Recall: Wire proving the Husse-Minkouski The over a global field F :
local -global principle for isotropy of quadratic forms over F :
q isotropic/every $F_{v} \Rightarrow$ q isodrpic/F
We proved this for din 945 . Now show H-M for dim 25 , by induction on dim q.
Writs $q=\langle a, b, s \& e, \ldots\rangle$ isotropic $/ F_{\forall v}$ $\sum_{q_{1}} \underbrace{\left\langle a_{2} b\right.}_{q_{2}}, \underbrace{\left.s, c_{2}, \ldots\right\rangle}_{\text {possisl, more entries }}$
regular, so entries all $\neq 0$
Let $S=\left\{v / q_{2}\right.$ isotropic on $\left.F_{v}\right\}$.

$$
T=\left\{v \mid q_{2} \text { anisotropic on } F_{v}\right\} \text {. }
$$

Claim T is finite. Ie:iall but funtely many $v \in S$.
Proof of claim:

$$
\text { finite, many } v \text { ar } F
$$

For v now-archinedean, have valuation ring R_{v} (local ring) fintefice maximal ides $\mu_{v} ; R_{v} / \omega_{N}=h_{v}$
$C, d_{i} e \in R_{v}$ for all but finitely many v; c, d, e lie in only finctel, many M_{v}; o only finital, many Mr have char $k_{r}=2$.
(Were assuming che- $F \neq 2$)
Exclude these. Then c,d,e $\notin \operatorname{Rons}_{n}$, so $\bar{c}, \bar{d}, \bar{e} \neq 0$ in $h_{r, ~} ; \quad\langle\bar{c}, \bar{d}, \bar{e}, \ldots\rangle$ suits $;$ spic $/ h_{r}$ o then $<c$, 交, $e, \ldots\rangle$ isutropic/Fr. $u\left(h_{n}\right)^{\eta}=2$ So all but finitely, many v lix in S; ie. ε_{2} esotrosic/F. This proves the claim.

Returning to the main $p f$ of $H-M$:

(q_{1}, q_{2} regular)
$q_{1} \quad q_{2}$,isotropic over all but fin man F_{r}
Claim: Let $v \in T$, ie. T_{2} anisotropic /Fr.
Then $\exists z_{v} \in F_{v}^{x}$ st

$$
z_{N} \in D_{F_{N}}\left(q_{1}\right),-z_{N} \in D_{F_{v}}\left(q_{2}\right),
$$

Pf of claim: By assumption, q isotropic /Es.

Write $x=\left(x_{1}, x_{2}\right)$
in $F_{\sim}^{2} \quad q(x)=q_{1}\left(x_{1}\right)+q_{2}\left(x_{2}\right)$
Case 1: $x_{2}=0 \in F_{v}^{n-2}$.
$x \neq 0 \Rightarrow x_{1} \neq 0 . \quad$ bc, $g_{2}\left(x_{2}\right)=0$
So $0=q(x)=q\left(x_{1}, x_{2}\right)=q_{1}\left(x_{1}\right)$
So q_{1} is isotropic /F, a rasala-;
\therefore universel/F.
Also q_{2} regale, $\Rightarrow \exists y_{2}^{x^{0}} \in F_{v}^{n-2}$ st $q_{2}(y) \neq 0$.
q_{1} universal $\Rightarrow \exists y_{1} \in F_{r}^{2}$ st $q_{1}\left(y_{1}\right)=-q_{2}\left(y_{2}\right) \neq 0$

$$
\begin{aligned}
& \text { Take } z_{v}=q_{1}\left(g_{1}\right)=-q_{2}\left(y_{2}\right) \text {. So } z_{v} \in F_{v} x \\
& \text { and } z_{v} \in D_{F_{v}}\left(q_{1}\right),-z_{v} \in D_{F_{v}}\left(q_{2}\right),
\end{aligned}
$$

giving the claim in this case.

Case 2: $x_{2} \neq 0 \in F^{n-2}$
$v \in T$; ie. q_{2} anisotropic/ F_{v}.
So $q_{2}\left(x_{2}\right) \neq 0$, But $x_{2} \neq 0$
$0=q_{1}\left(x_{1}, x_{2}\right)=q_{1}\left(x_{1}\right)+q_{2}\left(x_{2}\right)$
So take $z_{N}=q_{1}\left(x_{1}\right)=-q_{2}\left(x_{3}\right) \subset F_{r}^{x}$
with $Z_{N} \in D_{F_{N}}\left(q_{1}\right),-z_{v} \in D_{F_{v}}\left(q_{2}\right)$.
So the claim is provelf ie.

$$
\forall v<T \quad \exists z_{v} \in F_{v}^{x} \text { with } z_{v} \in D_{F_{r}}\left(q_{1}\right),-z_{v} \in D_{F_{v}}\left(q_{2}\right) \text {. }
$$

