.2.12]. The other direction is subsumed by 1.2,
so it remains to show that if G/p(G) is cyclic then there is a cover with the properties
asserted in 1.2.

Let Q = p(G), and let C = G/p(G). Thus Q is a quasi-p-group. Let P be a Sylow
p-subgroup of G (and hence of Q), and let c be a generator of C. By Lemma 5.3, NG(P )
contains a subgroup F of order prime to p, mapping surjectively to C under G→ C. Let
c′ ∈ F be an element lying over c ∈ C, and let C ′ be the cyclic subgroup of G generated
by c′. Since Q is normal in G, the subgroup C ′ acts on Q by conjugation, and we may
form the corresponding semidirect product G′, of Q with C ′. Since C ′ ⊂ NG(P ), C ′ acts
on P by conjugation, and the subgroup H of G′ generated by P and C ′ is the semidirect
product of these two groups. Since the action of C ′ on Q in G′ is the same as the action
of C ′ on Q in G, we have that C ′ ⊂ NG′(P ). So by Proposition 5.2, there is a smooth
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connected G′-Galois cover Y ′ → P1, branched only over the points (s = 0) and (s = ∞),
such that the inertia groups over (s = 0) are the conjugates of C ′.

Now there is a surjective homomorphism G′ → G defined by mapping Q to itself by
the identity map, and mapping C ′ → C by taking c′ 7→ c. Let N ⊂ G′ be the kernel. Thus
G is isomorphic to G′/N , and the cover Y = Y ′/N of P1 is as desired. []

The results of this section will be used to prove the general cases of the conjectures,
in section 6.

Section 6. The general case.

This section proves the general case of Abhyankar’s Conjecture on covers of affine curves
over an algebraically closed field k of characteristic p (Conjecture 1.1). Namely, a group
G is a Galois group over a smooth k-curve of genus g with r + 1 points deleted if and
only if G/p(G) is a quotient of the group Γg,r generated by elements a1, . . . , ag, b1, . . . , bg,
c0, . . . , cr subject to the relation

∏g
j=1[aj , bj ]

∏r
i=0 ci = 1. In fact, we prove the stronger

version of Abhyankar’s Conjecture, viz. Conjecture 1.2.
As in section 5, we begin with a version in the semi-direct case:

Proposition 6.1. Let Q be a quasi-p group, let F be a finite quotient of Γg,r having
order prime to p, and let G be a semi-direct product of Q with F . For i = 0, . . . , r let
ci ∈ F be the image of ci ∈ Γg,r, and let Ci ⊂ F be the cyclic subgroup generated by ci.
Suppose that F is contained in the normalizer of some Sylow p-subgroup P ⊂ G. If X is a
smooth connected projective k-curve of genus g and ξ0, . . . , ξr ∈ X are distinct, then there
is a smooth connected G-Galois cover of X, branched only over the points ξi and tamely
ramified except over ξ0, such that the inertia groups over ξi are the conjugates of Ci for
i > 0, and such that the maximal prime-to-p quotients of the inertia groups over ξ0 are
the conjugates of C0 in F = G/Q.

Proof. Since F is a finite quotient of Γg,r of order prime to p, it follows by [Gr,
XIII, Cor. 2.12] that there is a smooth connected F -Galois branched cover U → X which
is branched only over the points ξi, and with the inertia group at a point µi over ξi
generated by ci (i = 0, . . . , r). Write c = c0, C = C0, and µ = µ0. Let x ∈ OX,ξ0 be a

local uniformizer of X at ξ0. Then there is a local uniformizer u ∈ ÔU,µ of U at µ such
that un = x. So c(u) = ζnu for some primitive nth root of unity ζn ∈ k.

Let E be the subgroup of G generated by Q and C; this is the semidirect product of
these two subgroups. By Proposition 5.2, there is a smooth connected E-Galois branched
cover W → Y of the projective y-line Y over k, branched only at (y = 0) and (y = ∞),
whose ramification over (y = 0) is tame. Moreover, by that result, we may assume that the
inertia group of W → Y at some point ω ∈W over (y = 0) is equal to C. Thus W/Q→ Y
is a C-Galois cover, branched only at the points (y = 0) and (y = ∞), and hence totally
ramified there. So if H is the inertia group of W → Y at a point over (y = ∞), then
H is a cyclic-by-p group and the natural map H/p(H) → E/Q is an isomorphism to
C = E/Q ⊂ F = G/Q.
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In the complete local ring of W at ω, there is a local uniformizer w such that wn = y.
Thus c(w) = ζ−jn w for some integer j, which may be chosen such that 1 ≤ j < n. Pulling
back the cover W → Y by y′j = y and then normalizing, we are reduced to the case that
j = 1. So we may assume that c(w) = ζ−1n w.

