We are provingi Harse - Minkouski Theoren'
Say F a global fiele, q a s.f.lF.
The: q isotopiil $F \Leftrightarrow q$ isotugic levan F_{w}. For proofi wMA qregular. We saw:
For din $q=1: \quad q=\langle a\rangle$, anistropic/ F, F_{u}
For din $g=2: \quad q=\langle a, b\rangle$.
After mult b, constant, STs for $\langle 1,-a \geqslant$ $a \in F^{x}$. This is isstropic $\Leftrightarrow a$ is a space. So wTs; $a \in F_{v}^{x^{2}}$ fr \quad ll $v \Rightarrow a \in F^{x^{2}}$.
Case of $F=\mathbb{Q}$:
Say $a \in \mathbb{Q}_{p}^{x^{2}} \forall p$, and $a \in \mathbb{R}^{x^{2}}$.
$\overbrace{\text { so }} v_{p}(a)$ is even
So prine factrization of a is $\prod_{i=1}^{1} P_{i}^{2 n}$.
So a is s square in Q,
Similen, if $F=\mathbb{F}_{p}(x)=$ frac $\mathbb{F}_{p}[x]^{5}$.

In general case: a globat fue $F=$ frac R
$S_{9} a \in F_{v}^{x^{2}} \forall r$; WTS $a \in F^{x^{2}}$, Dele, Contraposituve: $S_{y} a \notin F^{x^{2}}$.
UTS $a \notin F_{v} x^{2}$, sine s. Let $E=F[\sqrt{a}]$. Degren 2 fillextesin
Then \exists prims of F (i.e. of R) that remain prime in $S s$

$$
\text { i.e. } \quad \begin{array}{rl}
\quad \exists!p & <S<E \\
12 \\
8 & 12 \\
& R<F
\end{array}
$$

(Tchebotand Denicty thin: half the primes spliti)
Tcke such $=8 \longleftrightarrow \sim$

$$
\begin{aligned}
& E_{p}=E \otimes_{F} F_{8}=F_{8}[\sqrt{a}] \\
& 21 \\
& F_{8}=F_{8}
\end{aligned}
$$

So no \sqrt{a} in $F_{8_{0}}=F_{v} ; F_{8} \notin F_{v}^{x^{2}}$.

For $H-M$ in dim $3+4:$
Two approaches:

- Lam: Use a special case of the locel-global principle for splitting of Csc's. (Lam gives a proof of that LCP in case of $F=\mathbb{Q}$; the fill the is relater to class field theory, in number thy.)
- Serve, A Course in Arithmetic, Chap. IV, ξ_{3}
- gives a direct proof of $H-M$, but only over \mathbb{Q}.
Will follow L ans approach to H-M

LCP for csas: Theoren of
Albet-Braner-Hesse-Noethe-

Statement:
Let F be a globel ficl.
Let A be a csa/F. Then:
A is split/F \Longleftrightarrow
A is split/ F_{v} for all r.
Equivaluth: the map

$$
\operatorname{Br}(F) \rightarrow \prod_{v} \operatorname{Br}\left(F_{v}\right)
$$

is injective.

For hisfories of these two loed-globel thearens see:

1) R.Parimala, A Hasse Priaciple for Quad rotic Forms over Furction Fiels.
Bull. AMS (81), April 2044, 447-461.
2) Peter Requatte, The Brauer -Hesse-Noather Theorm in Hostoriad Perpuctive. Springa-mougraph, 2005

Both are availcble ouline.
We wort need the fall strength of ABAN - just for quaternin algebras (rather than generd cseis).