Take $v \in T$.
dine form, $\langle a, b\rangle$.
Slice $z_{r} \in D_{F_{N}}\left(q_{1}\right)$, we man waite

$$
\begin{array}{rlrl}
z_{v} & =q_{1}\left(x_{v}, y_{v}\right) \quad \text { wit } x_{v} y_{v} \in F_{v} \\
& =a x_{v}^{2}+b y_{v}^{2} & \text { not bot } 0 .
\end{array}
$$

If $x, y \in F_{v}$ are snuff. close to $x_{m} y_{v}$ resp., wot $\mid \cdot I_{w}$, then $z:=e x^{2}+b y^{2}=q_{1}(x, y) \neq 0$
(being suff. close to $z_{v} \neq 0$).
Also, Z_{n} / z eff closeto 1 , so in $F_{r}^{x^{2}}$; so石zr in same square class in Fr.

Since there are only finitely many such $v \in T$, Weak Approx \Rightarrow
$\exists x, y \in F$ that are suff. close to x_{v}, y_{v} resp for all $v \in T$.

$$
\text { So } z=a x^{2}+b_{y}^{2}=q_{1}(x, y) \in F^{x} \text {. }
$$

So q, represents z over F.
So $q_{1} \cong\langle z, w\rangle$ for some $\omega \in F^{x}$.
Let $q^{\prime}=\langle z\rangle+q_{2}$. So $q \cong q^{\prime} \perp\langle\omega\rangle$.
B_{y} def of S, q_{2} is isotropic $/ F_{v}$ fordlurS.
Hence $q^{\prime}=\langle z\rangle \perp q_{2}$ is isotropic $/ F_{v}$ for all $v e S$.
For $v \notin S(i, v \in T)$, qu reps. $-z_{v} / F_{v}$.
Sirach $-z_{1}-z_{w}$ are in the sans square class $/ f_{\omega}$,
q_{2} also reps $-Z / F r$.
$\therefore q^{\prime}=\langle z\rangle \perp q_{2}$ is isotropic /Fr for all $v \notin S$.

Thus g^{\prime} is isotropic/ F_{s} for all v.
BAT $q \cong q^{\prime} \perp(\omega)^{\prime}$ so $\operatorname{dim} q^{\prime}=\operatorname{din} q-1$.
Soby indactire hypothesis, H-M holes Sor g!
$\therefore q^{\prime}$ is isatopic/F. $\quad B a t \cong q^{\prime} \pm\langle\omega\rangle$.
So q is isotoric /F.
This compltes the proof of
Hasse - Minkowski.
Back to Galois cohomology

- Via group cohomology.

Recall: if T is a finite grop or a profinite grop lin \prod_{j}, and P acts on an abelion grop A, we can defie $H^{i}(\Gamma, A)$:
$C^{i}(\Gamma, A)=\left\{\begin{array}{c}\text { cout. } \\ \text { mops } \\ i\end{array} \rightarrow A\right\} \quad i-$ cocheins
Ul

$$
Z^{i}(\Gamma, A)=\operatorname{ker} d: C^{i}(\Gamma, A) \rightarrow C^{i+1}(\Gamma, A)
$$

Ul

$$
B^{i}(\Gamma, A)=\text { in } d: C^{i-1}(\Gamma, A) \rightarrow C^{i}(\Gamma, A)
$$

i-coboundaries
Where $d: C^{i}(T, A) \rightarrow C^{i+1}(T, A)$ is definal by

$$
\begin{aligned}
d f\left(\gamma_{1}, \ldots, \gamma_{i+1}\right) & =\gamma_{1} \cdot f\left(\gamma_{2}, \ldots, \gamma_{i+1}\right) \\
& +\sum_{j=1}^{i}(-1)^{i} f\left(\gamma_{1}, \ldots, \gamma_{j-1}, \gamma_{j} j_{j+1}, \gamma_{j+1, \ldots 11}\right) \\
& +(-1)^{i+1} f\left(\gamma_{1}, \frown \gamma_{i}\right)
\end{aligned}
$$

Hexe $d^{2}: C^{i}(\Gamma, A) \rightarrow C^{i+2}(\Gamma, A)$ is the zero map, so $B^{i}(\Gamma, A) \leq Z^{i}(\Gamma, A)$ and wecentake $H^{i}(T, A)=Z^{i}(T, A) / B^{i}(\Gamma, A)$. $=g p$ of coho classes of i-cocycles.

