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Abstract. This paper provides a brief survey of Riemann’s Existence Theorem from the

perspective of its history, its connections to various areas of mathematics, its generalizations,

and open problems.

1. Overview

Riemann’s Existence Theorem is a foundational result that has connections to complex
analysis, topology, algebraic geometry, and number theory. It arose as part of Riemann’s
groundbreaking work on what we now call Riemann surfaces. The theorem itself was for a
while controversial, and decades passed before there was a precise statement or proof. But
the process of making it precise itself led to developments of great consequence.

The term Riemann’s Existence Theorem is in fact used in more than one way, to refer to
several related but distinct assertions. From an analytic point of view, it concerns meromor-
phic functions on Riemann surfaces. In one form, it states that on any Riemann surface X
(i.e. one-dimensional complex manifold) there exists a non-constant meromorphic function,
and moreover meromorphic functions exist that separate any two given points. Such a func-
tion represents X as a branched cover of the Riemann sphere P1

C, whose branch locus is a
finite subset S of P1

C. The existence of this covering map shows that the field of meromorphic
functions on X is a finite algebraic extension of the function field C(x) of P1

C; and therefore
X can be viewed as a complex algebraic curve.

Modern proofs appear, for example, in [Völ96, Chapter 6] and in [Nar92] (Chapter 7, The-
orems 3(b) and 4), using local-to-global methods in the complex metric topology. Another
approach is to use Serre’s result GAGA ([Ser55]), which makes it possible to pass between
the complex analytic and algebraic settings in the case of compact (or projective) spaces.
More specifically, that result gives an equivalence between sheaves in the Zariski and metric
topologies that preserves cohomology, and therefore an equivalence between algebraic and
analytic covers. For a more detailed discussion, see [Har03, Section 2].

A related assertion is that given a finite subset S ⊂ P1
C, and given a permutation represen-

tation of the fundamental group of the complement of S, there is a Riemann surface X and a
holomorphic map X → P1

C which away from S is a covering space having this representation
as its monodromy. This statement, together with the supplementary assertion that these
representations classify the Riemann surfaces that arise as such covers, is also often referred
to as Riemann’s Existence Theorem. The theorem is also often stated in terms of branched
covers of more general Riemann surfaces than P1

C, and is sometimes stated in the special
case of covers that are normal (i.e. Galois).

In this form, Riemann’s Existence Theorem can be viewed as an assertion relating topolog-
ical objects to algebraic ones. Given a non-empty finite subset S = {P1, . . . , Pn} of P1

C, every
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topological covering space of the complement U gives rise to a Riemann surface structure,
which can be completed to a branched cover Y of P1

C with branch locus S; and this in turn
has the structure of a projective algebraic curve. Since π1(U) = 〈σ1, . . . , σn |

∏
σi = 1〉, the

algebraic curves that are finite and Galois over P1
C and branched only over S are in bijection

with branch cycle data, i.e. equivalence classes of n-tuples (g1, . . . , gn) ∈ Gn such that the gi
generate G and satisfy

∏
gi = 1. Here the equivalence relation is conjugation by an element

of G, corresponding to a choice of base point on Y (e.g. see [Völ96, Theorem 4.32]). This
bijection is compatible with taking intermediate covers.

The above bijection is not canonical, however, since it depends on a choice of homotopy
basis {σi} as above. But for any choice such that σi winds once, counterclockwise, around
Pi and around no other Pj, the cover Y → P1

C that corresponds to the equivalence class of
(g1, . . . , gn) has the property that gi is the standard generator of inertia at some point Qi

of Y over Pi. That is, if xi, yi are uniformizers at Pi, Qi such that yeii = xi where ei is the
ramification index over Pi, then gi(yi) = ζiyi where ζi = e2πi/n. The assertion that such a
bijection exists is purely algebraic, but no purely algebraic proof is known. See Section 3
below.

2. History

Riemann was led to the existence theorem by his consideration of multivalued functions
on the Riemann sphere as single-valued functions defined on a Riemann surface, which he
viewed as a union of complex domains glued together along boundary curves. Given a
multivalued complex function f(z), he constructed such a Riemann surface as a branched
cover of P1

C whose branch points are the singular points of f (e.g. the points 0,∞ in the case
of the multivalued function z1/2). These ideas were developed in Riemann’s thesis [Rie51]
and in his paper [Rie57].