Can reformalete $A B H N$ for quaternions, using that a quaternion algebra $A=\left(\frac{a, b}{f}\right)$ is ckesifiel b_{y} its arm form $q=\langle 1,-a,-b, a b\rangle$.
that A is split
$\Leftrightarrow q$ is hyperbolas
$\Longleftrightarrow q$ is isotropic.
So we can rephanse ABHN in this situation as:

$$
\left.\begin{array}{l}
q=\langle 1,-a,-b, a b\rangle \text { is hyperbolic } / F \\
q \text { is hypersilic/Fw for all v. }
\end{array}\right\}
$$

Of Corse (*) is a special Case of $\mathrm{H}-\mathrm{M}$. But it can also be used in the proof of H-M if shim separately.
C am proves (*) for $F=\mathbb{Q}$ in Chap. VI, $\delta 4$, as follows:

For each odd P, we have second resides.

$$
W(\mathbb{Q}) \rightarrow W\left(\mathbb{Q}_{p}\right) \xrightarrow{\partial_{2}} W\left(F_{p}\right)
$$

By abuse of notation, call this composition $\partial_{(p)}$.
$A\left(\right.$ so, define $W(\mathbb{Q}) \xrightarrow{\partial_{(\infty)}} W(\mathbb{R})=\mathbb{Z}$

$$
\begin{equation*}
b_{y} \quad q \longmapsto \operatorname{sign}(\xi) \tag{siguctur}
\end{equation*}
$$

All define $w(\mathbb{Q}) \xrightarrow{\partial_{(2)}} \mathbb{Z} / 2$
$\mathrm{b}_{\mathrm{y}} \quad q \longmapsto v_{2}(\operatorname{det} q) \mathrm{mol} 2$
The have a app

In Che) $\{4$, Lan shows directly that ∂ is an isomorphism. This gives the structure of W (CQ).

Using that ∂ is an is, we can get the fllowin;
Prop. If g.fis $q, q^{\prime} / Q \in$ becom isomatric $/ a / l \mathbb{O}_{p}+/ \mathbb{R}$, the they are lsometric $/ \subset Q$.

Prof $q_{2} q^{\prime} 1$ sometric $/ \mathbb{R} \Rightarrow$ same sijusture. $q_{1} g^{\prime}$ isomeni $/ Q_{2} \Rightarrow v_{2}\left(\operatorname{dtt} \sigma_{反}\right) \equiv v_{L}\left(d t_{f^{\prime}}\right)$ mol 2 . So $\partial_{(\infty)}(q)=\partial_{\omega \rightarrow 1}$ (qi) anl $\quad \partial_{(4)}(q)=\partial_{(1)}\left(q^{\prime} /\right.$.

Sinien isonntric / Qp, have same 2^{D} fuibll fem at $p: \quad \partial_{(p 1}(q)=\partial_{(p)}\left(q^{\prime}\right)$.
So $\partial c_{q} l^{\prime}=\partial c_{\xi^{\prime}}$. $\quad \partial$ iso $\Rightarrow 8,8^{\prime}$ in same claes in $W(\mathbb{Q})$. But samedim. So $\wp \cong$!

In particien, this appliss to a oif. of of dinension 4 , a.e $8^{\prime}=2 h=\langle 1,-1,1,-1\rangle$.

So: if g ishopecholic at ead capletis of Q, the $9, \delta^{\prime}$ ane isomatric over ecach completin; so above Prop $\Rightarrow q^{\circ} \cong q^{\prime} . \therefore q$ hoperboica

Apph to $q=\langle 1,-a,-b, a b\rangle$. Gat the desiras sperial case of $A B H N$ fu- $F=\mathbb{Q}$:
of hiparbicic /F $\Leftrightarrow \sigma^{\text {hiparbilic / ell }} F_{n}$
Equio. q isoturg: $/ F \Leftrightarrow q_{\text {isotrosic } / \mathrm{cll}} \mathrm{F}_{\mathrm{v}}$
$E_{\text {zain }} A=\left(\frac{a_{i} b}{F}\right)$ spl.t $/ F \Longrightarrow A$ split $/$ dll $F_{\text {M }}$.
To use this to prove H-M for the Case dim $8=3$:

Sap din $q=3$, $\{$ reguarlf, 8 isutryic/ead Fw. WTS \& isotrogic /F.

WMA $q=\langle 1, a, b\rangle, \quad a, b \in F^{x}$.
 $\imath_{\text {norn from of }}$
So $\left(\frac{-a,-s}{F}\right)$ splits / Fr forallor,

$$
\left(\frac{-a-b}{p}\right)
$$

and $\langle 1, s, 1, a b\rangle$ is hyperblec/Fo.