Ex.

$$
\begin{aligned}
\text { к. } & H^{\circ}(\Gamma, A)=A^{r} \\
= & \left\{\left.a \in A\right|_{\text {a is fins. under the }} ^{\text {cochin of }}\right\}
\end{aligned}
$$

If the action is trivial, $H^{\circ}(P, A)=A$.
Ex, $H^{\prime}(\Gamma, A)$

$$
=\left\{f^{c o t}: \Gamma \rightarrow A: f\left(\gamma \gamma^{\prime}\right)=\gamma \cdot f\left(\gamma^{\prime}\right)+f(\gamma)\right\}
$$

the set of (catinuers) crossed homomorphisms from Γ to A (wot the action).
If the action is trivia, then $H^{\prime}(\Gamma, A)=\operatorname{Hom}(\Gamma, A)$ (usual han's)

Ex. $H^{2}(T, A)=$ gp of coho. classes of factor systess f, ie. cat imps $f i P>\Gamma \rightarrow A$ such that $\gamma \cdot f\left(\gamma^{\prime}, \gamma^{\prime \prime}\right)-f\left(\gamma \gamma^{\prime}, \gamma^{\prime \prime}\right)+f\left(\gamma, \gamma^{\prime} \gamma^{\prime \prime}\right)-f(\gamma, \gamma)=0$

If A is fixate, $H^{2}(\Gamma, A)$ classifies the set of iso. Classes of group extensions $1 \rightarrow A \rightarrow \Delta \rightarrow \Gamma \rightarrow 1$ st the given action of T a A is the one obtained by lifter, $\gamma \in T$ to Some $\delta \in \Delta$ and conjugating A. (Well defiant blu A is abelien)

Can also define group cohomilogy vic derives functars:
Let $H^{i}(P, A)$ be the $i^{\text {th }}$ right derives functor of the functor $A \longmapsto A^{\Gamma}$. So $H^{\circ}(\Gamma, A)=A^{\Gamma}=H_{m}(\mathbb{Z}, A)$

Hor as Γ-motive, ie. as $\mathbb{Z}[T]$-molder

So $H^{i}(T)=,i^{\text {th}} r t$ derives functer of $\operatorname{Him}_{r}(\mathbb{Z}$,

$$
=\operatorname{Ext}_{\Gamma}^{i}(\mathbb{Z}, \cdot)
$$

$$
\text { So } H^{i}(T, A)=\operatorname{Ext}_{\underset{2}{[r]}}^{i}(2, A) \text {. }
$$

Can use this to rewaite the cocyde detiantio (See Sere, Local Fialls, Ch.VII, 8z-3)

As expectere with cohomology, 2vien a s.e.s. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of Γ-modules, theris a l.e.s.

If $H^{i}(C, 1=0$ for all $i \gg 0$, can work buckwods to comprte H°, H^{\prime}.

What if we wat to form H (P, G) for a nouabalian group G on whid T acts?
(Serre, Galoii, Chowlosi,)
Difficulty: $z^{i}(T, C)$ is nof a grop
We can still defire the set

$$
Z^{\prime}(T, G)=\left\{\begin{array}{l}
f \in C^{\prime}(T, G) \mid \\
f\left(\gamma \gamma^{\prime}\right)=f(\gamma)\left(\gamma \cdot f\left(\gamma^{\prime}\right)\right)
\end{array}\right\}
$$

but we cait take Z^{\prime} / B^{\prime} for H^{\prime} !
Insteal, defire an equivalence
relation on $Z^{\prime}(\Gamma, G)$ (being"cohomologons):
$f_{1} \sim f_{2}$ if $\exists g \in G$ st $\forall \gamma \in T$,

$$
f_{2}(\gamma)=g^{-1} f_{1}(\gamma)(\gamma \cdot g)
$$

So $f \sim 1$ (trivical elt of Z^{\prime}) iff
$\exists g \in G$ st $\forall \gamma \in T, f(\gamma)=g^{-1}(\gamma \cdot g)$
(so specializes to the sle B^{\prime} if Gobele..).

We then define $H^{\prime}(\Gamma, G)$ to be the set of Cohowlogy classes in $Z^{\prime}(T, G)$. Not e gnopjjuit
a pointer sat (Sat wite a destignicise elenat). like Z^{\prime}.

Ex. Say T acts trivially, ion G. Then

$$
\begin{aligned}
Z^{\prime}(\Gamma, G) & =\left\{\begin{array}{l}
f \in C^{\prime}(\Gamma, G) \mid \\
f\left(\gamma \gamma^{\prime}\right)=f(\gamma) f\left(\gamma^{\prime}\right)
\end{array}\right\} \\
& =\operatorname{Hom}(\Gamma, G),
\end{aligned}
$$

as in the abelian case.
But Hon $(T, G)^{\prime \prime} Z^{\prime}(T, G)$ not a goop. just a pointer sat.
Catejon of pointre sots; $\quad \begin{aligned}\left(S_{-}, s_{0}\right) & \rightarrow\left(T, t_{0}\right) \\ S . & \longrightarrow t_{0}\end{aligned}$ in \Rightarrow trivial Ger; not conversely
$H^{\circ}(\Gamma, G)=G^{\Gamma}$ as before; a grop.
$H^{i}(\Gamma, G): n_{0}+\operatorname{detins}$ for $i \geq 2$.
If $1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ is a s.e.s with coupatible actions of T, get a 6-term excoct sequence