Riemann’s contemporaries, especially Weierstrass, were skeptical of his arguments, because
they relied on the unproven Dirichlet principle (which says that a solution to Poisson’s
equation is given by the minimizer of Dirichlet’s energy functional). Later Hilbert gave a
proof of Dirichlet’s principle that sufficed for Riemann’s approach. See [Bot03, Section 8.6]
and [Mon99, Chapter 4] for a further discussion of this history.

Since the surfaces considered by Riemann arose as the domains of multi-valued functions
on C, they automatically had a non-constant meromorphic function that defined a branched
covering map. Later Klein, motivated by a comment of Prym, originated the study of
abstract Riemann surfaces, which was eventually developed into a rigorous theory by Weyl
in [Wey13]. It is in this context that Riemann’s Existence Theorem is now stated. See
[Rem98, pp. 208-209, 218-219], [Sar55], and Part II of [Wey13] (especially Sections 12 and
19 in the 1955 edition).

A generalization of Riemann’s Existence Theorem, showing that there are many holomor-
phic functions on abstract non-compact Riemann surfaces, was shown in [BS49] (see also
[Rem98, §2.4]). Another generalization, in [GrRe58], extended Riemann’s Existence The-
orem to higher dimensions. It asserted that if W is a subvariety of a normal projective
complex variety V , then any topological covering space X∗ → V rW is the restriction of a
morphism X → V of normal projective varieties. This provided motivation for Abhyankar’s
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definition of π(V rW ) over more general algebraically closed fields k, as the inverse system
of Galois extensions of the function field of V that are unramified on V away from W . The
point is that if k = C, then this is the same as the inverse system of finite quotients of the
topological fundamental group π1(V rW ). (See Abhyankar’s Appendix 1 to Chapter VIII
in the 1971 edition of [Zar35].)

These ideas motivated Grothendieck to define the étale fundamental group πet
1 (X) of an

algebraic variety X as the inverse limit of the Galois groups of the finite étale (flat and
unramified) Galois covers Y → X. If the ground field is C, this group is the profinite
completion of the topological fundamental group of X. For a more general algebraically
closed field k, Grothendieck was able to obtain a version of Riemann’s Existence Theorem
for k-curves by relating covers of k-curves to covers of complex curves, and then citing the
classical form of Riemann’s Existence Theorem ([Gro71, XIII, Corollaire 2.12]).

For k of characteristic zero, Grothendieck’s theorem says that the étale fundamental group
of an n-punctured curve of genus g over an algebraically closed field k of characteristic zero
is the same as over C. For genus 0, this is the profinite completion of 〈σ1, . . . , σn |

∏
σi = 1〉,

which is free of rank n− 1 if n ≥ 1. More generally, it is the profinite completion of

〈α1, . . . , αg, β1, . . . , βg, σ1, . . . , σn |
(∏

[αj, βj]
)(∏

σi
)

= 1〉,

which is free of rank 2g + n− 1 if n ≥ 1.
In non-zero characteristic p, Grothendieck’s assertion is that the maximal prime-to-p quo-

tient of the étale fundamental group is the same as over C; and that the tame fundamental
group πt

1 is a quotient of the analogous étale fundamental group over C. (Here πt
1(U) is the

inverse limit of the Galois groups of the Galois branched covers of the smooth completion
of U that are unramified over U and are at most tamely ramified over the complement of
U .) But the precise quotient of πet

1 is unspecified, and it remains unknown, though of course
the maximal prime-to-p quotient of the étale fundamental group is a quotient of this group.
The full étale fundamental group of an affine curve in characteristic p also remains unknown
(even for the affine line). But in contrast to the situation in characteristic zero, πet

1 is known
not to be free, since its maximal prime-to-p quotient has finite rank whereas its maximal
p-quotient has infinite rank due to Artin-Schreier covers. (On the other hand, the maximal
p-quotient of the étale fundamental group of a projective curve in characteristic p is a free
pro-p-group of finite rank, by [Sha56].)

3. Algebraic proofs and constructions

Quite early there were attempts at an algebraic proof of Riemann’s Existence Theorem,
e.g. to show algebraically that there is a bijection between branch cycle data and algebraic
branched covers of P1

C as discussed above. See for example [Sch03], [Sev15], [Sev21, An-
hang F], [Sev22], and comments of Zariski ([Zar35, Chapter VIII, §4]). Especially since
Grothendieck’s work in SGA 1, there have been efforts to obtain an algebraic proof of Rie-
mann’s Existence Theorem in the following form:

Theorem 3.1. Let S = {P1, . . . , Pn} be a set of n ≥ 1 distinct points on the Riemann
sphere P1

C, and let U be the complement of S. Let Πn be the group on n generators σ1, . . . , σn
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subject to the single relation σ1 · · ·σn = 1. Then there is an isomorphism i between the
inverse system of Galois connected unramified covers of U and the inverse system of finite
quotients of Πn, such if i(U ′ → U) = (G; g1, . . . , gn), then G is the Galois group of U ′ over
U , and for each i = 1, . . . , n, gi is the standard generator of inertia of some point of Y over
Pi, where Y is the smooth completion of U ′.

