Recall: For G an algebraic group over a file F

aud for E / F a Gdois fica extensim; $H^{\prime}(E / \hbar G) \stackrel{\text { bib }}{ }\left\{\begin{array}{l}\text { iso classes of } G \text {-torsos, } / F \\ \text { that become trivial } / E\end{array}\right\}$ If Δ is a (functrid) algebraic structure over F, ane $G=A+(\Delta)$, then
 and if all objects became iso / $F^{\text {sep }}$ then $H^{\prime}(F, G) \stackrel{\text { bid }}{\longleftrightarrow}\{$ iso class of object /F $\}$ Ex.i) $q \cdot f . / F, \Delta=q \quad \rightarrow G=O(\varepsilon)$
2) If. (F of dat $\delta, \Delta=\varepsilon \rightarrow G=S O(\varepsilon)$
3) csa/F of dian, $\Delta=M_{n}(F) \leadsto G=P G L_{n}$

For F a ${ }_{2} l o b a l$ sile, an F-varion V satistici a loul-glosel principh if

$$
V\left(F_{v}\right) \neq \phi \text { for } d \| v \Rightarrow(F) \neq \phi .
$$

If V is a G-trion oue F, the this sys: $V \operatorname{trin} / / a l l F_{v} \Rightarrow V \operatorname{trivic} / F$.

The obstruation to a LGP h.iding for oll G-trooss/F is

$$
\underline{I I I}(F G):=\operatorname{ker}\left(H^{\prime}(F, G) \rightarrow \prod_{v} H^{\prime}(F, G)\right) .
$$

I.e: LGP keles for all G-forses $/ F$ (1)

III (FG) is trivial
So give an alybrois stacton Δ are F with $G=\operatorname{At}(\Delta)$, we have that a $L C P$ holls for $\Delta \Leftrightarrow 川(F, G)=1$.
Ex. $H_{\text {cese }}-M_{\text {ikersk }} \Leftrightarrow$ III $\left(F, O_{(s)}\right)=1$

Ex. $F<\# f(l, G$ a rationd cann. lin. dy. sp
$\Rightarrow 4 C F, G=1$; and $S O(g)$ is ratidconn; So given a reguler of 8 of $\operatorname{dot}=\delta$, we get a $L G P$ for a ${ }^{\circ} f$ of det $=\delta$ to be iso to 7 .

Relatinsh.p between LGP's + numeriad field invariants:

Ex. 4-invariout. We sav: h-invariant of a non-arch imeeden local fiell is 4 .

So: Hass- - Minkourki \Rightarrow
u-invariant of a global fo fll, or of a tutally ing. $\#$ fle, is also 4. (For a \# fuild F with a real enselding, we have $h(F)=\infty$. But the Elman-Len version satistiz, $u^{\prime}(F)=4$.)

Ex. perise-index problem.
Recall: For a caa A over F, given an et $\alpha \in B-(F)$,

$$
\operatorname{per}(\alpha)=\text { order of } \alpha \text { in } \operatorname{Br}(F)
$$

ind $(\alpha)=$ degree of D, when $A=M_{n}(D)$.
$\operatorname{per}(\alpha) / \operatorname{lill}(\alpha),+$ same p rimes divide lack.
For a loud fica F, if F is non-arahineleen,

$$
\operatorname{Br}(F)=\mathbb{Q} / \mathbb{Z} \text { and } \operatorname{Br}(F)[n]=\frac{1}{n} \mathbb{Z} / \mathbb{Z} \cong \mathbb{Z} \ln \mathbb{Z}
$$

(es. see Pierce, Assucietixilgebres, The 17.10), whit $B-(\mathbb{R})=\mathbb{Z} / 2 \mathbb{Z}$. Fur both cases: per $=$ ind.
By the of Abse-t-Braner-Hasse-Nocker (LGP for Css), get per ins de globs fells.

The chove results focis on glabal fialds:
\# fils or for fils of carves / finite fields.
Higher dinil anologs?
Ex. $\mathbb{Q}(x)$, or $\mathbb{F}_{p}(x, y)$?