By the abore reualt, $\left(\frac{-a,-s}{F}\right)$ sphts iF, or equia! $\langle 1, a, b, a b\rangle$ is dyperbelic/f.

$$
\text { i.e. }\langle 1, a, b, 0 b\rangle \cong 2 h=\langle 1,-1,-a b, a b\rangle
$$

By witt Cancullation,

$$
q:=\langle 1, a, b\rangle \cong\langle b,-1,-a b\rangle
$$

$$
\therefore q 1 \text { sodropic } \mathbb{F} .
$$

Case: $\operatorname{din}_{6}=4$.
First: another theorem of Spange:-
Thm (Lan, Chopll, thm 2.7)
Say K/F is a ficle extension such
that $n:=[k: F]$ is old, Let q
be a q.f. /F that is anisotropic/F.
Then q is also aniso tropie / K.

As a nice consegurae of this the:
Con. If K / F hes ore dares then $u(K) \geq u(F)$.

Pf of above the: By cartraliction.
Supper ヨanis.tropic q.f. gIF ane K/F of eld degree st q is isotropic / K. If so, take $(K, 8)$ st n is mind. So $n>1$.
$S_{a y} K=F\left(\alpha_{1}, \ldots \alpha_{m}\right)$. By induction on m, we are reduced to the Case $m=1$ (Since each step $F\left(\alpha_{1}, \alpha_{r n}\right)$ hes old de gran) So $K=F(\alpha)$. Let $p(t)=$ minis poly of $\alpha / \frac{1}{F}$ So $\operatorname{deg} p(t)=n$.
q isotropic $/ K \Rightarrow \exists \gamma_{1, \ldots}, \gamma_{d} \in K$ st $q\left(\gamma_{1}, \ldots, \gamma_{l}\right)=0$, where $d=\operatorname{din}$.

$$
K=F[\alpha] \Rightarrow \gamma_{i}=g_{i}(\alpha), \log g_{i}<n=\operatorname{dg} p_{(k)}
$$

We mas choose γ_{1}, γ_{d} st maxdyg! is mini.
Then the polis $g_{1}(t), \cdots g_{d}(t) \in F[t]$
are relatively prime (no comm fetor f)
-or else wide have $g_{i}(f)=\vec{g}_{i}(t) f(t)$ and then $g\left(\tilde{\gamma}_{1}, \ldots \tilde{\gamma}_{d}\right)=0$ with $\tilde{\gamma}_{i}=\tilde{g}_{i}(\alpha)$, Contrad rating minim. lint of $m_{i} \times x d y z_{i}$.
So the ideal $\left(g_{i}(t), \Rightarrow g_{d}(t)\right)=(1)$ in $F[t]$ α hence also in $\bar{F}(t)$.
Under $F[t] \xrightarrow{\varphi} K, \quad t \mapsto \alpha$

$$
\begin{gather*}
q\left(g_{1}(t), \ldots g_{d}(t)\right) \longmapsto q\left(\gamma_{1}, \ldots, \gamma_{d}\right)=0 \\
\underbrace{\therefore} \text { in ker } \varphi=(p(t)) \subset F[t] . \tag{*}
\end{gather*}
$$

So $q\left(g_{1}(t), \ldots, g_{e}(t)\right)=p(t) h(t)$
Some paly in $F(t)$.
deg $q\left(g_{1}(t), \rightarrow g_{d}(t)\right) \leq 2 \max _{i} \operatorname{dg} g_{i}(t)$
even

$$
\leq 2(n-1)
$$

and dag $p(t)=n$,
So ($*$) $\Rightarrow \operatorname{deg} h(t) \leq n-2$.
(HS of $(*)$ has eve degree, $+p(f)$ has old dajree n,
So $\operatorname{leg} h(t)$ is odd.
So $h(t) \in F[t)$ has an odd deg irred factor $h_{1}(t)$
L\&t $\beta \in \bar{F}$ be a root of $h_{1}(t) . \therefore[F(\beta) ; F] \leq n-2$
So $h(\beta)=0$. But we had
$\int^{2} h_{h_{1}}$

$$
\begin{equation*}
q\left(g_{2}(t), \ldots, g_{2}(t)\right)=p(t) h(t) . \tag{*}
\end{equation*}
$$

So $q_{0}\left(g_{\cdot}(\beta), \rightarrow g_{d}(\beta)\right)=p(\beta) h(\beta)=0 \in F(\beta)$
So q is isotropic over an odd degree extension of $d y \leq n-2<n$, Coutreliating the minimality of n.