Here, for a finite group G and a set of generators g1, . . . , gn ∈ G such that g1 · · · gn = 1,
we write (G; g1, . . . , gn) for the quotient of Πn that takes σi to gi.

Unlike the original form of Riemann’s Existence Theorem that concerned the existence of
a non-constant meromorphic function on a Riemann surface, the above assertion is purely
algebraic, and therefore it seems reasonable to try to find a purely algebraic proof. Such a
proof might also be generalizable to other situations, and thereby lead to results over general
fields that go beyond those described in the previous section. In addition, such a proof could
lead to more explicit forms of Riemann’s Existence Theorem; see Section 5 below.

While Grothendieck’s result in SGA 1 used algebraic methods to prove a generalization
of Riemann’s Existence Theorem over other algebraically closed fields, it ultimately relied
on the complex case, where it had been proven complex analytically. Thus the problem of
finding a completely algebraic proof remained.

For the forward direction, a difficulty in defining the correspondence i is that it depends on
the choice of homotopy basis of U (a “bouquet of loops,” in the terminology of Fried [Fri77]),
with different choices leading to different correspondences. Since this choice is topological
and non-canonical, it is unclear how to define i algebraically. For a discussion of this, see
[Völ96], Remark 2.14b and the beginning of Chapter 10. For a further discussion, see [Fri77],
especially p. 25, where a version appears for complex algebraic curves other than P1

C, and
for non-Galois covers.

For the reverse direction of the bijection in the above theorem, a first step is to construct,
for each (G; g1, . . . , gn) as above, a cover U ′ of U with Galois group and standard generators
of inertia gi at some points over Pi. For certain non-Galois covers, this was carried out in
[Ful69], using Grothendieck’s machinery. This was done for the purpose of algebraizing the
classical proof of Severi in [Sev21, Anhang F] that the moduli space of curves of genus g is
irreducible, by realizing all curves of genus g as member of a family of branched covers of
the projective line.

Fulton’s paper helped motivate [Fri77], and together they helped motivate an algebraic
construction of Galois branched covers in [Har80]. That construction relied on Grothendieck’s
Existence Theorem ([Gro61, III, Cor. 5.1.6]), an analog of GAGA for formal schemes; and
it used that result in a way somewhat analogous to the use of GAGA in analytic proofs of
Riemann’s Existence Theorem. The construction in [Har80] realized covers with 2n branch
points P1, . . . , P2n, whose branch cycle description is of the form (G, g1, g

−1
1 , . . . , gn, g

−1
n )

for some generators g1, . . . , gn of G. By deforming such covers by allowing the points
P2, P4, . . . , P2n to coalesce at some other point P0, one can see topologically that one then
obtains a branched cover with n + 1 branch points and with branch cycle description
(G, g0, g1, g2, . . . , gn), as a boundary object of this family. This provides an algebraic con-
struction of covers with prescribed descriptions, but it does not provide an algebraic proof
that this construction works, since the fact that one of the boundary covers is connected
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relies on topology. It remains open whether one can prove algebraically that the above con-
struction yields an inverse to a map i as in the theorem, and in that way obtain an algebraic
proof of Riemann’s Existence Theorem.

The above algebraic construction of covers having the special branch cycle description
(G, g1, g

−1
1 , . . . , gn, g

−1
n ) carries over to more general situations, and provides (algebraic)

proofs that every finite group is the Galois group of a branched cover of the projective
line over the fraction field of any complete local domain that is not a field, and also of the
projective line over any algebraically closed field; see [Har84] and [Har87]. This was later
extended by F. Pop in [Pop96] to the more general class of fields that are called large (or
“ample”). In addition, by using covers of the above type, in [Pop94] he proved a “Half Rie-
mann Existence Theorem,” giving a large quotient of P1

k r S, for appropriate S in the case
that k is a Henselian valued field of arbitrary characteristic. (His proofs used rigid analytic
methods, rather than formal schemes, though these are essentially equivalent by work of
Raynaud.) But an additional difficulty in establishing a full “Riemann Existence Theorem”
for k algebraically closed of characteristic p and S of order n (i.e. finding the structure of
πet
1 (P1

k r S)) is that the group varies with the choice of S (e.g. see [Tam97]).
In the case of an algebraically closed field k of characteristic p, and a fixed branch locus

S ⊂ P1
k, the structure of πet

1 (P1
k r S) is not known, but its set of finite quotients (i.e. the

Galois groups of finite étale covers of P1
k r S) is known. This was given by Abhyankar’s

Conjecture ([Abh57]), proven in [Ray94] and [Har94], by using rigid and formal methods.