- fefe of a curve over a glosel fiele.

Local-global priàapiles?
u-invariant?
Relationship of period do index? esel(x)
To stul, the fu fle of a carve over a glabel ficle, colle firis ste, $\ldots . . . \cdots$ loal ficle.

$$
\left.- \text { s. } Q_{p}(x), \mathscr{F}_{p}(f t)\right)(x)
$$

There can ask the same questins. Moregenorelly, let K becng cluf, $+F=f$ fle $f=K$-carre. F has a local σ a glabal aspect:

$$
\begin{aligned}
& \text { E.g. } \quad \mathbb{F}_{p}(f f)(x) \\
& \text { globelpot } \\
& \text { - call } F \text { a semi-glebal fiale. }
\end{aligned}
$$

What to expect for u-invariant?

Patten suggestsi $u(h)$ is alurys a po-er of 2 . Was a congecture of K aplangky (who definas u-invariant).
Merkurjiv found example with $u(h)=6$
(1988; Lan, ChpXIII, s2)
But $u(k)$ is never 3,5,7 (Lan C C XI, Porp 6.5).
Othrode? Izhbolein foume an excmple with

$$
u=9 \quad\left(A_{\text {muls }} \text {.f Mok, } 2=01\right. \text {). }
$$

Q: For "reasmask" fects, is $u(l)$ aluas a pawe of 2?

Above chat siggests that w $\left(Q_{p}(x)\right)=8$.
Warit even known to be firi*, until 1998. Several resalts fhen (for $p \neq 2$):

- Merkupjes: $u\left(Q_{p}(x)\right) \leq 26$.
- vanGeel - Hoffiran: $u\left(\mathbb{Q}_{p}(x)\right) \leq 22$.
- Parinale - Suresh: $u\left(\mathbb{R}_{p}(x)\right) \leq 10$.
- Later, Pariala - Suresh shoue: $u\left(Q_{p}(x)\right)=8$.
(ar-Xiv 2007, Annals of Math 2010)
Two other profs of this:
- Harbater- Hartmana-Krashen, Inveationies zoos

$$
(a-x ; 2008)
$$

- also sloure other u-inverint resitfo, incleding $u\left(Q_{p}((f) l(x))=16\right.$ (as suggioste by chat)
- Leap, Cralle 2013
- als- shous $\quad \psi\left(\mathscr{Q}_{p}\left(x_{1,}, x_{n}\right)\right)=2^{m+2}$,
and sllowes all p (cnélading 2)

For fiddles lit. $Q_{p}(x)$:
What to expect for period-index relationsiop?
Recall: for a first fire F,
Br (F) is trivial, so per, ind an trines.
For F a hon-arch. Local fiche, es Qp or a globed fuel, per = ind.
es. $\mathbb{Q}, F_{p}(x)$
In gand, $\operatorname{per} \alpha /$ ind α for $\alpha \in \operatorname{Br}(F)$,
are $\forall \alpha$ $\exists n$: ind $\alpha \mid(p-\alpha)^{n}$.
For a "reasondle" F, is there cunif-n n ?
mg for $F=Q_{p}(x), Q_{p}(c) l(x)$?
Ans: For α st ph pera,
in $\operatorname{Br}\left(Q_{p}(x)\right)$ have ind $\alpha /(\operatorname{Pe}-\alpha)^{2}$
in $\operatorname{Br}\left(Q_{p}(c f \|)(x)\right)$ have ind $\alpha \mid\left(\operatorname{per}^{-\alpha}\right)^{3}$ eth.

Two differment proofs:

- Liebliz, Cralle 2011 (arXis, 2007)
- HHK, lavintions 2009 (arkis 2008) Cas as.ve

In the HHK paper - the proofs for the u-invariant + for periol-index were in paralle($-\alpha$ both relised on LCP's

- andiounds to how the resilts for global fialds on u rperiad follow from LGP's.