Above them of Springe is for extensions of old degre: cant 2 ain new isotropy.
What about extensions of even degree?
Then a gif. Can become isotropic
(es $\langle 1, D$, going from \mathbb{R} to \mathbb{C})
Q: When does this happen? Ans:
Th a (Can, Ch U(1, Thu 3.1.)
Let q be an anisotropic of. /F.
Let $a \in F^{x}-F^{x^{2}}$ and $K=F(\sqrt{a})$.

Then q becomes isotrgic/K

$$
\Longleftrightarrow \begin{aligned}
& 0 \\
& \hdashline\langle-a b, b\rangle \perp q^{\prime} \text { for some } b \in F^{\times} \\
& a-d \text { some } 9 . f . q^{\prime} \text { over } F .
\end{aligned}
$$ and some q.f. q^{\prime} over F.

Equine: q remains anisstrgsicunkers q is of this form / F.

Pf of the:
$(\Leftarrow) / f q$ is of this fum, then $/ K$:

$$
\begin{aligned}
& \left\{\cong\langle-a b, b\rangle \perp q^{\prime}\right. \\
& \cong\langle-b, b\rangle \perp q^{\prime} \text { is isotropic } / K_{i}
\end{aligned}
$$

\Leftrightarrow Say $q=\left\langle b_{1}, \ldots, b_{n}\right\rangle$, anisotropic $/ F$, becomes isotropic $/ K=F[\sqrt{a}]$.
WTS $q \cong\langle-a b, b\rangle \perp q^{\prime}$.
q isotropic $/ K \Rightarrow \exists Z^{X^{0}}=\left(z,-, z_{n}\right) \in K^{n}$
st $q(z)=0$. Write $z_{i}=x_{i}+\sqrt{a} y_{i}$,
$x_{i}, y_{i} \in F$. Write $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1},-y_{n}\right)$.
So $x, y \in F^{n}$, n.tb.th 0 , since $x+\sqrt{a} y=z \neq 0$.

$$
\begin{aligned}
0=q(z) & =\sum b_{i} z_{i}^{2}=\sum b_{i}\left(x_{i}+y_{i} \sqrt{a}\right)^{2} \\
& =\alpha+\beta \sqrt{a}
\end{aligned}
$$

where $\alpha=q(x)+a q(y) \in F$
and $\beta=2 B(x, y) \subset F$, when $B \longleftrightarrow \%$

$$
\begin{aligned}
& \alpha+\beta \sqrt{a}=0, \quad \alpha_{1} \beta \in F \Rightarrow \alpha_{1} \beta=0 . \\
& \therefore B(x, y)=0, \text { so } x \perp y \text { crt } q .
\end{aligned}
$$

x, y not both $0 ; q$ anisotropic
$\Rightarrow q(x), q(y)$ not bot 0 .

$$
0=\alpha=q(x)+a q(y) \Rightarrow q(x)=-a q(y) ;
$$

but $a \neq 0$, So neither of $g(x), q(y)$ is 0 .
$\therefore x, y$ both hon- O; and ortlogomer.
So can extend $\{x\}$,$\} to an orthogonal basis.$
Writ this basis,

$$
q \cong\langle q(x), q(y), \ldots\rangle=\langle-a q(y), q(y), \ldots\rangle .
$$

q eval. at otherbasis alt $=\langle-a q(\eta), q(q)\rangle \perp q^{\prime}$

$$
\text { Set } b=q(y) \text {. So } q \cong\langle-a b, b\rangle \perp q^{\prime} \text {. }
$$

Cor. Soy q.if $/ F, \quad \operatorname{dim} p=4$, $\delta_{1}=\operatorname{det} q$. If q is anisotropic $/ F$ then q is anisotropic /K: $=F[\sqrt{\delta}]$.