4. Relationship to Galois theory

Riemann’s Existence Theorem can be interpreted as a statement about the extension fields
of C(z) and more generally of complex function fields in one variable. For Y → P1

C branched
only over a finite set S of n > 0 points of P1

C, the function field C(Y ) is a finite extension
of the function field C(z) of P1

C, unramified away from the places of P1
C corresponding to

the points of S. This correspondence between topological covers and field extensions is
a bijection that preserves the property of being Galois as well as preserving the Galois
group (of deck transformations, on the topological side). Using the correspondence between
branched covers and branch cycle data, it follows that the Galois groups of extensions of
C(z) unramified over S are precisely the finite groups that can be generated by a set of n−1
or fewer elements (these being the finite quotients of π1(U)); and similarly on 2g + n − 1
generators if the base is a complex curve of genus g. In particular, every finite group is a
Galois group over C(z), and more generally over function fields of complex curves. Using
Grothendieck’s generalization of Riemann’s Existence Theorem to other algebraically closed
fields k of characteristic zero, the same conclusion holds for function fields over k(z).

Building on Grothendieck’s result (which had been announced in 1961), Douady showed
in [Dou64] that the absolute Galois group of C(z) is isomorphic to the free profinite group
on the elements of C. This can be viewed as the inverse limit of the profinite completions of
the groups π1(P1

CrS), where S ranges over the finite subsets of P1
C that include the point∞,

each of which is free profinite on the elements of Sr{∞} by Riemann’s Existence Theorem.
(See also [Sza09, §3.4].) Moreover, by reducing to the complex case, Douady also proved the
analogous statement for any algebraically closed field k of characteristic zero.
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Over an algebraically closed field k of characteristic p > 0, it similarly follows from
Grothendieck’s form of Riemann’s Existence Theorem that every finite prime-to-p group
is a Galois group over k(x); and moreover that the Galois group of the maximal pro-prime-
to-p extension of k(x) is a free pro-prime-to-p group of rank equal to the cardinality of k.
Although πet

1 (P1
krS) is known not be to free for S a finite set of n > 0 elements, the analog

of Douady’s theorem holds, i.e. the absolute Galois group of k(x) is the free profinite group
of rank equal to the cardinality of k. This was shown in [Har95] by building on the methods
of [Har80] (see Section 3); and it was simultaneously shown in [Pop95] via the same strategy
using rigid analytic spaces (see also [HJ00]). While the generators of the free profinite Galois
group in characteristic zero correspond to the elements of the field, it is unclear what the
generators correspond to in characteristic p.

Riemann’s Existence Theorem also arises in connection with realizing finite groups G as
Galois groups over number fields k. By Hilbert’s Irreducibility Theorem, it suffices to realize
G as the Galois group of a branched cover of P1

k. By a result of Grothendieck (which was in
fact known earlier), if the branch points of a branched cover Y → P1

C lie at algebraic values
of the parameter, then the cover is defined over Q̄, as is the Galois action in the Galois case.
Each such cover is then defined over some number field k (a field of definition of the Galois
cover). An explicit algebraic form of Riemann’s Existence Theorem would produce such a
field k if one is given the branch cycle description of the given cover Y . In general this is
open. See Section 5 below.

5. Explicit forms

As noted above, if P1, . . . , Pn are points on the projective line over Q̄, then every branched
cover of P1 with that branch locus is in fact defined over Q̄, and not just over C. Since a
cover of curves is given by finitely many equations, it is then defined over some number field,
i.e. a finite extension of Q. Now a Galois branched cover is determined by its branch cycle
description, once one chooses a homotopy basis for the complement of these points, as in
Theorem 3.1. Thus, given a finite group G and generators g1, . . . , gn, it is natural to ask
for a number field k over which the cover of U = P1 − {P1, . . . , Pn} is defined. In fact, it is
natural to ask for the minimum field of definition of this Galois cover. Actually, there is not
always such a minimum field, though often there is one (e.g. if the group has trivial center or
is abelian). The intersection of the fields of definition, though, is a natural field k that can
be associated to the cover as its “field of moduli,” and k(ζn) is a field of definition for some
n. (See [CH85].) So if the branch points Pi are algebraic, one can ask for an explicit form of
Riemann’s Existence Theorem that produces the field of moduli of the cover associated to a
given branch cycle description.