Here - consiler Sem:-globel fials, cie firite extensing F of $K(x)$, where K is a c.d.u.f. $E_{x .} F=Q_{p}(x)$ or $h(c+1)(x)$. a ficle
As for glob4 fiells, we can consiler the set of absolute valuas vo a $F(\leftrightarrow$ descrivalis) and consiler LCP's wort those.

Ex. If V is a varich iver a sg.f. F,
suy V satistis a $(C P$ IF if:

$$
V\left(F_{s}\right) \neq \phi \text { for dl } r \Rightarrow V(F) \neq \phi .
$$

In particaler, if V is a G-torsor/F for some algedraic group G ove F, - LCP for F saysi
V is trivis/F $\Longleftrightarrow V$ istrivial/ech F.
Given G over F, can ask:
Do all G-forsors IF satiofy a LCP?
As betire, the obstruction to $(*)$ is

$$
\underline{I I}(F, G):=\operatorname{ker}\left(H^{\prime}(F G) \rightarrow \underset{\sim}{\rightarrow} H^{\prime}\left(F_{,}, G\right)\right)
$$

As before, ca csk: \qquad if G is a Pational connectes in.als. sp. IF is there a LCP?

Arsuer: Yes. (HHK)
So gad LGP's for varion als objects /F.

Ex. Take $\delta \in F^{x}$. If $9, \delta^{\prime}$ are reg. if's/F of dim $=n$ and $d \begin{aligned} & \text { d }\end{aligned}=\delta \in F^{*} / F^{*}$, and if $q \cong q^{\prime} 10$ cally, then $\delta^{\cong} \cong q^{\prime}$ wer F

- pf as for \# flls, using $H^{\prime}(F, S O(q))$ classifis of f / F of det $=\delta \in F^{*} / F^{*}$.
As a conserunce, as for glbal fiale, we get: q hyperblic locilly \Rightarrow \& hyparikic/F
Even more: have LCP for houggeans spaces X that aren't necesserily torsors.
- viz G acts on X our F, st $\forall E / F, G(E)$ acts transitioh on $X(E)$ (extestey) (but not nec, simpl, tras.)
Ex. Let q be a ragula q.f. of $\operatorname{dim}=n>2$.
Lat $Q \subset \mathbb{P}_{F}^{n-1}$ be the projidion hiperrertace definal by $q=0$. Then $O(q)$ acts transitively on Q, by the Witt extersion tha.

Here Q is \quad din $\{>2, \operatorname{di} Q>0$, bat $O(\sqrt{5})$ consist of two conn. Components: $S O(s)$

+ its cont. So $S O(\sigma)$ acts trans in Q.

SO (q) conn + rate. So the above LGP for homos. spaces applies, α get:
Q has an F-pt if it has posts locally;
ane q esideric / F if it is isodupi. locally.
So have a Here- Minkourk: The for fir of dim >2 over a s.g.f. F.

What chocs binary quedrati furs?
Still tree if $F=K(x) \quad\left(a s Q_{p}(x)\right)$.
But false for sine sg f: F, es. $F=Q_{p}(x)[\sqrt{\alpha}]$, when

$$
\alpha=x(x-1)(1-p x)
$$

Issue hare: Cheboteru Dosing fails for this file F : every prime split in $F[\sqrt{x(x-1)}]$.

From the above Hesre- $\mu_{1-k, u s e i}$ The, can get

$$
u\left(Q_{p}(x)\right)=\delta \quad u\left(Q_{p}((f) 1(x))=16, \ldots\right.
$$

How to get thase LGP's over ssf's?
First:

there se several possish $\angle C P ' s$ to consider.
As above, can comsile CCP wrt discrete valis on F.
Anothe poissisices:
For simplecit, first take $F=K(x)$, K a cduf, $\theta_{K}=$ assecedve, $h=\theta_{E} / \mathrm{m}$

$$
M=\text { masilicas res.fel. }
$$

$\mathbb{E} \quad K=Q_{p_{1}} \quad O_{k}=\mathbb{Z}_{p}, m=c_{p!} h=\mathbb{F}_{p}$
Ex $K=h\left((f), Q_{k}=h\left(C_{t}\right), m=(t)\right.$, rafeleh.
Ca viar F as fo fell of $\mathbb{T}_{K,}^{\prime}$ pojx-lim/k