Now let S be the blow-up of X×P1 at the point (ξ0, (s = 0)) (where the second factor
is the s-line over k), and let σ ∈ S be the point at which the exceptional divisor meets the
proper transform of (s = 0) ⊂ X×P1. Then S is a regular subvariety of X×P1×Y , where
as before Y is the projective y-line over k, and where S is given in a neighborhood of σ by
s = xy. Thus σ ∈ X ×P1 × Y is the point (ξ0, (s = 0), η), where η is the point (y = 0) on
Y . Next, define θ : P1×P1 → P1×P1 from (x, t)-space to (x, s)-space, by θ(x, t) = (x, s)
where s = tn. Let T → P1 × P1 be the pullback of S → P1 × P1 with respect to the
morphism θ, and let τ ∈ T be the inverse image of σ under T → S. Thus T ⊂ X ×P1×Y
is given locally near τ by tn = xy (where the second factor is the projective t-line), and is
elsewhere regular. So T is a normal variety.

The blow-up S contains a copy of X, viz. the proper transform of (s = 0) ⊂ X ×P1.
Also, S contains a copy of Y , viz. the exceptional locus of the blow-up map S → X ×P1.
The pullbacks of these copies under T → S are copies of X and Y in T , and we will identify
these with X and Y , respectively. Note that these curves in T intersect only at τ , where
τ ∈ T is identified with ξ0 ∈ X and with η ∈ Y .

Since T ⊂ X ×P1 × Y , the rational functions x, t, y on T define morphisms T → P1.
Let z = x+ y. Then we obtain a morphism Φ = (z, t) : T → P1 ×P1 to (z, t)-space. This
morphism is finite and generically separable, and the fibre over (t = 0) is the union of X
and Y in T (under the identifications made in the previous paragraph), meeting at τ .

Observe that the complete local ring of T at τ has a degree n extension which is
ramified precisely over the closed point. Namely, ÔT,τ = k[[x, y]][t]/(tn − xy), and this is

a subring of k[[u,w]] via the inclusion x 7→ un, y 7→ wn, t 7→ uw. The extension ÔT,τ ⊂
k[[u,w]] is C-Galois with respect to the action given by c(u) = ζnu and c(w) = ζ−1n w.
It corresponds to the C-Galois cover N̂∗ → T̂ ∗, where N̂∗ = Spec(k[[u,w]]) and T̂ ∗ =
Spec(ÔT,τ ). Here N̂∗ is the completion of the k[t]-scheme N∗ = Spec(k[t, u, w]/(uw − t))
at the closed point (t = u = w = 0).

Recall that the C-Galois extension ÔX,ξ0 ⊂ ÔU,µ is given by un = x and c(u) = ζnu,

and that the C-Galois extension ÔY,η ⊂ ÔW,ω is given by wn = y and c(w) = ζ−1n w.

So viewing K̂X,ξ0 [[t]] = k((x))[[t]] = k((x))[[y]][t]/(tn − xy) and K̂Y,η[[t]] = k((y))[[t]] =

k((y))[[x]][t]/(tn − xy) as algebras over ÔT,τ , we obtain C-Galois algebra isomorphisms

k[[u,w]]⊗ÔT,τ K̂X,ξ0 [[t]] →̃ K̂U,µ[[t]] (1)

and

k[[u,w]]⊗ÔT,τ K̂Y,η[[t]] →̃ K̂W,ω[[t]] (2)

over K̂X,ξ0 [[t]] and K̂Y,η[[t]] respectively.
Let L be the projective z-line over k, let λ ∈ L be the point (z = 0), let L∗ be the

projective z-line over k[[t]], let L′ = L−{λ} = Spec(k[z−1]), and let L′∗ = Spec(k[z−1][[t]]).
Let φ : T ∗ → L∗ be the pullback of Φ under L∗ → L×P1. Thus T ∗ is the completion of
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T along the locus of (t = 0). Also, T̂ ∗ = Spec(ÔT∗,τ ). By construction, the closed fibre of
φ is the union of X and Y , which meet only at τ . Let K = k((t)), let Xo = X ×k K, and
let T o be the generic fibre of T ∗ → Spec(k[[t]]).