$$
\begin{aligned}
& 1 \rightarrow H^{\circ}(\Gamma, N) \rightarrow H^{\circ}(\Gamma, G) \rightarrow H^{\circ}(\Gamma, H) \\
& \longrightarrow H^{\prime}(\Gamma, N) \rightarrow H^{\prime}(\Gamma, G) \rightarrow H^{\prime}(\Gamma, H)
\end{aligned}
$$

in Category of pointer sots (i.e. ker $=$ in of preumop).

If $N \subset Z(G)$ (so N is abclica), get a $7^{\text {th }}$ termi

$$
\begin{aligned}
& \qquad H^{\circ}(\Gamma, N) \rightarrow H^{\prime}(\Gamma, C) \rightarrow H^{+}(\Gamma, H) \rightarrow \\
& \rightarrow H^{\prime}(\Gamma, N) \rightarrow H^{\prime}(\Gamma, G) \rightarrow H^{\prime}(\Gamma, H) \\
& \rightarrow H^{2}(\Gamma, N)
\end{aligned}
$$

Galois Cohomolog7: Case wher.
T is a Galois grop.
Previons discusse: F a fucl,

$$
P=\operatorname{Gl}(F):=\operatorname{Gl}(F \% / F)
$$

White $H^{i}(F, G)$ for $H^{i}(T, G)$. (G not nec. abelian if $i=0,1$)
More gener.lly, say E / F is a $G a l$ sis extensim, $\&$ let $T=\operatorname{Gol}(E / F)$. Write $H^{i}(E / F, G)$ for $H^{i}(T, G)$.

Bedere we consilerad $G=\mathbb{C} l l$. Maregenill, Can let G be a linew algebraic gropp, ie. a Zrriski closel subgroup of $G C_{n}$. Again, need G abclian, unless $i=0,1$.

Case of $G L_{n}$ itself, over F :
Wien Clan as the Z-iski closed
subse of

$n^{2}+1$ di- l office
Space; coordinates
$x_{i j}(1 \leq i \leq n)$
poly of deg
and y st
in the $x_{i z}$

$$
y \operatorname{det}\left(x_{i-2}\right)-1=0
$$

Write $\mathbb{F}_{m}:=G L$, multiplicative grope.
Ex The invertible $n \times n$ diagond matrices
form a group $\cong \mathbb{G}_{n}^{n}$.
Ex, $S L_{n}<G L_{n}$, give $b_{y} \operatorname{det}\left(x_{2}\right)-1$.
Ex $\mathrm{SO}_{n}(g) \subset O_{n}(\delta) \subset G C_{n}, q$ - rif. IF
Ex. The group of matrices of the form
$\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right)$ is 150 morghic to the additive group \mathbb{F}_{c}.

If G is a lineer alg. sp detried $F F$, then $\Gamma:=G l(F)=\operatorname{Gl}\left(F^{s} / F\right)$ acts on the grope $G\left(F^{r}\right)$. of $F^{\text {sip }}$-poits on G.

Detin $H^{i}(F, G):=H^{i}\left(T, G\left(F^{*}\right)\right)$ ($i=0,1$, unkess $G_{\text {is }}$ conmatative)
Ane for E/F Galois, detine

$$
H^{\prime}(E / F, G):=H^{*}(G l(E / F), G(E))
$$

Ex, $F=$ ficl, G a finit group, take trivial action of $G_{l l}(F)$ on G.
Then $H^{\prime}(\Gamma, G)=\operatorname{Hfon}^{\Gamma}(\Gamma, G) / \sim$ $=$ \{iso, closses of

$$
G \text { - Galsis algesurs/F\} }
$$

Galors fle extens, $+\oplus$; of such.

$$
E_{g .} F=\mathbb{Q}, G=\mathbb{Z} / 2: \mathbb{Q}(i), d s=\mathbb{Q} \oplus \mathbb{Q} .
$$

Ex, (as on PS4) L/K a Galois fill l extension \Rightarrow
$H^{\prime}\left(\mathrm{Gal}(L / K), L^{x}\right)$ is tribal
"haters Theorem so"
Can write as: $H^{+}\left(L / K, \mathbb{G}_{n}\right)=1$.
Can take $\sum_{4 / k}^{\operatorname{lin}}$ and get $H^{\prime}\left(k, G_{n}\right)=1$.
More generally: $H^{\prime}\left(L / K G C_{n}\right)=1$
(b) a grealisition of the prof Sur, Coal Fiats, Chg, SI, Pry 3)