Here one has group theoretic data as input, and the desired output is a number field.
Thus it seems reasonable to expect that one should be able to pass from one to the other
purely algebraically, possibly obtaining an algebraic proof of Riemann’s Existence Theorem
in the process. But in fact, the passage from group theory to number theory goes through
a sequence of non-algebraic steps, making it hard to make this process explicit.

We can visualize these steps as follows:
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Branch cycle description (group theory)
↓

Topological cover
↓

Non-constant map between Riemann surfaces
↓

Non-constant morphism of complex algebraic curves
↓

Non-constant morphism of curves over Q
↓

Non-constant morphism of curves over some number field

The middle arrow corresponds to the classical form of Riemann’s Existence Theorem, and
the first three arrows correspond to the form in Theorem 3.1.

If one could carry out the above process in general, passing from a branch cycle description
(G; g1, . . . , gn) to the field of moduli k, then one could use this to realize groups as Galois
groups over those fields k (or at least, some k(ζn)). Moreover, one could look for branch
cycle descriptions such that the field of moduli is Q, and in this way try to solve the inverse
Galois problem.

Progress in this direction has been made in the special case that the branch cycle data
(g1, . . . , gn) is rigid; i.e. has the property that any n-tuple (h1, . . . , hn) with

∏
hi = 1 that is

entrywise conjugate to the given data is necessarily uniformly conjugate to it. The point is
that in this case, there is no ambiguity in the bijection between covers and branch cycle data,
and the action of the absolute Galois group of Q on branch cycle data is easy to understand.
For early work in this direction see [Bel79], [Mat79], [Tho84], [Shi74], and [Fri77]; see also
presentations in [MM99, Chapters I,II],[Ser92, Chapters 7,8], and [Völ96, Chapter 3].

But more generally, in order to pass from the group theory to the associated number theory
for a given branch cycle description, one would like a formula for k in terms of (G; g1, . . . , gn).
Such a formula was proposed by Richard Parker in the case of n = 3; see [Har87]. In that
specific form, it was disproven by R. Daenzer; but a more symmetric form of the conjecture
was then studied. According to that form, k is the field obtained from Q by adjoining
the eigenvalues of the linear transformation on the group ring Q[G × G] (viewed as a Q-

vector space) given by left multiplication by the element
∑
g∈G

(g−1g1g, g
−1g2g) ∈ Q[G × G].

Parker said that he was not committed to the specific form of this element; and that his
aim was simply to obtain an extension of Q in a canonical way depending on the branch
cycle description, such that the extension need not be abelian (since fields of moduli need
not be abelian over Q). In an unpublished manuscript [Sch06], Leila Schneps verified the
conjecture for the case that G is either abelian of rank at most two, or is dihedral. In both
of these cases, the field of moduli (which is equal to Parker’s field) turns out to be abelian
over Q. An unpublished manuscript of Hoffman ([Hoff09]), though, asserts that in fact the
field obtained using Parker’s construction is always abelian over Q, which would imply that
it cannot always be the field of moduli k (though it could be the maximal abelian subgroup
of k). This question deserves further study.
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In some cases, one can explicitly compute not only the field of moduli, but even the
equations of the branched cover, given the branch cycle description. This was done in the
case of n = 3, where the top space has genus zero (but is not necessarily Galois), in parts III
and IV of [Sch94], using Gröbner bases. While such computations do not appear to provide
a general formula, they could be used to test conjectures about formulas for the field of
moduli of non-Galois covers.

6. Open problems

We conclude with a summary of key open problems.

1. Find an algebraic proof of Riemann’s Existence Theorem in the form Theorem 3.1.
2. Find an explicit form of Riemann Existence Theorem that would give at least the field of

moduli of a cover with a given branch cycle description.
3. Describe the branch cycle descriptions that arise from tamely ramified covers over an

algebraically closed field of characteristic p (i.e. the associated quotients of Πn), at least
in the case of covers of the projective line having branch locus {0, 1,∞}.

4. Describe the étale fundamental group of an affine curve over an algebraically closed field
of characteristic p, as a profinite group, at least in the case of the affine line over F̄p.

5. Using explicit equations or fields of moduli for some special branched covers, realize their
Galois groups over small number fields (especially Q itself).
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