Let X ′ = X−{ξ0}; let R1 the ring of functions on X ′; let X ′∗ = Spec(R1[[t]]); and let
X̂ ′∗ = Spec(K̂X,ξ0 [[t]]). Also, let U ′ be the inverse image of X ′ in U ; U ′∗ = U ′ ×X′ X ′∗;
and Û ′∗ = Spec(K̂U,µ[[t]]). Similarly, let Y ′ = Y − {η} = Spec(R2), where R2 = k[y−1];

let Y ′∗ = Spec(R2[[t]]); and Ŷ ′∗ = Spec(K̂Y,η[[t]]). Also, let W ′ be the inverse image of Y ′

in W ; W ′∗ = W ′ ×Y ′ Y ′∗; and Ŵ ′∗ = Spec(K̂W,ω[[t]]).
By (1) and (2), we can apply Proposition 2.3, with G1 = F , G2 = E, I = I1 = I2 = C,

v = t, X1 = X, X2 = Y , W ′∗1 = U ′∗, W ′∗2 = W ′∗, and N̂∗ = Spec(k[[u,w]]). This yields
an irreducible normal G-Galois cover ψ : V ∗ → T ∗ such that V ∗ ×T∗ X ′∗ ≈ IndGF U

′∗,
V ∗ ×T∗ Y ′∗ ≈ IndGEW

′∗, and V ∗ ×T∗ T̂ ∗ ≈ IndGC N̂
∗ as G-Galois covers of X ′∗, Y ′∗, T̂ ∗

respectively.
The branching of ψ : V ∗ → T ∗ is determined by that of its patches. Hence it is tamely

ramified over the loci of ξ∗i = ξi ×k Spec(k[[t]]) for i > 0, and Ci is an inertia group over
ξ∗i . It is also ramified over the locus of (y =∞), which is the pullback under T ∗ → T → S
of the proper transform of ξ∗0 = ξ0 ×k Spec(k[[t]]) under the blow-up map S → X × P1;
and one of the inertia groups there is H. In addition, it is ramified over the singular point
τ ∈ T . Otherwise, V ∗ → T ∗ is unramified. Since the closed fibre of T ∗ is generically
smooth, it follows that the closed fibre of V ∗ is also generically smooth.

Now by construction of T , the generic fibre T ∗o of T ∗ → Spec(K) is isomorphic to
Xo. Identifying T ∗o with Xo, we find that the restriction ψo : V ∗o → Xo of the morphism
ψ to the generic fibre is ramified precisely over the points ξoi = ξi×k Spec(K) of Xo. Here
the inertia groups over ξoi are the conjugates of Ci, for all i > 0; and the inertia groups
over ξo0 are the conjugates of the subgroup H. Also, since U ×k Spec(K), W ×k Spec(K),
and N∗×k[t] Spec(K) are smooth over K, it follows that V ∗o is also smooth over K. Thus
V ∗o is regular. The result now follows from Corollary 2.7, under case (ii) of Proposition
2.6. []

Theorem 6.2. Conjectures 1.1 and 1.2 hold in general.

Proof. Half of 1.1 (viz. the fact that G/p(G) is a quotient of Γg,r) follows from [Gr,
XIII, Cor.2.12], and the other half is subsumed by 1.2. So it suffices to prove 1.2.

Let Q = p(G), let π : G→ G/Q be the quotient map, and let P be a Sylow p-subgroup
of G. By Lemma 5.3, there is a prime-to-p subgroup F of NG(P ) such that π(F ) = G/Q.
Since Γg,r is free, the surjective homomorphism Γg,r → G/Q lifts to a homomorphism
Γg,r → F . After shrinking F , we may assume that Γg,r → F is surjective.

Now G is generated by F and Q, since π(F ) = G/Q. Since Q is normal in G, F acts on
Q by conjugation. Let G′ be the semidirect product of Q and F with respect to this action.
Thus (as in the proof of 5.4), G is a quotient of G′, say G = G′/N , and F ⊂ NG′(P ). So
by Proposition 6.1, there is a smooth connected G′-Galois cover Y ′ → X, branched only
over the points ξi, and tamely ramified except over ξ0. Thus the cover Y = Y ′/N of X is
as desired. []
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p. Comptes Rendus 311 (1990), 341-346.

[Se3] J.-P. Serre. Revêtements de courbes algébriques. Sem. Bourb. 749 (1991).
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