Equiv: q isotropic $/ K \Rightarrow q$ isotropic $/ F$
Pf. $\omega \mu A \delta \notin F^{x^{2}}$ (opervia trivia).
B_{y} the prev. them,
q isotropic /K=F[(/v] $\Rightarrow q \cong\langle-8 b, 6\rangle \perp \delta^{\prime}$
for some $b \in F^{x}$ ale q^{\prime}, af. $I F$.

$$
\operatorname{det}(\langle-\delta b, b\rangle)=-\delta c F^{x} / F^{x^{2}}
$$

$\operatorname{det} q=\delta$, so $\operatorname{det} \delta^{\prime}=-1$

$$
\therefore q^{\prime} \subseteq\langle c,-c\rangle \cong h \text {, isotopic } / F \text {. }
$$

$\therefore q$ isotropic / F.
Using this, we can prove $H-M f-\operatorname{din} p=4$:

Pf of Itase - Minkouski for $\operatorname{din} q=4$:
WMA q reguler $1 F$, globel iserepic /each F_{\sim}. WTS \& isodupic /F. WMA q$\cong\langle 1, a, b, c\rangle$.

$$
\delta:=\operatorname{det} q=a b c
$$

By above COr, STS of isodopic $K=F(\sqrt{\delta})$

$K \subset K_{w}<d$| dis vals in K |
| :--- |
| restrict to |
| abs valis on F |

$E \subset F_{v} \quad l$
q isotrop:c / each $F_{v} \Rightarrow q$ isotrgic /ead K_{v}
$\int_{11} \in K^{X^{2}} \Rightarrow c, a b$ are in the same
"1bc squer clow in $K^{x} / K^{x^{2}}$
So $q=\langle 1, a, b, c\rangle \cong\langle 1, a, b, a b\rangle \quad / K$
q isotronic/each K_{w}

q isotropic $/ K$. So

To prove $H-M$ for dim 25 , by induction: Will use the Week Approximation The, an extension of Chinese Remainder Than:

Weak Approx for a global fill F :
Given distinct abs. Values v_{1}, \ldots, v_{m} on F, and $\varepsilon_{1}, \longrightarrow \varepsilon_{m}>0$, and $a_{i} \in F_{v_{i}}$ for $i=1, \ldots m$, $\exists a \in F$ st $\mid a-a_{i} \|_{v i}<\varepsilon_{i}$ for all :
Ex. $F_{1}=Q, v_{i} \leftrightarrow P_{i}$ (pins),

$$
\varepsilon_{i}=\frac{1}{p_{i}^{n_{i}}} \text { for } i=1, \ldots, m, \quad a_{i} \in \mathbb{Z}_{p_{i}} .
$$

\mathbb{Z} dense in $\mathbb{C}_{p_{i}}$ want $\left.1 \cdot\right|_{p_{i}} ;$ take $b_{i} \in \mathbb{Z},\left|b_{i}-a_{i}\right| k_{k} \frac{1}{p_{i}^{\prime i}}$. $C R T \Rightarrow \exists a \in \mathbb{Z}$ st. $a \equiv b_{i}\left(m o l p_{i}^{n i}\right)$ for all $i ;$ so $\left|a-a_{i}\right|_{p_{1}} \leq\left|a-b_{i}\right|_{p_{i}} \leq \frac{1}{p_{i}}{ }^{i}, l$.
(By clearing demos, ok eve if $a_{i} \in \mathbb{Q}_{p i j} ;$ gat $a \in Q$.)
Weak approx dos allows archinalea abs.valis - + so extuds CRJ.

It remains to prove
Hesse- Minkowski fer q.f.'s q of din ≥ 5.

We will proceed by induction on dim of:
Well take q of some dim 35 , and assume it holes for all gefis of loverdin. (We already know it holds in din 54)

Will assume q isotropic $/ a l l F_{v}$. WTS q isotropic /F.
Strategy: Write $q \cong\langle w\rangle \perp q^{\prime}$
lower din
st \mathcal{q}^{\prime} is isotropic / every completion F_{v}.
Once we do this, we can apply H-M to ge.
(by indaction hypothesis). So gat q^{\prime} isidripic/all $F_{v} \stackrel{H M}{\Rightarrow} q^{\prime}$ ssidropic/F $\Rightarrow 9$ sotrpic/F.