Can also vion K as frie O_{k},
a-d F as $f_{n} f l e$ of $\mathbb{T}_{\theta_{k}}^{1}:$ proj lise $/ \theta_{k}$
What does $\mathbb{P}_{\theta_{k}}^{\prime}$ look like? equir., $/$ sfa $_{x}$.

$$
\begin{aligned}
& \text { u a spce } \theta_{k} \text { "? } \\
& E_{k} O_{k}=l(+1) . \\
& \text { = completion of } \\
& \text { the loul ring } \\
& \text { at the poost } t=0 \\
& \text { on the } t \text {-lise } / h \text {. Spukct] }
\end{aligned}
$$

OK has 2 prime itans: m"al $O_{\hat{1}}{ }^{\prime}(t)$
Speck \longrightarrow closept of generic pt of $S_{j e} \theta_{k}: t=0 \quad S_{k} \theta_{k}: t \neq 0$

From this pois of viw, F is f_{n} fle $1 \mathbb{P}_{\theta_{k}}^{\prime}$:

On the closes fiber $\mathbb{P}_{h}^{\prime} \stackrel{\text { open }}{\supset} \mathbb{A}_{h}^{\prime}$
 a pt $\stackrel{\mathbb{U}}{P}:$ cooreopmend to a prime cal $1 \mathrm{~b}(x)$

Ex. Take the pt $P: x=0$ on the close fill.

$$
\longrightarrow x
$$

$P: x=0$

On the clove fiber $\mathbb{P}_{h}^{\prime}, \quad P \leftrightarrow$ ines $_{\text {ned }}(x) c l(x)$

The completion of the local ring of $h(t)(x)$ at (x, t)

$$
\left(=\cdots \cdots \mathbb{P}_{\theta_{k}}^{\prime} \text { at } P\right)
$$

is $h(x, t)=\Theta_{\mathbb{R}_{\theta_{k}}^{\prime} P}$ p. $=\underline{2-d i n d}$ caplet loan in.
(so nat a dur) (c) ${ }^{2}=(x)<(x, t)$

Its fraction fiche is written $h(x, f)=F_{p}$. In graeal, for every pt P a closes fiber of $\mathbb{P}_{O_{k}}^{\prime}$ we get an associetal fill $\underset{\text { Fp. }}{ }$.
$\underset{F}{ }$.

Summery: Take a semi-glabil fill F, the function file of a projection curve C over a coup K, ar equiv. of a p oj j. curve X over the chur Q_{k}. For each pt P on the closed fiber $X<X$ (a curve $/ h=\theta_{k} / m$), we jut e fiche F_{P} vie completion frae.

Han $F \subset F_{P}$ for all P.
Can then ask for a LCP for F wont the fire F_{p}, instal of the F_{w} 's.
fra if $2-\operatorname{din}$
Relatimishoro:
fac of $1-2$ in caplotelocrajs

EveN, F_{p} is contended in many F_{v} 's, ane every F_{0} contains an F_{p}.
Can devin:

$$
\underline{L l}_{x}(F, G)=\operatorname{ker}\left(H^{\prime}(F, G) \rightarrow \prod_{P \in x} H^{\prime}\left(F_{p}, G\right)\right)
$$

So llf $_{X}(F, G)$ is the obstrication to the
LGP for G-tersers wat F_{p} 's:
If there is an $F_{p}-p t$ for all P, is there a F-pt.
Have l1I) $:(F, G) \subseteq$ LII (F, G).

Turns out: to gat resilt about numerial inveriants (a-inuciact, periol-index), it suffiees to consile this LGP, chide is easientosty.

HHK: For G a rotil conn lisi.ely. sp. /F,sgf, lll $_{*}(F, G)$ is trivec.
$\sim L G P$ for of forms α CSa's.
wot F_{p} 's.
CPS: In contert of s.firms + csa's, even the corropondin, obstractions $l(I)(F, G)$ are trivial.

Callist-Theline, Perin.lo, Surash

